101
|
Zlatohurska M, Gorb T, Romaniuk L, Shenderovska N, Faidiuk Y, Zhuminska G, Hubar Y, Hubar O, Kropinski AM, Kushkina A, Tovkach F. Broad-host-range lytic Erwinia phage Key with exopolysaccharide degrading activity. Virus Res 2023; 329:199088. [PMID: 36907559 DOI: 10.1016/j.virusres.2023.199088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 02/18/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
In this study, the genome of the lytic broad-host-range phage Key infecting Erwinia amylovora, Erwinia horticola, and Pantoea agglomerans strains was characterized. Key phage has a 115,651 bp long double-stranded DNA genome with the G + C ratio of 39.03%, encoding 182 proteins and 27 tRNA genes. The majority (69%) of predicted coding sequences (CDSs) encode proteins with unknown functions. The protein products of 57 annotated genes were found to have probable functions in nucleotide metabolism, DNA replication, recombination, repair, and packaging, virion morphogenesis, phage-host interaction and lysis. Furthermore, the product of gene 141 shared amino acid sequence similarity and conserved domain architecture with the exopolysaccharide (EPS) degrading proteins of Erwinia and Pantoea infecting phages as well as bacterial EPS biosynthesis proteins. Due to the genome synteny and similarity to the proteins of T5-related phages, phage Key, together with its closest relative, Pantoea phage AAS21, was suggested to represent a novel genus within the Demerecviridae family, for which we tentatively propose the name "Keyvirus".
Collapse
Affiliation(s)
- Maryna Zlatohurska
- Department of Bacteriophage Molecular Genetics, D. K. Zabolotny Institute of Microbiology and Virology, the National Academy of Sciences (NAS) of Ukraine, Kyiv 03143, Ukraine
| | - Tetiana Gorb
- Department of Bacteriophage Molecular Genetics, D. K. Zabolotny Institute of Microbiology and Virology, the National Academy of Sciences (NAS) of Ukraine, Kyiv 03143, Ukraine
| | - Liudmyla Romaniuk
- Department of Bacteriophage Molecular Genetics, D. K. Zabolotny Institute of Microbiology and Virology, the National Academy of Sciences (NAS) of Ukraine, Kyiv 03143, Ukraine
| | - Natalia Shenderovska
- Department of Bacteriophage Molecular Genetics, D. K. Zabolotny Institute of Microbiology and Virology, the National Academy of Sciences (NAS) of Ukraine, Kyiv 03143, Ukraine; Biotechnology products development lab, Scientific Center, Pharmaceutical Corporation YURiA-PHARM, Kyiv 03151, Ukraine
| | - Yuliia Faidiuk
- Department of Bacteriophage Molecular Genetics, D. K. Zabolotny Institute of Microbiology and Virology, the National Academy of Sciences (NAS) of Ukraine, Kyiv 03143, Ukraine; Educational and Scientific Center "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv 01601, Ukraine; Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw 53-114, Poland
| | - Ganna Zhuminska
- Department of Microbiology, Virology and Biotechnology, Biological Faculty, Odesa National Mechnykov University, Odesa 65058, Ukraine
| | - Yuliia Hubar
- Preclinical and Clinical Trials Department, Pharmaceutical Corporation YURiA-PHARM, Kyiv 03151, Ukraine
| | - Oleksandr Hubar
- Biotechnology products development lab, Scientific Center, Pharmaceutical Corporation YURiA-PHARM, Kyiv 03151, Ukraine
| | - Andrew M Kropinski
- Departments of Food Science; and, Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Alla Kushkina
- Department of Bacteriophage Molecular Genetics, D. K. Zabolotny Institute of Microbiology and Virology, the National Academy of Sciences (NAS) of Ukraine, Kyiv 03143, Ukraine
| | - Fedor Tovkach
- Department of Bacteriophage Molecular Genetics, D. K. Zabolotny Institute of Microbiology and Virology, the National Academy of Sciences (NAS) of Ukraine, Kyiv 03143, Ukraine
| |
Collapse
|
102
|
Teklemariam AD, Al-Hindi RR, Alharbi MG, Alotibi I, Azhari SA, Qadri I, Alamri T, Esmael A, Harakeh S. Isolation and Characterization of a Novel Lytic Phage, vB_PseuP-SA22, and Its Efficacy against Carbapenem-Resistant Pseudomonas aeruginosa. Antibiotics (Basel) 2023; 12:497. [PMID: 36978364 PMCID: PMC10044225 DOI: 10.3390/antibiotics12030497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Carbapenem-resistant Pseudomonas aeruginosa (CRPA) poses a serious public health threat in multiple clinical settings. In this study, we detail the isolation of a lytic bacteriophage, vB_PseuP-SA22, from wastewater using a clinical strain of CRPA. Transmission electron microscopy (TEM) analysis identified that the phage had a podovirus morphology, which agreed with the results of whole genome sequencing. BLASTn search allowed us to classify vB_PseuP-SA22 into the genus Bruynoghevirus. The genome of vB_PseuP-SA22 consisted of 45,458 bp of double-stranded DNA, with a GC content of 52.5%. Of all the open reading frames (ORFs), only 26 (44.8%) were predicted to encode certain functional proteins, whereas the remaining 32 (55.2%) ORFs were annotated as sequences coding functionally uncharacterized hypothetical proteins. The genome lacked genes coding for toxins or markers of lysogenic phages, including integrases, repressors, recombinases, or excisionases. The phage produced round, halo plaques with a diameter of 1.5 ± 2.5 mm on the bacterial lawn. The TEM revealed that vB_PseuP-SA22 has an icosahedral head of 57.5 ± 4.5 nm in length and a short, non-contractile tail (19.5 ± 1.4 nm). The phage showed a latent period of 30 min, a burst size of 300 PFU/infected cells, and a broad host range. vB_PseuP-SA22 was found to be stable between 4-60 °C for 1 h, while the viability of the virus was reduced at temperatures above 60 °C. The phage showed stability at pH levels between 5 and 11. vB_PauP-SA22 reduced the number of live bacteria in P. aeruginosa biofilm by almost five logs. The overall results indicated that the isolated phage could be a candidate to control CRPA infections. However, experimental in vivo studies are essential to ensure the safety and efficacy of vB_PauP-SA22 before its use in humans.
Collapse
Affiliation(s)
- Addisu D. Teklemariam
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rashad R. Al-Hindi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mona G. Alharbi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ibrahim Alotibi
- Health Information Technology Department, Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sheren A. Azhari
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ishtiaq Qadri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Turki Alamri
- Family and Community Medicine Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed Esmael
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13518, Egypt
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Steve Harakeh
- King Fahd Medical Research Center, Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
103
|
Ali S, Karaynir A, Salih H, Öncü S, Bozdoğan B. Characterization, genome analysis and antibiofilm efficacy of lytic Proteus phages RP6 and RP7 isolated from university hospital sewage. Virus Res 2023; 326:199049. [PMID: 36717023 DOI: 10.1016/j.virusres.2023.199049] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/29/2023]
Abstract
The crystalline formation of biofilms by Proteus blocks the urine flow which often complicates the health care of catheterized patients. Bacteriophages has been highlighted as a promising tool to control biofilm-mediated bacterial infections. Here, we isolated and characterized two newly isolated lytic phages capable of infecting clinical isolates of P. mirabilis and P. vulgaris. Moreover, insights regarding the biological and molecular characterization were analysed. Both RP6 and RP7 phages showed a Proteus-genus-specific profile, administering no lytic activity against other family of Enterobacteriaceae. The optimal MOI value of the RP6 and RP7 phages were determined as 0.1 and 0.01, respectively. The one-step growth curve showed that RP6 and RP7 phages have a short latent period of 20 min and large burst size of 220-371 PFU/ML per infected host cell. Bacteria growth was reduced immediately after the phages were added, which is shown by the optical density (OD) measurement after 24 hr. Proteus phage RP6 and RP7 were found to eradicate both the planktonic and mature biofilms produced by the Proteus isolates tested. Genome sequence of Proteus phage RP6 was found to be 58,619 bp, and a G-C content of 47%. Also, Proteus phage RP7 genome size was 103,593 bp with G-C ratio of 38.45%. A total of 70 and 172 open reading frame (ORF) was encoded in RP6 and RP7 phage genomes, respectively. Interestingly, there were no tRNA encoded by Proteus phage RP6 genome even though there is a significant G-C content difference between the phage and its host. Additionally, the exhibition of highly lytic activity and absence of virulence and antibiotic-resistant genes in both Proteus RP6 and RP7 phages emphasized that this newly isolated phages are promising for potential therapeutic phages.
Collapse
Affiliation(s)
- Sahd Ali
- Recombinant DNA and Recombinant Protein Center (REDPROM), Aydın Adnan Menderes University, Turkiye.
| | - Abdulkerim Karaynir
- Recombinant DNA and Recombinant Protein Center (REDPROM), Aydın Adnan Menderes University, Turkiye
| | - Hanife Salih
- Recombinant DNA and Recombinant Protein Center (REDPROM), Aydın Adnan Menderes University, Turkiye
| | - Serkan Öncü
- Medical Faculty, Department of Infectious Diseases and Clinical Microbiology, Aydin Adnan Menderes University, Turkiye
| | - Bülent Bozdoğan
- Recombinant DNA and Recombinant Protein Center (REDPROM), Aydın Adnan Menderes University, Turkiye; Medical Faculty, Department of Medical Microbiology, Aydın Adnan Menderes University, Turkiye
| |
Collapse
|
104
|
Unveil the Secret of the Bacteria and Phage Arms Race. Int J Mol Sci 2023; 24:ijms24054363. [PMID: 36901793 PMCID: PMC10002423 DOI: 10.3390/ijms24054363] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Bacteria have developed different mechanisms to defend against phages, such as preventing phages from being adsorbed on the surface of host bacteria; through the superinfection exclusion (Sie) block of phage's nucleic acid injection; by restricting modification (R-M) systems, CRISPR-Cas, aborting infection (Abi) and other defense systems to interfere with the replication of phage genes in the host; through the quorum sensing (QS) enhancement of phage's resistant effect. At the same time, phages have also evolved a variety of counter-defense strategies, such as degrading extracellular polymeric substances (EPS) that mask receptors or recognize new receptors, thereby regaining the ability to adsorb host cells; modifying its own genes to prevent the R-M systems from recognizing phage genes or evolving proteins that can inhibit the R-M complex; through the gene mutation itself, building nucleus-like compartments or evolving anti-CRISPR (Acr) proteins to resist CRISPR-Cas systems; and by producing antirepressors or blocking the combination of autoinducers (AIs) and its receptors to suppress the QS. The arms race between bacteria and phages is conducive to the coevolution between bacteria and phages. This review details bacterial anti-phage strategies and anti-defense strategies of phages and will provide basic theoretical support for phage therapy while deeply understanding the interaction mechanism between bacteria and phages.
Collapse
|
105
|
Beyond the Risk of Biofilms: An Up-and-Coming Battleground of Bacterial Life and Potential Antibiofilm Agents. Life (Basel) 2023; 13:life13020503. [PMID: 36836860 PMCID: PMC9959329 DOI: 10.3390/life13020503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Microbial pathogens and their virulence factors like biofilms are one of the major factors which influence the disease process and its outcomes. Biofilms are a complex microbial network that is produced by bacteria on any devices and/or biotic surfaces to escape harsh environmental conditions and antimicrobial effects. Due to the natural protective nature of biofilms and the associated multidrug resistance issues, researchers evaluated several natural anti-biofilm agents, including bacteriophages and their derivatives, honey, plant extracts, and surfactants for better destruction of biofilm and planktonic cells. This review discusses some of these natural agents that are being put into practice to prevent biofilm formation. In addition, we highlight bacterial biofilm formation and the mechanism of resistance to antibiotics.
Collapse
|
106
|
Nazir A, Song J, Chen Y, Liu Y. Phage-Derived Depolymerase: Its Possible Role for Secondary Bacterial Infections in COVID-19 Patients. Microorganisms 2023; 11:microorganisms11020424. [PMID: 36838389 PMCID: PMC9961776 DOI: 10.3390/microorganisms11020424] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
As of 29 July 2022, there had been a cumulative 572,239,451 confirmed cases of COVID-19 worldwide, including 6,390,401 fatalities. COVID-19 patients with severe symptoms are usually treated with a combination of virus- and drug-induced immuno-suppression medicines. Critical clinical complications of the respiratory system due to secondary bacterial infections (SBIs) could be the reason for the high mortality rate in COVID-19 patients. Unfortunately, antimicrobial resistance is increasing daily, and only a few options are available in our antimicrobial armory. Hence, alternative therapeutic options such as enzymes derived from bacteriophages can be considered for treating SBIs in COVID-19 patients. In particular, phage-derived depolymerases have high antivirulent potency that can efficiently degrade bacterial capsular polysaccharides, lipopolysaccharides, and exopolysaccharides. They have emerged as a promising class of new antibiotics and their therapeutic role for bacterial infections is already confirmed in animal models. This review provides an overview of the rising incidence of SBIs among COVID-19 patients. We present a practicable novel workflow for phage-derived depolymerases that can easily be adapted for treating SBIs in COVID-19 patients.
Collapse
Affiliation(s)
| | | | - Yibao Chen
- Correspondence: (Y.C.); (Y.L.); Tel./Fax: +86-531-6665-5093 (Y.C. & Y.L.)
| | - Yuqing Liu
- Correspondence: (Y.C.); (Y.L.); Tel./Fax: +86-531-6665-5093 (Y.C. & Y.L.)
| |
Collapse
|
107
|
Klumpp J, Dunne M, Loessner MJ. A perfect fit: Bacteriophage receptor-binding proteins for diagnostic and therapeutic applications. Curr Opin Microbiol 2023; 71:102240. [PMID: 36446275 DOI: 10.1016/j.mib.2022.102240] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022]
Abstract
Bacteriophages are the most abundant biological entity on earth, acting as the predators and evolutionary drivers of bacteria. Owing to their inherent ability to specifically infect and kill bacteria, phages and their encoded endolysins and receptor-binding proteins (RBPs) have enormous potential for development into precision antimicrobials for treatment of bacterial infections and microbial disbalances; or as biocontrol agents to tackle bacterial contaminations during various biotechnological processes. The extraordinary binding specificity of phages and RBPs can be exploited in various areas of bacterial diagnostics and monitoring, from food production to health care. We review and describe the distinctive features of phage RBPs, explain why they are attractive candidates for use as therapeutics and in diagnostics, discuss recent applications using RBPs, and finally provide our perspective on how synthetic technology and artificial intelligence-driven approaches will revolutionize how we use these tools in the future.
Collapse
Affiliation(s)
- Jochen Klumpp
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Matthew Dunne
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Martin J Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland.
| |
Collapse
|
108
|
Characteristics of Environmental Klebsiella pneumoniae and Klebsiella oxytoca Bacteriophages and Their Therapeutic Applications. Pharmaceutics 2023; 15:pharmaceutics15020434. [PMID: 36839755 PMCID: PMC9960720 DOI: 10.3390/pharmaceutics15020434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
In recent years, multidrug-resistant (MDR) strains of Klebsiella pneumoniae have spread globally, being responsible for the occurrence and severity of nosocomial infections. The NDM-1-kp, VIM-1 carbapenemase-producing isolates as well as extended-spectrum beta lactamase-producing (ESBL) isolates along with Klebsiella oxytoca strains have become emerging pathogens. Due to the growing problem of antibiotic resistance, bacteriophage therapy may be a potential alternative to combat such multidrug-resistant Klebsiella strains. Here, we present the results of a long-term study on the isolation and biology of bacteriophages active against K. pneumoniae, as well as K. oxytoca strains. We evaluated biological properties, morphology, host specificity, lytic spectrum and sensitivity of these phages to chemical agents along with their life cycle parameters such as adsorption, latent period, and burst size. Phages designated by us, vB_KpnM-52N (Kpn52N) and VB_KpnM-53N (Kpn53N), demonstrated relatively broad lytic spectra among tested Klebsiella strains, high burst size, adsorption rates and stability, which makes them promising candidates for therapeutic purposes. We also examined selected Klebsiella phages from our historical collection. Notably, one phage isolated nearly 60 years ago was successfully used in purulent cerebrospinal meningitis in a new-born and has maintained lytic activity to this day. Genomic sequences of selected phages were determined and analyzed. The phages of the sequenced genomes belong to the Slopekvirus and Jiaodavirus genus, a group of phages related to T4 at the family level. They share several features of T4 making them suitable for antibacterial therapies: the obligatorily lytic lifestyle, a lack of homologs of known virulence or antibiotic resistance genes, and a battery of enzymes degrading host DNA at infection.
Collapse
|
109
|
Zrelovs N, Jansons J, Kazaka T, Kazaks A, Dislers A. Three Phages One Host: Isolation and Characterization of Pantoea agglomerans Phages from a Grasshopper Specimen. Int J Mol Sci 2023; 24:1820. [PMID: 36768143 PMCID: PMC9915841 DOI: 10.3390/ijms24031820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
The bacterial genus Pantoea comprises species found in a variety of different environmental sources. Pantoea spp. are often recovered from plant material and are capable of both benefitting the plants and acting like phytopathogens. Some species of Pantoea (including P. agglomerans) are considered opportunistic human pathogens capable of causing various infections in immunocompromised subjects. In this study, a strain of P. agglomerans (identified by 16S rRNA gene sequencing) was isolated from a dead specimen of an unidentified Latvian grasshopper species. The retrieved strain of P. agglomerans was then used as a host for the potential retrieval of phages from the same source material. After rounds of plaque purification and propagation, three high-titer lysates corresponding to putatively distinct phages were acquired. Transmission electron microscopy revealed that one of the phages was a myophage with an unusual morphology, while the two others were typical podophages. Whole-genome sequencing (WGS) was performed for each of these isolated phages. Genome de novo assembly and subsequent functional annotation confirmed that three different strictly lytic phages were isolated. Elaborate genomic characterization of the acquired phages was performed to elucidate their place within the so-far-uncovered phage diversity.
Collapse
Affiliation(s)
| | | | | | - Andris Kazaks
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, LV-1067 Riga, Latvia
| | - Andris Dislers
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, LV-1067 Riga, Latvia
| |
Collapse
|
110
|
Sanmukh SG, Admella J, Moya-Andérico L, Fehér T, Arévalo-Jaimes BV, Blanco-Cabra N, Torrents E. Accessing the In Vivo Efficiency of Clinically Isolated Phages against Uropathogenic and Invasive Biofilm-Forming Escherichia coli Strains for Phage Therapy. Cells 2023; 12:cells12030344. [PMID: 36766686 PMCID: PMC9913540 DOI: 10.3390/cells12030344] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Escherichia coli is one of the most common members of the intestinal microbiota. Many of its strains are associated with various inflammatory infections, including urinary or gut infections, especially when displaying antibiotic resistance or in patients with suppressed immune systems. According to recent reports, the biofilm-forming potential of E. coli is a crucial factor for its increased resistance against antibiotics. To overcome the limitations of using antibiotics against resistant E. coli strains, the world is turning once more towards bacteriophage therapy, which is becoming a promising candidate amongst the current personalized approaches to target different bacterial infections. Although matured and persistent biofilms pose a serious challenge to phage therapy, they can still become an effective alternative to antibiotic treatment. Here, we assess the efficiency of clinically isolated phages in phage therapy against representative clinical uropathogenic and invasive biofilm-forming E. coli strains. Our results demonstrate that irrespective of host specificity, bacteriophages producing clear plaques with a high burst size, and exhibiting depolymerizing activity, are good candidates against biofilm-producing E. coli pathogens as verified from our in vitro and in vivo experiments using Galleria mellonella where survival was significantly increased for phage-therapy-treated larvae.
Collapse
Affiliation(s)
- Swapnil Ganesh Sanmukh
- Bacterial Infections: Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 15-21, 08028 Barcelona, Spain
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Eötvös Lóránd Research Network, H-6726 Szeged, Hungary
- Correspondence: or (S.G.S.); or (E.T.)
| | - Joana Admella
- Bacterial Infections: Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 15-21, 08028 Barcelona, Spain
| | - Laura Moya-Andérico
- Bacterial Infections: Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 15-21, 08028 Barcelona, Spain
| | - Tamás Fehér
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Eötvös Lóránd Research Network, H-6726 Szeged, Hungary
| | - Betsy Verónica Arévalo-Jaimes
- Bacterial Infections: Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 15-21, 08028 Barcelona, Spain
| | - Núria Blanco-Cabra
- Bacterial Infections: Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 15-21, 08028 Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Eduard Torrents
- Bacterial Infections: Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 15-21, 08028 Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Correspondence: or (S.G.S.); or (E.T.)
| |
Collapse
|
111
|
Evseev P, Lukianova A, Tarakanov R, Tokmakova A, Popova A, Kulikov E, Shneider M, Ignatov A, Miroshnikov K. Prophage-Derived Regions in Curtobacterium Genomes: Good Things, Small Packages. Int J Mol Sci 2023; 24:1586. [PMID: 36675099 PMCID: PMC9862828 DOI: 10.3390/ijms24021586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Curtobacterium is a genus of Gram-positive bacteria within the order Actinomycetales. Some Curtobacterium species (C. flaccumfaciens, C. plantarum) are harmful pathogens of agricultural crops such as soybean, dry beans, peas, sugar beet and beetroot, which occur throughout the world. Bacteriophages (bacterial viruses) are considered to be potential curative agents to control the spread of harmful bacteria. Temperate bacteriophages integrate their genomes into bacterial chromosomes (prophages), sometimes substantially influencing bacterial lifestyle and pathogenicity. About 200 publicly available genomes of Curtobacterium species, including environmental metagenomic sequences, were inspected for the presence of sequences of possible prophage origin using bioinformatic methods. The comparison of the search results with several ubiquitous bacterial groups showed the relatively low level of the presence of prophage traces in Curtobacterium genomes. Genomic and phylogenetic analyses were undertaken for the evaluation of the evolutionary and taxonomic positioning of predicted prophages. The analyses indicated the relatedness of Curtobacterium prophage-derived sequences with temperate actinophages of siphoviral morphology. In most cases, the predicted prophages can represent novel phage taxa not described previously. One of the predicted temperate phages was induced from the Curtobacterium genome. Bioinformatic analysis of the modelled proteins encoded in prophage-derived regions led to the discovery of some 100 putative glycopolymer-degrading enzymes that contained enzymatic domains with predicted cell-wall- and cell-envelope-degrading activity; these included glycosidases and peptidases. These proteins can be considered for the experimental design of new antibacterials against Curtobacterium phytopathogens.
Collapse
Affiliation(s)
- Peter Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 117997 Moscow, Russia
| | - Anna Lukianova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 117997 Moscow, Russia
| | - Rashit Tarakanov
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia
| | - Anna Tokmakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 117997 Moscow, Russia
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology National Research University, Institutskiy Per, 9, 141701 Dolgoprudny, Russia
| | - Anastasia Popova
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| | - Eugene Kulikov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology National Research University, Institutskiy Per, 9, 141701 Dolgoprudny, Russia
- Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prosp. 60-letia Oktyabrya, 7-2, 117312 Moscow, Russia
| | - Mikhail Shneider
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 117997 Moscow, Russia
| | - Alexander Ignatov
- Agrobiotechnology Department, Agrarian and Technological Institute, RUDN University, Miklukho-Maklaya Str. 6, 117198 Moscow, Russia
| | - Konstantin Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 117997 Moscow, Russia
| |
Collapse
|
112
|
Leprince A, Mahillon J. Phage Adsorption to Gram-Positive Bacteria. Viruses 2023; 15:196. [PMID: 36680236 PMCID: PMC9863714 DOI: 10.3390/v15010196] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
The phage life cycle is a multi-stage process initiated by the recognition and attachment of the virus to its bacterial host. This adsorption step depends on the specific interaction between bacterial structures acting as receptors and viral proteins called Receptor Binding Proteins (RBP). The adsorption process is essential as it is the first determinant of phage host range and a sine qua non condition for the subsequent conduct of the life cycle. In phages belonging to the Caudoviricetes class, the capsid is attached to a tail, which is the central player in the adsorption as it comprises the RBP and accessory proteins facilitating phage binding and cell wall penetration prior to genome injection. The nature of the viral proteins involved in host adhesion not only depends on the phage morphology (i.e., myovirus, siphovirus, or podovirus) but also the targeted host. Here, we give an overview of the adsorption process and compile the available information on the type of receptors that can be recognized and the viral proteins taking part in the process, with the primary focus on phages infecting Gram-positive bacteria.
Collapse
|
113
|
Characterisation and sequencing of the novel phage Abp95, which is effective against multi-genotypes of carbapenem-resistant Acinetobacter baumannii. Sci Rep 2023; 13:188. [PMID: 36604462 PMCID: PMC9813454 DOI: 10.1038/s41598-022-26696-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
Acinetobacter baumannii has become one of the most challenging conditional pathogens in health facilities. It causes various infectious diseases in humans, such as wound or urinary tract infections and pneumonia. Phage therapy has been used as an alternative strategy for antibiotic-resistant A. baumannii infections and has been approved by several governments. Previously, we have reported two potential phage therapy candidates, Abp1 and Abp9, both of which are narrow-host-range phages. In the present study, we screened and isolated 22 A. baumannii bacteriophages from hospital sewage water and determined that Abp95 has a wide host range (29%; 58/200). The biological and genomic characteristics and anti-infection potential of Abp95 were also investigated. Abp95 belongs to the Myoviridae family, with a G+C content of 37.85% and a genome size of 43,176 bp. Its genome encodes 77 putative genes, none of which are virulence, lysogeny, or antibiotic resistance genes. Abp95 was found to accelerate wound healing in a diabetic mouse wound infection model by clearing local infections of multidrug-resistant A. baumannii. In conclusion, the lytic phage Abp95, which has a wide host range, demonstrates potential as a candidate for phage therapy against multiple sequence types of carbapenem-resistant A. baumannii.
Collapse
|
114
|
Shymialevich D, Wójcicki M, Wardaszka A, Świder O, Sokołowska B, Błażejak S. Application of Lytic Bacteriophages and Their Enzymes to Reduce Saprophytic Bacteria Isolated from Minimally Processed Plant-Based Food Products-In Vitro Studies. Viruses 2022; 15:9. [PMID: 36680050 PMCID: PMC9865725 DOI: 10.3390/v15010009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to isolate phage enzymes and apply them in vitro for eradication of the dominant saprophytic bacteria isolated from minimally processed food. Four bacteriophages-two Enterobacter-specific and two Serratia-specific, which produce lytic enzymes-were used in this research. Two methods of phage enzyme isolation were tested, namely precipitation with acetone and ultracentrifugation. It was found that the number of virions could be increased almost 100 times due to the extension of the cultivation time (72 h). The amplification of phage particles and lytic proteins was dependent on the time of cultivation. Considering the influence of isolated enzymes on the growth kinetics of bacterial hosts, proteins isolated with acetone after 72-hour phage propagation exhibited the highest inhibitory effect. The reduction of bacteria count was dependent on the concentration of enzymes in the lysates. The obtained results indicate that phages and their lytic enzymes could be used in further research aiming at the improvement of microbiological quality and safety of minimally processed food products.
Collapse
Affiliation(s)
- Dziyana Shymialevich
- Culture Collection of Industrial Microorganisms—Microbiological Resources Center, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Artur Wardaszka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Stanisław Błażejak
- Department of Biotechnology and Food Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences (WULS–SGGW), Nowoursynowska 166 Street, 02-776 Warsaw, Poland
| |
Collapse
|
115
|
Wang Z, Guo K, Liu Y, Huang C, Wu M. Dynamic impact of virome on colitis and colorectal cancer: Immunity, inflammation, prevention and treatment. Semin Cancer Biol 2022; 86:943-954. [PMID: 34656791 PMCID: PMC9008076 DOI: 10.1016/j.semcancer.2021.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/20/2021] [Accepted: 10/08/2021] [Indexed: 02/05/2023]
Abstract
The gut microbiome includes a series of microorganism genomes, such as bacteriome, virome, mycobiome, etc. The gut microbiota is critically involved in intestine immunity and diseases, including inflammatory bowel disease (IBD) and colorectal cancer (CRC); however, the underlying mechanism remains incompletely understood. Clarifying the relationship between microbiota and inflammation may profoundly improve our understanding of etiology, disease progression, patient management, and the development of prevention and treatment. In this review, we discuss the latest studies of the influence of enteric viruses (i.e., commensal viruses, pathogenic viruses, and bacteriophages) in the initiation, progression, and complication of colitis and colorectal cancer, and their potential for novel preventative approaches and therapeutic application. We explore the interplay between gut viruses and host immune systems for its effects on the severity of inflammatory diseases and cancer, including both direct and indirect interactions between enteric viruses with other microbes and microbial products. Furthermore, the underlying mechanisms of the virome's roles in gut inflammatory response have been explained to infer potential therapeutic targets with examples in specific clinical trials. Given that very limited literature has thus far discussed these various topics with the gut virome, we believe these extensive analyses may provide insight into the understanding of the molecular pathogenesis of IBD and CRC, which could help add the design of improved therapies for these important human diseases.
Collapse
Affiliation(s)
- Zhihan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA
| | - Kai Guo
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yingying Liu
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA.
| |
Collapse
|
116
|
Haudiquet M, de Sousa JM, Touchon M, Rocha EPC. Selfish, promiscuous and sometimes useful: how mobile genetic elements drive horizontal gene transfer in microbial populations. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210234. [PMID: 35989606 PMCID: PMC9393566 DOI: 10.1098/rstb.2021.0234] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Horizontal gene transfer (HGT) drives microbial adaptation but is often under the control of mobile genetic elements (MGEs) whose interests are not necessarily aligned with those of their hosts. In general, transfer is costly to the donor cell while potentially beneficial to the recipients. The diversity and plasticity of cell–MGEs interactions, and those among MGEs, result in complex evolutionary processes where the source, or even the existence of selection for maintaining a function in the genome, is often unclear. For example, MGE-driven HGT depends on cell envelope structures and defense systems, but many of these are transferred by MGEs themselves. MGEs can spur periods of intense gene transfer by increasing their own rates of horizontal transmission upon communicating, eavesdropping, or sensing the environment and the host physiology. This may result in high-frequency transfer of host genes unrelated to the MGE. Here, we review how MGEs drive HGT and how their transfer mechanisms, selective pressures and genomic traits affect gene flow, and therefore adaptation, in microbial populations. The encoding of many adaptive niche-defining microbial traits in MGEs means that intragenomic conflicts and alliances between cells and their MGEs are key to microbial functional diversification. This article is part of a discussion meeting issue ‘Genomic population structures of microbial pathogens’.
Collapse
Affiliation(s)
- Matthieu Haudiquet
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris 75015, France
| | - Jorge Moura de Sousa
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris 75015, France
| | - Marie Touchon
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris 75015, France
| | - Eduardo P C Rocha
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris 75015, France
| |
Collapse
|
117
|
Lin LC, Tsai YC. Isolation and characterization of a Vibrio owensii phage phi50-12. Sci Rep 2022; 12:16390. [PMID: 36180722 PMCID: PMC9525291 DOI: 10.1038/s41598-022-20831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/19/2022] [Indexed: 11/09/2022] Open
Abstract
Vibrio owensii is a widely distributed marine vibrio species that causes acute hepatopancreatic necrosis in the larvae of Panulirus ornatus and Penaeus vannamei, and is also associated with Montipora white syndrome in corals. We characterized V. owensii GRA50-12 as a potent pathogen using phenotypic, biochemical, and zebrafish models. A virulent phage, vB_VowP_phi50-12 (phi50-12), belonging to the N4-like Podoviridae, was isolated from the same habitat as that of V. owensii GRA50-12 and characterized. This phage possesses a unique sequence with no similar hits in the public databases and has a short latent time (30 min), a large burst size (106 PFU/infected cell), and a wide range of pH and temperature stabilities. Moreover, phi50-12 also demonstrated a strong lysis ability against V. owensii GRA50-12. SDS-PAGE revealed at least nine structural proteins, four of which were confirmed using LC–MS/MS analysis. The size of the phi50-12 genome was 68,059 bp, with 38.5% G + C content. A total of 101 ORFs were annotated, with 17 ORFs having closely related counterparts in the N4-like vibrio phage. Genomic sequencing confirmed the absence of antibiotic resistance genes or virulence factors. Comparative studies have shown that phi50-12 has a unique genomic arrangement, except for the well-conserved core regions of the N4-like phages. Phylogenetic analysis demonstrated that it belonged to a group of smaller genomes of N4-like vibrio phages. The therapeutic effect in the zebrafish model suggests that phi50-12 could be a potential candidate for application in the treatment of V. owensii infection or as a biocontrol agent. However, further research must be carried out to confirm the efficacy of phage50-12.
Collapse
Affiliation(s)
- Ling-Chun Lin
- Masters Program in Biomedical Sciences, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien, 97004, Taiwan.
| | - Yu-Chuan Tsai
- Masters Program in Biomedical Sciences, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien, 97004, Taiwan
| |
Collapse
|
118
|
Characterization of Novel Bacteriophage vB_KpnP_ZX1 and Its Depolymerases with Therapeutic Potential for K57 Klebsiella pneumoniae Infection. Pharmaceutics 2022; 14:pharmaceutics14091916. [PMID: 36145665 PMCID: PMC9505181 DOI: 10.3390/pharmaceutics14091916] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
A novel temperate phage vB_KpnP_ZX1 was isolated from hospital sewage samples using the clinically derived K57-type Klebsiella pneumoniae as a host. Phage vB_KpnP_ZX1, encoding three lysogen genes, the repressor, anti-repressor, and integrase, is the fourth phage of the genus Uetakevirus, family Podoviridae, ever discovered. Phage vB_KpnP_ZX1 did not show ideal bactericidal effect on K. pneumoniae 111-2, but TEM showed that the depolymerase Dep_ZX1 encoded on the short tail fiber protein has efficient capsule degradation activity. In vitro antibacterial results show that purified recombinant Dep_ZX1 can significantly prevent the formation of biofilm, degrade the formed biofilm, and improve the sensitivity of the bacteria in the biofilm to the antibiotics kanamycin, gentamicin, and streptomycin. Furthermore, the results of animal experiments show that 50 µg Dep_ZX1 can protect all K. pneumoniae 111-2-infected mice from death, whereas the control mice infected with the same dose of K. pneumoniae 111-2 all died. The degradation activity of Dep_ZX1 on capsular polysaccharide makes the bacteria weaken their resistance to immune cells, such as complement-mediated serum killing and phagocytosis, which are the key factors for its therapeutic action. In conclusion, Dep_ZX1 is a promising anti-virulence agent for the K57-type K. pneumoniae infection or biofilm diseases.
Collapse
|
119
|
The Mechanism of Bacterial Resistance and Potential Bacteriostatic Strategies. Antibiotics (Basel) 2022; 11:antibiotics11091215. [PMID: 36139994 PMCID: PMC9495013 DOI: 10.3390/antibiotics11091215] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 12/26/2022] Open
Abstract
Bacterial drug resistance is rapidly developing as one of the greatest threats to human health. Bacteria will adopt corresponding strategies to crack the inhibitory effect of antibiotics according to the antibacterial mechanism of antibiotics, involving the mutation of drug target, secreting hydrolase, and discharging antibiotics out of cells through an efflux pump, etc. In recent years, bacteria are found to constantly evolve new resistance mechanisms to antibiotics, including target protective protein, changes in cell morphology, and so on, endowing them with multiple defense systems against antibiotics, leading to the emergence of multi-drug resistant (MDR) bacteria and the unavailability of drugs in clinics. Correspondingly, researchers attempt to uncover the mystery of bacterial resistance to develop more convenient and effective antibacterial strategies. Although traditional antibiotics still play a significant role in the treatment of diseases caused by sensitive pathogenic bacteria, they gradually lose efficacy in the MDR bacteria. Therefore, highly effective antibacterial compounds, such as phage therapy and CRISPER-Cas precision therapy, are gaining an increasing amount of attention, and are considered to be the treatments with the moist potential with regard to resistance against MDR in the future. In this review, nine identified drug resistance mechanisms are summarized, which enhance the retention rate of bacteria under the action of antibiotics and promote the distribution of drug-resistant bacteria (DRB) in the population. Afterwards, three kinds of potential antibacterial methods are introduced, in which new antibacterial compounds exhibit broad application prospects with different action mechanisms, the phage therapy has been successfully applied to infectious diseases caused by super bacteria, and the CRISPER-Cas precision therapy as a new technology can edit drug-resistant genes in pathogenic bacteria at the gene level, with high accuracy and flexibility. These antibacterial methods will provide more options for clinical treatment, and will greatly alleviate the current drug-resistant crisis.
Collapse
|
120
|
Genomic characterization of lytic bacteriophages A¥L and A¥M infecting ESBL K. pneumoniae and its therapeutic potential on biofilm dispersal and in-vivo bacterial clearance. Microbiol Res 2022; 262:127104. [DOI: 10.1016/j.micres.2022.127104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/08/2022] [Accepted: 06/22/2022] [Indexed: 11/19/2022]
|
121
|
Oliveira H, Drulis-Kawa Z, Azeredo J. Exploiting phage-derived carbohydrate depolymerases for combating infectious diseases. Trends Microbiol 2022; 30:707-709. [PMID: 35691880 DOI: 10.1016/j.tim.2022.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 11/29/2022]
Abstract
Bacteria are protected against the immune system of their human hosts, as well as against predators such as phages, by expressing diverse surface carbohydrates. Some phages produce specialized depolymerases which can degrade those carbohydrates. Here, we discuss the biological role of depolymerases and how they can be exploited to develop new therapeutic strategies against pathogens.
Collapse
Affiliation(s)
- Hugo Oliveira
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal; ESCMID Study Group for Non-traditional Antibacterial Therapy (ESGNTA); ESCMID Study Group for Biofilms (ESGB).
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, University of Wroclaw, Wroclaw, Poland; ESCMID Study Group for Non-traditional Antibacterial Therapy (ESGNTA).
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal; ESCMID Study Group for Non-traditional Antibacterial Therapy (ESGNTA); ESCMID Study Group for Biofilms (ESGB).
| |
Collapse
|
122
|
Costa SP, Nogueira CL, Cunha AP, Lisac A, Carvalho CM. Potential of bacteriophage proteins as recognition molecules for pathogen detection. Crit Rev Biotechnol 2022:1-18. [PMID: 35848817 DOI: 10.1080/07388551.2022.2071671] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bacterial pathogens are leading causes of infections with high mortality worldwide having a great impact on healthcare systems and the food industry. Gold standard methods for bacterial detection mainly rely on culture-based technologies and biochemical tests which are laborious and time-consuming. Regardless of several developments in existing methods, the goal of achieving high sensitivity and specificity, as well as a low detection limit, remains unaccomplished. In past years, various biorecognition elements, such as antibodies, enzymes, aptamers, or nucleic acids, have been widely used, being crucial for the pathogens detection in different complex matrices. However, these molecules are usually associated with high detection limits, demand laborious and costly production, and usually present cross-reactivity. (Bacterio)phage-encoded proteins, especially the receptor binding proteins (RBPs) and cell-wall binding domains (CBDs) of endolysins, are responsible for the phage binding to the bacterial surface receptors in different stages of the phage lytic cycle. Due to their remarkable properties, such as high specificity, sensitivity, stability, and ability to be easily engineered, they are appointed as excellent candidates to replace conventional recognition molecules, thereby contributing to the improvement of the detection methods. Moreover, they offer several possibilities of application in a variety of detection systems, such as magnetic, optical, and electrochemical. Herein we provide a review of phage-derived bacterial binding proteins, namely the RBPs and CBDs, with the prospect to be employed as recognition elements for bacteria. Moreover, we summarize and discuss the various existing methods based on these proteins for the detection of nosocomial and foodborne pathogens.
Collapse
Affiliation(s)
- Susana P Costa
- Centre of Biological Engineering, University of Minho, Braga, Portugal.,International Iberian Nanotechnology Laboratory, Braga, Portugal.,Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias (INESC MN), IN-Institute of Nanoscience and Nanotechnolnology, Lisbon, Portugal
| | - Catarina L Nogueira
- International Iberian Nanotechnology Laboratory, Braga, Portugal.,Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias (INESC MN), IN-Institute of Nanoscience and Nanotechnolnology, Lisbon, Portugal
| | - Alexandra P Cunha
- Centre of Biological Engineering, University of Minho, Braga, Portugal.,International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Ana Lisac
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Carla M Carvalho
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| |
Collapse
|
123
|
Venturini C, Petrovic Fabijan A, Fajardo Lubian A, Barbirz S, Iredell J. Biological foundations of successful bacteriophage therapy. EMBO Mol Med 2022; 14:e12435. [PMID: 35620963 PMCID: PMC9260219 DOI: 10.15252/emmm.202012435] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/20/2022] Open
Abstract
Bacteriophages (phages) are selective viral predators of bacteria. Abundant and ubiquitous in nature, phages can be used to treat bacterial infections (phage therapy), including refractory infections and those resistant to antibiotics. However, despite an abundance of anecdotal evidence of efficacy, significant hurdles remain before routine implementation of phage therapy into medical practice, including a dearth of robust clinical trial data. Phage-bacterium interactions are complex and diverse, characterized by co-evolution trajectories that are significantly influenced by the environments in which they occur (mammalian body sites, water, soil, etc.). An understanding of the molecular mechanisms underpinning these dynamics is essential for successful clinical translation. This review aims to cover key aspects of bacterium-phage interactions that affect bacterial killing by describing the most relevant published literature and detailing the current knowledge gaps most likely to influence therapeutic success.
Collapse
Affiliation(s)
- Carola Venturini
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of ScienceSydney School of Veterinary ScienceThe University of SydneySydneyNSWAustralia
| | - Aleksandra Petrovic Fabijan
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of Health and MedicineSchool of MedicineSydney Medical SchoolThe University of SydneySydneyNSWAustralia
| | - Alicia Fajardo Lubian
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of Health and MedicineSchool of MedicineSydney Medical SchoolThe University of SydneySydneyNSWAustralia
| | - Stefanie Barbirz
- Department of MedicineScience FacultyMSB Medical School BerlinBerlinGermany
| | - Jonathan Iredell
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of Health and MedicineSchool of MedicineSydney Medical SchoolThe University of SydneySydneyNSWAustralia
- Westmead HospitalWestern Sydney Local Health DistrictWestmeadNSWAustralia
| |
Collapse
|
124
|
Flagellotropic Bacteriophages: Opportunities and Challenges for Antimicrobial Applications. Int J Mol Sci 2022; 23:ijms23137084. [PMID: 35806089 PMCID: PMC9266447 DOI: 10.3390/ijms23137084] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 12/22/2022] Open
Abstract
Bacteriophages (phages) are the most abundant biological entities in the biosphere. As viruses that solely infect bacteria, phages have myriad healthcare and agricultural applications including phage therapy and antibacterial treatments in the foodservice industry. Phage therapy has been explored since the turn of the twentieth century but was no longer prioritized following the invention of antibiotics. As we approach a post-antibiotic society, phage therapy research has experienced a significant resurgence for the use of phages against antibiotic-resistant bacteria, a growing concern in modern medicine. Phages are extraordinarily diverse, as are their host receptor targets. Flagellotropic (flagellum-dependent) phages begin their infection cycle by attaching to the flagellum of their motile host, although the later stages of the infection process of most of these phages remain elusive. Flagella are helical appendages required for swimming and swarming motility and are also of great importance for virulence in many pathogenic bacteria of clinical relevance. Not only is bacterial motility itself frequently important for virulence, as it allows pathogenic bacteria to move toward their host and find nutrients more effectively, but flagella can also serve additional functions including mediating bacterial adhesion to surfaces. Flagella are also a potent antigen recognized by the human immune system. Phages utilizing the flagellum for infections are of particular interest due to the unique evolutionary tradeoff they force upon their hosts: by downregulating or abolishing motility to escape infection by a flagellotropic phage, a pathogenic bacterium would also likely attenuate its virulence. This factor may lead to flagellotropic phages becoming especially potent antibacterial agents. This review outlines past, present, and future research of flagellotropic phages, including their molecular mechanisms of infection and potential future applications.
Collapse
|
125
|
PhREEPred: Phage Resistance Emergence Prediction web to foresee encapsulated bacterial escape from phage cocktail treatment. J Mol Biol 2022; 434:167670. [PMID: 35671831 DOI: 10.1016/j.jmb.2022.167670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/06/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022]
Abstract
Phages, as well as phage-derived proteins, especially lysins and depolymerases, are intensively studied to become prospective alternatives or supportive antibacterials used alone or in combination. In the common phage therapy approach, the unwanted emergence of phage-resistant variants from the treated bacterial population can be postponed or reduced by the utilization of an effective phage cocktail. In this work, we present a publicly available web tool PhREEPred (Phage Resistance Emergence Prediction) (https://phartner.shinyapps.io/PhREEPred/), which will allow an informed choice of the composition of phage cocktails by predicting the outcome of phage cocktail or phage/depolymerase combination treatments given a mutating population that escapes single phage treatment. PhREEPred simulates solutions of our mathematical model calibrated and tested on the experimental Klebsiella pneumoniae setup and Klebsiella-specific lytic phages: K63 type-specific phage KP34 equipped with a capsule-degrading enzyme (KP34p57), capsule-independent myoviruses KP15 and KP27, and recombinant capsule depolymerase KP34p57. The model can calculate the phage-resistance emergence depending on the bacterial growth rate and initial density, the multiplicity of infection, phage latent period, its infectiveness and the cocktail composition, as well as initial depolymerase concentration and activity rate. This model reproduced the experimental results and showed that (i) the phage cocktail of parallelly infecting phages is less effective than the one composed of sequentially infecting phages; (ii) depolymerase can delay or prevent bacterial resistance by unveiling an alternative receptor for initially inactive phages. In our opinion, this customer-friendly web tool will allow for the primary design of the phage cocktail and phage-depolymerase combination effectiveness against encapsulated pathogens.
Collapse
|
126
|
Abdelkader K, Gutiérrez D, Latka A, Boeckaerts D, Drulis-Kawa Z, Criel B, Gerstmans H, Safaan A, Khairalla AS, Gaber Y, Dishisha T, Briers Y. The Specific Capsule Depolymerase of Phage PMK34 Sensitizes Acinetobacter baumannii to Serum Killing. Antibiotics (Basel) 2022; 11:antibiotics11050677. [PMID: 35625321 PMCID: PMC9137491 DOI: 10.3390/antibiotics11050677] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 12/20/2022] Open
Abstract
The rising antimicrobial resistance is particularly alarming for Acinetobacter baumannii, calling for the discovery and evaluation of alternatives to treat A. baumannii infections. Some bacteriophages produce a structural protein that depolymerizes capsular exopolysaccharide. Such purified depolymerases are considered as novel antivirulence compounds. We identified and characterized a depolymerase (DpoMK34) from Acinetobacter phage vB_AbaP_PMK34 active against the clinical isolate A. baumannii MK34. In silico analysis reveals a modular protein displaying a conserved N-terminal domain for anchoring to the phage tail, and variable central and C-terminal domains for enzymatic activity and specificity. AlphaFold-Multimer predicts a trimeric protein adopting an elongated structure due to a long α-helix, an enzymatic β-helix domain and a hypervariable 4 amino acid hotspot in the most ultimate loop of the C-terminal domain. In contrast to the tail fiber of phage T3, this hypervariable hotspot appears unrelated with the primary receptor. The functional characterization of DpoMK34 revealed a mesophilic enzyme active up to 50 °C across a wide pH range (4 to 11) and specific for the capsule of A. baumannii MK34. Enzymatic degradation of the A. baumannii MK34 capsule causes a significant drop in phage adsorption from 95% to 9% after 5 min. Although lacking intrinsic antibacterial activity, DpoMK34 renders A. baumannii MK34 fully susceptible to serum killing in a serum concentration dependent manner. Unlike phage PMK34, DpoMK34 does not easily select for resistant mutants either against PMK34 or itself. In sum, DpoMK34 is a potential antivirulence compound that can be included in a depolymerase cocktail to control difficult to treat A. baumannii infections.
Collapse
Affiliation(s)
- Karim Abdelkader
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium; (K.A.); (D.G.); (A.L.); (D.B.); (B.C.); (H.G.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt; (A.S.K.); (Y.G.); (T.D.)
| | - Diana Gutiérrez
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium; (K.A.); (D.G.); (A.L.); (D.B.); (B.C.); (H.G.)
| | - Agnieszka Latka
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium; (K.A.); (D.G.); (A.L.); (D.B.); (B.C.); (H.G.)
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63, 51-148 Wrocław, Poland;
| | - Dimitri Boeckaerts
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium; (K.A.); (D.G.); (A.L.); (D.B.); (B.C.); (H.G.)
- Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63, 51-148 Wrocław, Poland;
| | - Bjorn Criel
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium; (K.A.); (D.G.); (A.L.); (D.B.); (B.C.); (H.G.)
- Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Hans Gerstmans
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium; (K.A.); (D.G.); (A.L.); (D.B.); (B.C.); (H.G.)
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
- Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Amal Safaan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Menoufia University, Shebin El-Koum 51132, Egypt;
| | - Ahmed S. Khairalla
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt; (A.S.K.); (Y.G.); (T.D.)
- Department of Biology, University of Regina, Regina, SK S4S 0A2, Canada
| | - Yasser Gaber
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt; (A.S.K.); (Y.G.); (T.D.)
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, Karak 61710, Jordan
| | - Tarek Dishisha
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt; (A.S.K.); (Y.G.); (T.D.)
| | - Yves Briers
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium; (K.A.); (D.G.); (A.L.); (D.B.); (B.C.); (H.G.)
- Correspondence:
| |
Collapse
|
127
|
Sanchez BC, Heckmann ER, Green SI, Clark JR, Kaplan HB, Ramig RF, Muldrew KL, Hines-Munson C, Skelton F, Trautner BW, Maresso AW. Development of Phage Cocktails to Treat E. coli Catheter-Associated Urinary Tract Infection and Associated Biofilms. Front Microbiol 2022; 13:796132. [PMID: 35620093 PMCID: PMC9127763 DOI: 10.3389/fmicb.2022.796132] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 04/04/2022] [Indexed: 11/16/2022] Open
Abstract
High rates of antimicrobial resistance and formation of biofilms makes treatment of Escherichia coli catheter-associated urinary tract infections (CAUTI) particularly challenging. CAUTI affect 1 million patients per year in the United States and are associated with morbidity and mortality, particularly as an etiology for sepsis. Phage have been proposed as a potential therapeutic option. Here, we report the development of phage cocktails that lyse contemporary E. coli strains isolated from the urine of patients with spinal cord injury (SCI) and display strong biofilm-forming properties. We characterized E. coli phage against biofilms in two in vitro CAUTI models. Biofilm viability was measured by an MTT assay that determines cell metabolic activity and by quantification of colony forming units. Nine phage decreased cell viability by >80% when added individually to biofilms of two E. coli strains in human urine. A phage cocktail comprising six phage lyses 82% of the strains in our E. coli library and is highly effective against young and old biofilms and against biofilms on silicon catheter materials. Using antibiotics together with our phage cocktail prevented or decreased emergence of E. coli resistant to phage in human urine. We created an anti-biofilm phage cocktail with broad host range against E. coli strains isolated from urine. These phage cocktails may have therapeutic potential against CAUTI.
Collapse
Affiliation(s)
- Belkys C. Sanchez
- Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Emmaline R. Heckmann
- Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Sabrina I. Green
- Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Justin R. Clark
- Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Heidi B. Kaplan
- Department of Microbiology and Molecular Genetics, McGovern Medical School, UTHealth Houston, Houston, TX, United States
| | - Robert F. Ramig
- Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Kenneth L. Muldrew
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States,Pathology and Laboratory Medicine, Michael E. DeBakey VA Medical Center, Houston, TX, United States,Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Casey Hines-Munson
- Center for Innovations in Quality, Effectiveness and Safety, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| | - Felicia Skelton
- Center for Innovations in Quality, Effectiveness and Safety, Michael E. DeBakey VA Medical Center, Houston, TX, United States,H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, United States
| | - Barbara W. Trautner
- Center for Innovations in Quality, Effectiveness and Safety, Michael E. DeBakey VA Medical Center, Houston, TX, United States,Department of Medicine and Surgery, Baylor College of Medicine, Houston, TX, United States,Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| | - Anthony W. Maresso
- Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States,*Correspondence: Anthony W. Maresso,
| |
Collapse
|
128
|
Bujak K, Decewicz P, Kitowicz M, Radlinska M. Characterization of Three Novel Virulent Aeromonas Phages Provides Insights into the Diversity of the Autographiviridae Family. Viruses 2022; 14:1016. [PMID: 35632757 PMCID: PMC9145550 DOI: 10.3390/v14051016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, we isolated and characterized three novel virulent Autographiviridae bacteriophages, vB_AspA_Bolek, vB_AspA_Lolek, and vB_AspA_Tola, which infect different Aeromonas strains. These three host-pathogen pairs were derived from the same sampling location-the arsenic-containing microbial mats of the Zloty Stok gold mine. Functional analysis showed they are psychrotolerant (4-25 °C), albeit with a much wider temperature range of propagation for the hosts (≤37 °C). Comparative genomic analyses revealed a high nucleotide and amino acid sequence similarity of vB_AspA_Bolek and vB_AspA_Lolek, with significant differences exclusively in the C-terminal region of their tail fibers, which might explain their host range discrimination. The protein-based phage network, together with a phylogenetic analysis of the marker proteins, allowed us to assign vB_AspA_Bolek and vB_AspA_Lolek to the Beijerinckvirinae and vB_AspA_Tola to the Colwellvirinae subfamilies, but as three novel species, due to their low nucleotide sequence coverage and identity with other known phage genomes. Global comparative analysis showed that the studied phages are also markedly different from most of the 24 Aeromonas autographiviruses known so far. Finally, this study provides in-depth insight into the diversity of the Autographiviridae phages and reveals genomic similarities between selected groups of this family as well as between autographiviruses and their relatives of other Caudoviricetes families.
Collapse
Affiliation(s)
| | | | | | - Monika Radlinska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (K.B.); (P.D.); (M.K.)
| |
Collapse
|
129
|
Sillankorva S, Pires L, Pastrana LM, Bañobre-López M. Antibiofilm Efficacy of the Pseudomonas aeruginosa Pbunavirus vB_PaeM-SMS29 Loaded onto Dissolving Polyvinyl Alcohol Microneedles. Viruses 2022; 14:v14050964. [PMID: 35632706 PMCID: PMC9143888 DOI: 10.3390/v14050964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022] Open
Abstract
Resistant bacteria prevail in most chronic skin wounds and other biofilm-related topical skin infections. Bacteriophages (phages) have proven their antimicrobial effectiveness for treating different antibiotic-resistant and multidrug-resistant bacterial infections, but not all phages are effective against biofilms. Phages possessing depolymerases can reach different biofilm layers; however, those that do not have depolymerase activity struggle to penetrate and navigate in the intricate 3D biofilm structure and mainly infect bacteria lodged in the outer biofilm layers. To address this, Pseudomonas aeruginosa phage vB_PaeM-SMS29, a phage with poor antibiofilm properties, was incorporated into polyvinyl alcohol (PVA, Mowiol 4:88) supplemented with 0.1% (v/v) of glycerol, and cast onto two different microneedle arrays varying in geometry. The dissolving microneedles were thoroughly characterized by microscopy, force-displacement, swelling, phage release and stability. Furthermore, 48 h-old biofilms were formed using the colony biofilm procedure (absence of broth), and the antibiofilm efficacy of the phage-loaded microneedles was evaluated by viable cell counts and microscopy and compared to free phages. The phages in microneedles were fairly stable for six months when stored at 4 °C, with minor decreases in phage titers observed. The geometry of the microneedles influenced the penetration and force-displacement characteristics but not the antimicrobial efficacy against biofilms. The two PVA microneedles loaded with phages reduced P. aeruginosa PAO1 biofilms by 2.44 to 2.76 log10 CFU·cm-2 at 24 h. These values are significantly higher than the result obtained after the treatment with the free phage (1.09 log10 CFU·cm-2). Overall, this study shows that the distribution of phages caused by the mechanical disruption of biofilms using dissolving microneedles can be an effective delivery method against topical biofilm-related skin infections.
Collapse
|
130
|
Chang C, Yu X, Guo W, Guo C, Guo X, Li Q, Zhu Y. Bacteriophage-Mediated Control of Biofilm: A Promising New Dawn for the Future. Front Microbiol 2022; 13:825828. [PMID: 35495689 PMCID: PMC9048899 DOI: 10.3389/fmicb.2022.825828] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/11/2022] [Indexed: 12/21/2022] Open
Abstract
Biofilms are complex microbial microcolonies consisting of planktonic and dormant bacteria bound to a surface. The bacterial cells within the biofilm are embedded within the extracellular polymeric substance (EPS) consisting mainly of exopolysaccharides, secreted proteins, lipids, and extracellular DNA. This structural matrix poses a major challenge against common treatment options due to its extensive antibiotic-resistant properties. Because biofilms are so recalcitrant to antibiotics, they pose a unique challenge to patients in a nosocomial setting, mainly linked to lower respiratory, urinary tract, and surgical wound infections as well as the medical devices used during treatment. Another unique property of biofilm is its ability to adhere to both biological and man-made surfaces, allowing growth on human tissues and organs, hospital tools, and medical devices, etc. Based on prior understanding of bacteriophage structure, mechanisms, and its effects on bacteria eradication, leading research has been conducted on the effects of phages and its individual proteins on biofilm and its role in overall biofilm removal while also revealing the obstacles this form of treatment currently have. The expansion in the phage host-species range is one that urges for improvement and is the focus for future studies. This review aims to demonstrate the advantages and challenges of bacteriophage and its components on biofilm removal, as well as potential usage of phage cocktail, combination therapy, and genetically modified phages in a clinical setting.
Collapse
Affiliation(s)
- Cheng Chang
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, China
| | - Xinbo Yu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, China.,College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wennan Guo
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, China
| | - Chaoyi Guo
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, China
| | - Xiaokui Guo
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, China
| | - Qingtian Li
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongzhang Zhu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, China
| |
Collapse
|
131
|
Chen X, Liu M, Zhang P, Xu M, Yuan W, Bian L, Liu Y, Xia J, Leung SSY. Phage-Derived Depolymerase as an Antibiotic Adjuvant Against Multidrug-Resistant Acinetobacter baumannii. Front Microbiol 2022; 13:845500. [PMID: 35401491 PMCID: PMC8990738 DOI: 10.3389/fmicb.2022.845500] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/08/2022] [Indexed: 11/29/2022] Open
Abstract
Bacteriophage-encoded depolymerases are responsible for degrading capsular polysaccharides (CPS), lipopolysaccharides (LPS), and exopolysaccharides (EPS) of the host bacteria during phage invasion. They have been considered as promising antivirulence agents in controlling bacterial infections, including those caused by multidrug-resistant (MDR) bacteria. This feature inspires hope of utilizing these enzymes to disarm the polysaccharide capsules of the bacterial cells, which then strengthens the action of antibiotics. Here we have identified, cloned, and expressed a depolymerase Dpo71 from a bacteriophage specific for the gram-negative bacterium Acinetobacter baumannii in a heterologous host Escherichia coli. Dpo71 sensitizes the MDR A. baumannii to the host immune attack, and also acts as an adjuvant to assist or boost the action of antibiotics, for example colistin. Specifically, Dpo71 at 10 μg/ml enables a complete bacterial eradication by human serum at 50% volume ratio. A mechanistic study shows that the enhanced bactericidal effect of colistin is attributed to the improved outer membrane destabilization capacity and binding rate to bacteria after stripping off the bacterial capsule by Dpo71. Dpo71 inhibits biofilm formation and disrupts the pre-formed biofilm. Combination of Dpo71 could significantly enhance the antibiofilm activity of colistin and improve the survival rate of A. baumannii infected Galleria mellonella. Dpo71 retains the strain-specificity of the parent phage from which Dpo71 is derived: the phage-sensitive A. baumannii strains respond to Dpo71 treatment, whereas the phage-insensitive strains do not. In summary, our work demonstrates the feasibility of using recombinant depolymerases as an antibiotic adjuvant to supplement the development of new antibacterials and to battle against MDR pathogens.
Collapse
Affiliation(s)
- Xi Chen
- Department of Chemistry, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Miao Liu
- Department of Chemistry, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Pengfei Zhang
- School of Pharmacy, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Miao Xu
- School of Pharmacy, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Weihao Yuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Liming Bian
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Yannan Liu
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Sharon S Y Leung
- School of Pharmacy, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| |
Collapse
|
132
|
Römling U. The power of unbiased phenotypic screens - cellulose as a first receptor for the Schitoviridae phage S6 of Erwinia amylovora. Environ Microbiol 2022; 24:3316-3321. [PMID: 35415924 PMCID: PMC9544554 DOI: 10.1111/1462-2920.16010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 11/30/2022]
Abstract
Bacteriophages, host‐dependent replicative non‐cellular entities which significantly shape the microbial genomes and consequently physiological and ecological properties of the microbial populations are exploited to restrict plant, animal and human pathogens. Unravelling of phage characteristics aids the understanding of the basic molecular mechanisms of phage infections which can subsequently lead to the development of rationalized strategies to combat microbial pathogens. In an unbiased screen to investigate the molecular basis of infectivity of the fire blight pathogen Erwinia amylovora by the lytic Schitoviridae phage S6, the biofilm extracellular matrix component cellulose has been identified as a cyclic di‐GMP dependent first receptor required for infection with the phage to possess beta‐1,4‐glucosidases to degrade the exopolysaccharide. This absolute receptor dependency allows maintenance of a phage‐microbe equilibrium with a low bacterial density.
Collapse
Affiliation(s)
- Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
133
|
Phage Infection Restores PQS Signaling and Enhances Growth of a Pseudomonas aeruginosa lasI Quorum-Sensing Mutant. J Bacteriol 2022; 204:e0055721. [PMID: 35389255 PMCID: PMC9112912 DOI: 10.1128/jb.00557-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Chemical communication between bacteria and between bacteria and the bacteriophage (phage) viruses that prey on them can shape the outcomes of phage-bacterial encounters. Quorum sensing (QS) is a bacterial cell-to-cell communication process that promotes collective undertaking of group behaviors. QS relies on the production, release, accumulation, and detection of signal molecules called autoinducers. Phages can exploit QS-mediated communication to manipulate their hosts and maximize their own survival. In the opportunistic pathogen Pseudomonas aeruginosa, the LasI/R QS system induces the RhlI/R QS system, and in opposing manners, these two systems control the QS system that relies on the autoinducer called PQS. A P. aeruginosa ΔlasI mutant is impaired in PQS synthesis, leading to accumulation of the precursor molecule HHQ, and HHQ suppresses growth of the P. aeruginosa ΔlasI strain. We show that, in response to a phage infection, the P. aeruginosa ΔlasI mutant reactivates QS, which, in turn, restores pqsH expression, enabling conversion of HHQ into PQS. Moreover, downstream QS target genes encoding virulence factors are induced. Additionally, phage-infected P. aeruginosa ΔlasI cells transiently exhibit superior growth compared to uninfected cells. IMPORTANCE Clinical isolates of P. aeruginosa frequently harbor mutations in particular QS genes. Here, we show that infection by select temperate phages restores QS, a cell-to-cell communication mechanism in a P. aeruginosa QS mutant. Restoration of QS increases expression of genes encoding virulence factors. Thus, phage infection of select P. aeruginosa strains may increase bacterial pathogenicity, underscoring the importance of characterizing phage-host interactions in the context of bacterial mutants that are relevant in clinical settings.
Collapse
|
134
|
Bekliz M, Pramateftaki P, Battin TJ, Peter H. Viral diversity is linked to bacterial community composition in alpine stream biofilms. ISME COMMUNICATIONS 2022; 2:27. [PMID: 37938299 PMCID: PMC9723757 DOI: 10.1038/s43705-022-00112-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 06/03/2023]
Abstract
Biofilms play pivotal roles in fluvial ecosystems, yet virtually nothing is known about viruses in these communities. Leveraging an optimized sample-to-sequence pipeline, we studied the spatiotemporal turnover of dsDNA viruses associated with stream biofilms and found an astounding diversity to be structured by seasons and along the longitudinal gradient in the stream. While some vOTUs were region- or season-specific, we also identified a large group of permanent biofilm phages, taxonomically dominated by Myoviridae. Comparison of the observed viral distribution with predictions based on neutral community assembly indicated that chance and dispersal may be important for structuring stream biofilm viral communities. Deviation from neutral model predictions suggests that certain phages distribute efficiently across distant locations within the stream network. This dispersal capacity appears to be linked to EPS depolymerases that enable phages to efficiently overcome the biofilm barrier. Other phages, particularly vOTUs classified as Siphoviridae, appear locally overrepresented and to rely on a lysogenic life cycle, potentially to exploit the spatial distribution of bacterial populations in stream biofilms. Overall, biofilm viral and bacterial community turnover were significantly coupled. Yet, viral communities were linked to the presence of the most abundant bacterial community members. With this work, we provide a foundational ecological perspective on factors that structure viral diversity in stream biofilms and identify potentially important viral traits related to the biofilm mode of life.
Collapse
Affiliation(s)
- Meriem Bekliz
- River Ecosystems Laboratory, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Paraskevi Pramateftaki
- River Ecosystems Laboratory, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Tom Jan Battin
- River Ecosystems Laboratory, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Hannes Peter
- River Ecosystems Laboratory, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
135
|
Knecht LE, Heinrich N, Born Y, Felder K, Pelludat C, Loessner MJ, Fieseler L. Bacteriophage S6 requires bacterial cellulose for Erwinia amylovora infection. Environ Microbiol 2022; 24:3436-3450. [PMID: 35289468 DOI: 10.1111/1462-2920.15973] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 01/21/2023]
Abstract
Bacteriophages are highly selective in targeting bacteria. This selectivity relies on the specific adsorption of phages to the host cell surface. In this study, a Tn5 transposon mutant library of Erwinia amylovora, the causative agent of fire blight, was screened to identify bacterial receptors required for infection by the podovirus S6. Phage S6 was unable to infect mutants with defects in the bacterial cellulose synthase operon (bcs). The Bcs complex produces and secretes bacterial cellulose, an extracellular polysaccharide associated with bacterial biofilms. Deletion of the bcs operon or associated genes (bcsA, bcsC and bcsZ) verified the crucial role of bacterial cellulose for S6 infection. Application of the cellulose binding dye Congo Red blocked infection by S6. We demonstrate that infective S6 virions degraded cellulose and that Gp95, a phage-encoded cellulase, is involved to catalyse the reaction. In planta S6 did not significantly inhibit fire blight symptom development. Moreover, deletion of bcs genes in E. amylovora did not affect bacterial virulence in blossom infections, indicating that sole application of cellulose targeting phages is less appropriate to biologically control E. amylovora. The interplay between cellulose synthesis, host cell infection and maintenance of the host cell population is discussed.
Collapse
Affiliation(s)
- Leandra E Knecht
- Food Microbiology Research Group, Institute of Food and Beverage Innovation, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland.,Institute of Food, Nutrition and Health, ETH Zurich, Zürich, Switzerland
| | - Nadine Heinrich
- Institute of Food, Nutrition and Health, ETH Zurich, Zürich, Switzerland
| | - Yannick Born
- Food Microbiology Research Group, Institute of Food and Beverage Innovation, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Katja Felder
- Institute of Food, Nutrition and Health, ETH Zurich, Zürich, Switzerland
| | - Cosima Pelludat
- Agroscope, Plant Pathology and Zoology in Fruit and Vegetable Production, Wädenswil, Switzerland
| | - Martin J Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Zürich, Switzerland
| | - Lars Fieseler
- Food Microbiology Research Group, Institute of Food and Beverage Innovation, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| |
Collapse
|
136
|
Lytic Phages against ST11 K47 Carbapenem-Resistant Klebsiella pneumoniae and the Corresponding Phage Resistance Mechanisms. mSphere 2022; 7:e0008022. [PMID: 35255715 PMCID: PMC9044933 DOI: 10.1128/msphere.00080-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We isolated and characterized a novel phage from hospital sewage, P13, able to lyse ST11 K47 carbapenem-resistant Klebsiella pneumoniae (CRKP), a major CRKP lineage. P13 formed a large lytic plaque (3.0 to 6.0 mm in diameter) in double-layer LB agar after overnight coculture with its host bacterial strain. A translucent halo formed when the culture was prolonged to 48 h. P13 showed a narrow host range only lysing ST11 K47 CRKP with a burst size of around 167 PFU/cell and exhibited broad pH and thermal stability. Genome sequencing showed that P13 contains no virulence, lysogenic or antimicrobial resistance genes, making this lytic phage a potential agent for phage therapy. Transmission electron microscopy showed that P13 exhibited typical morphology of the family Podoviridae with an isometric head and a short noncontracted tail. Genomic analysis showed that P13 belongs to a novel species of the genus Przondovirus, subfamily Studiervirinae, family Autographiviridae. P13-resistant mutants of bacteria emerged after 4 h exposure to the phage. Interruptions of wbaP (encoding capsule polysaccharide synthesis) by insertion sequence IS903B mediated P13 resistance. The rapid emergence of resistant mutants represents a disadvantage for P13 as a therapeutic phage and highlights the need for recovery of a range of phages binding to different surface receptors of host bacteria to further extend their utility as a potential tool against CRKP. IMPORTANCE Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a major challenge for infection control and clinical management. Alternative therapies to antimicrobial agents are urgently needed and bacteriophages (phages) are an attractive option. However, more novel lytic phages and more studies to reveal phage-resistant mechanisms are needed to overcome phage resistance. In this study, we isolated and characterized a novel species of lytic phage active against CRKP. We found this phage exhibited delayed formation of halo, which is atypical compared to other characterized similar phages, and we provide an explanation for this phenotype based on genomic analysis. We also identified mechanisms mediating resistance to the phage.
Collapse
|
137
|
Xu C, Dong N, Chen K, Yang X, Zeng P, Hou C, Chi Chan EW, Yao X, Chen S. Bactericidal, anti-biofilm, and anti-virulence activity of vitamin C against carbapenem-resistant hypervirulent Klebsiella pneumoniae. iScience 2022; 25:103894. [PMID: 35243252 PMCID: PMC8873610 DOI: 10.1016/j.isci.2022.103894] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/15/2021] [Accepted: 02/04/2022] [Indexed: 12/27/2022] Open
Affiliation(s)
- Chen Xu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Ning Dong
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Kaichao Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Xuemei Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Ping Zeng
- State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Changshun Hou
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Edward Wai Chi Chan
- State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Xi Yao
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
- Corresponding author
| |
Collapse
|
138
|
Oliveira H, Domingues R, Evans B, Sutton JM, Adriaenssens EM, Turner D. Genomic Diversity of Bacteriophages Infecting the Genus Acinetobacter. Viruses 2022; 14:181. [PMID: 35215775 PMCID: PMC8878043 DOI: 10.3390/v14020181] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 01/21/2023] Open
Abstract
The number of sequenced Acinetobacter phage genomes in the International Nucleotide Sequence Database Collaboration has increased significantly in recent years, from 37 in 2017 to a total of 139 as of January 2021 with genome sizes ranging from 31 to 378 kb. Here, we explored the genetic diversity of the Acinetobacter phages using comparative genomics approaches that included assessment of nucleotide similarity, shared gene content, single gene phylogeny, and the network-based classification tool vConTACT2. Phages infecting Acinetobacter sp. are genetically diverse and can be grouped into 8 clusters (subfamilies) and 46 sub-clusters (genera), of which 8 represent genomic singletons (additional genera). We propose the creation of five new subfamilies and suggest a reorganisation of the genus Obolenskvirus. These results provide an updated view of the viruses infecting Acinetobacter species, providing insights into their diversity.
Collapse
Affiliation(s)
- Hugo Oliveira
- Centre of Biological Engineering, University of Minho, Campus de Gualtar Braga, 4710-057 Braga, Portugal; (H.O.); (R.D.)
| | - Rita Domingues
- Centre of Biological Engineering, University of Minho, Campus de Gualtar Braga, 4710-057 Braga, Portugal; (H.O.); (R.D.)
| | - Benjamin Evans
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK;
| | - J. Mark Sutton
- United Kingdom Health Security Agency, Research and Evaluation, Porton Down, Salisbury SP4 OJG, UK;
| | | | - Dann Turner
- Department of Applied Sciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol BS16 1QY, UK
| |
Collapse
|
139
|
Farooq T, Hussain MD, Shakeel MT, Tariqjaveed M, Aslam MN, Naqvi SAH, Amjad R, Tang Y, She X, He Z. Deploying Viruses against Phytobacteria: Potential Use of Phage Cocktails as a Multifaceted Approach to Combat Resistant Bacterial Plant Pathogens. Viruses 2022; 14:171. [PMID: 35215763 PMCID: PMC8879233 DOI: 10.3390/v14020171] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 02/05/2023] Open
Abstract
Plants in nature are under the persistent intimidation of severe microbial diseases, threatening a sustainable food production system. Plant-bacterial pathogens are a major concern in the contemporary era, resulting in reduced plant growth and productivity. Plant antibiotics and chemical-based bactericides have been extensively used to evade plant bacterial diseases. To counteract this pressure, bacteria have evolved an array of resistance mechanisms, including innate and adaptive immune systems. The emergence of resistant bacteria and detrimental consequences of antimicrobial compounds on the environment and human health, accentuates the development of an alternative disease evacuation strategy. The phage cocktail therapy is a multidimensional approach effectively employed for the biocontrol of diverse resistant bacterial infections without affecting the fauna and flora. Phages engage a diverse set of counter defense strategies to undermine wide-ranging anti-phage defense mechanisms of bacterial pathogens. Microbial ecology, evolution, and dynamics of the interactions between phage and plant-bacterial pathogens lead to the engineering of robust phage cocktail therapeutics for the mitigation of devastating phytobacterial diseases. In this review, we highlight the concrete and fundamental determinants in the development and application of phage cocktails and their underlying mechanism, combating resistant plant-bacterial pathogens. Additionally, we provide recent advances in the use of phage cocktail therapy against phytobacteria for the biocontrol of devastating plant diseases.
Collapse
Affiliation(s)
- Tahir Farooq
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (T.F.); (Y.T.)
| | - Muhammad Dilshad Hussain
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing 100193, China;
| | - Muhammad Taimoor Shakeel
- Department of Plant Pathology, Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (M.T.S.); (M.N.A.)
| | - Muhammad Tariqjaveed
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China;
| | - Muhammad Naveed Aslam
- Department of Plant Pathology, Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (M.T.S.); (M.N.A.)
| | - Syed Atif Hasan Naqvi
- Department of Plant Pathology, Faculty of Agriculture Science and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Rizwa Amjad
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan;
| | - Yafei Tang
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (T.F.); (Y.T.)
| | - Xiaoman She
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (T.F.); (Y.T.)
| | - Zifu He
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (T.F.); (Y.T.)
| |
Collapse
|
140
|
«Development of an anti- Acinetobacter baumannii biofilm phage cocktail: Genomic Adaptation to the Host». Antimicrob Agents Chemother 2022; 66:e0192321. [PMID: 35041503 DOI: 10.1128/aac.01923-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The need for alternatives to antibiotic therapy due to the emergence of multidrug resistant bacteria (MDR), such as the nosocomial pathogen Acinetobacter baumannii, has led to the recovery of phage therapy. In addition, phages can be combined in cocktails to increase the host range. In this study, the evolutionary mechanism of adaptation was utilized in order to develop a phage adapted to A. baumannii, named phage Ab105-2phiΔCI404ad, from a mutant lytic phage, Ab105-2phiΔCI, previously developed by our group. The whole genome sequence of phage Ab105-2phiΔCI404ad was determined, showing that four genomic rearrangements events occurred in the tail morphogenesis module affecting the ORFs encoding the host receptor binding sites. As a consequence of the genomic rearrangements, 10 ORFs were lost and four new ORFs were obtained, all encoding tail proteins; two inverted regions were also derived from these events. The adaptation process increased the host range of the adapted phage by almost three folds. In addition, a depolymerase-expressing phenotype, indicated by formation of a halo, which was not observed in the ancestral phage, was obtained in 81% of the infected strains. A phage cocktail was formed by combining this phage with the A. baumannii phage vB_AbaP_B3, known to express a depolymerase. Both the individual phages and the phage cocktail showed strong antimicrobial activity against 5 clinical strains and 1 reference strain of A. baumannii tested. However, in all cases resistance to the bacterial strains was also observed. The antibiofilm activity of the individual phages and the cocktail was assayed. The phage cocktail displayed strong antibiofilm activity.
Collapse
|
141
|
Fang Q, Feng Y, McNally A, Zong Z. Characterization of phage resistance and phages capable of intestinal decolonization of carbapenem-resistant Klebsiella pneumoniae in mice. Commun Biol 2022; 5:48. [PMID: 35027665 PMCID: PMC8758719 DOI: 10.1038/s42003-022-03001-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/22/2021] [Indexed: 02/05/2023] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) has emerged as a severe global health challenge. We isolate and characterize two previously unidentified lytic phages, P24 and P39, with large burst sizes active against ST11 KL64, a major CRKP lineage. P24 and P39 represent species of the genera Przondovirus (Studiervirinae subfamily) and Webervirus (Drexlerviridae family), respectively. P24 and P39 together restrain CRKP growth to nearly 8 h. Phage-resistant mutants exhibit reduced capsule production and decreased virulence. Modifications in mshA and wcaJ encoding capsule polysaccharide synthesis mediate P24 resistance whilst mutations in epsJ encoding exopolysaccharide synthesis cause P39 resistance. We test P24 alone and together with P39 for decolonizing CRKP using mouse intestinal colonization models. Bacterial load shed decrease significantly in mice treated with P24 and P39. In conclusion, we report the characterization of two previously unidentified lytic phages against CRKP, revealing phage resistance mechanisms and demonstrating the potential of lytic phages for intestinal decolonization. Fang et al. characterized two previously unidentified phage species that could inhibit growth and decrease virulence of carbapenem-resistant Klebsiella pneumoniae (CRKP). They also showed that CRKP develop phage resistance but could still be decolonized in a mouse intestinal colonization model, highlighting phage therapy as potential treatment against drug-resistant pathogens.
Collapse
Affiliation(s)
- Qingqing Fang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Feng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, Sichuan, China.,Center for Pathogen Research, Sichuan University, Chengdu, China
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China. .,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, Sichuan, China. .,Center for Pathogen Research, Sichuan University, Chengdu, China. .,Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
142
|
A New Sugar for an Old Phage: a c-di-GMP-Dependent Polysaccharide Pathway Sensitizes Escherichia coli for Bacteriophage Infection. mBio 2021; 12:e0324621. [PMID: 34903045 PMCID: PMC8669472 DOI: 10.1128/mbio.03246-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Bacteriophages are ubiquitous parasites of bacteria and major drivers of bacterial ecology and evolution. Despite an ever-growing interest in their biotechnological and therapeutic applications, detailed knowledge of the molecular mechanisms underlying phage-host interactions remains scarce. Here, we show that bacteriophage N4 exploits a novel surface glycan (NGR) as a receptor to infect its host Escherichia coli. We demonstrate that this process is regulated by the second messenger c-di-GMP and that N4 infection is specifically stimulated by the diguanylate cyclase DgcJ, while the phosphodiesterase PdeL effectively protects E. coli from N4-mediated killing. PdeL-mediated protection requires its catalytic activity to reduce c-di-GMP and includes a secondary role as a transcriptional repressor. We demonstrate that PdeL binds to and represses the promoter of the wec operon, which encodes components of the enterobacterial common antigen (ECA) exopolysaccharide pathway. However, only the acetylglucosamine epimerase WecB but none of the other ECA components is required for N4 infection. Based on this, we postulate that NGR is an N-acetylmannosamine-based carbohydrate polymer that is produced and exported to the cell surface of E. coli in a c-di-GMP-dependent manner, where it serves as a receptor for N4. This novel carbohydrate pathway is conserved in E. coli and other bacterial pathogens, serves as the primary receptor for various bacteriophages, and is induced at elevated temperature and by specific amino acid-based nutrients. These studies provide an entry point into understanding how bacteria use specific regulatory mechanisms to balance costs and benefits of highly conserved surface structures.
Collapse
|
143
|
Biosca EG, Català-Senent JF, Figàs-Segura À, Bertolini E, López MM, Álvarez B. Genomic Analysis of the First European Bacteriophages with Depolymerase Activity and Biocontrol Efficacy against the Phytopathogen Ralstonia solanacearum. Viruses 2021; 13:v13122539. [PMID: 34960808 PMCID: PMC8703784 DOI: 10.3390/v13122539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 12/28/2022] Open
Abstract
Ralstonia solanacearum is the causative agent of bacterial wilt, one of the most destructive plant diseases. While chemical control has an environmental impact, biological control strategies can allow sustainable agrosystems. Three lytic bacteriophages (phages) of R. solanacearum with biocontrol capacity in environmental water and plants were isolated from river water in Europe but not fully analysed, their genomic characterization being fundamental to understand their biology. In this work, the phage genomes were sequenced and subjected to bioinformatic analysis. The morphology was also observed by electron microscopy. Phylogenetic analyses were performed with a selection of phages able to infect R. solanacearum and the closely related phytopathogenic species R. pseudosolanacearum. The results indicated that the genomes of vRsoP-WF2, vRsoP-WM2 and vRsoP-WR2 range from 40,688 to 41,158 bp with almost 59% GC-contents, 52 ORFs in vRsoP-WF2 and vRsoP-WM2, and 53 in vRsoP-WR2 but, with only 22 or 23 predicted proteins with functional homologs in databases. Among them, two lysins and one exopolysaccharide (EPS) depolymerase, this type of depolymerase being identified in R. solanacearum phages for the first time. These three European phages belong to the same novel species within the Gyeongsanvirus, Autographiviridae family (formerly Podoviridae). These genomic data will contribute to a better understanding of the abilities of these phages to damage host cells and, consequently, to an improvement in the biological control of R. solanacearum.
Collapse
Affiliation(s)
- Elena G. Biosca
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain; (J.F.C.-S.); (À.F.-S.); (E.B.); (B.Á.)
- Correspondence:
| | - José Francisco Català-Senent
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain; (J.F.C.-S.); (À.F.-S.); (E.B.); (B.Á.)
- Centro de Investigación Príncipe Felipe, Unidad de Bioinformática y Bioestadística, 46012 Valencia, Spain
| | - Àngela Figàs-Segura
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain; (J.F.C.-S.); (À.F.-S.); (E.B.); (B.Á.)
| | - Edson Bertolini
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain; (J.F.C.-S.); (À.F.-S.); (E.B.); (B.Á.)
- Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91540-000, Brazil
| | - María M. López
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Valencia, Spain;
| | - Belén Álvarez
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain; (J.F.C.-S.); (À.F.-S.); (E.B.); (B.Á.)
- Departamento de Investigación Aplicada y Extensión Agraria, Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), 28800 Alcalá de Henares, Spain
| |
Collapse
|
144
|
Danis-Wlodarczyk KM, Wozniak DJ, Abedon ST. Treating Bacterial Infections with Bacteriophage-Based Enzybiotics: In Vitro, In Vivo and Clinical Application. Antibiotics (Basel) 2021; 10:1497. [PMID: 34943709 PMCID: PMC8698926 DOI: 10.3390/antibiotics10121497] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Over the past few decades, we have witnessed a surge around the world in the emergence of antibiotic-resistant bacteria. This global health threat arose mainly due to the overuse and misuse of antibiotics as well as a relative lack of new drug classes in development pipelines. Innovative antibacterial therapeutics and strategies are, therefore, in grave need. For the last twenty years, antimicrobial enzymes encoded by bacteriophages, viruses that can lyse and kill bacteria, have gained tremendous interest. There are two classes of these phage-derived enzymes, referred to also as enzybiotics: peptidoglycan hydrolases (lysins), which degrade the bacterial peptidoglycan layer, and polysaccharide depolymerases, which target extracellular or surface polysaccharides, i.e., bacterial capsules, slime layers, biofilm matrix, or lipopolysaccharides. Their features include distinctive modes of action, high efficiency, pathogen specificity, diversity in structure and activity, low possibility of bacterial resistance development, and no observed cross-resistance with currently used antibiotics. Additionally, and unlike antibiotics, enzybiotics can target metabolically inactive persister cells. These phage-derived enzymes have been tested in various animal models to combat both Gram-positive and Gram-negative bacteria, and in recent years peptidoglycan hydrolases have entered clinical trials. Here, we review the testing and clinical use of these enzymes.
Collapse
Affiliation(s)
| | - Daniel J. Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA;
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
| | - Stephen T. Abedon
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
145
|
Ferry T, Kolenda C, Briot T, Souche A, Lustig S, Josse J, Batailler C, Pirot F, Medina M, Leboucher G, Laurent F. Past and Future of Phage Therapy and Phage-Derived Proteins in Patients with Bone and Joint Infection. Viruses 2021; 13:v13122414. [PMID: 34960683 PMCID: PMC8708067 DOI: 10.3390/v13122414] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/29/2021] [Accepted: 11/19/2021] [Indexed: 12/15/2022] Open
Abstract
Phage-derived therapies comprise phage therapy and the use of phage-derived proteins as anti-bacterial therapy. Bacteriophages are natural viruses that target specific bacteria. They were proposed to be used to treat bacterial infections in the 1920s, before the discovery and widespread over-commercialized use of antibiotics. Phage therapy was totally abandoned in Western countries, whereas it is still used in Poland, Georgia and Russia. We review here the history of phage therapy by focusing on bone and joint infection, and on the development of phage therapy in France in this indication. We discuss the rationale of its use in bacterial infection and show the feasibility of phage therapy in the 2020s, based on several patients with complex bone and joint infection who recently received phages as compassionate therapy. Although the status of phage therapy remains to be clarified by health care authorities, obtaining pharmaceutical-grade therapeutic phages (i.e., following good manufacturing practice guidelines or being “GMP-like”) targeting bacterial species of concern is essential. Moreover, multidisciplinary clinical expertise has to determine what could be the relevant indications to perform clinical trials. Finally “phage therapy 2.0” has to integrate the following steps: (i) follow the status of phage therapy, that is not settled and defined; (ii) develop in each country a close relationship with the national health care authority; (iii) develop industrial–academic partnerships; (iv) create academic reference centers; (v) identify relevant clinical indications; (vi) use GMP/GMP-like phages with guaranteed quality bioproduction; (vii) start as salvage therapy; (vii) combine with antibiotics and adequate surgery; and (viii) perform clinical trials, to finally (ix) demonstrate in which clinical settings phage therapy provides benefit. Phage-derived proteins such as peptidoglycan hydrolases, polysaccharide depolymerases or lysins are enzymes that also have anti-biofilm activity. In contrast to phages, their development has to follow the classical process of medicinal products. Phage therapy and phage-derived products also have a huge potential to treat biofilm-associated bacterial diseases, and this is of crucial importance in the worldwide spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Tristan Ferry
- Hospices Civils de Lyon, 69004 Lyon, France; (C.K.); (T.B.); (A.S.); (S.L.); (J.J.); (C.B.); (F.P.); (M.M.); (G.L.); (F.L.)
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Centre de Références des IOA Complexes de Lyon, CRIOAc Lyon, 69004 Lyon, France
- StaPath Team, Centre International de Recherche en Infectiologie, CIRI, Inserm U1111, CNRS UMR5308, ENS de Lyon, UCBL1, 69008 Lyon, France
- Correspondence:
| | - Camille Kolenda
- Hospices Civils de Lyon, 69004 Lyon, France; (C.K.); (T.B.); (A.S.); (S.L.); (J.J.); (C.B.); (F.P.); (M.M.); (G.L.); (F.L.)
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Centre de Références des IOA Complexes de Lyon, CRIOAc Lyon, 69004 Lyon, France
- StaPath Team, Centre International de Recherche en Infectiologie, CIRI, Inserm U1111, CNRS UMR5308, ENS de Lyon, UCBL1, 69008 Lyon, France
| | - Thomas Briot
- Hospices Civils de Lyon, 69004 Lyon, France; (C.K.); (T.B.); (A.S.); (S.L.); (J.J.); (C.B.); (F.P.); (M.M.); (G.L.); (F.L.)
| | - Aubin Souche
- Hospices Civils de Lyon, 69004 Lyon, France; (C.K.); (T.B.); (A.S.); (S.L.); (J.J.); (C.B.); (F.P.); (M.M.); (G.L.); (F.L.)
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Centre de Références des IOA Complexes de Lyon, CRIOAc Lyon, 69004 Lyon, France
- StaPath Team, Centre International de Recherche en Infectiologie, CIRI, Inserm U1111, CNRS UMR5308, ENS de Lyon, UCBL1, 69008 Lyon, France
| | - Sébastien Lustig
- Hospices Civils de Lyon, 69004 Lyon, France; (C.K.); (T.B.); (A.S.); (S.L.); (J.J.); (C.B.); (F.P.); (M.M.); (G.L.); (F.L.)
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Centre de Références des IOA Complexes de Lyon, CRIOAc Lyon, 69004 Lyon, France
| | - Jérôme Josse
- Hospices Civils de Lyon, 69004 Lyon, France; (C.K.); (T.B.); (A.S.); (S.L.); (J.J.); (C.B.); (F.P.); (M.M.); (G.L.); (F.L.)
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Centre de Références des IOA Complexes de Lyon, CRIOAc Lyon, 69004 Lyon, France
- StaPath Team, Centre International de Recherche en Infectiologie, CIRI, Inserm U1111, CNRS UMR5308, ENS de Lyon, UCBL1, 69008 Lyon, France
| | - Cécile Batailler
- Hospices Civils de Lyon, 69004 Lyon, France; (C.K.); (T.B.); (A.S.); (S.L.); (J.J.); (C.B.); (F.P.); (M.M.); (G.L.); (F.L.)
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Centre de Références des IOA Complexes de Lyon, CRIOAc Lyon, 69004 Lyon, France
| | - Fabrice Pirot
- Hospices Civils de Lyon, 69004 Lyon, France; (C.K.); (T.B.); (A.S.); (S.L.); (J.J.); (C.B.); (F.P.); (M.M.); (G.L.); (F.L.)
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Laboratoire de Recherche et Développement de Pharmacie Galénique Industrielle, Faculté de Pharmacie, EA 4169 “Fonctions Physiologiques et Pathologiques de la Barrière Cutanée”, Université Claude-Bernard Lyon 1, 8, Avenue Rockefeller, CEDEX 08, 69373 Lyon, France
| | - Mathieu Medina
- Hospices Civils de Lyon, 69004 Lyon, France; (C.K.); (T.B.); (A.S.); (S.L.); (J.J.); (C.B.); (F.P.); (M.M.); (G.L.); (F.L.)
| | - Gilles Leboucher
- Hospices Civils de Lyon, 69004 Lyon, France; (C.K.); (T.B.); (A.S.); (S.L.); (J.J.); (C.B.); (F.P.); (M.M.); (G.L.); (F.L.)
| | - Frédéric Laurent
- Hospices Civils de Lyon, 69004 Lyon, France; (C.K.); (T.B.); (A.S.); (S.L.); (J.J.); (C.B.); (F.P.); (M.M.); (G.L.); (F.L.)
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Centre de Références des IOA Complexes de Lyon, CRIOAc Lyon, 69004 Lyon, France
- StaPath Team, Centre International de Recherche en Infectiologie, CIRI, Inserm U1111, CNRS UMR5308, ENS de Lyon, UCBL1, 69008 Lyon, France
| | | | | |
Collapse
|
146
|
Wójcicki M, Średnicka P, Błażejak S, Gientka I, Kowalczyk M, Emanowicz P, Świder O, Sokołowska B, Juszczuk-Kubiak E. Characterization and Genome Study of Novel Lytic Bacteriophages against Prevailing Saprophytic Bacterial Microflora of Minimally Processed Plant-Based Food Products. Int J Mol Sci 2021; 22:12460. [PMID: 34830335 PMCID: PMC8624825 DOI: 10.3390/ijms222212460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 12/13/2022] Open
Abstract
The food industry is still searching for novel solutions to effectively ensure the microbiological safety of food, especially fresh and minimally processed food products. Nowadays, the use of bacteriophages as potential biological control agents in microbiological food safety and preservation is a promising strategy. The aim of the study was the isolation and comprehensive characterization of novel bacteriophages with lytic activity against saprophytic bacterial microflora of minimally processed plant-based food products, such as mixed leaf salads. From 43 phages isolated from municipal sewage, four phages, namely Enterobacter phage KKP 3263, Citrobacter phage KKP 3664, Enterobacter phage KKP 3262, and Serratia phage KKP 3264 have lytic activity against Enterobacter ludwigii KKP 3083, Citrobacter freundii KKP 3655, Enterobacter cloacae KKP 3082, and Serratia fonticola KKP 3084 bacterial strains, respectively. Transmission electron microscopy (TEM) and whole-genome sequencing (WGS) identified Enterobacter phage KKP 3263 as an Autographiviridae, and Citrobacter phage KKP 3664, Enterobacter phage KKP 3262, and Serratia phage KKP 3264 as members of the Myoviridae family. Genome sequencing revealed that these phages have linear double-stranded DNA (dsDNA) with sizes of 39,418 bp (KKP 3263), 61,608 bp (KKP 3664), 84,075 bp (KKP 3262), and 148,182 bp (KKP 3264). No antibiotic resistance genes, virulence factors, integrase, recombinase, or repressors, which are the main markers of lysogenic viruses, were annotated in phage genomes. Serratia phage KKP 3264 showed the greatest growth inhibition of Serratia fonticola KKP 3084 strain. The use of MOI 1.0 caused an almost 5-fold decrease in the value of the specific growth rate coefficient. The phages retained their lytic activity in a wide range of temperatures (from -20 °C to 50 °C) and active acidity values (pH from 4 to 11). All phages retained at least 70% of lytic activity at 60 °C. At 80 °C, no lytic activity against tested bacterial strains was observed. Serratia phage KKP 3264 was the most resistant to chemical factors, by maintaining high lytic activity across a broader range of pH from 3 to 11. The results indicated that these phages could be a potential biological control agent against saprophytic bacterial microflora of minimally processed plant-based food products.
Collapse
Affiliation(s)
- Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.K.); (P.E.)
| | - Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.K.); (P.E.)
| | - Stanisław Błażejak
- Department of Biotechnology and Food Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 166 Street, 02-776 Warsaw, Poland; (S.B.); (I.G.)
| | - Iwona Gientka
- Department of Biotechnology and Food Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 166 Street, 02-776 Warsaw, Poland; (S.B.); (I.G.)
| | - Monika Kowalczyk
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.K.); (P.E.)
| | - Paulina Emanowicz
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.K.); (P.E.)
| | - Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland;
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Wacław Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland;
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.K.); (P.E.)
| |
Collapse
|
147
|
Danis-Wlodarczyk KM, Cai A, Chen A, Gittrich MR, Sullivan MB, Wozniak DJ, Abedon ST. Friends or Foes? Rapid Determination of Dissimilar Colistin and Ciprofloxacin Antagonism of Pseudomonas aeruginosa Phages. Pharmaceuticals (Basel) 2021; 14:1162. [PMID: 34832944 PMCID: PMC8624478 DOI: 10.3390/ph14111162] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/14/2022] Open
Abstract
Phage therapy is a century-old technique employing viruses (phages) to treat bacterial infections, and in the clinic it is often used in combination with antibiotics. Antibiotics, however, interfere with critical bacterial metabolic activities that can be required by phages. Explicit testing of antibiotic antagonism of phage infection activities, though, is not a common feature of phage therapy studies. Here we use optical density-based 'lysis-profile' assays to assess the impact of two antibiotics, colistin and ciprofloxacin, on the bactericidal, bacteriolytic, and new-virion-production activities of three Pseudomonas aeruginosa phages. Though phages and antibiotics in combination are more potent in killing P. aeruginosa than either acting alone, colistin nevertheless substantially interferes with phage bacteriolytic and virion-production activities even at its minimum inhibitory concentration (1× MIC). Ciprofloxacin, by contrast, has little anti-phage impact at 1× or 3× MIC. We corroborate these results with more traditional measures, particularly colony-forming units, plaque-forming units, and one-step growth experiments. Our results suggest that ciprofloxacin could be useful as a concurrent phage therapy co-treatment especially when phage replication is required for treatment success. Lysis-profile assays also appear to be useful, fast, and high-throughput means of assessing antibiotic antagonism of phage infection activities.
Collapse
Affiliation(s)
| | - Alice Cai
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA; (A.C.); (A.C.); (M.R.G.); (M.B.S.)
| | - Anna Chen
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA; (A.C.); (A.C.); (M.R.G.); (M.B.S.)
| | - Marissa R. Gittrich
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA; (A.C.); (A.C.); (M.R.G.); (M.B.S.)
| | - Matthew B. Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA; (A.C.); (A.C.); (M.R.G.); (M.B.S.)
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel J. Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA;
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA; (A.C.); (A.C.); (M.R.G.); (M.B.S.)
| | - Stephen T. Abedon
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA; (A.C.); (A.C.); (M.R.G.); (M.B.S.)
| |
Collapse
|
148
|
Abedon ST, Danis-Wlodarczyk KM, Alves DR. Phage Therapy in the 21st Century: Is There Modern, Clinical Evidence of Phage-Mediated Efficacy? Pharmaceuticals (Basel) 2021; 14:1157. [PMID: 34832939 PMCID: PMC8625828 DOI: 10.3390/ph14111157] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 12/19/2022] Open
Abstract
Many bacteriophages are obligate killers of bacteria. That this property could be medically useful was first recognized over one hundred years ago, with 2021 being the 100-year anniversary of the first clinical phage therapy publication. Here we consider modern use of phages in clinical settings. Our aim is to answer one question: do phages serve as effective anti-bacterial infection agents when used clinically? An important emphasis of our analyses is on whether phage therapy-associated anti-bacterial infection efficacy can be reasonably distinguished from that associated with often coadministered antibiotics. We find that about half of 70 human phage treatment reports-published in English thus far in the 2000s-are suggestive of phage-mediated anti-bacterial infection efficacy. Two of these are randomized, double-blinded, infection-treatment studies while 14 of those studies, in our opinion, provide superior evidence of a phage role in observed treatment successes. Roughly three-quarters of these potentially phage-mediated outcomes are based on microbiological as well as clinical results, with the rest based on clinical success. Since many of these phage treatments are of infections for which antibiotic therapy had not been successful, their collective effectiveness is suggestive of a valid utility in employing phages to treat otherwise difficult-to-cure bacterial infections.
Collapse
Affiliation(s)
- Stephen T. Abedon
- Department of Microbiology, The Ohio State University, Mansfield, OH 44906, USA;
| | | | - Diana R. Alves
- Department of Microbiology, The Ohio State University, Mansfield, OH 44906, USA;
| |
Collapse
|
149
|
Nogueira CL, Pires DP, Monteiro R, Santos SB, Carvalho CM. Exploitation of a Klebsiella Bacteriophage Receptor-Binding Protein as a Superior Biorecognition Molecule. ACS Infect Dis 2021; 7:3077-3087. [PMID: 34618422 DOI: 10.1021/acsinfecdis.1c00366] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Klebsiella pneumoniae is a Gram-negative bacterium that has become one of the leading causes of life-threatening healthcare-associated infections (HAIs), including pneumonia and sepsis. Moreover, due to its increasingly antibiotic resistance, K. pneumoniae has been declared a global top priority concern. The problem of K. pneumoniae infections is due, in part, to the inability to detect this pathogen rapidly and accurately and thus to treat patients within the early stages of infections. The success in bacterial detection is greatly dictated by the biorecognition molecule used, with the current diagnostic tools relying on expensive probes often lacking specificity and/or sensitivity. (Bacterio)phage receptor-binding proteins (RBPs) are responsible for the recognition and adsorption of phages to specific bacterial host receptors and thus present high potential as biorecognition molecules. In this study, we report the identification and characterization of a novel RBP from the K. pneumoniae phage KpnM6E1 that presents high specificity against the target bacteria and high sensitivity (80%) to recognize K. pneumoniae strains. Moreover, adsorption studies validated the role of gp86 in the attachment to bacterial receptors, as it highly inhibits (86%) phage adsorption to its Klebsiella host. Overall, in this study, we unravel the role and potential of a novel Klebsiella phage RBP as a powerful tool to be used coupled with analytical techniques or biosensing platforms for the diagnosis of K. pneumoniae infections.
Collapse
Affiliation(s)
- Catarina L. Nogueira
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
- Instituto de Engenharia de Sistemas E Computadores─Microsistemas e Nanotecnologias (INESC MN), Rua Alves Redol, 9, 1000-029 Lisbon, Portugal
| | - Diana P. Pires
- Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Rodrigo Monteiro
- Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Sílvio B. Santos
- Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Carla M. Carvalho
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| |
Collapse
|
150
|
Kaszowska M, Majkowska-Skrobek G, Markwitz P, Lood C, Jachymek W, Maciejewska A, Lukasiewicz J, Drulis-Kawa Z. The Mutation in wbaP cps Gene Cluster Selected by Phage-Borne Depolymerase Abolishes Capsule Production and Diminishes the Virulence of Klebsiella pneumoniae. Int J Mol Sci 2021; 22:11562. [PMID: 34768992 PMCID: PMC8583740 DOI: 10.3390/ijms222111562] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/20/2022] Open
Abstract
Klebsiella pneumoniae is considered one of the most critical multidrug-resistant pathogens and urgently requires new therapeutic strategies. Capsular polysaccharides (CPS), lipopolysaccharides (LPS), and exopolysaccharides (EPS) are the major virulence factors protecting K. pneumoniae against the immune response and thus may be targeted by phage-based therapeutics such as polysaccharides-degrading enzymes. Since the emergence of resistance to antibacterials is generally considered undesirable, in this study, the genetic and phenotypic characteristics of resistance to the phage-borne CPS-degrading depolymerase and its effect on K. pneumoniae virulence were investigated. The K63 serotype targeting depolymerase (KP36gp50) derived from Klebsiella siphovirus KP36 was used as the selective agent during the treatment of K. pneumoniae 486 biofilm. Genome-driven examination combined with the surface polysaccharide structural analysis of resistant mutant showed the point mutation and frameshift in the wbaP gene located within the cps gene cluster, resulting in the loss of the capsule. The sharp decline in the yield of CPS was accompanied by the production of a larger amount of smooth LPS. The modification of the surface polysaccharide layers did not affect bacterial fitness nor the insensitivity to serum complement; however, it made bacteria more prone to phagocytosis combined with the higher adherence and internalization to human lung epithelial cells. In that context, it was showed that the emerging resistance to the antivirulence agent (phage-borne capsule depolymerase) results in beneficial consequences, i.e., the sensitization to the innate immune response.
Collapse
Affiliation(s)
- Marta Kaszowska
- Laboratory of Microbial Immunochemistry and Vaccines, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.K.); (W.J.); (A.M.)
| | - Grazyna Majkowska-Skrobek
- Department of Pathogen Biology and Immunology, University of Wroclaw, 51-148 Wroclaw, Poland; (G.M.-S.); (P.M.)
| | - Pawel Markwitz
- Department of Pathogen Biology and Immunology, University of Wroclaw, 51-148 Wroclaw, Poland; (G.M.-S.); (P.M.)
| | - Cédric Lood
- Department of Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium;
- Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
| | - Wojciech Jachymek
- Laboratory of Microbial Immunochemistry and Vaccines, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.K.); (W.J.); (A.M.)
| | - Anna Maciejewska
- Laboratory of Microbial Immunochemistry and Vaccines, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.K.); (W.J.); (A.M.)
| | - Jolanta Lukasiewicz
- Laboratory of Microbial Immunochemistry and Vaccines, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.K.); (W.J.); (A.M.)
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, University of Wroclaw, 51-148 Wroclaw, Poland; (G.M.-S.); (P.M.)
| |
Collapse
|