101
|
Sengupta U, Kayed R. Amyloid β, Tau, and α-Synuclein aggregates in the pathogenesis, prognosis, and therapeutics for neurodegenerative diseases. Prog Neurobiol 2022; 214:102270. [DOI: 10.1016/j.pneurobio.2022.102270] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/28/2022] [Accepted: 04/13/2022] [Indexed: 12/11/2022]
|
102
|
García-Martínez M, Cortez LM, Otero A, Betancor M, Serrano-Pérez B, Bolea R, Badiola JJ, Garza MC. Distinctive Toll-like Receptors Gene Expression and Glial Response in Different Brain Regions of Natural Scrapie. Int J Mol Sci 2022; 23:ijms23073579. [PMID: 35408945 PMCID: PMC8998348 DOI: 10.3390/ijms23073579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022] Open
Abstract
Prion diseases are chronic and fatal neurodegenerative diseases characterized by the accumulation of disease-specific prion protein (PrPSc), spongiform changes, neuronal loss, and gliosis. Growing evidence shows that the neuroinflammatory response is a key component of prion diseases and contributes to neurodegeneration. Toll-like receptors (TLRs) have been proposed as important mediators of innate immune responses triggered in the central nervous system in other human neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. However, little is known about the role of TLRs in prion diseases, and their involvement in the neuropathology of natural scrapie has not been studied. We assessed the gene expression of ovine TLRs in four anatomically distinct brain regions in natural scrapie-infected sheep and evaluated the possible correlations between gene expression and the pathological hallmarks of prion disease. We observed significant changes in TLR expression in scrapie-infected sheep that correlate with the degree of spongiosis, PrPSc deposition, and gliosis in each of the regions studied. Remarkably, TLR4 was the only gene upregulated in all regions, regardless of the severity of neuropathology. In the hippocampus, we observed milder neuropathology associated with a distinct TLR gene expression profile and the presence of a peculiar microglial morphology, called rod microglia, described here for the first time in the brain of scrapie-infected sheep. The concurrence of these features suggests partial neuroprotection of the hippocampus. Finally, a comparison of the findings in naturallyinfected sheep versus an ovinized mouse model (tg338 mice) revealed distinct patterns of TLRgene expression.
Collapse
Affiliation(s)
- Mirta García-Martínez
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, IA2, IIS Aragón, Universidad de Zaragoza, 50013 Zaragoza, Spain; (M.G.-M.); (M.B.); (R.B.); (J.J.B.)
| | - Leonardo M. Cortez
- Department of Medicine and Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2G3, Canada
- Correspondence: (L.M.C.); (A.O.)
| | - Alicia Otero
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, IA2, IIS Aragón, Universidad de Zaragoza, 50013 Zaragoza, Spain; (M.G.-M.); (M.B.); (R.B.); (J.J.B.)
- Correspondence: (L.M.C.); (A.O.)
| | - Marina Betancor
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, IA2, IIS Aragón, Universidad de Zaragoza, 50013 Zaragoza, Spain; (M.G.-M.); (M.B.); (R.B.); (J.J.B.)
| | - Beatriz Serrano-Pérez
- Agrotecnio-CERCA Center, Department of Animal Science, University of Lleida, 25198 Lleida, Spain;
| | - Rosa Bolea
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, IA2, IIS Aragón, Universidad de Zaragoza, 50013 Zaragoza, Spain; (M.G.-M.); (M.B.); (R.B.); (J.J.B.)
| | - Juan J. Badiola
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, IA2, IIS Aragón, Universidad de Zaragoza, 50013 Zaragoza, Spain; (M.G.-M.); (M.B.); (R.B.); (J.J.B.)
| | - María Carmen Garza
- Departamento de Anatomía e Histología Humanas, IIS Aragón, Universidad de Zaragoza, 50009 Zaragoza, Spain;
| |
Collapse
|
103
|
Ceasrine AM, Bilbo SD. Dietary fat: a potent microglial influencer. Trends Endocrinol Metab 2022; 33:196-205. [PMID: 35078706 PMCID: PMC8881786 DOI: 10.1016/j.tem.2021.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 12/25/2022]
Abstract
Poor nutrition, lack of exercise, and genetic predisposition all contribute to the growing epidemic of obesity. Overweight/obesity create an environment of chronic inflammation that leads to negative physiological and neurological outcomes, such as diabetes, cardiovascular disease, and anxiety/depression. While the whole body contributes to metabolic homeostasis, the neuroimmune system has recently emerged as a key regulator of metabolism. Microglia, the resident immune cells of the brain, respond both directly and indirectly to dietary fat, and the environment in which microglia develop contributes to their responsiveness later in life. Thus, high maternal weight during pregnancy may have consequences for microglial function in offspring. Here, we discuss the most recent findings on microglia signaling in overweight/obesity with a focus on perinatal programming.
Collapse
Affiliation(s)
- Alexis M Ceasrine
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27710, USA
| | - Staci D Bilbo
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27710, USA; Department of Neurobiology, Duke University, Durham, NC 27710, USA; Department of Cell Biology, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
104
|
Markoutsa E, Mayilsamy K, Gulick D, Mohapatra SS, Mohapatra S. Extracellular vesicles derived from inflammatory-educated stem cells reverse brain inflammation-implication of miRNAs. Mol Ther 2022; 30:816-830. [PMID: 34371179 PMCID: PMC8821927 DOI: 10.1016/j.ymthe.2021.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/04/2021] [Accepted: 07/29/2021] [Indexed: 02/04/2023] Open
Abstract
Inflammation plays a key role in the development of age-related diseases. In Alzheimer's disease, neuronal cell death is attributed to amyloidbeta oligomers that trigger microglial activation. Stem cells have shown promise as therapies for inflammatory diseases- because of their paracrine activity combined with their ability to respond to the inflammatory environment. However, the mechanisms underlying stem cell-promoted neurological recovery are poorly understood. To elucidate these mechanisms, we first primed stem cells with the secretome of lipopolysaccharide- or amyloidbeta-activated microglia. Then, we compared the immunomodulatory effects of extracellular vesicles (EVs) secreted from primed and non-primed stem cells. Our results demonstrate that EVs from primed cells are more effective in inhibiting microglia and astrocyte activation, amyloid deposition, demyelination, memory loss and motor and anxiety-like behavioral dysfunction, compared to EVs from non-primed cells. MicroRNA (miRNA) profiling revealed the upregulation of at least 19 miRNAs on primed-stem cell EVs. The miRNA targets were identified, and KEGG pathway analysis showed that the overexpressed miRNAs target key genes on the toll-like receptor-4 (TLR4) signaling pathway. Overall, our results demonstrate that priming mesenchymal stem cells (MSCs) with the secretome of activated microglia results in the release of miRNAs from EVs with enhanced immune regulatory potential able to fight neuroinflammation.
Collapse
Affiliation(s)
- Eleni Markoutsa
- James A. Haley VA Hospital, Tampa, FL 33612, USA,Division of Translational Medicine and Center for Research and Education in Nanobio-engineering, Department of Internal Medicine, University of South Florida Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA,College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL, USA,Corresponding author: Eleni Markoutsa, Division of Translational Medicine and Center for Research and Education in Nanobio-engineering, Department of Internal Medicine, University of South Florida Mrsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Karthick Mayilsamy
- James A. Haley VA Hospital, Tampa, FL 33612, USA,Department of Molecular Medicine, University of South Florida Mrsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, USA
| | - Dannielle Gulick
- Department of Molecular Medicine, University of South Florida Mrsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, USA
| | - Shyam S. Mohapatra
- James A. Haley VA Hospital, Tampa, FL 33612, USA,Division of Translational Medicine and Center for Research and Education in Nanobio-engineering, Department of Internal Medicine, University of South Florida Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA,College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL, USA
| | - Subhra Mohapatra
- James A. Haley VA Hospital, Tampa, FL 33612, USA,Department of Molecular Medicine, University of South Florida Mrsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, USA,Corresponding author: Subhra Mohapatra, Department of Molecular Medicine, University of South Florida Mrsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
105
|
Hao X, Li Z, Li W, Katz J, Michalek SM, Barnum SR, Pozzo-Miller L, Saito T, Saido TC, Wang Q, Roberson ED, Zhang P. Periodontal Infection Aggravates C1q-Mediated Microglial Activation and Synapse Pruning in Alzheimer's Mice. Front Immunol 2022; 13:816640. [PMID: 35178049 PMCID: PMC8845011 DOI: 10.3389/fimmu.2022.816640] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/11/2022] [Indexed: 12/24/2022] Open
Abstract
Periodontitis is a dysbiotic infectious disease that leads to the destruction of tooth supporting tissues. There is increasing evidence that periodontitis may affect the development and severity of Alzheimer's disease (AD). However, the mechanism(s) by which periodontal infection impacts the neurodegenerative process in AD remains unclear. In the present study, using an amyloid precursor protein (APP) knock-in (App KI) AD mouse model, we showed that oral infection with Porphyromonas gingivalis (Pg), a keystone pathogen of periodontitis, worsened behavioral and cognitive impairment and accelerated amyloid beta (Aβ) accumulation in AD mice, thus unquestionably and significantly aggravating AD. We also provide new evidence that the neuroinflammatory status established by AD, is greatly complicated by periodontal infection and the consequential entry of Pg into the brain via Aβ-primed microglial activation, and that Pg-induced brain overactivation of complement C1q is critical for periodontitis-associated acceleration of AD progression by amplifying microglial activation, neuroinflammation, and tagging synapses for microglial engulfment. Our study renders support for the importance of periodontal infection in the innate immune regulation of AD and the possibility of targeting microbial etiology and periodontal treatment to ameliorate the clinical manifestation of AD and lower AD prevalence.
Collapse
Affiliation(s)
- Xiaoxiao Hao
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zhaofei Li
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Wei Li
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jannet Katz
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Suzanne M. Michalek
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Lucas Pozzo-Miller
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Qin Wang
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Erik D. Roberson
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer’s Disease Center, Department of Neurology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ping Zhang
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
106
|
Zelenka L, Pägelow D, Krüger C, Seele J, Ebner F, Rausch S, Rohde M, Lehnardt S, van Vorst K, Fulde M. Novel protocol for the isolation of highly purified neonatal murine microglia and astrocytes. J Neurosci Methods 2022; 366:109420. [PMID: 34808220 DOI: 10.1016/j.jneumeth.2021.109420] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/02/2021] [Accepted: 11/11/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND The crosstalk and reactivity of the cell type glia, especially microglia and astrocytes, have progressively gathered research attention in understanding proper brain function regulated by the innate immune response. Therefore, methods to isolate highly viable and pure glia for the analysis on a cell-specific level are indispensable. NEW METHOD We modified previously established techniques: Animal numbers were reduced by multiple microglial harvests from the same mixed glial culture, thereby maximizing microglial yields following the principles of the 3Rs (replacement, reduction, and refinement). We optimized Magnetic-activated cell sorting (MACS®) of microglia and astrocytes by applying cultivated primary glial cell suspensions instead of directly sorting dissociated single cell suspension. RESULTS We generated highly viable and pure microglia and astrocytes derived from a single mixed culture with a purity of ~99%, as confirmed by FACS analysis. Field emission scanning electron microscopy (FESEM) demonstrated integrity of the MACS-purified glial cells. Tumor necrosis factor (TNF) and Interleukin-10 (IL-10) ELISA confirmed pro- and anti-inflammatory responses to be functional in purified glia, but significantly weakened compared to non-purified cells, further highlighting the importance of cellular crosstalk for proper immune activation. COMPARISON WITH EXISTING METHOD(S) Unlike previous studies that either isolated a single type of glia or displayed a substantial proportion of contamination with other cell types, we achieved isolation of both microglia and astrocytes at an increased purity (99-100%). CONCLUSIONS We have created an optimized protocol for the efficient purification of both primary microglia and astrocytes. Our results clearly demonstrate the importance of purity in glial cell cultivation in order to examine immune responses, which particularly holds true for astrocytes. We propose the novel protocol as a tool to investigate the cell type-specific crosstalk between microglia and astrocytes in the frame of CNS diseases.
Collapse
Affiliation(s)
- Laura Zelenka
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany
| | - Dennis Pägelow
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany
| | - Christina Krüger
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jana Seele
- University Medical Center Göttingen, Institute of Neuropathology, Göttingen, Germany
| | - Friederike Ebner
- Freie Universität Berlin, Institute of Immunology, Berlin, Germany
| | - Sebastian Rausch
- Freie Universität Berlin, Institute of Immunology, Berlin, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Seija Lehnardt
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Kira van Vorst
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany
| | - Marcus Fulde
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany.
| |
Collapse
|
107
|
Abstract
The gut microbiome influences many host physiologies, spanning gastrointestinal function, metabolism, immune homeostasis, neuroactivity, and behavior. Many microbial effects on the host are orchestrated by bidirectional interactions between the microbiome and immune system. Imbalances in this dialogue can lead to immune dysfunction and immune-mediated conditions in distal organs including the brain. Dysbiosis of the gut microbiome and dysregulated neuroimmune responses are common comorbidities of neurodevelopmental, neuropsychiatric, and neurological disorders, highlighting the importance of the gut microbiome–neuroimmune axis as a regulator of central nervous system homeostasis. In this review, we discuss recent evidence supporting a role for the gut microbiome in regulating the neuroimmune landscape in health and disease. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Lewis W. Yu
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California 90095, USA;, ,
| | - Gulistan Agirman
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California 90095, USA;, ,
| | - Elaine Y. Hsiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California 90095, USA;, ,
| |
Collapse
|
108
|
Rai SN, Tiwari N, Singh P, Mishra D, Singh AK, Hooshmandi E, Vamanu E, Singh MP. Therapeutic Potential of Vital Transcription Factors in Alzheimer's and Parkinson's Disease With Particular Emphasis on Transcription Factor EB Mediated Autophagy. Front Neurosci 2022; 15:777347. [PMID: 34970114 PMCID: PMC8712758 DOI: 10.3389/fnins.2021.777347] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an important cellular self-digestion and recycling pathway that helps in maintaining cellular homeostasis. Dysregulation at various steps of the autophagic and endolysosomal pathway has been reported in several neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington disease (HD) and is cited as a critically important feature for central nervous system (CNS) proteostasis. Recently, another molecular target, namely transcription factor EB (TFEB) has been explored globally to treat neurodegenerative disorders. This TFEB, is a key regulator of autophagy and lysosomal biogenesis pathway. Multiple research studies suggested therapeutic potential by targeting TFEB to treat human diseases involving autophagy-lysosomal dysfunction, especially neurodegenerative disorders. A common observation involving all neurodegenerative disorders is their poor efficacy in clearing and recycle toxic aggregated proteins and damaged cellular organelles due to impairment in the autophagy pathway. This dysfunction in autophagy characterized by the accumulation of toxic protein aggregates leads to a progressive loss in structural integrity/functionality of neurons and may even result in neuronal death. In recent years TFEB, a key regulator of autophagy and lysosomal biogenesis, has received considerable attention. It has emerged as a potential therapeutic target in numerous neurodegenerative disorders like AD and PD. In various neurobiology studies involving animal models, TFEB has been found to ameliorate neurotoxicity and rescue neurodegeneration. Since TFEB is a master transcriptional regulator of autophagy and lysosomal biogenesis pathway and plays a crucial role in defining autophagy activation. Studies have been done to understand the mechanisms for TFEB dysfunction, which may yield insights into how TFEB might be targeted and used for the therapeutic strategy to develop a treatment process with extensive application to neurodegenerative disorders. In this review, we explore the role of different transcription factor-based targeted therapy by some natural compounds for AD and PD with special emphasis on TFEB.
Collapse
Affiliation(s)
| | - Neeraj Tiwari
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, India
| | - Payal Singh
- Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, India
| | - Divya Mishra
- Centre of Bioinformatics, University of Allahabad, Prayagraj, India
| | - Anurag Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Etrat Hooshmandi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agronomic Science and Veterinary Medicine, Bucharest, Romania
| | - Mohan P Singh
- Centre of Biotechnology, University of Allahabad, Prayagraj, India
| |
Collapse
|
109
|
Filchenko I, Korostovtseva L, Bochkarev M, Sviryaev Y. Brain damage in sleep-disordered breathing: the role of glia. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:15-22. [DOI: 10.17116/jnevro202212201115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
110
|
Pons V, Rivest S. Targeting Systemic Innate Immune Cells as a Therapeutic Avenue for Alzheimer Disease. Pharmacol Rev 2022; 74:1-17. [PMID: 34987086 DOI: 10.1124/pharmrev.121.000400] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer disease (AD) is the first progressive neurodegenerative disease worldwide, and the disease is characterized by an accumulation of amyloid in the brain and neurovasculature that triggers cognitive decline and neuroinflammation. The innate immune system has a preponderant role in AD. The last decade, scientists focused their efforts on therapies aiming to modulate innate immunity. The latter is of great interest, since they participate to the inflammation and phagocytose the amyloid in the brain and blood vessels. We and others have developed pharmacological approaches to stimulate these cells using various ligands. These include toll-like receptor 4, macrophage colony stimulating factor, and more recently nucleotide-binding oligomerization domain-containing 2 receptors. This review will discuss the great potential to take advantage of the innate immune system to fight naturally against amyloid β accumulation and prevent its detrimental consequence on brain functions and its vascular system. SIGNIFICANCE STATEMENT: The focus on amyloid β removal from the perivascular space rather than targeting CNS plaque formation and clearance represents a new direction with a great potential. Small molecules able to act at the level of peripheral immunity would constitute a novel approach for tackling aberrant central nervous system biology, one of which we believe would have the potential of generating a lot of interest.
Collapse
Affiliation(s)
- Vincent Pons
- Neuroscience Laboratory, CHU de Québec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Québec City, QC G1V 4G2, Canada
| | - Serge Rivest
- Neuroscience Laboratory, CHU de Québec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Québec City, QC G1V 4G2, Canada
| |
Collapse
|
111
|
Zhang J, Buller BA, Zhang ZG, Zhang Y, Lu M, Rosene DL, Medalla M, Moore TL, Chopp M. Exosomes derived from bone marrow mesenchymal stromal cells promote remyelination and reduce neuroinflammation in the demyelinating central nervous system. Exp Neurol 2022; 347:113895. [PMID: 34653510 DOI: 10.1016/j.expneurol.2021.113895] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/23/2021] [Accepted: 10/08/2021] [Indexed: 02/08/2023]
Abstract
Injury of oligodendrocytes (OLs) induces demyelination, and patients with neurodegenerative diseases exhibit demyelination concomitantly with neurological deficit and cognitive impairment. Oligodendrocyte progenitor cells (OPCs) are present in the adult central nervous system (CNS), and they can proliferate, differentiate, and remyelinate axons after damage. However, remyelination therapies are not in clinical use. Multiple sclerosis (MS) is a major demyelinating disease in the CNS. Mesenchymal stromal cells (MSCs) have demonstrated therapeutic promise in animal models and in clinical trials of MS. Exosomes are nanoparticles generated by nearly all cells and they mediate cell-cell communication by transferring cargo biomaterials. Here, we hypothesize that exosomes harvested from MSCs have a similar therapeutic effect on enhancement of remyelination as that of MSCs. In the present study we employed exosomes derived from rhesus monkey MSCs (MSC-Exo). Two mouse models of demyelination were employed: 1) experimental autoimmune encephalomyelitis (EAE), an animal model of MS; and 2) cuprizone (CPZ) diet model, a toxic demyelination model. MSC-Exo or PBS were intravenously injected twice a week for 4 weeks, starting on day 10 post immunization in EAE mice, or once a week for 2 weeks starting on the day of CPZ diet withdrawal. Neurological and cognitive function were tested, OPC differentiation and remyelination, neuroinflammation and the potential underlying mechanisms were investigated using immunofluorescent staining, transmission electron microscopy and Western blot. Data generated from the EAE model revealed that MSC-Exo cross the blood brain barrier (BBB) and target neural cells. Compared with the controls (p < 0.05), treatment with MSC-Exo: 1) significantly improved neurological outcome; 2) significantly increased the numbers of newly generated OLs (BrdU+/APC+) and mature OLs (APC+), and the level of myelin basic protein (MBP); 3) decreased amyloid-β precursor protein (APP)+ density; 4) decreased neuroinflammation by increasing the M2 phenotype and decreasing the M1 phenotype of microglia, as well as their related cytokines; 5) inhibited the TLR2/IRAK1/NFκB pathway. Furthermore, we confirmed that the MSC-Exo treatment significantly improved cognitive function, promoted remyelination, increased polarization of M2 phenotype and blocked TLR2 signaling in the CPZ model. Collectively, MSC-Exo treatment promotes remyelination by both directly acting on OPCs and indirectly by acting on microglia in the demyelinating CNS. This study provides the cellular and molecular basis for this cell-free exosome therapy on remyelination and modulation of neuroinflammation in the CNS, with great potential for treatment of demyelinating and neurodegenerative disorders.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, United States of America.
| | - Benjamin A Buller
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Yi Zhang
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Mei Lu
- Public Health Sciences, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Douglas L Rosene
- Department of Anatomy and Neurobiology, Boston University, Boston, Massachusetts, United States of America; Center for Systems Neuroscience, Boston University, Boston, Massachusetts, United States of America
| | - Maria Medalla
- Department of Anatomy and Neurobiology, Boston University, Boston, Massachusetts, United States of America; Center for Systems Neuroscience, Boston University, Boston, Massachusetts, United States of America
| | - Tara L Moore
- Department of Anatomy and Neurobiology, Boston University, Boston, Massachusetts, United States of America; Center for Systems Neuroscience, Boston University, Boston, Massachusetts, United States of America
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, United States of America; Department of Physics, Oakland University, Rochester, Michigan, United States of America
| |
Collapse
|
112
|
Somensi N, Lopes SC, Gasparotto J, Mayer Gonçalves R, Tiefensee-Ribeiro C, Oppermann Peixoto D, Ozorio Brum P, Pinho CM, Agnes JP, Santos L, de Oliveira J, Spiller F, Fonseca Moreira JC, Zanotto-Filho A, Prediger RD, Pens Gelain D. Role of toll-like receptor 4 and sex in 6-hydroxydopamine-induced behavioral impairments and neurodegeneration in mice. Neurochem Int 2021; 151:105215. [PMID: 34710535 DOI: 10.1016/j.neuint.2021.105215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/02/2021] [Accepted: 10/21/2021] [Indexed: 11/19/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive loss of the nigrostriatal dopaminergic neurons that are associated with motor alterations and non-motor manifestations (such as depression). Neuroinflammation is a process with a critical role in the pathogenesis of PD. In this regard, toll-like receptor 4 (TLR4) is a central mediator of immune response in PD. Moreover, there are gender-related differences in the incidence, prevalence, and clinical features of PD. Therefore, we aimed to elucidate the role of TLR4 in the sex-dependent response to dopaminergic denervation induced by 6-hydroxydopamine (6-OHDA) in mice. Female and male adult wildtype (WT) and TLR4 knockout (TLR4-/-) mice were administered with unilateral injection of 6-OHDA in the dorsal striatum, and non-motor and motor impairments were evaluated for 30 days, followed by biochemistry analysis in the substantia nigra pars compacta (SNc), dorsal striatum, and dorsoventral cortex. Early non-motor impairments (i.e., depressive-like behavior and spatial learning deficits) induced by 6-OHDA were observed in the male WT mice but not in male TLR4-/- or female mice. Motor alterations were observed after administration of 6-OHDA in both strains, and the lack of TLR4 was also related to motor commitment. Moreover, ablation of TLR4 prevented 6-OHDA-induced dopaminergic denervation and microgliosis in the SNc, selectively in female mice. These results reinforced the existence of sex-biased alterations in PD and indicated TLR4 as a promising therapeutic target for the motor and non-motor symptoms of PD, which will help counteract the neuroinflammatory and neurodegenerative processes.
Collapse
Affiliation(s)
- Nauana Somensi
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Samantha Cristiane Lopes
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Universitário, Florianópolis, SC, Brazil
| | - Juciano Gasparotto
- Instituto de Ciências Biomédicas - Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700. CEP: 37130-001. Centro - Alfenas/MG, Alfenas, Minas Gerais, Brazil
| | - Rosângela Mayer Gonçalves
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Universitário, Florianópolis, SC, Brazil
| | - Camila Tiefensee-Ribeiro
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniel Oppermann Peixoto
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pedro Ozorio Brum
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Cibele Martins Pinho
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Universitário, Florianópolis, SC, Brazil
| | - Jonathan Paulo Agnes
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Universitário, Florianópolis, SC, Brazil
| | - Lucas Santos
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jade de Oliveira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernando Spiller
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Universitário, Florianópolis, SC, Brazil
| | - José Cláudio Fonseca Moreira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alfeu Zanotto-Filho
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Universitário, Florianópolis, SC, Brazil
| | - Rui Daniel Prediger
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Universitário, Florianópolis, SC, Brazil
| | - Daniel Pens Gelain
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
113
|
Chu E, Mychasiuk R, Hibbs ML, Semple BD. Dysregulated phosphoinositide 3-kinase signaling in microglia: shaping chronic neuroinflammation. J Neuroinflammation 2021; 18:276. [PMID: 34838047 PMCID: PMC8627624 DOI: 10.1186/s12974-021-02325-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 11/15/2021] [Indexed: 12/15/2022] Open
Abstract
Microglia are integral mediators of innate immunity within the mammalian central nervous system. Typical microglial responses are transient, intending to restore homeostasis by orchestrating the removal of pathogens and debris and the regeneration of damaged neurons. However, prolonged and persistent microglial activation can drive chronic neuroinflammation and is associated with neurodegenerative disease. Recent evidence has revealed that abnormalities in microglial signaling pathways involving phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT) may contribute to altered microglial activity and exacerbated neuroimmune responses. In this scoping review, the known and suspected roles of PI3K-AKT signaling in microglia, both during health and pathological states, will be examined, and the key microglial receptors that induce PI3K-AKT signaling in microglia will be described. Since aberrant signaling is correlated with neurodegenerative disease onset, the relationship between maladapted PI3K-AKT signaling and the development of neurodegenerative disease will also be explored. Finally, studies in which microglial PI3K-AKT signaling has been modulated will be highlighted, as this may prove to be a promising therapeutic approach for the future treatment of a range of neuroinflammatory conditions.
Collapse
Affiliation(s)
- Erskine Chu
- Department of Immunology and Pathology, Central Clinical School, Monash University, Level 6, 89 Commercial Road, Melbourne, VIC, 3004, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Level 6, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Level 6, 99 Commercial Road, Melbourne, VIC, 3004, Australia
- Department of Neurology, Alfred Health, Prahran, VIC, 3181, Australia
| | - Margaret L Hibbs
- Department of Immunology and Pathology, Central Clinical School, Monash University, Level 6, 89 Commercial Road, Melbourne, VIC, 3004, Australia.
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, Monash University, Level 6, 99 Commercial Road, Melbourne, VIC, 3004, Australia.
- Department of Neurology, Alfred Health, Prahran, VIC, 3181, Australia.
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, 3050, Australia.
| |
Collapse
|
114
|
Shin TH, Manavalan B, Lee DY, Basith S, Seo C, Paik MJ, Kim SW, Seo H, Lee JY, Kim JY, Kim AY, Chung JM, Baik EJ, Kang SH, Choi DK, Kang Y, Maral Mouradian M, Lee G. Silica-coated magnetic-nanoparticle-induced cytotoxicity is reduced in microglia by glutathione and citrate identified using integrated omics. Part Fibre Toxicol 2021; 18:42. [PMID: 34819099 PMCID: PMC8614058 DOI: 10.1186/s12989-021-00433-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/25/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Nanoparticles have been utilized in brain research and therapeutics, including imaging, diagnosis, and drug delivery, owing to their versatile properties compared to bulk materials. However, exposure to nanoparticles leads to their accumulation in the brain, but drug development to counteract this nanotoxicity remains challenging. To date, concerns have risen about the potential toxicity to the brain associated with nanoparticles exposure via penetration of the brain blood barrier to address this issue. METHODS Here the effect of silica-coated-magnetic nanoparticles containing the rhodamine B isothiocyanate dye [MNPs@SiO2(RITC)] were assessed on microglia through toxicological investigation, including biological analysis and integration of transcriptomics, proteomics, and metabolomics. MNPs@SiO2(RITC)-induced biological changes, such as morphology, generation of reactive oxygen species, intracellular accumulation of MNPs@SiO2(RITC) using transmission electron microscopy, and glucose uptake efficiency, were analyzed in BV2 murine microglial cells. Each omics data was collected via RNA-sequencing-based transcriptome analysis, liquid chromatography-tandem mass spectrometry-based proteome analysis, and gas chromatography- tandem mass spectrometry-based metabolome analysis. The three omics datasets were integrated and generated as a single network using a machine learning algorithm. Nineteen compounds were screened and predicted their effects on nanotoxicity within the triple-omics network. RESULTS Intracellular reactive oxygen species production, an inflammatory response, and morphological activation of cells were greater, but glucose uptake was lower in MNPs@SiO2(RITC)-treated BV2 microglia and primary rat microglia in a dose-dependent manner. Expression of 121 genes (from 41,214 identified genes), and levels of 45 proteins (from 5918 identified proteins) and 17 metabolites (from 47 identified metabolites) related to the above phenomena changed in MNPs@SiO2(RITC)-treated microglia. A combination of glutathione and citrate attenuated nanotoxicity induced by MNPs@SiO2(RITC) and ten other nanoparticles in vitro and in the murine brain, protecting mostly the hippocampus and thalamus. CONCLUSIONS Combination of glutathione and citrate can be one of the candidates for nanotoxicity alleviating drug against MNPs@SiO2(RITC) induced detrimental effect, including elevation of intracellular reactive oxygen species level, activation of microglia, and reduction in glucose uptake efficiency. In addition, our findings indicate that an integrated triple omics approach provides useful and sensitive toxicological assessment for nanoparticles and screening of drug for nanotoxicity.
Collapse
Affiliation(s)
- Tae Hwan Shin
- Department of Physiology, Ajou University School of Medicine, 206 World cup-ro, Suwon, 16499 Republic of Korea
| | - Balachandran Manavalan
- Department of Physiology, Ajou University School of Medicine, 206 World cup-ro, Suwon, 16499 Republic of Korea
| | - Da Yeon Lee
- Department of Physiology, Ajou University School of Medicine, 206 World cup-ro, Suwon, 16499 Republic of Korea
| | - Shaherin Basith
- Department of Physiology, Ajou University School of Medicine, 206 World cup-ro, Suwon, 16499 Republic of Korea
| | - Chan Seo
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Suncheon, 57922 Republic of Korea
| | - Man Jeong Paik
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Suncheon, 57922 Republic of Korea
| | - Sang-Wook Kim
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Suwon, 16499 Republic of Korea
| | - Haewoon Seo
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Suwon, 16499 Republic of Korea
| | - Ju Yeon Lee
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, 162 Yeongudanji-ro, Cheongju, 28119 Republic of Korea
| | - Jin Young Kim
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, 162 Yeongudanji-ro, Cheongju, 28119 Republic of Korea
| | - A Young Kim
- Department of Physiology, Ajou University School of Medicine, 206 World cup-ro, Suwon, 16499 Republic of Korea
| | - Jee Min Chung
- Department of Physiology, Ajou University School of Medicine, 206 World cup-ro, Suwon, 16499 Republic of Korea
| | - Eun Joo Baik
- Department of Physiology, Ajou University School of Medicine, 206 World cup-ro, Suwon, 16499 Republic of Korea
| | - Seong Ho Kang
- Department of Chemistry, Graduate School, Kyung Hee University, Yongin-si, Gyeonggi-do 17104 Republic of Korea
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104 Republic of Korea
| | - Dong-Kug Choi
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, 268 Chungwondaero, Chungju, 27478 Republic of Korea
| | - Yup Kang
- Department of Physiology, Ajou University School of Medicine, 206 World cup-ro, Suwon, 16499 Republic of Korea
| | - M. Maral Mouradian
- RWJMS Institute for Neurological Therapeutics, Rutgers Biomedical and Health Sciences, and Department of Neurology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854 USA
| | - Gwang Lee
- Department of Molecular Science and Technology, Ajou University, Suwon-si, Gyeonggi-do 16499 Republic of Korea
- Department of Physiology, Ajou University School of Medicine, Suwon-si, Gyeonggi-do 16499 Republic of Korea
| |
Collapse
|
115
|
de Oliveira ACP, Moreira FA, Fiebich BL. CB 2 and toll-like receptors crosstalk in microglia. Trends Neurosci 2021; 45:1-2. [PMID: 34776238 DOI: 10.1016/j.tins.2021.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 10/19/2022]
Abstract
Microglia play a major role in certain neuropathological conditions. In a recent paper, Reusch et al. demonstrated how signaling pathways downstream of cannabinoid type 2 (CB2) and toll-like receptors (TLRs) converge in these cells. The findings suggest that CB2 receptors play a permissive role in microglia activation mediated by TLRs.
Collapse
Affiliation(s)
| | - Fabricio A Moreira
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bernd L Fiebich
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
116
|
Phosphorylated α-synuclein aggregated in Schwann cells exacerbates peripheral neuroinflammation and nerve dysfunction in Parkinson's disease through TLR2/NF-κB pathway. Cell Death Discov 2021; 7:289. [PMID: 34642321 PMCID: PMC8511120 DOI: 10.1038/s41420-021-00676-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/11/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
To investigate the mechanism of peripheral neuropathy in Parkinson's disease (PD), we prepared a PD mice model by long-term exposure of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to mimic PD pathology in humans and the sciatic nerves were taken for further research. It turned out that phosphorylated α-synuclein (p-α-syn) was significantly deposited in Schwann cells (SCs) of sciatic nerves possibly contributing to degenerated myelin SCs and atrophied axons in MPTP group. Further analysis confirmed that toll-like receptors (TLRs) were implicated with PD peripheral neuropathy, in which TLR2 exhibits the predominant expression. Increased expression of inflammatory factors about TLR2/nuclear factor kappa-B (NF-κB) pathway was noted in MPTP group compared to saline group, with proteins on other pathways showing no changes. Moreover, MPTP-challenged mice exhibited worse motor ability and damaged nerve conduction, implicating that p-α-syn neurotoxicity might be relevant to impairments of motor and sensory nerves. After the treatment of CU-CPT22, a TLR2 antagonist, p-α-syn accumulation, motor and sensory function were ameliorated in CU-CPT22 combined with MPTP group. Thus, we demonstrated that pathological p-α-syn might combine TLR2 to affect SCs activation, inflammatory response as well as motor and sensory function through TLR2/nuclear factor kappa-B (NF-κB) signaling pathway. This study firstly demonstrates a novel mechanism of p-α-syn accumulated in SCs of peripheral nerves, which extends our understanding on SCs-mediated peripheral neuroinflammation related to TLR2/NF-κB signaling pathway and sheds light on potential new therapeutic avenues for PD.
Collapse
|
117
|
Song P, Yi Z, Fu Y, Song D, Chen K, Zheng J, Sun Y, Diao Y. Reversing Postcardiopulmonary Bypass Associated Cognitive Dysfunction Using k-Opioid Receptor Agonists to Regulate Microglial Polarization via the NLRP3/Caspase-1 Pathway. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:3048383. [PMID: 34630980 PMCID: PMC8500742 DOI: 10.1155/2021/3048383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/14/2021] [Indexed: 12/21/2022]
Abstract
Cardiopulmonary bypass (CPB) is mainly used during cardiac surgeries that treat ischemic, valvular, or congenital heart disease and aortic dissections. The disorders of central nervous system (CNS) that occur after cardiopulmonary bypass are attracting considerable interest. Postoperative neurocognitive disorders (PND) have been reported as the leading cause of patients' disability and death following CPB. The k-opioid receptor (KOR) agonists (U50488H) have been suggested to be vital in the treatment of surgically induced CNS neuroinflammatory responses. In this article, the transitions between the M1 and M2 microglial polarization state phenotypes were hypothesized to significantly affect the regulatory mechanisms of KOR agonists on postcardiopulmonary bypass (post-CPB) neuroinflammation. We investigated the effects of U50488H on neuroinflammation and microglia polarization in rats exposed to CPB and explored the method of the NLRP3/caspase-1 pathway. Thirty SD rats were randomly divided into three groups: sham operation group, cardiopulmonary bypass model group, and CPB+ k-opioid receptor agonist (U50488H) group, with ten rats in each group. The Morris water maze was used to evaluate the changes in the cognitive function of CPB rats. Hematoxylin and eosin (HE) staining and TUNEL were performed to assess the rats' hippocampal damage. Enzyme-Linked Immunosorbent Assay (ELISA) was used to detect changes in brain injury markers and inflammatory factors. Furthermore, immunofluorescence was used to observe the expression of microglia polarization and NLRP3 followed by Western blots to detect the expression of the NLRP3/caspase-1 pathway and microglia polarization-related proteins. Rat microglia were cultured in vitro, with LPS stimulation, and treated with U50488H and a caspase-1 antagonist to evaluate the effects and mechanism of action of U50488H. KORs alleviated hippocampal damage caused by CPB and improved PND. CPB activated the NLRP3 inflammasome and upregulated pro-caspase-1 expression which promoted the expression of pro-IL-lβ and pro-IL-18 and resulted in increased inflammation. However, KORs also inhibited NLRP3 and transformed microglia from the M1 to the M2 state. Caspase-1 inhibitor treatment reduced the microglial polarization induced by KORs. The κ-opioid receptor agonists inhibited the inflammation mediated by microglia and improved PND through the NLRP3/caspase-1 signaling pathway.
Collapse
Affiliation(s)
- Pei Song
- Department of Anesthesia, Postgraduate Training Base of Jinzhou Medical University in the General Hospital of Northern Theater Command, Shenyang 110016, China
- Department of Anesthesia, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| | - Zhuo Yi
- Department of Anesthesia, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| | - Yiji Fu
- Department of Anesthesiology, Anshan Central Hospital, Anshan 114002, Liaoning, China
| | - Dandan Song
- Department of Anesthesia, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| | - Keyan Chen
- Department of Laboratory Animal Science, China Medical University, Shenyang 110000, Liaoning, China
| | - Jingjing Zheng
- Department of Anesthesia, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| | - Yingjie Sun
- Department of Anesthesia, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| | - Yugang Diao
- Department of Anesthesia, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| |
Collapse
|
118
|
Piovan A, Battaglia J, Filippini R, Dalla Costa V, Facci L, Argentini C, Pagetta A, Giusti P, Zusso M. Pre- and Early Post-treatment With Arthrospira platensis (Spirulina) Extract Impedes Lipopolysaccharide-triggered Neuroinflammation in Microglia. Front Pharmacol 2021; 12:724993. [PMID: 34566649 PMCID: PMC8458903 DOI: 10.3389/fphar.2021.724993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/25/2021] [Indexed: 01/04/2023] Open
Abstract
Background: Uncontrolled neuroinflammation and microglia activation lead to cellular and tissue damage contributing to neurodegenerative and neurological disorders. Spirulina (Arthrospira platensis (Nordstedt) Gomont, or Spirulina platensis), a blue-green microalga, which belongs to the class of cyanobacteria, has been studied for its numerous health benefits, which include anti-inflammatory properties, among others. Furthermore, in vivo studies have highlighted neuroprotective effects of Spirulina from neuroinflammatory insults in different brain areas. However, the mechanisms underlying the anti-inflammatory effect of the microalga are not completely understood. In this study we examined the effect of pre- and post-treatment with an acetone extract of Spirulina (E1) in an in vitro model of LPS-induced microglia activation. Methods: The effect of E1 on the release of IL-1β and TNF-α, expression of iNOS, nuclear factor erythroid 2–related factor 2 (Nrf2), and heme oxygenase-1 (HO-1), and the activation of NF-κB was investigated in primary microglia by ELISA, real-time PCR, and immunofluorescence. Results: Pre- and early post-treatment with non-cytotoxic concentrations of E1 down-regulated the release of IL-1β and TNF-α, and the over-expression of iNOS induced by LPS. E1 also significantly blocked the LPS-induced nuclear translocation of NF-κB p65 subunit, and upregulated gene and protein levels of Nrf2, as well as gene expression of HO-1. Conclusions: These results indicate that the extract of Spirulina can be useful in the control of microglia activation and neuroinflammatory processes. This evidence can support future in vivo studies to test pre- and post-treatment effects of the acetone extract from Spirulina.
Collapse
Affiliation(s)
- Anna Piovan
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Jessica Battaglia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Raffaella Filippini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Vanessa Dalla Costa
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Laura Facci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Carla Argentini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Andrea Pagetta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Pietro Giusti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Morena Zusso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| |
Collapse
|
119
|
Fernando KKM, Wijayasinghe YS. Sirtuins as Potential Therapeutic Targets for Mitigating Neuroinflammation Associated With Alzheimer's Disease. Front Cell Neurosci 2021; 15:746631. [PMID: 34630044 PMCID: PMC8492950 DOI: 10.3389/fncel.2021.746631] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/26/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, which is associated with memory deficit and global cognitive decline. Age is the greatest risk factor for AD and, in recent years, it is becoming increasingly appreciated that aging-related neuroinflammation plays a key role in the pathogenesis of AD. The presence of β-amyloid plaques and neurofibrillary tangles are the primary pathological hallmarks of AD; defects which can then activate a cascade of molecular inflammatory pathways in glial cells. Microglia, the resident macrophages in the central nervous system (CNS), are the major triggers of inflammation; a response which is typically intended to prevent further damage to the CNS. However, persistent microglial activation (i.e., neuroinflammation) is toxic to both neurons and glia, which then leads to neurodegeneration. Growing evidence supports a central role for sirtuins in the regulation of neuroinflammation. Sirtuins are NAD+-dependent protein deacetylases that modulate a number of cellular processes associated with inflammation. This review examines the latest findings regarding AD-associated neuroinflammation, mainly focusing on the connections among the microglial molecular pathways of inflammation. Furthermore, we highlight the biology of sirtuins, and their role in neuroinflammation. Suppression of microglial activity through modulation of the sirtuin activity has now become a key area of research, where progress in therapeutic interventions may slow the progression of Alzheimer's disease.
Collapse
|
120
|
Reusch N, Ravichandran KA, Olabiyi BF, Komorowska-Müller JA, Hansen JN, Ulas T, Beyer M, Zimmer A, Schmöle AC. Cannabinoid receptor 2 is necessary to induce toll-like receptor-mediated microglial activation. Glia 2021; 70:71-88. [PMID: 34499767 DOI: 10.1002/glia.24089] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/17/2023]
Abstract
The tight regulation of microglia activity is key for precise responses to potential threats, while uncontrolled and exacerbated microglial activity is neurotoxic. Microglial toll-like receptors (TLRs) are indispensable for sensing different types of assaults and triggering an innate immune response. Cannabinoid receptor 2 (CB2) signaling is a key pathway to control microglial homeostasis and activation, and its activation is connected to changes in microglial activity. We aimed to investigate how CB2 signaling impacts TLR-mediated microglial activation. Here, we demonstrate that deletion of CB2 causes a dampened transcriptional response to prototypic TLR ligands in microglia. Loss of CB2 results in distinct microglial gene expression profiles, morphology, and activation. We show that the CB2-mediated attenuation of TLR-induced microglial activation is mainly p38 MAPK-dependent. Taken together, we demonstrate that CB2 expression and signaling are necessary to fine-tune TLR-induced activation programs in microglia.
Collapse
Affiliation(s)
- Nico Reusch
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), Bonn, Germany
| | | | | | - Joanna Agnieszka Komorowska-Müller
- Institute for Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany.,International Max Planck Research School for Brain and Behavior, University of Bonn, Bonn, Germany
| | - Jan N Hansen
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, Bonn, Germany
| | - Thomas Ulas
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), Bonn, Germany.,Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseases (DZNE), University of Bonn, Bonn, Germany
| | - Marc Beyer
- Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseases (DZNE), University of Bonn, Bonn, Germany.,Molecular Immunology in Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Andreas Zimmer
- Institute for Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
| | - Anne-Caroline Schmöle
- Institute for Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
121
|
Giovannelli I, Bayatti N, Brown A, Wang D, Mickunas M, Camu W, Veyrune JL, Payan C, Garlanda C, Locati M, Juntas-Morales R, Pageot N, Malaspina A, Andreasson U, Suehs C, Saker S, Masseguin C, de Vos J, Zetterberg H, Al-Chalabi A, Leigh PN, Tree T, Bensimon G, Heath PR, Shaw PJ, Kirby J. Amyotrophic lateral sclerosis transcriptomics reveals immunological effects of low-dose interleukin-2. Brain Commun 2021; 3:fcab141. [PMID: 34409288 PMCID: PMC8364666 DOI: 10.1093/braincomms/fcab141] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 11/30/2022] Open
Abstract
Amyotrophic lateral sclerosis is a fatal neurodegenerative disease causing upper and lower motor neuron loss and currently no effective disease-modifying treatment is available. A pathological feature of this disease is neuroinflammation, a mechanism which involves both CNS-resident and peripheral immune system cells. Regulatory T-cells are immune-suppressive agents known to be dramatically and progressively decreased in patients with amyotrophic lateral sclerosis. Low-dose interleukin-2 promotes regulatory T-cell expansion and was proposed as an immune-modulatory strategy for this disease. A randomized placebo-controlled pilot phase-II clinical trial called Immuno-Modulation in Amyotrophic Lateral Sclerosis was carried out to test safety and activity of low-dose interleukin-2 in 36 amyotrophic lateral sclerosis patients (NCT02059759). Participants were randomized to 1MIU, 2MIU-low-dose interleukin-2 or placebo and underwent one injection daily for 5 days every 28 days for three cycles. In this report, we describe the results of microarray gene expression profiling of trial participants' leukocyte population. We identified a dose-dependent increase in regulatory T-cell markers at the end of the treatment period. Longitudinal analysis revealed an alteration and inhibition of inflammatory pathways occurring promptly at the end of the first treatment cycle. These responses are less pronounced following the end of the third treatment cycle, although an activation of immune-regulatory pathways, involving regulatory T-cells and T helper 2 cells, was evident only after the last cycle. This indicates a cumulative effect of repeated low-dose interleukin-2 administration on regulatory T-cells. Our analysis suggested the existence of inter-individual variation amongst trial participants and we therefore classified patients into low, moderate and high-regulatory T-cell-responders. NanoString profiling revealed substantial baseline differences between participant immunological transcript expression profiles with the least responsive patients showing a more inflammatory-prone phenotype at the beginning of the trial. Finally, we identified two genes in which pre-treatment expression levels correlated with the magnitude of drug responsiveness. Therefore, we proposed a two-biomarker based regression model able to predict patient regulatory T-cell-response to low-dose interleukin-2. These findings and the application of this methodology could be particularly relevant for future precision medicine approaches to treat amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Ilaria Giovannelli
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Nadhim Bayatti
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Abigail Brown
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Dennis Wang
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.,Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Marius Mickunas
- Department of Computer Science, University of Sheffield, Sheffield S1 4DP, UK
| | - William Camu
- Department of Immunobiology, Faculty of Life Science and Medicine, King's College London, London SE1 9RT, UK
| | - Jean-Luc Veyrune
- Clinique du Motoneurone, CHU Gui de Chaliac, University of Montpellier, Montpellier 34295, France
| | - Christine Payan
- Department of Cell and Tissue Engineering, University of Montpellier, CHU Montpellier, Montpellier 34000, France.,Department of Biostatistics, Clinical Epidemiology, Public Health and Innovation in Methodology (BESPIM), Nîmes University Hospital, Nîmes 30029, France
| | - Cecilia Garlanda
- Department of Pharmacology, AP-HP Sorbonne University, Pitié-Salpêtrière Hospital, F-75013 Paris, 75013 France.,Humanitas Clinical & Research Center-IRCCS, Milan 20089, Italy
| | - Massimo Locati
- Humanitas University, Pieve Emanuele, Milan 20090, Italy.,Department of Medical Biotechnologies and Translational Medicine, University Milan, Milan 20133, Italy
| | - Raul Juntas-Morales
- Department of Immunobiology, Faculty of Life Science and Medicine, King's College London, London SE1 9RT, UK
| | - Nicolas Pageot
- Department of Immunobiology, Faculty of Life Science and Medicine, King's College London, London SE1 9RT, UK
| | - Andrea Malaspina
- Department of Neuroimmunology, Barts and the London School of Medicine and Dentistry, Neuroscience and Trauma Centre, Institute of Cell and Molecular Medicine, London E1 2AT, UK
| | - Ulf Andreasson
- Department of Psychiatry & Neurochemistry, University of Gothenburg, Mölndal 41345, Sweden
| | - Carey Suehs
- Department of Biostatistics, Clinical Epidemiology, Public Health and Innovation in Methodology (BESPIM), Nîmes University Hospital, Nîmes 30029, France.,Department of Medical Information, University of Montpellier, CHU Montpellier, Montpellier, France.,Department of Respiratory Diseases, University of Montpellier, CHU Montpellier, Montpellier 34090, France
| | - Safa Saker
- DNA and Cell Bank, Genethon, Evry 91000, France
| | - Christophe Masseguin
- Delegation for Clinical Research and Innovation, Nîmes University Hospital, Nîmes 30029, France
| | - John de Vos
- Clinique du Motoneurone, CHU Gui de Chaliac, University of Montpellier, Montpellier 34295, France
| | - Henrik Zetterberg
- Department of Psychiatry & Neurochemistry, University of Gothenburg, Mölndal 41345, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 43180, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.,UK Dementia Research Institute at UCL, London WC1E 6BT, UK
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London SE5 9RX, UK.,Department of Neurology, King's College Hospital, London SE5 9RS, UK
| | - P Nigel Leigh
- Brighton and Sussex Medical School, The Trafford Centre for Biomedical Research, Falmer, Brighton BN1 9RY, UK
| | - Timothy Tree
- Department of Computer Science, University of Sheffield, Sheffield S1 4DP, UK.,NIHR Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London SE1 9RT, UK
| | - Gilbert Bensimon
- Department of Cell and Tissue Engineering, University of Montpellier, CHU Montpellier, Montpellier 34000, France.,Department of Biostatistics, Clinical Epidemiology, Public Health and Innovation in Methodology (BESPIM), Nîmes University Hospital, Nîmes 30029, France.,Department of Pharmacology, Sorbonne University Médecine, F-75013 Paris 75013, France
| | - Paul R Heath
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Pamela J Shaw
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Janine Kirby
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| |
Collapse
|
122
|
Schilling S, Chausse B, Dikmen HO, Almouhanna F, Hollnagel JO, Lewen A, Kann O. TLR2- and TLR3-activated microglia induce different levels of neuronal network dysfunction in a context-dependent manner. Brain Behav Immun 2021; 96:80-91. [PMID: 34015428 DOI: 10.1016/j.bbi.2021.05.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 02/06/2023] Open
Abstract
Recognition of pathogen- or damage-associated molecular patterns (PAMPs, DAMPs) by innate Toll-like receptors (TLRs) is central to the activation of microglia (brain macrophages) in many CNS diseases. Notably, TLR-mediated microglial activation is complex and modulated by additional exogenous and endogenous immunological signals. The impact of different microglial reactive phenotypes on electrical activity and neurotransmission is widely unknown, however. We explored the effects of TLR ligands on microglia and neuronal network function in rat organotypic hippocampal slice cultures (in situ), i.e., postnatal cortical tissue lacking adaptive immunity. Single exposure of slice cultures to TLR2 or TLR3 ligands [PGN, poly(I:C)] for 2-3 days induced moderate microglial activation featuring IL-6 and TNF-α release and only mild alterations of fast neuronal gamma band oscillations (30-70 Hz) that are fundamental to higher cognitive functions, such as perception, memory and behavior. Paired exposure to TLR3/TLR2 or TLR3/TLR4 ligands (LPS) induced nitric oxide (NO) release, enhanced TNF-α release, and associated with advanced network dysfunction, including slowing to the beta frequency band (12-30 Hz) and neural bursts (hyperexcitability). Paired exposure to a TLR ligand and the leukocyte cytokine IFN-γ enhanced NO release and associated with severe network dysfunction, albeit sensitive parvalbumin- and somatostatin-positive inhibitory interneurons were preserved. Notably, the neuronal disturbance was prevented by either microglial depletion or pharmacological inhibition of oxidant-producing enzymes, inducible NO synthase (iNOS) and NADPH oxidase. In conclusion, TLR-activated microglia can induce different levels of neuronal network dysfunction, in which severe dysfunction is mainly caused by reactive oxygen and nitrogen species rather than proinflammatory cytokines. Our findings provide a mechanistic insight into microglial activation and functional neuronal network impairment, with relevance to neuroinflammation and neurodegeneration observed in, e.g., meningoencephalitis, multiple sclerosis and Alzheimer's disease.
Collapse
Affiliation(s)
- Simone Schilling
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Bruno Chausse
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Hasan Onur Dikmen
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Fadi Almouhanna
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Jan-Oliver Hollnagel
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Andrea Lewen
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany; Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, D-69120 Heidelberg, Germany.
| |
Collapse
|
123
|
Adhikari UK, Sakiz E, Zhou X, Habiba U, Kumar S, Mikhael M, Senesi M, Guang Li C, Guillemin GJ, Ooi L, David MA, Collins S, Karl T, Tayebi M. Cross-Linking Cellular Prion Protein Induces Neuronal Type 2-Like Hypersensitivity. Front Immunol 2021; 12:639008. [PMID: 34394070 PMCID: PMC8361482 DOI: 10.3389/fimmu.2021.639008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/13/2021] [Indexed: 01/13/2023] Open
Abstract
Background Previous reports identified proteins associated with ‘apoptosis’ following cross-linking PrPC with motif-specific anti-PrP antibodies in vivo and in vitro. The molecular mechanisms underlying this IgG-mediated neurotoxicity and the role of the activated proteins in the apoptotic pathways leading to neuronal death has not been properly defined. Previous reports implicated a number of proteins, including apolipoprotein E, cytoplasmic phospholipase A2, prostaglandin and calpain with anti-PrP antibody-mediated ‘apoptosis’, however, these proteins are also known to play an important role in allergy. In this study, we investigated whether cross-linking PrPC with anti-PrP antibodies stimulates a neuronal allergenic response. Methods Initially, we predicted the allergenicity of the epitope sequences associated with ‘neurotoxic’ anti-PrP antibodies using allergenicity prediction servers. We then investigated whether anti-PrP antibody treatment of mouse primary neurons (MPN), neuroblastoma cells (N2a) and microglia (N11) cell lines lead to a neuronal allergenic response. Results In-Silico studies showed that both tail- and globular-epitopes were allergenic. Specifically, binding regions that contain epitopes for previously reported ‘neurotoxic’ antibodies such as ICSM18 (146-159), ICSM35 (91-110), POM 1 (138-147) and POM 3 (95-100) lead to activation of allergenic related proteins. Following direct application of anti-PrPC antibodies on N2a cells, we identified 4 neuronal allergenic-related proteins when compared with untreated cells. Furthermore, we identified 8 neuronal allergenic-related proteins following treatment of N11 cells with anti-PrPC antibodies prior to co-culture with N2a cells when compared with untreated cells. Antibody treatment of MPN or MPN co-cultured with antibody-treated N11 led to identifying 10 and 7 allergenic-related proteins when compared with untreated cells. However, comparison with 3F4 antibody treatment revealed 5 and 4 allergenic-related proteins respectively. Of importance, we showed that the allergenic effects triggered by the anti-PrP antibodies were more potent when antibody-treated microglia were co-cultured with the neuroblastoma cell line. Finally, co-culture of N2a or MPN with N11-treated with anti-PrP antibodies resulted in significant accumulation of NO and IL6 but not TNF-α in the cell culture media supernatant. Conclusions This study showed for the first time that anti-PrP antibody binding to PrPC triggers a neuronal hypersensitivity response and highlights the important role of microglia in triggering an IgG-mediated neuronal hypersensitivity response. Moreover, this study provides an important impetus for including allergenic assessment of therapeutic antibodies for neurodegenerative disorders to derive safe and targeted biotherapeutics.
Collapse
Affiliation(s)
| | - Elif Sakiz
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Xian Zhou
- National Institute of Complementary Medicine (NICM) Health Research Institute, Western Sydney University, Campbelltown, NSW, Australia
| | - Umma Habiba
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Sachin Kumar
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Meena Mikhael
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Matteo Senesi
- Australian National Creutzfeldt-Jakob Disease Registry, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Chun Guang Li
- National Institute of Complementary Medicine (NICM) Health Research Institute, Western Sydney University, Campbelltown, NSW, Australia
| | - Gilles J Guillemin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Wollongong, NSW, Australia
| | - Lezanne Ooi
- School of Chemistry and Molecular Bioscience, Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | | | - Steven Collins
- Australian National Creutzfeldt-Jakob Disease Registry, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Tim Karl
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia.,Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Mourad Tayebi
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| |
Collapse
|
124
|
Saddala MS, Yang X, Tang S, Huang H. Transcriptome-wide analysis reveals core sets of transcriptional regulators of sensome and inflammation genes in retinal microglia. Genomics 2021; 113:3058-3071. [PMID: 34242709 DOI: 10.1016/j.ygeno.2021.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/15/2021] [Accepted: 07/02/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Retinal microglial cells (RMCs) play crucial roles in maintaining normal visual functions in a healthy eye. However, the underlying mechanisms of RMCs over-activation manifesting the alterations of sensome profile and inflammation state, which contribute to various retinal neurodegenerative diseases, remain elusive. Here, we aimed to identify the core set of sensome and pro-inflammatory genes and their regulators using transcriptome and data mining approaches. METHODS We performed paired-end RNA-sequencing in primary microglial cell cultures treated with TNFα/IFNϒ (10 ng/ml for 12 h) and PBS as a control. Gene enrichment analysis and hierarchical clustering for the differentially expressed transcripts highlight functional pathways and network perturbations. We examined overlaps of the mouse microglial gene expression profiles with the data-mined human sensome and pro-inflammatory marker genes. The core sets of sensome and pro-inflammatory genes were selected and predicted for transcription factors (TFs). The identified TFs in RNA-Seq are validated by the quantitative PCR method. RESULTS TNFα/IFNϒ induced 668 differentially expressed transcripts in retinal microglial cells relative to the control. Furthermore, gene enrichment analysis and the gene expression network revealed activated microglial genes, biological, molecular and inflammatory pathways. The overlapping analysis of the TNFα/IFNϒ-activated microglia genes and the data-mined human gene sets revealed 22 sensome and 61 pro-inflammatory genes. Based on network analysis, we determined 10 genes as the core sets of sensome and pro-inflammatory genes and predicted the top ten TFs that regulate them. The SP110, IRF1, FLI1, SP140 (sensome) and RELB, BATF2, NFKB2, TRAFD1, SP100, NFKB1 (inflammation) are differentially expressed between the TNFα/IFNϒ activated and the non-activated microglia which were validated by quantitative PCR. The outcomes indicate that these transcriptional regulators are highly expressed and may regulate the sensome and inflammatory genes of RMCs and switch them to over-activation. CONCLUSION Our results comprise a powerful, cross-species functional genomics resource for sensome and inflammation of RMCs, which may provide novel therapeutic approaches to prevent retinal neurodegenerative diseases.
Collapse
Affiliation(s)
- Madhu Sudhana Saddala
- University of Missouri School of Medicine, Columbia, Missouri, United States of America; Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xu Yang
- University of Missouri School of Medicine, Columbia, Missouri, United States of America; Aier Eye Institute, Aier Eye Hospital Group, Changsha, Hunan, China
| | - Shibo Tang
- Aier Eye Institute, Aier Eye Hospital Group, Changsha, Hunan, China
| | - Hu Huang
- University of Missouri School of Medicine, Columbia, Missouri, United States of America.
| |
Collapse
|
125
|
Steinmaurer A, Wimmer I, Berger T, Rommer PS, Sellner J. Bruton's tyrosine kinase inhibition in the treatment of preclinical models and multiple sclerosis. Curr Pharm Des 2021; 28:437-444. [PMID: 34218776 DOI: 10.2174/1381612827666210701152934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/10/2021] [Indexed: 11/22/2022]
Abstract
Significant progress has been made in understanding the immunopathogenesis of multiple sclerosis (MS) over recent years. Successful clinical trials with CD20-depleting monoclonal antibodies have corroborated the fundamental role of B cells in the pathogenesis of MS and reinforced the notion that cells of the B cell lineage are an attractive treatment target. Therapeutic inhibition of Bruton's tyrosine kinase (BTK), an enzyme involved in B cell and myeloid cell activation and function, is regarded as a next-generation approach that aims to attenuate both errant innate and adaptive immune functions. Moreover, brain-penetrant BTK inhibitors may impact compartmentalized inflammation and neurodegeneration within the central nervous system by targeting brain-resident B cells and microglia, respectively. Preclinical studies in animal models of MS corroborated an impact of BTK inhibition on meningeal inflammation and cortical demyelination. Notably, BTK inhibition attenuated the antigen-presenting capacity of B cells and the generation of encephalitogenic T cells. Evobrutinib, a selective oral BTK inhibitor, has been tested recently in a phase 2 study of patients with relapsing-remitting MS. The study met the primary endpoint of a significantly reduced cumulative number of Gadolinium-enhancing lesions under treatment with evobrutinib compared to placebo treatment. Thus, the results of ongoing phase 2 and 3 studies with evobrutinib, fenobrutinib, and tolebrutinib in relapsing-remitting and progressive MS are eagerly awaited. This review article introduces the physiological role of BTK, summarizes the pre-clinical and trial evidence, and addresses the potential beneficial effects of BTK inhibition in MS.
Collapse
Affiliation(s)
- Anja Steinmaurer
- Department of Neurology, Medical University of Vienna, Vienna. Austria
| | - Isabella Wimmer
- Department of Neurology, Medical University of Vienna, Vienna. Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna. Austria
| | | | - Johann Sellner
- Department of Neurology, Landesklinikum Mistelbach-Gänserndorf, Mistelbach. Austria
| |
Collapse
|
126
|
Jeon MT, Kim KS, Kim ES, Lee S, Kim J, Hoe HS, Kim DG. Emerging pathogenic role of peripheral blood factors following BBB disruption in neurodegenerative disease. Ageing Res Rev 2021; 68:101333. [PMID: 33774194 DOI: 10.1016/j.arr.2021.101333] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/03/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022]
Abstract
The responses of central nervous system (CNS) cells such as neurons and glia in neurodegenerative diseases (NDs) suggest that regulation of neuronal and glial functions could be a strategy for ND prevention and/or treatment. However, attempts to develop such therapeutics for NDs have been hindered by the challenge of blood-brain barrier (BBB) permeability and continued constitutive neuronal loss. These limitations indicate the need for additional perspectives for the prevention/treatment of NDs. In particular, the disruption of the blood-brain barrier (BBB) that accompanies NDs allows brain infiltration by peripheral factors, which may stimulate innate immune responses involved in the progression of neurodegeneration. The accumulation of blood factors like thrombin, fibrinogen, c-reactive protein (CRP) and complement components in the brain has been observed in NDs and may activate the innate immune system in the CNS. Thus, strengthening the integrity of the BBB may enhance its protective role to attenuate ND progression and functional loss. In this review, we describe the innate immune system in the CNS and the contribution of blood factors to the role of the CNS immune system in neurodegeneration and neuroprotection.
Collapse
Affiliation(s)
- Min-Tae Jeon
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea
| | - Kyu-Sung Kim
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Eun Seon Kim
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Suji Lee
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea; Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Jieun Kim
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea
| | - Hyang-Sook Hoe
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea.
| | - Do-Geun Kim
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea.
| |
Collapse
|
127
|
Hajinejad M, Sahab-Negah S. Neuroinflammation: The next target of exosomal microRNAs derived from mesenchymal stem cells in the context of neurological disorders. J Cell Physiol 2021; 236:8070-8081. [PMID: 34189724 DOI: 10.1002/jcp.30495] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/28/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022]
Abstract
Among different types of mechanisms involved in neurological disorders, neuroinflammation links initial insults to secondary injuries and triggers some chronic outcomes, for example, neurodegenerative disorders. Thus, anti-inflammatory substances can be targeted as a novel therapeutic option for translational and clinical research to improve brain disease outcomes. In this review, we propose to introduce a new insight into the anti-inflammatory effects of mesenchymal stem cells (MSCs) as the most frequent source for stem cell therapy in neurological diseases. Our insight incorporates a bystander effect of these stem cells in modulating inflammation and microglia/macrophage polarization through exosomes. Exosomes are nano-sized membrane vesicles that carry cell-specific constituents, including protein, lipid, DNA, and RNA. microRNAs (miRNAs) have recently been detected in exosomes that can be taken up by other cells and affect the behavior of recipient cells. In this article, we outline and highlight the potential use of exosomal miRNAs derived from MSCs for inflammatory pathways in the context of neurological disorders. Furthermore, we suggest that focusing on exosomal miRNAs derived from MSCs in the course of neuroinflammatory pathways in the future could reveal their functions for diverse neurological diseases, including brain injuries and neurodegenerative diseases. It is hoped that this study will contribute to a deep understanding of stem cell bystander effects through exosomal miRNAs.
Collapse
Affiliation(s)
- Mehrdad Hajinejad
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Anatomy and Cell Biology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Sahab-Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.,Department of Neuroscience, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
128
|
Ashayeri Ahmadabad R, Mirzaasgari Z, Gorji A, Khaleghi Ghadiri M. Toll-Like Receptor Signaling Pathways: Novel Therapeutic Targets for Cerebrovascular Disorders. Int J Mol Sci 2021; 22:ijms22116153. [PMID: 34200356 PMCID: PMC8201279 DOI: 10.3390/ijms22116153] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Toll-like receptors (TLRs), a class of pattern recognition proteins, play an integral role in the modulation of systemic inflammatory responses. Cerebrovascular diseases (CVDs) are a group of pathological conditions that temporarily or permanently affect the brain tissue mostly via the decrease of oxygen and glucose supply. TLRs have a critical role in the activation of inflammatory cascades following hypoxic-ischemic events and subsequently contribute to neuroprotective or detrimental effects of CVD-induced neuroinflammation. The TLR signaling pathway and downstream cascades trigger immune responses via the production and release of various inflammatory mediators. The present review describes the modulatory role of the TLR signaling pathway in the inflammatory responses developed following various CVDs and discusses the potential benefits of the modulation of different TLRs in the improvement of functional outcomes after brain ischemia.
Collapse
Affiliation(s)
- Rezan Ashayeri Ahmadabad
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; (R.A.A.); (Z.M.)
| | - Zahra Mirzaasgari
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; (R.A.A.); (Z.M.)
- Department of Neurology, Iran University of Medical Sciences, Tehran 1593747811, Iran
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; (R.A.A.); (Z.M.)
- Epilepsy Research Center, Westfälische Wilhelms-Universität, 48149 Münster, Germany
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Department of Neurosurgery, Westfälische Wilhelms-Universität, 48149 Münster, Germany;
- Department of Neurology, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
- Correspondence: ; Tel.: +49-251-8355564; Fax: +49-251-8347479
| | | |
Collapse
|
129
|
Dey R, Bishayi B. Ciprofloxacin and dexamethasone in combination attenuate S. aureus induced brain abscess via neuroendocrine-immune interaction of TLR-2 and glucocorticoid receptor leading to behavioral improvement. Int Immunopharmacol 2021; 97:107695. [PMID: 33962227 DOI: 10.1016/j.intimp.2021.107695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/06/2021] [Accepted: 04/18/2021] [Indexed: 12/14/2022]
Abstract
Staphylococcus aureus induced brain abscess is a critical health concern throughout the developing world. The conventional surgical intervention could not regulate the abscess-induced brain inflammation. Thus further study over the alternative therapeutic strategy for treating a brain abscess is of high priority. The resident glial cells recognize the invading S. aureus by their cell surface Toll-like receptor-2 (TLR-2). Glucocorticoid receptor (GR) was known for its immunosuppressive effects. In this study, an attempt had been taken to utilize the functional relationship or cross-talking between TLR-2 and GR during the pathogenesis of brain abscesses. Here, the combination of an antibiotic (i.e. ciprofloxacin) and dexamethasone was used to regulate the brain inflammation either in TLR-2 or GR blocking condition. We were also interested to figure out the possible impact of alternative therapy on behavioral impairments. The results indicated that combination treatment during TLR-2 blockade significantly reduced the bacterial burden and abscess area score in the infected brain. However, marked improvements were observed in anxiety, depression-like behavior, and motor co-ordination. The combination treatment after TLR-2 blocking effectively scavenged free radicals (H2O2, superoxide anion, and NO) through modulating antioxidant enzyme activities that ultimately control S. aureus induced glial reactivity possibly via up-regulating GR expression. The exogenous dexamethasone might regulate the GR expression in the brain by increasing the corticosterone concentration and the GC-GR mediated signaling. Therefore, this in-vivo study demonstrates the possible regulatory mechanism of bacterial brain abscess that involved TLR-2 and GR as a part of neuroendocrine-immune interaction.
Collapse
Affiliation(s)
- Rajen Dey
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, Calcutta, West Bengal, India
| | - Biswadev Bishayi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, Calcutta, West Bengal, India.
| |
Collapse
|
130
|
Kveštak D, Juranić Lisnić V, Lisnić B, Tomac J, Golemac M, Brizić I, Indenbirken D, Cokarić Brdovčak M, Bernardini G, Krstanović F, Rožmanić C, Grundhoff A, Krmpotić A, Britt WJ, Jonjić S. NK/ILC1 cells mediate neuroinflammation and brain pathology following congenital CMV infection. J Exp Med 2021; 218:e20201503. [PMID: 33630019 PMCID: PMC7918636 DOI: 10.1084/jem.20201503] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/11/2020] [Accepted: 01/29/2021] [Indexed: 12/31/2022] Open
Abstract
Congenital human cytomegalovirus (cHCMV) infection of the brain is associated with a wide range of neurocognitive sequelae. Using infection of newborn mice with mouse cytomegalovirus (MCMV) as a reliable model that recapitulates many aspects of cHCMV infection, including disseminated infection, CNS infection, altered neurodevelopment, and sensorineural hearing loss, we have previously shown that mitigation of inflammation prevented alterations in cerebellar development, suggesting that host inflammatory factors are key drivers of neurodevelopmental defects. Here, we show that MCMV infection causes a dramatic increase in the expression of the microglia-derived chemokines CXCL9/CXCL10, which recruit NK and ILC1 cells into the brain in a CXCR3-dependent manner. Surprisingly, brain-infiltrating innate immune cells not only were unable to control virus infection in the brain but also orchestrated pathological inflammatory responses, which lead to delays in cerebellar morphogenesis. Our results identify NK and ILC1 cells as the major mediators of immunopathology in response to virus infection in the developing CNS, which can be prevented by anti-IFN-γ antibodies.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Brain/immunology
- Brain/pathology
- Brain/virology
- Chemokine CXCL10/genetics
- Chemokine CXCL10/immunology
- Chemokine CXCL10/metabolism
- Chemokine CXCL9/genetics
- Chemokine CXCL9/immunology
- Chemokine CXCL9/metabolism
- Cytomegalovirus/immunology
- Cytomegalovirus/physiology
- Cytomegalovirus Infections/immunology
- Cytomegalovirus Infections/virology
- Gene Expression Regulation/immunology
- Humans
- Immunity, Innate/immunology
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/virology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lymphocytes/immunology
- Lymphocytes/metabolism
- Mice, 129 Strain
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Microglia/immunology
- Microglia/metabolism
- Microglia/virology
- Receptors, CXCR3/genetics
- Receptors, CXCR3/immunology
- Receptors, CXCR3/metabolism
- Mice
Collapse
Affiliation(s)
- Daria Kveštak
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Vanda Juranić Lisnić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Berislav Lisnić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Jelena Tomac
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Mijo Golemac
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Ilija Brizić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Daniela Indenbirken
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | | | - Giovanni Bernardini
- Department of Molecular Medicine, Faculty of Pharmacy and Medicine, University of Rome “Sapienza”, Rome, Italy
| | - Fran Krstanović
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Carmen Rožmanić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Adam Grundhoff
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Astrid Krmpotić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - William J. Britt
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
| | - Stipan Jonjić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
131
|
Zhang L, Young JI, Gomez L, Silva TC, Schmidt MA, Cai J, Chen X, Martin ER, Wang L. Sex-specific DNA methylation differences in Alzheimer's disease pathology. Acta Neuropathol Commun 2021; 9:77. [PMID: 33902726 PMCID: PMC8074512 DOI: 10.1186/s40478-021-01177-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/10/2021] [Indexed: 12/14/2022] Open
Abstract
Sex is an important factor that contributes to the clinical and biological heterogeneities in Alzheimer's disease (AD), but the regulatory mechanisms underlying sex disparity in AD are still not well understood. DNA methylation is an important epigenetic modification that regulates gene transcription and is known to be involved in AD. We performed the first large-scale sex-specific meta-analysis of DNA methylation differences in AD neuropathology, by re-analyzing four recent epigenome-wide association studies totaling more than 1000 postmortem prefrontal cortex brain samples using a uniform analytical pipeline. For each cohort, we employed two complementary analytical strategies, a sex-stratified analysis that examined methylation-Braak stage associations in male and female samples separately, and a sex-by-Braak stage interaction analysis that compared the magnitude of these associations between different sexes. Our analysis uncovered 14 novel CpGs, mapped to genes such as TMEM39A and TNXB that are associated with the AD Braak stage in a sex-specific manner. TMEM39A is known to be involved in inflammation, dysregulated type I interferon responses, and other immune processes. TNXB encodes tenascin proteins, which are extracellular matrix glycoproteins demonstrated to modulate synaptic plasticity in the brain. Moreover, for many previously implicated genes in AD neuropathology, such as MBP and AZU1, our analysis provided the new insights that they were predominately driven by effects in only one sex. These sex-specific DNA methylation differences were enriched in divergent biological processes such as integrin activation in females and complement activation in males. Our study implicated multiple new loci and biological processes that affected AD neuropathology in a sex-specific manner.
Collapse
Affiliation(s)
- Lanyu Zhang
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Juan I Young
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Lissette Gomez
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Tiago C Silva
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Michael A Schmidt
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Jesse Cai
- Brentwood High School, 5304 Murray Ln, Brentwood, TN, 37027, USA
| | - Xi Chen
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Eden R Martin
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Lily Wang
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA.
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA.
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA.
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
132
|
Bhuiyan P, Chen Y, Karim M, Dong H, Qian Y. Bidirectional communication between mast cells and the gut-brain axis in neurodegenerative diseases: Avenues for therapeutic intervention. Brain Res Bull 2021; 172:61-78. [PMID: 33892083 DOI: 10.1016/j.brainresbull.2021.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 03/02/2021] [Accepted: 04/17/2021] [Indexed: 12/12/2022]
Abstract
Although the global incidence of neurodegenerative diseases has been steadily increasing, especially in adults, there are no effective therapeutic interventions. Neurodegeneration is a heterogeneous group of disorders that is characterized by the activation of immune cells in the central nervous system (CNS) (e.g., mast cells and microglia) and subsequent neuroinflammation. Mast cells are found in the brain and the gastrointestinal tract and play a role in "tuning" neuroimmune responses. The complex bidirectional communication between mast cells and gut microbiota coordinates various dynamic neuro-cellular responses, which propagates neuronal impulses from the gastrointestinal tract into the CNS. Numerous inflammatory mediators from degranulated mast cells alter intestinal gut permeability and disrupt blood-brain barrier, which results in the promotion of neuroinflammatory processes leading to neurological disorders, thereby offsetting the balance in immune-surveillance. Emerging evidence supports the hypothesis that gut-microbiota exert a pivotal role in inflammatory signaling through the activation of immune and inflammatory cells. Communication between inflammatory cytokines and neurocircuits via the gut-brain axis (GBA) affects behavioral responses, activates mast cells and microglia that causes neuroinflammation, which is associated with neurological diseases. In this comprehensive review, we focus on what is currently known about mast cells and the gut-brain axis relationship, and how this relationship is connected to neurodegenerative diseases. We hope that further elucidating the bidirectional communication between mast cells and the GBA will not only stimulate future research on neurodegenerative diseases but will also identify new opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Piplu Bhuiyan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China
| | - Yinan Chen
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China
| | - Mazharul Karim
- College of Pharmacy, Western University of Health Science, 309 East 2nd Street, Pomona, CA, 91766, USA
| | - Hongquan Dong
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China.
| | - Yanning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China.
| |
Collapse
|
133
|
Casali BT, Reed-Geaghan EG. Microglial Function and Regulation during Development, Homeostasis and Alzheimer's Disease. Cells 2021; 10:957. [PMID: 33924200 PMCID: PMC8074610 DOI: 10.3390/cells10040957] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/22/2022] Open
Abstract
Microglia are the resident immune cells of the brain, deriving from yolk sac progenitors that populate the brain parenchyma during development. During development and homeostasis, microglia play critical roles in synaptogenesis and synaptic plasticity, in addition to their primary role as immune sentinels. In aging and neurodegenerative diseases generally, and Alzheimer's disease (AD) specifically, microglial function is altered in ways that significantly diverge from their homeostatic state, inducing a more detrimental inflammatory environment. In this review, we discuss the receptors, signaling, regulation and gene expression patterns of microglia that mediate their phenotype and function contributing to the inflammatory milieu of the AD brain, as well as strategies that target microglia to ameliorate the onset, progression and symptoms of AD.
Collapse
Affiliation(s)
| | - Erin G. Reed-Geaghan
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA;
| |
Collapse
|
134
|
Mechanistic interplay of various mediators involved in mediating the neuroprotective effect of daphnetin. Pharmacol Rep 2021; 73:1220-1229. [PMID: 33860917 DOI: 10.1007/s43440-021-00261-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 03/11/2021] [Accepted: 04/02/2021] [Indexed: 12/20/2022]
Abstract
Daphnetin is a 7, 8 dihydroxy coumarin isolated from different medicinal plants of the Thymelaeaceae family and exhibits copious pharmacological activities including neuroprotection, anti-cancer, anti-malarial, anti-inflammatory, anti-parasitic and anti-arthritic activity. It has been proved to be an effective neuroprotective agent in several preclinical animal studies and cell line examinations. It is found to interact with different cellular mediators and signaling pathways to confer protection against neurodegeneration. The reactive oxygen species and inflammatory mediators are the major culprits of different neurodegenerative diseases. Oxidative stress activates the pro-apoptotic proteins and inhibits anti-apoptotic proteins, leading to neuronal cell death. Daphnetin restores cellular redox balance by upregulating the antioxidants level (GSH and SOD), anti-apoptotic protein (Bcl-2), as well as by reducing the levels of proinflammatory cytokines, executioner caspase-3, pro-apoptotic-Bax, and oxidative stress markers. Furthermore, activation of Nrf-2/HO-1 signaling and upregulation of HSP-70 governs the protection elicited by daphnetin against oxidative stress-induced neuronal apoptosis. Daphnetin modulated inhibition of JNK-MAPK, JAK-STAT, and TLR-4/NF-κB signaling pathways also contributed to its neuroprotective effect. The positive effects of daphnetin have been also related to its AChE, BChE, and BACE-1 inhibitory potential. The present review has been designed to explore the mechanistic interplay of various mediators in mediating the neuroprotective effects of daphnetin.
Collapse
|
135
|
Dual Roles of Microglia in the Basal Ganglia in Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22083907. [PMID: 33918947 PMCID: PMC8070536 DOI: 10.3390/ijms22083907] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
With the increasing age of the population, the incidence of Parkinson’s disease (PD) has increased exponentially. The development of novel therapeutic interventions requires an understanding of the involvement of senescent brain cells in the pathogenesis of PD. In this review, we highlight the roles played by microglia in the basal ganglia in the pathophysiological processes of PD. In PD, dopaminergic (DAergic) neuronal degeneration in the substantia nigra pars compacta (SNc) activates the microglia, which then promote DAergic neuronal degeneration by releasing potentially neurotoxic factors, including nitric oxide, cytokines, and reactive oxygen species. On the other hand, microglia are also activated in the basal ganglia outputs (the substantia nigra pars reticulata and the globus pallidus) in response to excess glutamate released from hyperactive subthalamic nuclei-derived synapses. The activated microglia then eliminate the hyperactive glutamatergic synapses. Synapse elimination may be the mechanism underlying the compensation that masks the appearance of PD symptoms despite substantial DAergic neuronal loss. Microglial senescence may correlate with their enhanced neurotoxicity in the SNc and the reduced compensatory actions in the basal ganglia outputs. The dual roles of microglia in different basal ganglia regions make it difficult to develop interventions targeting microglia for PD treatment.
Collapse
|
136
|
Hoang NMH, Kim S, Nguyen HD, Kim M, Kim J, Kim BC, Park D, Lee S, Yu BP, Chung HY, Kim MS. Age-Dependent Sensitivity to the Neurotoxic Environmental Metabolite, 1,2-Diacetylbenzene. Biomol Ther (Seoul) 2021; 29:399-409. [PMID: 33820880 PMCID: PMC8255141 DOI: 10.4062/biomolther.2020.208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/13/2021] [Accepted: 02/10/2021] [Indexed: 01/15/2023] Open
Abstract
1,2-Diacetylbenzene (DAB) is a metabolite of 1,2-diethylbenzene, which is commonly used in the manufacture of plastics and gasoline. We examined the neurotoxic effects of DAB in young and old rats, particularly its effects on hippocampus. Previously, we reported DAB impairs hippocampal neurogenesis but that the underlying mechanism remained unclear. In this study, we evaluate the toxicities exhibited by DAB in the hippocampi of 6-month-old (young) and 20-month-old (old) male SD rats by treating animals intraperitoneally with DAB at 3 mg/kg/day for 1 week. Hippocampal areas were dissected from brains and RNA was extracted and subjected to RNA-seq analysis. RNA results showed animals exhibited age-dependent sensitivity to the neurotoxic effects of DAB. We observed that inflammatory pathways were up-regulated in old rats but that metabolism- and detoxification-related pathways were up-regulated in young rats. This result in old rats, especially upregulation of the TREM1 signaling pathway (an inflammatory response involved in Alzheimer’s disease (AD)) was confirmed by RT-PCR. Our study results provide a better understanding of age-dependent responses to DAB and new insight into the association between DAB and AD.
Collapse
Affiliation(s)
- Ngoc Minh Hong Hoang
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Sungjin Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Minjo Kim
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Jin Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Byoung-Chul Kim
- Systems Toxicology Research Center, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Daeui Park
- Systems Toxicology Research Center, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Sujun Lee
- Department of Pharmacology, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Hae Young Chung
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| |
Collapse
|
137
|
Tavares-Gomes L, Monney C, Neuhaus G, Francisco D, Solis D, Summerfield A, Erny D, Jagannathan V, Oevermann A. Transcriptome of microglia reveals a species-specific expression profile in bovines with conserved and new signature genes. Glia 2021; 69:1932-1949. [PMID: 33811399 DOI: 10.1002/glia.24002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 11/09/2022]
Abstract
Evidence is growing that microglia adopt different roles than monocyte-derived macrophages (MDM) during CNS injury. However, knowledge about their function in the pathogenesis of neuroinfections is only rudimentary. Cattle are frequently affected by neuroinfections that are either zoonotic or related to diseases in humans, and, hence, studies of bovine neuroinfections as a natural disease model may generate fundamental data on their pathogenesis potentially translatable to humans. We investigated the transcriptomic landscape and lineage markers of bovine microglia and MDM. Although bovine microglia expressed most microglial signature genes known from humans and mice, they exhibited a species-specific transcriptomic profile, including strikingly low expression of TMEM119 and enrichment of the two scavenger receptors MEGF10 and LY75. P2RY12 was amongst the most enriched genes in bovine microglia, and antibodies against P2RY12 labeled specifically resting microglia, but also reactive microglia within neuroinfection foci in-situ. On the other hand, F13A1 was amongst the most enriched genes in bovine monocytes and MDM and, additionally, the encoded protein was expressed in-situ in monocytes and MDM in the inflamed brain but not in microglia, making it a promising marker for infiltrating MDM in the brain. In culture, primary bovine microglia downregulated signature genes, expressed markers of activation, and converged their transcriptome to MDM. However, they retained several microglia signature genes that clearly distinguished them from bovine MDM, making them a promising in-vitro tool to study mechanisms of microglia-pathogen interactions.
Collapse
Affiliation(s)
- Leticia Tavares-Gomes
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Camille Monney
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Géraldine Neuhaus
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - David Francisco
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.,Interfaculty of Bioinformatics Unit, University of Bern, Bern, Switzerland.,Swiss Institute of Bioinformatics, Switzerland
| | - Diana Solis
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,University of Fribourg, Bern, Switzerland
| | - Artur Summerfield
- Faculty of Veterinary Medicine, Institute of Virology and Immunology, University of Bern, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Daniel Erny
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Anna Oevermann
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
138
|
Rehfeldt SCH, Laufer S, Goettert MI. A Highly Selective In Vitro JNK3 Inhibitor, FMU200, Restores Mitochondrial Membrane Potential and Reduces Oxidative Stress and Apoptosis in SH-SY5Y Cells. Int J Mol Sci 2021; 22:ijms22073701. [PMID: 33918172 PMCID: PMC8037381 DOI: 10.3390/ijms22073701] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/31/2022] Open
Abstract
Current treatments for neurodegenerative diseases (ND) are symptomatic and do not affect disease progression. Slowing this progression remains a crucial unmet need for patients and their families. c-Jun N-terminal kinase 3 (JNK3) are related to several ND hallmarks including apoptosis, oxidative stress, excitotoxicity, mitochondrial dysfunction, and neuroinflammation. JNK inhibitors can play an important role in addressing neuroprotection. This research aims to evaluate the neuroprotective, anti-inflammatory, and antioxidant effects of a synthetic compound (FMU200) with known JNK3 inhibitory activity in SH-SY5Y and RAW264.7 cell lines. SH-SY5Y cells were pretreated with FMU200 and cell damage was induced by 6-hydroxydopamine (6-OHDA) or hydrogen peroxide (H2O2). Cell viability and neuroprotective effect were assessed with an MTT assay. Flow cytometric analysis was performed to evaluate cell apoptosis. The H2O2-induced reactive oxygen species (ROS) generation and mitochondrial membrane potential (ΔΨm) were evaluated by DCFDA and JC-1 assays, respectively. The anti-inflammatory effect was determined in LPS-induced RAW264.7 cells by ELISA assay. In undifferentiated SH-SY5Y cells, FMU200 decreased neurotoxicity induced by 6-OHDA in approximately 20%. In RA-differentiated cells, FMU200 diminished cell death in approximately 40% and 90% after 24 and 48 h treatment, respectively. FMU200 reduced both early and late apoptotic cells, decreased ROS levels, restored mitochondrial membrane potential, and downregulated JNK phosphorylation after H2O2 exposure. In LPS-stimulated RAW264.7 cells, FMU200 reduced TNF-α levels after a 3 h treatment. FMU200 protects neuroblastoma SH-SY5Y cells against 6-OHDA- and H2O2-induced apoptosis, which may result from suppressing the JNK pathways. Our findings show that FMU200 can be a useful candidate for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Stefan Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard Karls Universität Tübingen, D-72076 Tübingen, Germany
- Tübingen Center for Academic Drug Discovery (TüCAD2), D-72076 Tübingen, Germany
- Correspondence: (S.L.); (M.I.G.); Tel.: +55-(51)3714-7000 (ext. 5445) (M.I.G.)
| | - Márcia Inês Goettert
- Graduate Program in Biotechnology, University of Vale do Taquari (Univates), Lajeado, RS 95914-014, Brazil;
- Correspondence: (S.L.); (M.I.G.); Tel.: +55-(51)3714-7000 (ext. 5445) (M.I.G.)
| |
Collapse
|
139
|
Uriarte Huarte O, Kyriakis D, Heurtaux T, Pires-Afonso Y, Grzyb K, Halder R, Buttini M, Skupin A, Mittelbronn M, Michelucci A. Single-Cell Transcriptomics and In Situ Morphological Analyses Reveal Microglia Heterogeneity Across the Nigrostriatal Pathway. Front Immunol 2021; 12:639613. [PMID: 33854507 PMCID: PMC8039119 DOI: 10.3389/fimmu.2021.639613] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
Microglia are the resident immune effector cells of the central nervous system (CNS) rapidly reacting to various pathological stimuli to maintain CNS homeostasis. However, microglial reactions in the CNS may also worsen neurological disorders. Hence, the phenotypic analysis of microglia in healthy tissue may identify specific poised subsets ultimately supporting or harming the neuronal network. This is all the more important for the understanding of CNS disorders exhibiting regional-specific and cellular pathological hallmarks, such as many neurodegenerative disorders, including Parkinson's disease (PD). In this context, we aimed to address the heterogeneity of microglial cells in susceptible brain regions for PD, such as the nigrostriatal pathway. Here, we combined single-cell RNA-sequencing with immunofluorescence analyses of the murine nigrostriatal pathway, the most affected brain region in PD. We uncovered a microglia subset, mainly present in the midbrain, displaying an intrinsic transcriptional immune alerted signature sharing features of inflammation-induced microglia. Further, an in situ morphological screening of inferred cellular diversity showed a decreased microglia complexity in the midbrain when compared to striatum. Our study provides a resource for the identification of specific microglia phenotypes within the nigrostriatal pathway, which may be relevant in PD.
Collapse
Affiliation(s)
- Oihane Uriarte Huarte
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Luxembourg Center of Neuropathology (LCNP), Luxembourg, Luxembourg
| | - Dimitrios Kyriakis
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Tony Heurtaux
- Luxembourg Center of Neuropathology (LCNP), Luxembourg, Luxembourg.,Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Yolanda Pires-Afonso
- Neuro-Immunology Group, Department of Oncology (DONC), Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Kamil Grzyb
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rashi Halder
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Manuel Buttini
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Luxembourg Center of Neuropathology (LCNP), Luxembourg, Luxembourg
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.,National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, United States
| | - Michel Mittelbronn
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Luxembourg Center of Neuropathology (LCNP), Luxembourg, Luxembourg.,Department of Oncology (DONC), Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg.,National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg
| | - Alessandro Michelucci
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Neuro-Immunology Group, Department of Oncology (DONC), Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| |
Collapse
|
140
|
Ernest James Phillips T, Maguire E. Phosphoinositides: Roles in the Development of Microglial-Mediated Neuroinflammation and Neurodegeneration. Front Cell Neurosci 2021; 15:652593. [PMID: 33841102 PMCID: PMC8032904 DOI: 10.3389/fncel.2021.652593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Microglia are increasingly recognized as vital players in the pathology of a variety of neurodegenerative conditions including Alzheimer’s (AD) and Parkinson’s (PD) disease. While microglia have a protective role in the brain, their dysfunction can lead to neuroinflammation and contributes to disease progression. Also, a growing body of literature highlights the seven phosphoinositides, or PIPs, as key players in the regulation of microglial-mediated neuroinflammation. These small signaling lipids are phosphorylated derivates of phosphatidylinositol, are enriched in the brain, and have well-established roles in both homeostasis and disease.Disrupted PIP levels and signaling has been detected in a variety of dementias. Moreover, many known AD disease modifiers identified via genetic studies are expressed in microglia and are involved in phospholipid metabolism. One of these, the enzyme PLCγ2 that hydrolyzes the PIP species PI(4,5)P2, displays altered expression in AD and PD and is currently being investigated as a potential therapeutic target.Perhaps unsurprisingly, neurodegenerative conditions exhibiting PIP dyshomeostasis also tend to show alterations in aspects of microglial function regulated by these lipids. In particular, phosphoinositides regulate the activities of proteins and enzymes required for endocytosis, toll-like receptor signaling, purinergic signaling, chemotaxis, and migration, all of which are affected in a variety of neurodegenerative conditions. These functions are crucial to allow microglia to adequately survey the brain and respond appropriately to invading pathogens and other abnormalities, including misfolded proteins. AD and PD therapies are being developed to target many of the above pathways, and although not yet investigated, simultaneous PIP manipulation might enhance the beneficial effects observed. Currently, only limited therapeutics are available for dementia, and although these show some benefits for symptom severity and progression, they are far from curative. Given the importance of microglia and PIPs in dementia development, this review summarizes current research and asks whether we can exploit this information to design more targeted, or perhaps combined, dementia therapeutics. More work is needed to fully characterize the pathways discussed in this review, but given the strength of the current literature, insights in this area could be invaluable for the future of neurodegenerative disease research.
Collapse
Affiliation(s)
| | - Emily Maguire
- UK Dementia Research Institute at Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
141
|
Lindsay A, Hickman D, Srinivasan M. A nuclear factor-kappa B inhibiting peptide suppresses innate immune receptors and gliosis in a transgenic mouse model of Alzheimer's disease. Biomed Pharmacother 2021; 138:111405. [PMID: 33756153 DOI: 10.1016/j.biopha.2021.111405] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022] Open
Abstract
A disproportionate increase in activated nuclear factor-kappa B (NF-κB) has been shown to drive the Aβ deposition, neuroinflammation and neurodegeneration in Alzheimer's disease (AD). Hence, selective targeting of activated p65 represents an attractive therapeutic approach for AD. Glucocorticoid induced leucine zipper (GILZ) is a NF-κB interactant that binds and sequesters the activated p65 in the cytoplasm. The p65 binding domain of GILZ adopts a polyproline type II helical conformation, a motif that acts as an adaptable glove in the interface with the binding partner and constitutes an excellent template for drug design. Previously, peptide analogs of the p65 binding domain of GILZ, referred to as GA have been shown to suppress pathology in the lipopolysaccharide induced model of neuroinflammation. In this study, we investigated the CNS delivery of labeled GA administered intraperitoneally in adult mice for a period of upto 24 h. Further, we evaluated the suppressive potential of GA in 5xFAD mice, an aggressive model with five genetic mutations closely associated with human AD. Groups of 5xFAD mice administered GA or control peptide intraperitoneally on alternate days for six weeks were evaluated for Aβ deposition, microglia, inflammation and innate immune responses by immunohistochemistry and real time polymerase reaction. GA was observed in proximity with NeuN positive neurons suggesting that the compound crossed the blood brain barrier to reach the brain parenchyma. Further, GA treatment decreased Aβ load, reduced Iba1 + microglia and glial fibrillary acidic protein (GFAP)+ astrocytes, inhibited inflammatory cytokines and suppressed toll like receptor (TLR-2, TLR-4) expressions in 5xFAD mice.
Collapse
Affiliation(s)
- Alison Lindsay
- Department of Oral Pathology, Medicine and Radiology, Indiana University School of Dentistry, United States
| | - Deborah Hickman
- Laboratory of Animal Care and Research, Indiana University School of Medicine, Indiana University-Purdue University Indianapolis, United States
| | - Mythily Srinivasan
- Department of Oral Pathology, Medicine and Radiology, Indiana University School of Dentistry, United States; Provaidya LLC, Indianapolis, IN, United States.
| |
Collapse
|
142
|
Chrysin Derivative CM1 and Exhibited Anti-Inflammatory Action by Upregulating Toll-Interacting Protein Expression in Lipopolysaccharide-Stimulated RAW264.7 Macrophage Cells. Molecules 2021; 26:molecules26061532. [PMID: 33799689 PMCID: PMC8000858 DOI: 10.3390/molecules26061532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 11/17/2022] Open
Abstract
Although our previous study revealed that gamma-irradiated chrysin enhanced anti-inflammatory activity compared to intact chrysin, it remains unclear whether the chrysin derivative, CM1, produced by gamma irradiation, negatively regulates toll-like receptor (TLR) signaling. In this study, we investigated the molecular basis for the downregulation of TLR4 signal transduction by CM1 in macrophages. We initially determined the appropriate concentration of CM1 and found no cellular toxicity below 2 μg/mL. Upon stimulation with lipopolysaccharide (LPS), CM1 modulated LPS-stimulated inflammatory action by suppressing the release of proinflammatory mediators (cytokines TNF-α and IL-6) and nitric oxide (NO) and downregulated the mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways. Furthermore, CM1 markedly elevated the expression of the TLR negative regulator toll-interacting protein (Tollip) in dose- and time-dependent manners. LPS-induced expression of cell surface molecules (CD80, CD86, and MHC class I/II), proinflammatory cytokines (TNF-α and IL-6), COX-2, and iNOS-mediated NO were inhibited by CM1; these effects were prevented by the knockdown of Tollip expression. Additionally, CM1 did not affect the downregulation of LPS-induced expression of MAPKs and NF-κB signaling in Tollip-downregulated cells. These findings provide insight into effective therapeutic intervention of inflammatory disease by increasing the understanding of the negative regulation of TLR signaling induced by CM1.
Collapse
|
143
|
Sproviero D, Gagliardi S, Zucca S, Arigoni M, Giannini M, Garofalo M, Olivero M, Dell’Orco M, Pansarasa O, Bernuzzi S, Avenali M, Cotta Ramusino M, Diamanti L, Minafra B, Perini G, Zangaglia R, Costa A, Ceroni M, Perrone-Bizzozero NI, Calogero RA, Cereda C. Different miRNA Profiles in Plasma Derived Small and Large Extracellular Vesicles from Patients with Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms22052737. [PMID: 33800495 PMCID: PMC7962970 DOI: 10.3390/ijms22052737] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Identifying biomarkers is essential for early diagnosis of neurodegenerative diseases (NDs). Large (LEVs) and small extracellular vesicles (SEVs) are extracellular vesicles (EVs) of different sizes and biological functions transported in blood and they may be valid biomarkers for NDs. The aim of our study was to investigate common and different miRNA signatures in plasma derived LEVs and SEVs of Alzheimer’s disease (AD), Parkinson’s disease (PD), Amyotrophic Lateral Sclerosis (ALS) and Fronto-Temporal Dementia (FTD) patients. LEVs and SEVs were isolated from plasma of patients and healthy volunteers (CTR) by filtration and differential centrifugation and RNA was extracted. Small RNAs libraries were carried out by Next Generation Sequencing (NGS). MiRNAs discriminate all NDs diseases from CTRs and they can provide a signature for each NDs. Common enriched pathways for SEVs were instead linked to ubiquitin mediated proteolysis and Toll-like receptor signaling pathways and for LEVs to neurotrophin signaling and Glycosphingolipid biosynthesis pathway. LEVs and SEVs are involved in different pathways and this might give a specificity to their role in the spreading of the disease. The study of common and different miRNAs transported by LEVs and SEVs can be of great interest for biomarker discovery and for pathogenesis studies in neurodegeneration.
Collapse
Affiliation(s)
- Daisy Sproviero
- Genomic and post-Genomic Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (D.S.); (S.G.); (S.Z.); (M.G.); (M.G.); (O.P.)
| | - Stella Gagliardi
- Genomic and post-Genomic Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (D.S.); (S.G.); (S.Z.); (M.G.); (M.G.); (O.P.)
| | - Susanna Zucca
- Genomic and post-Genomic Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (D.S.); (S.G.); (S.Z.); (M.G.); (M.G.); (O.P.)
- EnGenome SRL, 27100 Pavia, Italy
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, Bioinformatics and Genomics Unit, University of Turin, 10126 Turin, Italy; (M.A.); (R.A.C.)
| | - Marta Giannini
- Genomic and post-Genomic Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (D.S.); (S.G.); (S.Z.); (M.G.); (M.G.); (O.P.)
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Maria Garofalo
- Genomic and post-Genomic Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (D.S.); (S.G.); (S.Z.); (M.G.); (M.G.); (O.P.)
- Department of Biology and Biotechnology (“L. Spallanzani”), University of Pavia, 27100 Pavia, Italy
| | - Martina Olivero
- Department of Oncology, University of Turin, 10060 Turin, Italy;
| | - Michela Dell’Orco
- Departments of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA;
| | - Orietta Pansarasa
- Genomic and post-Genomic Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (D.S.); (S.G.); (S.Z.); (M.G.); (M.G.); (O.P.)
| | - Stefano Bernuzzi
- Immunohematological and Transfusional Service and Centre of Transplantation Immunology, IRCCS “San Matteo Foundation”, 27100 Pavia, Italy;
| | - Micol Avenali
- Neurorehabilitation Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy;
| | - Matteo Cotta Ramusino
- Unit of Behavioral Neurology, IRCCS Mondino Foundation, 27100 Pavia, Italy; (M.C.R.); (G.P.); (M.C.)
| | - Luca Diamanti
- Neuro-Oncology Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy;
| | - Brigida Minafra
- Parkinson Unit and Movement Disorders Mondino Foundation IRCCS, 27100 Pavia, Italy; (B.M.); (R.Z.)
| | - Giulia Perini
- Unit of Behavioral Neurology, IRCCS Mondino Foundation, 27100 Pavia, Italy; (M.C.R.); (G.P.); (M.C.)
| | - Roberta Zangaglia
- Parkinson Unit and Movement Disorders Mondino Foundation IRCCS, 27100 Pavia, Italy; (B.M.); (R.Z.)
| | - Alfredo Costa
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
- Unit of Behavioral Neurology, IRCCS Mondino Foundation, 27100 Pavia, Italy; (M.C.R.); (G.P.); (M.C.)
| | - Mauro Ceroni
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
- Unit of Behavioral Neurology, IRCCS Mondino Foundation, 27100 Pavia, Italy; (M.C.R.); (G.P.); (M.C.)
| | - Nora I. Perrone-Bizzozero
- Departments of Neurosciences and Psychiatry and Behavioral Health, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA;
| | - Raffaele A. Calogero
- Department of Molecular Biotechnology and Health Sciences, Bioinformatics and Genomics Unit, University of Turin, 10126 Turin, Italy; (M.A.); (R.A.C.)
| | - Cristina Cereda
- Genomic and post-Genomic Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (D.S.); (S.G.); (S.Z.); (M.G.); (M.G.); (O.P.)
- Correspondence: ; Tel.: +39-0382380348
| |
Collapse
|
144
|
Qin L, Zou J, Barnett A, Vetreno RP, Crews FT, Coleman LG. TRAIL Mediates Neuronal Death in AUD: A Link between Neuroinflammation and Neurodegeneration. Int J Mol Sci 2021; 22:2547. [PMID: 33806288 PMCID: PMC7961445 DOI: 10.3390/ijms22052547] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Although the cause of progressive neurodegeneration is often unclear, neuronal death can occur through several mechanisms. In conditions such as Alzheimer's or alcohol use disorder (AUD), Toll-like receptor (TLR) induction is observed with neurodegeneration. However, links between TLR activation and neurodegeneration are lacking. We report a role of apoptotic neuronal death in AUD through TLR7-mediated induction of death receptor signaling. In postmortem human cortex, a two-fold increase in apoptotic terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining in neurons was found in AUD versus controls. This occurred with the increased expression of TLR7 and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) death receptors. Binge ethanol treatment in C57BL/6 mice increased TLR7 and induced neuronal apoptosis in cortical regions that was blocked by TLR7 antagonism. Mechanistic studies in primary organotypic brain slice culture (OBSC) found that the inhibition of TLR7 and its endogenous ligand let-7b blocked ethanol-induced neuronal cell death. Both IMQ and ethanol induced the expression of TRAIL and its death receptor. In addition, TRAIL-neutralizing monoclonal antibodies blocked both imiquimod (IMQ) and ethanol induced neuronal death. These findings implicate TRAIL as a mediator of neuronal apoptosis downstream of TLR7 activation. TLR7 and neuronal apoptosis are implicated in other neurodegenerative diseases, including Alzheimer's disease. Therefore, TRAIL may represent a therapeutic target to slow neurodegeneration in multiple diseases.
Collapse
Affiliation(s)
- Liya Qin
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Jian Zou
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Alexandra Barnett
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Ryan P. Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Fulton T. Crews
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Department of Pharmacology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leon G. Coleman
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Department of Pharmacology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
145
|
Abuelezz SA, Hendawy N. HMGB1/RAGE/TLR4 axis and glutamate as novel targets for PCSK9 inhibitor in high fat cholesterol diet induced cognitive impairment and amyloidosis. Life Sci 2021; 273:119310. [PMID: 33667517 DOI: 10.1016/j.lfs.2021.119310] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 11/15/2022]
Abstract
AIMS Alzheimer's disease (AD) is a leading health problem in which increased amyloid β (Aβ) accumulation may occur due to abnormal Aβ precursor protein processing by β-secretase 1 (BACE1) enzyme. Lately, neuro-inflammation was recognized as a significant contributor to its pathogenesis. Although the causes of AD are not yet well understood, much evidence has suggested that dyslipidemia has harmful effects on cognitive function and is inextricably involved in AD pathogenesis. Cholesterol is a vital molecule involved in neuronal development. Alteration in neuronal cholesterol levels affects Aβ metabolism and results in neurodegeneration. Proprotein-convertase-subtilisin/kexin type-9 (PCSK9) was found to decrease neuronal cholesterol uptake by degradation of LDL-receptor related protein 1 (LRP-1) responsible for neuronal cholesterol uptake. Accordingly, this study was designed to evaluate the effect of PCSK9-inhibition by alirocumab (Aliro) in high-fat-cholesterol-diet (HFCD)-induced-AD-like condition. MAIN METHODS Wistar Rats were divided into six groups; control; HFCD; HFCD and Memantine; HFCD and Aliro (4, 8 and 16 mg/kg/week) to test for ability of Aliro to modulate cognitive impairment, amyloidosis, brain cholesterol homeostasis and neuro-inflammation in HFCD-induced-AD-like condition. KEY FINDINGS Our results demonstrated an association between PCSK9 inhibition by Aliro and amelioration of cognitive deficit, cholesterol hemostasis and reduction of neuro-inflammation. Aliro was able to alleviate hippocampal LRP-1expression levels and reduce brain cholesterol, hippocampal BACE1, Aβ42, high-mobility-group-box-1 protein, receptor for advanced-glycation-end-products and toll like receptor-4 with subsequent decrease of different inflammatory mediators as nuclear-factor-kappa-B (NF-κB), tumor-necrosis-factor-alpha (TNF-α), interleukin-1beta (IL-1β) and IL-6. SIGNIFICANCE PCSK9-inhibition may represent a new therapeutic target in AD especially for HFCD-induced-AD-like condition.
Collapse
Affiliation(s)
- Sally A Abuelezz
- Clinical Pharmacology Department, Faculty of Medicine Ain-Shams University, Cairo, Egypt.
| | - Nevien Hendawy
- Clinical Pharmacology Department, Faculty of Medicine Ain-Shams University, Cairo, Egypt
| |
Collapse
|
146
|
Bennett M, Chin A, Lee HJ, Morales Cestero E, Strazielle N, Ghersi-Egea JF, Threlkeld SW, Schmidt TA, Richendrfer HA, Szmydynger-Chodobska J, Jay GD, Chodobski A. Proteoglycan 4 Reduces Neuroinflammation and Protects the Blood-Brain Barrier after Traumatic Brain Injury. J Neurotrauma 2021; 38:385-398. [PMID: 32940130 PMCID: PMC7875610 DOI: 10.1089/neu.2020.7229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation and dysfunction of the blood-brain barrier (BBB) are two prominent mechanisms of secondary injury in neurotrauma. It has been suggested that Toll-like receptors (TLRs) play important roles in initiating and propagating neuroinflammation resulting from traumatic brain injury (TBI), but potential beneficial effects of targeting these receptors in TBI have not been broadly studied. Here, we investigated the effect of targeting TLRs with proteoglycan 4 (PRG4) on post-traumatic neuroinflammation and BBB function. PRG4 is a mucinous glycoprotein with strong anti-inflammatory properties, exerting its biological effects by interfering with TLR2/4 signaling. In addition, PRG4 has the ability to inhibit activation of cluster of differentiation 44 (CD44), a cell-surface glycoprotein playing an important role in inflammation. Using the controlled cortical impact model of TBI in rats, we showed a rapid and prolonged upregulation of message for TLR2/4 and CD44 in the injured cortex. In the in vitro model of the BBB, recombinant human PRG4 (rhPRG4) crossed the endothelial monolayers through a high-capacity, saturable transport system. In rats sustaining TBI, PRG4 delivery to the brain was enhanced by post-traumatic increase in BBB permeability. rhPRG4 injected intravenously at 1 h post-TBI potently inhibited post-traumatic activation of nuclear factor kappa B and extracellular signal-regulated kinases 1/2, the two major signal transduction pathways associated with TLR2/4 and CD44, and curtailed the post-traumatic influx of monocytes. In addition, PRG4 restored normal BBB function after TBI by preventing the post-traumatic loss of tight junction protein claudin 5 and reduced neuronal death. Our observations provide support for therapeutic strategies targeting TLRs in TBI.
Collapse
Affiliation(s)
- Marissa Bennett
- Neurotrauma and Brain Barriers Research Laboratory, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Andrea Chin
- Neurotrauma and Brain Barriers Research Laboratory, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Hyung Jin Lee
- Neurotrauma and Brain Barriers Research Laboratory, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | | | | | - Jean-François Ghersi-Egea
- FLUID Team and BIP Facility, Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, Lyon 1 University, Lyon, France
| | | | - Tannin A. Schmidt
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Holly A. Richendrfer
- Department of Emergency Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Joanna Szmydynger-Chodobska
- Neurotrauma and Brain Barriers Research Laboratory, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Gregory D. Jay
- Department of Emergency Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Adam Chodobski
- Neurotrauma and Brain Barriers Research Laboratory, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
147
|
Midavaine É, Côté J, Marchand S, Sarret P. Glial and neuroimmune cell choreography in sexually dimorphic pain signaling. Neurosci Biobehav Rev 2021; 125:168-192. [PMID: 33582232 DOI: 10.1016/j.neubiorev.2021.01.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/03/2020] [Accepted: 01/25/2021] [Indexed: 12/17/2022]
Abstract
Chronic pain is a major global health issue that affects all populations regardless of sex, age, ethnicity/race, or country of origin, leading to persistent physical and emotional distress and to the loss of patients' autonomy and quality of life. Despite tremendous efforts in the elucidation of the mechanisms contributing to the pathogenesis of chronic pain, the identification of new potential pain targets, and the development of novel analgesics, the pharmacological treatment options available for pain management remain limited, and most novel pain medications have failed to achieve advanced clinical development, leaving many patients with unbearable and undermanaged pain. Sex-specific susceptibility to chronic pain conditions as well as sex differences in pain sensitivity, pain tolerance and analgesic efficacy are increasingly recognized in the literature and have thus prompted scientists to seek mechanistic explanations. Hence, recent findings have highlighted that the signaling mechanisms underlying pain hypersensitivity are sexually dimorphic, which sheds light on the importance of conducting preclinical and clinical pain research on both sexes and of developing sex-specific pain medications. This review thus focuses on the clinical and preclinical evidence supporting the existence of sex differences in pain neurobiology. Attention is drawn to the sexually dimorphic role of glial and immune cells, which are both recognized as key players in neuroglial maladaptive plasticity at the origin of the transition from acute pain to chronic pathological pain. Growing evidence notably attributes to microglial cells a pivotal role in the sexually dimorphic pain phenotype and in the sexually dimorphic analgesic efficacy of opioids. This review also summarizes the recent advances in understanding the pathobiology underpinning the development of pain hypersensitivity in both males and females in different types of pain conditions, with particular emphasis on the mechanistic signaling pathways driving sexually dimorphic pain responses.
Collapse
Affiliation(s)
- Élora Midavaine
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada.
| | - Jérôme Côté
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada
| | - Serge Marchand
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada
| | - Philippe Sarret
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada.
| |
Collapse
|
148
|
Livshits G, Kalinkovich A. Specialized, pro-resolving mediators as potential therapeutic agents for alleviating fibromyalgia symptomatology. PAIN MEDICINE 2021; 23:977-990. [PMID: 33565588 DOI: 10.1093/pm/pnab060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To present a hypothesis on a novel strategy in the treatment of fibromyalgia (FM). DESIGN A narrative review. SETTING FM as a disease remains a challenging concept for numerous reasons, including undefined etiopathogenesis, unclear triggers and unsuccessful treatment modalities. We hypothesize that the inflammatome, the entire set of molecules involved in inflammation, acting as a common pathophysiological instrument of gut dysbiosis, sarcopenia, and neuroinflammation, is one of the major mechanisms underlying FM pathogenesis. In this setup, dysbiosis is proposed as the primary trigger of the inflammatome, sarcopenia as the peripheral nociceptive source, and neuroinflammation as the central mechanism of pain sensitization, transmission and symptomatology of FM. Whereas neuroinflammation is highly-considered as a critical deleterious element in FM pathogenesis, the presumed pathogenic roles of sarcopenia and systemic inflammation remain controversial. Nevertheless, sarcopenia-associated processes and dysbiosis have been recently detected in FM individuals. The prevalence of pro-inflammatory factors in the cerebrospinal fluid and blood has been repeatedly observed in FM individuals, supporting an idea on the role of inflammatome in FM pathogenesis. As such, failed inflammation resolution might be one of the underlying pathogenic mechanisms. In accordance, the application of specialized, inflammation pro-resolving mediators (SPMs) seems most suitable for this goal. CONCLUSIONS The capability of various SPMs to prevent and attenuate pain has been repeatedly demonstrated in laboratory animal experiments. Since SPMs suppress inflammation in a manner that does not compromise host defense, they could be attractive and safe candidates for the alleviation of FM symptomatology, probably in combination with anti-dysbiotic medicine.
Collapse
Affiliation(s)
- Gregory Livshits
- Adelson School of Medicine, Ariel University, Ariel, Israel.,Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
149
|
Comparative Analysis Identifies Similarities between the Human and Murine Microglial Sensomes. Int J Mol Sci 2021; 22:ijms22031495. [PMID: 33540859 PMCID: PMC7867338 DOI: 10.3390/ijms22031495] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/31/2022] Open
Abstract
One of the essential functions of microglia is to continuously sense changes in their environment and adapt to those changes. For this purpose, they use a set of genes termed the sensome. This sensome is comprised of the most abundantly expressed receptors on the surface of microglia. In this study, we updated previously identified mouse microglial sensome by incorporating an additional published RNAseq dataset into the data-analysis pipeline. We also identified members of the human microglial sensome using two independent human microglia RNAseq data sources. Using both the mouse and human microglia sensomes, we identified a key set of genes conserved between the mouse and human microglial sensomes as well as some differences between the species. We found a key set of 57 genes to be conserved in both mouse and human microglial sensomes. We define these genes as the “microglia core sensome”. We then analyzed expression of genes in this core sensome in five different datasets from two neurodegenerative disease models at various stages of the diseases and found that, overall, changes in the level of expression of microglial sensome genes are specific to the disease or condition studied. Our results highlight the relevance of data generated in mice for understanding the biology of human microglia, but also stress the importance of species-specific gene sets for the investigation of diseases involving microglia. Defining this microglial specific core sensome may help identify pathological changes in microglia in humans and mouse models of human disease.
Collapse
|
150
|
Sandhu JK, Kulka M. Decoding Mast Cell-Microglia Communication in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms22031093. [PMID: 33499208 PMCID: PMC7865982 DOI: 10.3390/ijms22031093] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 12/12/2022] Open
Abstract
Microglia, resident immune cells of the central nervous system (CNS), play a pivotal role in immune surveillance and maintenance of neuronal health. Mast cells are also important resident immune cells of the CNS but they are underappreciated and understudied. Both microglia and mast cells are endowed with an array of signaling receptors that recognize microbes and cellular damage. As cellular sensors and effectors in the CNS, they respond to many CNS perturbations and have been implicated in neuroinflammation and neurodegeneration. Mast cells contain numerous secretory granules packaged with a plethora of readily available and newly synthesized compounds known as 'mast cell mediators'. Mast cells act as 'first responders' to a pathogenic stimuli and respond by degranulation and releasing these mediators into the extracellular milieu. They alert other glial cells, including microglia to initiate neuroinflammatory processes that culminate in the resolution of injury. However, failure to resolve the pathogenic process can lead to persistent activation, release of pro-inflammatory mediators and amplification of neuroinflammatory responses, in turn, resulting in neuronal dysfunction and demise. This review discusses the current understanding of the molecular conversation between mast cells and microglia in orchestrating immune responses during two of the most prevalent neurodegenerative diseases, namely Alzheimer's disease and Parkinson's disease. Here we also survey the potential emerging therapeutic approaches targeting common pathways in mast cells and microglia to extinguish the fire of inflammation.
Collapse
Affiliation(s)
- Jagdeep K. Sandhu
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Correspondence: (J.K.S.); (M.K.); Tel.: +1-613-993-5304 (J.K.S.); +1-780-641-1687 (M.K.)
| | - Marianna Kulka
- Nanotechnology Research Centre, National Research Council Canada, 11421 Saskatchewan Drive, Edmonton, AB T6G 2M9, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Correspondence: (J.K.S.); (M.K.); Tel.: +1-613-993-5304 (J.K.S.); +1-780-641-1687 (M.K.)
| |
Collapse
|