101
|
Györffy BA, Gulyássy P, Gellén B, Völgyi K, Madarasi D, Kis V, Ozohanics O, Papp I, Kovács P, Lubec G, Dobolyi Á, Kardos J, Drahos L, Juhász G, Kékesi KA. Widespread alterations in the synaptic proteome of the adolescent cerebral cortex following prenatal immune activation in rats. Brain Behav Immun 2016; 56:289-309. [PMID: 27058163 DOI: 10.1016/j.bbi.2016.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/23/2016] [Accepted: 04/04/2016] [Indexed: 01/08/2023] Open
Abstract
An increasing number of studies have revealed associations between pre- and perinatal immune activation and the development of schizophrenia and autism spectrum disorders (ASDs). Accordingly, neuroimmune crosstalk has a considerably large impact on brain development during early ontogenesis. While a plethora of heterogeneous abnormalities have already been described in established maternal immune activation (MIA) rodent and primate animal models, which highly correlate to those found in human diseases, the underlying molecular background remains obscure. In the current study, we describe the long-term effects of MIA on the neocortical pre- and postsynaptic proteome of adolescent rat offspring in detail. Molecular differences were revealed in sub-synaptic fractions, which were first thoroughly characterized using independent methods. The widespread proteomic examination of cortical samples from offspring exposed to maternal lipopolysaccharide administration at embryonic day 13.5 was conducted via combinations of different gel-based proteomic techniques and tandem mass spectrometry. Our experimentally validated proteomic data revealed more pre- than postsynaptic protein level changes in the offspring. The results propose the relevance of altered synaptic vesicle recycling, cytoskeletal structure and energy metabolism in the presynaptic region in addition to alterations in vesicle trafficking, the cytoskeleton and signal transduction in the postsynaptic compartment in MIA offspring. Differing levels of the prominent signaling regulator molecule calcium/calmodulin-dependent protein kinase II in the postsynapse was validated and identified specifically in the prefrontal cortex. Finally, several potential common molecular regulators of these altered proteins, which are already known to be implicated in schizophrenia and ASD, were identified and assessed. In summary, unexpectedly widespread changes in the synaptic molecular machinery in MIA rats were demonstrated which might underlie the pathological cortical functions that are characteristic of schizophrenia and ASD.
Collapse
Affiliation(s)
- Balázs A Györffy
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary; MTA-ELTE NAP B Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Péter Gulyássy
- MTA-TTK NAP B MS Neuroproteomics Group, Hungarian Academy of Sciences, Budapest H-1117, Hungary; Department of Pediatrics, Medical University of Vienna, Vienna A-1090, Austria
| | - Barbara Gellén
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary; MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Institute of Biology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest H-1117, Hungary
| | - Katalin Völgyi
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary; MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Institute of Biology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest H-1117, Hungary
| | - Dóra Madarasi
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Viktor Kis
- Department of Anatomy, Cell and Developmental Biology, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Olivér Ozohanics
- MTA-TTK NAP B MS Neuroproteomics Group, Hungarian Academy of Sciences, Budapest H-1117, Hungary
| | | | | | - Gert Lubec
- Department of Pediatrics, Medical University of Vienna, Vienna A-1090, Austria
| | - Árpád Dobolyi
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Institute of Biology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest H-1117, Hungary
| | - József Kardos
- MTA-ELTE NAP B Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary
| | - László Drahos
- MTA-TTK NAP B MS Neuroproteomics Group, Hungarian Academy of Sciences, Budapest H-1117, Hungary
| | - Gábor Juhász
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary; MTA-TTK NAP B MS Neuroproteomics Group, Hungarian Academy of Sciences, Budapest H-1117, Hungary
| | - Katalin A Kékesi
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary; Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary.
| |
Collapse
|
102
|
Wei H, Ma Y, Liu J, Ding C, Jin G, Wang Y, Hu F, Yu L. Inhibition of IL-6 trans-signaling in the brain increases sociability in the BTBR mouse model of autism. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1918-25. [PMID: 27460706 DOI: 10.1016/j.bbadis.2016.07.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/29/2016] [Accepted: 07/22/2016] [Indexed: 01/14/2023]
Abstract
Autism is a severe neurodevelopmental disorder with a large population prevalence, characterized by abnormal reciprocal social interactions, communication deficits, and repetitive behaviors with restricted interests. The BTBR T(+)Itpr3(tf) (BTBR) mice have emerged as strong candidates to serve as models of a range of autism-relevant behaviors. Increasing evidences suggest that interleukin (IL)-6, one of the most important neuroimmune factors, was involved in the pathophysiology of autism. It is of great importance to further investigate whether therapeutic interventions in autism can be achieved through the manipulation of IL-6. Our previous studies showed that IL-6 elevation in the brain could mediate autistic-like behaviors, possibly through the imbalances of neural circuitry and impairments of synaptic plasticity. In this study, we evaluate whether inhibiting IL-6 signaling in the brain is sufficient to modulate the autism-like behaviors on the BTBR mice. The results showed that chronic infusion of an analog of the endogenous IL-6 trans-signaling blocker sgp130Fc protein increased the sociability in BTBR mice. Furthermore, no change was observed in the number of excitatory synapse, level of synaptic proteins, density of dentitic spine and postsynaptic density in BTBR cortices after inhibiting IL-6 trans-signaling. However, inhibition of IL-6 trans-signaling increased the evoked glutamate release in synaptoneurosomes from the cerebral cortex of BTBR mice. Our findings suggest that inhibition of excessive production of IL-6 may have selective therapeutic efficacy in treating abnormal social behaviors in autism.
Collapse
Affiliation(s)
- Hongen Wei
- Department of Rehabilitation Medicine, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, China.
| | - Yuehong Ma
- Central Laboratory, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, China
| | - Jianrong Liu
- Central Laboratory, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, China
| | - Caiyun Ding
- Central Laboratory, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, China
| | - Guorong Jin
- Central Laboratory, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, China
| | - Yi Wang
- Central Laboratory, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, China
| | - Fengyun Hu
- Department of Neurology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, China
| | - Li Yu
- Department of Rehabilitation Medicine, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
103
|
Hanamsagar R, Bilbo SD. Sex differences in neurodevelopmental and neurodegenerative disorders: Focus on microglial function and neuroinflammation during development. J Steroid Biochem Mol Biol 2016; 160:127-33. [PMID: 26435451 PMCID: PMC4829467 DOI: 10.1016/j.jsbmb.2015.09.039] [Citation(s) in RCA: 251] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 12/12/2022]
Abstract
Several neurological conditions are associated with sex differences in prevalence or outcome. For example, autism predominantly affects boys, depression is more common in women, Parkinson's disease more common in men, and multiple sclerosis in women. In the case of stroke, women have a less favorable outcome and suffer from a more precipitous drop in health status compared to men. As a result, treatment of such diseases is difficult and yields variable results. Despite this, sex is rarely considered when making treatment decisions. The mechanisms underlying sex differences in disease progression are not well understood, however a strong link exists between different inflammation states of men and women and their propensity to develop certain diseases. As neuroinflammation is an important component of pathophysiology in many neurological conditions, it can be speculated that any changes in the state of inflammation in the brain during normal development can potentially lead to an increase in susceptibility to neurological and neurodegenerative diseases. Microglia play a crucial role in onset and modulation of inflammation and thus sex differences in microglial function could explain, at least in part, differences observed in susceptibilities and outcomes of neurological disorders in men and women. Understanding the mechanisms behind sex differences could help develop more targeted therapy with higher success rate, especially in diseases where sex differences are most prominent.
Collapse
Affiliation(s)
- Richa Hanamsagar
- Duke University, Department of Psychology & Neuroscience, Durham NC 27708, USA.
| | - Staci D Bilbo
- Duke University, Department of Psychology & Neuroscience, Durham NC 27708, USA.
| |
Collapse
|
104
|
Benítez-Burraco A, Uriagereka J. The Immune Syntax Revisited: Opening New Windows on Language Evolution. Front Mol Neurosci 2016; 8:84. [PMID: 26793054 PMCID: PMC4707268 DOI: 10.3389/fnmol.2015.00084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/14/2015] [Indexed: 01/29/2023] Open
Abstract
Recent research has added new dimensions to our understanding of classical evolution, according to which evolutionary novelties result from gene mutations inherited from parents to offspring. Language is surely one such novelty. Together with specific changes in our genome and epigenome, we suggest that two other (related) mechanisms may have contributed to the brain rewiring underlying human cognitive evolution and, specifically, the changes in brain connectivity that prompted the emergence of our species-specific linguistic abilities: the horizontal transfer of genetic material by viral and non-viral vectors and the brain/immune system crosstalk (more generally, the dialogue between the microbiota, the immune system, and the brain).
Collapse
Affiliation(s)
| | - Juan Uriagereka
- Department of Linguistics, University of Maryland College Park, MD, USA
| |
Collapse
|
105
|
Businaro R, Corsi M, Azzara G, Di Raimo T, Laviola G, Romano E, Ricci L, Maccarrone M, Aronica E, Fuso A, Ricci S. Interleukin-18 modulation in autism spectrum disorders. J Neuroinflammation 2016; 13:2. [PMID: 26728085 PMCID: PMC4700739 DOI: 10.1186/s12974-015-0466-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 12/23/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disease which affects 1 in 88 children. Its etiology remains basically unknown, but it is apparent that neuroinflammation is involved in disease development. Great attention has been focused on pro-inflammatory cytokines, and several studies have reported their dysfunction unbalance in serum as well as in the brain. The present work aimed at evaluating putative dysregulation of interleukin-18 (IL-18), a pro-inflammatory cytokine of the IL-1 family in the sera of patients with ASD of different grades, compared to healthy controls, as well as in postmortem brain samples obtained from patients with tuberous sclerosis as well as acute inflammatory diseases. Moreover, quantitative analysis of IL-18 was performed in the sera and brain obtained from Reeler mice, an experimental model of autism. METHODS Serum IL-18 levels were measured by ELISA. IL-18 was localized by immunohistochemical analysis in brain sections obtained from tuberous sclerosis and encephalitis patients, as well as from gender- and age-matched controls, and in the brain sections of both Reeler and wild-type mice. IL-18 was also quantified by Western blots in homogenates of Reeler and wild-type mice brains. IL-18 binding protein (IL-18BP) was evaluated in Reeler and wild-type mice plasma as well as in their brains (sections and homogenates). RESULTS IL-18 content decreased in the sera of patients with autism compared to healthy subjects and in Reeler sera compared to wild-type controls. IL-18 was detected within glial cells and neurons in the brain of subjects affected by tuberous sclerosis and encephalitis whereas in healthy subjects, only a weak IL-18 positivity was detected at the level of glial cells. Western blot identified higher amounts of IL-18 in Reeler brain homogenates compared to wild-type littermates. IL-18BP was expressed in higher amounts in Reeler brain compared to the brain of wild-type mice, whereas no significant difference was detected comparing IL-18BP plasma levels. CONCLUSIONS IL-18 is dysregulated in ASD patients. Further studies seemed necessary to clarify the molecular details behind IL-18 increase in the brain and IL-18 decrease in the sera of patients. An increase in the size of the patient cohort seems necessary to ascertain whether decreased IL-18 content in the sera can become a predictive biomarker of ASD and whether its measure, in combination with other markers (e.g., increased levels of brain-derived neurotrophic factor (BDNF)), may be included in a diagnostic panel.
Collapse
Affiliation(s)
- Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100, Latina, Italy.
| | - Mariangela Corsi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100, Latina, Italy.
| | - Gabriella Azzara
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100, Latina, Italy.
| | - Tania Di Raimo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100, Latina, Italy.
| | - Giovanni Laviola
- Section of Department of Cell Biology & Neuroscience, Section Behavioural Neuroscience, Istituto Superiore di Sanità, Roma, Italy.
| | - Emilia Romano
- Section of Department of Cell Biology & Neuroscience, Section Behavioural Neuroscience, Istituto Superiore di Sanità, Roma, Italy.
| | - Lidia Ricci
- Department of Anatomical, Histological, Legal Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy.
| | - Mauro Maccarrone
- European Center for Brain Research (CERC)/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64-65, 00143, Rome, Italy. .,School of Medicine and Center of Integrated Research, Campus Bio-Medico University of Rome, via Alvaro del Portillo 21, 00128, Rome, Italy.
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center and Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands.
| | - Andrea Fuso
- European Center for Brain Research (CERC)/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64-65, 00143, Rome, Italy. .,Department of Psychology, Sapienza University of Rome, Rome, Italy.
| | - Serafino Ricci
- Department of Anatomical, Histological, Legal Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
106
|
Zhang XY, Tan YL, Chen DC, Tan SP, Yang FD, Wu HE, Zunta-Soares GB, Huang XF, Kosten TR, Soares JC. Interaction of BDNF with cytokines in chronic schizophrenia. Brain Behav Immun 2016; 51:169-175. [PMID: 26407757 DOI: 10.1016/j.bbi.2015.09.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 02/08/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) interacts with cytokines. Although both BDNF and cytokines occur at abnormal levels in schizophrenia patients, their interactions have not yet been examined. We therefore compared serum BDNF, TNF-α, interleukin (IL)-2, IL-6, and IL-8 levels in 92 chronically medicated schizophrenia patients and 60 healthy controls. We correlated these serum levels within these subject groups with each other and with clinical symptoms assessed according to the Positive and Negative Syndrome Scale (PANSS). Compared to the control group, the schizophrenia patients had significantly lower BDNF and TNF-α levels, and higher IL-2, IL-6, and IL-8 levels. The patients also showed a significant positive correlation between BDNF and both IL-2 and IL-8 levels, and low BDNF and TNF-α levels together were associated with poor performance on the PANSS cognitive factor. Thus, an interaction between cytokines and neurotrophic factors may be implicated in the pathophysiology of chronic schizophrenia. In particular, the cytokine TNF-α may interact with BNDF causing cognitive impairment.
Collapse
Affiliation(s)
- Xiang Yang Zhang
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China; Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Yun-Long Tan
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Da-Chun Chen
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Shu-Ping Tan
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Fu-De Yang
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Hanjing Emily Wu
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Giovana B Zunta-Soares
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xu-Feng Huang
- Centre for Translational Neuroscience, School of Medicine, University of Wollongong, and Illawarra Health and Medical Research Institute, NSW, Australia
| | - Thomas R Kosten
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Jair C Soares
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
107
|
Risk factors in autism: Thinking outside the brain. J Autoimmun 2015; 67:1-7. [PMID: 26725748 DOI: 10.1016/j.jaut.2015.11.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/13/2015] [Accepted: 11/25/2015] [Indexed: 12/26/2022]
Abstract
Autism spectrum disorders (ASD) are complex neurodevelopmental conditions that have been rising markedly in prevalence for the past 30 years, now thought to affect 1 in 68 in the United States. This has prompted the search for possible explanations, and has even resulted in some controversy regarding the "true" prevalence of autism. ASD are influenced by a variety of genetic, environmental, and possibly immunological factors that act during critical periods to alter key developmental processes. This can affect multiple systems and manifests as the social and behavioral deficits that define these disorders. The interaction of environmental exposures in the context of an individual's genetic susceptibilities manifests differently in each case, leading to heterogeneous phenotypes and varied comorbid symptoms within the disorder. This has also made it very difficult to elucidate underlying genes and exposure profiles, but progress is being made in this area. Some pharmaceutical drugs, toxicants, and metabolic and nutritional factors have been identified in epidemiological studies as increasing autism risk, especially during the prenatal period. Immunologic risk factors, including maternal infection during pregnancy, autoantibodies to fetal brain proteins, and familial autoimmune disease, have consistently been observed across multiple studies, as have immune abnormalities in individuals with ASD. Mechanistic research using animal models and patient-derived stem cells will help researchers to understand the complex etiology of these neurodevelopmental disorders, which will lead to more effective therapies and preventative strategies. Proposed therapies that need more investigation include special diets, probiotics, immune modulation, oxytocin, and personalized pharmacogenomic targets. The ongoing search for biomarkers and better treatments will result in earlier identification of ASD and provide much needed help and relief for afflicted families.
Collapse
|
108
|
Gene expression analysis in Fmr1KO mice identifies an immunological signature in brain tissue and mGluR5-related signaling in primary neuronal cultures. Mol Autism 2015; 6:66. [PMID: 26697163 PMCID: PMC4687343 DOI: 10.1186/s13229-015-0061-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/10/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Fragile X syndrome (FXS) is a neurodevelopmental disorder whose biochemical manifestations involve dysregulation of mGluR5-dependent pathways, which are widely modeled using cultured neurons. In vitro phenotypes in cultured neurons using standard morphological, functional, and chemical approaches have demonstrated considerable variability. Here, we study transcriptomes obtained in situ in the intact brain tissues of a murine model of FXS to see how they reflect the in vitro state. METHODS We used genome-wide mRNA expression profiling as a robust characterization tool for studying differentially expressed pathways in fragile X mental retardation 1 (Fmr1) knockout (KO) and wild-type (WT) murine primary neuronal cultures and in embryonic hippocampal and cortical murine tissue. To study the developmental trajectory and to relate mouse model data to human data, we used an expression map of human development to plot murine differentially expressed genes in KO/WT cultures and brain. RESULTS We found that transcriptomes from cell cultures showed a stronger signature of Fmr1KO than whole tissue transcriptomes. We observed an over-representation of immunological signaling pathways in embryonic Fmr1KO cortical and hippocampal tissues and over-represented mGluR5-downstream signaling pathways in Fmr1KO cortical and hippocampal primary cultures. Genes whose expression was up-regulated in Fmr1KO murine cultures tended to peak early in human development, whereas differentially expressed genes in embryonic cortical and hippocampal tissues clustered with genes expressed later in human development. CONCLUSIONS The transcriptional profile in brain tissues primarily centered on immunological mechanisms, whereas the profiles from cell cultures showed defects in neuronal activity. We speculate that the isolation and culturing of neurons caused a shift in neurological transcriptome towards a "juvenile" or "de-differentiated" state. Moreover, cultured neurons lack the close coupling with glia that might be responsible for the immunological phenotype in the intact brain. Our results suggest that cultured cells may recapitulate an early phase of the disease, which is also less obscured with a consequent "immunological" phenotype and in vivo compensatory mechanisms observed in the embryonic brain. Together, these results suggest that the transcriptome of cultured primary neuronal cells, in comparison to whole brain tissue, more robustly demonstrated the difference between Fmr1KO and WT mice and might reveal a molecular phenotype, which is typically hidden by compensatory mechanisms present in vivo. Moreover, cultures might be useful for investigating the perturbed pathways in early human brain development and genes previously implicated in autism.
Collapse
|
109
|
Fan N, Luo Y, Xu K, Zhang M, Ke X, Huang X, Ding Y, Wang D, Ning Y, Deng X, He H. Relationship of serum levels of TNF-α, IL-6 and IL-18 and schizophrenia-like symptoms in chronic ketamine abusers. Schizophr Res 2015; 169:10-15. [PMID: 26589393 PMCID: PMC4888966 DOI: 10.1016/j.schres.2015.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 11/04/2015] [Accepted: 11/07/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Exposing to NMDAR receptor antagonists, such as ketamine, produces schizophrenia-like symptoms in humans and deteriorates symptoms in schizophrenia patients. Meanwhile, schizophrenia is associated with alterations of cytokines in the immune system. This study aims to examine the serum TNF-α, IL-6 and IL-18 levels in chronic human ketamine users as compared to healthy subjects. The correlations between the serum cytokines levels with the demographic, ketamine use characteristics and psychiatric symptoms were also assessed. METHODS 155 subjects who fulfilled the criteria of ketamine dependence and 80 healthy control subjects were recruited. Serum TNF-α, IL-6 and IL-18 levels were measured using an enzyme-linked immunosorbent assay (ELISA). The psychiatric symptoms of the ketamine abusers were assessed using the Positive and Negative Syndrome Scale (PANSS). RESULTS Serum IL-6 and IL-18 levels were significantly higher, while serum TNF-α level was significantly lower among ketamine users than among healthy controls (p<0.05). Serum TNF-α levels showed a significant negative association with PANSS total score (r=-0.210, p<0.01) and negative subscore (r=-0.300, p<0.01). No significant association was found between PANSS score and serum levels of IL-6 and IL-18. CONCLUSIONS Serum levels of TNF-α, IL-6 and IL-18 were altered in chronic ketamine abusers which may play a role in schizophrenia-like symptoms in chronic ketamine abusers.
Collapse
Affiliation(s)
- Ni Fan
- Guangzhou Brain Hospital (Guangzhou Huiai Hospital, the Affiliated Brain Hospital of Guangzhou Medical University), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China.
| | - Yayan Luo
- Guangzhou Brain Hospital (Guangzhou Huiai Hospital, the Affiliated Brain Hospital of Guangzhou Medical University), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Ke Xu
- Department of Psychiatry, Yale School of Medicine, 300 George St, New Haven, CT, USA
| | - Minling Zhang
- Guangzhou Brain Hospital (Guangzhou Huiai Hospital, the Affiliated Brain Hospital of Guangzhou Medical University), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Xiaoyin Ke
- Guangzhou Brain Hospital (Guangzhou Huiai Hospital, the Affiliated Brain Hospital of Guangzhou Medical University), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China,Shenzhen Mental Health Center, 1080 Cuizhu Rd., Luohu District, Shenzhen, Guangdong 518020, China
| | - Xini Huang
- Guangzhou Brain Hospital (Guangzhou Huiai Hospital, the Affiliated Brain Hospital of Guangzhou Medical University), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Yi Ding
- Guangzhou Brain Hospital (Guangzhou Huiai Hospital, the Affiliated Brain Hospital of Guangzhou Medical University), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Daping Wang
- Guangzhou Brain Hospital (Guangzhou Huiai Hospital, the Affiliated Brain Hospital of Guangzhou Medical University), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Yuping Ning
- Guangzhou Brain Hospital (Guangzhou Huiai Hospital, the Affiliated Brain Hospital of Guangzhou Medical University), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Xuefeng Deng
- Guangzhou Baiyun Voluntary Drug Rehabilitation Hospital, 586 North of Baiyun Road, Baiyun District, Guangzhou, Guangdong 510440, China
| | - Hongbo He
- Guangzhou Brain Hospital (Guangzhou Huiai Hospital, the Affiliated Brain Hospital of Guangzhou Medical University), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| |
Collapse
|
110
|
Sahin M, Sur M. Genes, circuits, and precision therapies for autism and related neurodevelopmental disorders. Science 2015; 350:aab3897. [PMID: 26472761 PMCID: PMC4739545 DOI: 10.1126/science.aab3897] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Research in the genetics of neurodevelopmental disorders such as autism suggests that several hundred genes are likely risk factors for these disorders. This heterogeneity presents a challenge and an opportunity at the same time. Although the exact identity of many of the genes remains to be discovered, genes identified to date encode proteins that play roles in certain conserved pathways: protein synthesis, transcriptional and epigenetic regulation, and synaptic signaling. The next generation of research in neurodevelopmental disorders must address the neural circuitry underlying the behavioral symptoms and comorbidities, the cell types playing critical roles in these circuits, and common intercellular signaling pathways that link diverse genes. Results from clinical trials have been mixed so far. Only when we can leverage the heterogeneity of neurodevelopmental disorders into precision medicine will the mechanism-based therapeutics for these disorders start to unlock success.
Collapse
Affiliation(s)
- Mustafa Sahin
- F. M. Kirby Center for Neurobiology, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA.
| | - Mriganka Sur
- Simons Center for the Social Brain, Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
111
|
Immune mediators in the brain and peripheral tissues in autism spectrum disorder. Nat Rev Neurosci 2015; 16:469-86. [PMID: 26189694 DOI: 10.1038/nrn3978] [Citation(s) in RCA: 343] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Increasing evidence points to a central role for immune dysregulation in autism spectrum disorder (ASD). Several ASD risk genes encode components of the immune system and many maternal immune system-related risk factors--including autoimmunity, infection and fetal reactive antibodies--are associated with ASD. In addition, there is evidence of ongoing immune dysregulation in individuals with ASD and in animal models of this disorder. Recently, several molecular signalling pathways--including pathways downstream of cytokines, the receptor MET, major histocompatibility complex class I molecules, microglia and complement factors--have been identified that link immune activation to ASD phenotypes. Together, these findings indicate that the immune system is a point of convergence for multiple ASD-related genetic and environmental risk factors.
Collapse
|
112
|
Naklua W, Mahesh K, Aundorn P, Tanmanee N, Aenukulpong K, Sutto S, Chen YZ, Chen S, Suedee R. An imprinted dopamine receptor for discovery of highly potent and selective D 3 analogues with neuroprotective effects. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.06.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
113
|
Experimental Malaria in Pregnancy Induces Neurocognitive Injury in Uninfected Offspring via a C5a-C5a Receptor Dependent Pathway. PLoS Pathog 2015; 11:e1005140. [PMID: 26402732 PMCID: PMC4581732 DOI: 10.1371/journal.ppat.1005140] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 08/11/2015] [Indexed: 02/06/2023] Open
Abstract
The in utero environment profoundly impacts childhood neurodevelopment and behaviour. A substantial proportion of pregnancies in Africa are at risk of malaria in pregnancy (MIP) however the impact of in utero exposure to MIP on fetal neurodevelopment is unknown. Complement activation, in particular C5a, may contribute to neuropathology and adverse outcomes during MIP. We used an experimental model of MIP and standardized neurocognitive testing, MRI, micro-CT and HPLC analysis of neurotransmitter levels, to test the hypothesis that in utero exposure to malaria alters neurodevelopment through a C5a-C5aR dependent pathway. We show that malaria-exposed offspring have persistent neurocognitive deficits in memory and affective-like behaviour compared to unexposed controls. These deficits were associated with reduced regional brain levels of major biogenic amines and BDNF that were rescued by disruption of C5a-C5aR signaling using genetic and functional approaches. Our results demonstrate that experimental MIP induces neurocognitive deficits in offspring and suggest novel targets for intervention. A growing body of evidence has established the importance of the in utero environment on neurodevelopment and long-term cognitive and behavioral outcomes. These data suggest factors that disrupt the tightly regulated in utero environment can modify normal neurodevelopmental processes. Approximately 125 million pregnancies worldwide are at risk of malaria infection every year. However the impact of in utero exposure to MIP on fetal neurodevelopment is unknown. Here we use a mouse model of malaria in pregnancy to examine the impact of maternal malaria exposure on neurocognitive outcomes in offspring. We observed impaired learning and memory and depressive-like behavior in malaria-exposed offspring that were neither congenitally infected nor low birth weight. These neurocognitive impairments were associated with decreased tissue levels of neurotransmitters in regions of the brain linked to the observed deficits. Disruption of maternal C5a complement receptor signaling restored the levels of neurotransmitters and rescued the associated cognitive phenotype observed in malaria-exposed offspring. This study provides the first evidence implicating a causal link between pre-natal exposure to malaria, complement signaling and subsequent neurocognitive impairment in offspring.
Collapse
|
114
|
Filiano AJ, Gadani SP, Kipnis J. Interactions of innate and adaptive immunity in brain development and function. Brain Res 2015; 1617:18-27. [PMID: 25110235 PMCID: PMC4320678 DOI: 10.1016/j.brainres.2014.07.050] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 01/15/2023]
Abstract
It has been known for decades that the immune system has a tremendous impact on behavior. Most work has described the negative role of immune cells on the central nervous system. However, we and others have demonstrated over the last decade that a well-regulated immune system is needed for proper brain function. Here we discuss several neuro-immune interactions, using examples from brain homeostasis and disease states. We will highlight our understanding of the consequences of malfunctioning immunity on neurodevelopment and will discuss the roles of the innate and adaptive immune system in neurodevelopment and how T cells maintain a proper innate immune balance in the brain surroundings and within its parenchyma. Also, we describe how immune imbalance impairs higher order brain functioning, possibly leading to behavioral and cognitive impairment. Lastly, we propose our hypothesis that some behavioral deficits in neurodevelopmental disorders, such as in autism spectrum disorder, are the consequence of malfunctioning immunity. This article is part of a Special Issue entitled SI: Neuroimmunology in Health And Disease.
Collapse
Affiliation(s)
- Anthony J Filiano
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| | - Sachin P Gadani
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Graduate Program in Neuroscience and Medical Scientist Training Program, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Graduate Program in Neuroscience and Medical Scientist Training Program, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
115
|
Fang SY, Wang S, Huang N, Yeh HH, Chen CY. Prenatal Infection and Autism Spectrum Disorders in Childhood: A Population-Based Case-Control Study in Taiwan. Paediatr Perinat Epidemiol 2015; 29:307-16. [PMID: 25989831 DOI: 10.1111/ppe.12194] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Infection in pregnancy has long been linked with negative postnatal development and health. This study aims to assess the association between prenatal infections and autism spectrum disorders (ASDs) across three trimesters and to probe possible sex heterogeneity in such link. METHOD A total of 4184 children with incident ASDs and 16,734 matched children were identified from the 2000-2007 National Health Insurance Research Database. For each child, information pertaining to the mother's infection during pregnancy, sociodemographics, and medical history was retrieved from healthcare records. Conditional logistic analyses were carried out to estimate the strength of associations with adjustment for multiple comparisons. RESULT Pooled analyses demonstrated that having two or more outpatient visits for genital infection [adjusted odds ratio (aOR): 1.34; 95% confidence interval (95% CI) 1.12, 1.60; false discovery rate (FDR) < 0.01] and bacterial infection (aOR: 1.24; 95% CI 1.06, 1.43; FDR < 0.05) in the third trimester were slightly associated with increased risk of ASDs. No statistically significant sex differences were found. CONCLUSION The present study contributes updated population-based evidence about the connection between prenatal infection and ASDs. Potential effect of bacterial and genital tract infections during the third trimester on risk of ASDs warrants further exploration.
Collapse
Affiliation(s)
- Shao-You Fang
- Institute of Public Health, National Yang-Ming University, Taipei, Taiwan.,Center of Neuropsychiatric Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Sabrina Wang
- Institute of Anatomy and Cell Biology, National Yang-Ming University, Taipei, Taiwan
| | - Nicole Huang
- Institute of Public Health, National Yang-Ming University, Taipei, Taiwan
| | - Hsueh-Han Yeh
- Department of Epidemiology and Biostatistics, Michigan State University, MI
| | - Chuan-Yu Chen
- Institute of Public Health, National Yang-Ming University, Taipei, Taiwan.,Center of Neuropsychiatric Research, National Health Research Institutes, Miaoli County, Taiwan
| |
Collapse
|
116
|
Lyupina YV, Bogatyrev ME, Orlova AS, Marjukhnich EV, Kazansky DB, Sharova NP. Proteasomes in the brain of β2-microglobulin knockout mice. BIOCHEMISTRY (MOSCOW) 2015; 78:1124-33. [PMID: 24237146 DOI: 10.1134/s0006297913100064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
MHC class I molecules play an important role in synaptic plasticity of the mammalian nervous system. Proteolytic complexes (proteasomes) produce oligopeptides that are presented on cell surfaces in complexes with MHC class I molecules and regulate many cellular processes beside this. The goal of the present work was to study peculiarities in functioning of proteasomes and associated signaling pathways along with evaluation of NeuN and gFAP expression in different sections of the brain in mice with knockout of β2-microglobulin, a constituent of MHC class I molecules. It was found that the frontal cortex and the brainstem, structures with different ratio of NeuN and gFAP expression, are characterized by opposite changes in the proteasome pool under constant total proteasome levels in B2m-knockout mice in comparison with those in control animals. ChTL-activity as well as expression of LMP7 immune subunit and PA28 regulator of proteasomes was elevated in the cortex of B2m-knockout mice, while these indicators were decreased in the brainstem. The concentrations of the signaling molecules nNOS and HSP70 in B2m-knockout mice were increased in the cortex, while being decreased in the brainstem, and this indicates the possibility of control of expression of the LMP7 subunit and the regulator PA28 by these molecules. Changes in the proteasome pool observed in striatum of B2m-knockout mice are similar to those observed in the brainstem. At the same time, the cerebellum is characterized by a specific pattern of proteasome functioning in comparison with that in all other brain structures. In cerebellum the expression of immune subunits LMP7 and LMP2 and the regulator PA28 was increased, while expression of regulator PA700 was decreased. Deficiency of NeuN and gFAP was revealed in most brain compartments of B2m-knockout mice. Thus, increased expression of the above-mentioned immune subunits and the proteasome regulator PA28 in the cortex and cerebellum may compensate disturbances revealed in the brain structures and the absence of MHC class I molecules. Apparently, this promotes production of peptides necessary for cell-to-cell interactions and maintains nervous system plasticity in B2m-knockout mice.
Collapse
Affiliation(s)
- Yu V Lyupina
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | | | | | | | | | | |
Collapse
|
117
|
Lv MH, Tan YL, Yan SX, Tian L, Chen DC, Tan SP, Wang ZR, Yang FD, Yoon JH, Zunta-Soares GB, Soares JC, Zhang XY. Decreased serum TNF-alpha levels in chronic schizophrenia patients on long-term antipsychotics: correlation with psychopathology and cognition. Psychopharmacology (Berl) 2015; 232:165-72. [PMID: 24958229 DOI: 10.1007/s00213-014-3650-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 05/30/2014] [Indexed: 12/22/2022]
Abstract
OBJECTIVE A substantial body of evidence implicates TNF-alpha (TNFα) and TNFα-related signaling pathways in the pathophysiology of schizophrenia. The current study examined the relationship between TNFα serum levels and both psychopathological as well as cognitive symptoms in schizophrenia. MATERIALS AND METHODS Serum TNFα levels were assessed in 89 patients diagnosed with schizophrenia and compared to 43 healthy control subjects matched for age and gender. Schizophrenic symptomatology was assessed with the Positive and Negative Syndrome Scale (PANSS), and serum TNFα levels were measured by sandwich enzyme-linked immunosorbent assay (ELISA). RESULTS TNFα levels were significantly lower in patients with chronic schizophrenia relative to healthy control subjects (p<0.01). Correlation analysis revealed a significant negative correlation between the TNFα levels and the PANSS total score (p<0.01). Additionally, TNFα levels were significantly negatively correlated with scores on general psychopathology (p<0.01), positive (p<0.05) and cognitive subscales (p<0.05). Stepwise multiple regression analysis identified TNFα levels as a significant predictor of scores on the general psychopathology subscale of the PANSS. CONCLUSION The significant relations observed in the current study between TNFα and the PANSS and its subscales suggest that immune disturbance may be involved in the psychopathology and cognitive deficits of schizophrenia.
Collapse
Affiliation(s)
- Meng Han Lv
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Cytokine Serum Levels as Potential Biological Markers for the Psychopathology in Schizophrenia. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/493505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We discuss the role of immune system disturbance in schizophrenia and especially changes of serum levels of cytokines in patients with schizophrenia. The cytokines are essential to wide range of functions related to the defense of the organisms from infectious and environmental dangers. However it is not known whether cytokines influence the presentation of psychotic symptoms. Identification of changes in the serum level of certain cytokines and their correlation with distinct psychopathological symptoms may facilitate the identification of subgroups of patients who are likely to benefit from immunotherapy or anti-inflammatory therapy. Such patients may benefit from tailored immunotherapy designed for modulation of abnormal cytokine levels related to specific positive or negative symptoms of schizophrenia.
Collapse
|
119
|
Port RG, Gandal MJ, Roberts TPL, Siegel SJ, Carlson GC. Convergence of circuit dysfunction in ASD: a common bridge between diverse genetic and environmental risk factors and common clinical electrophysiology. Front Cell Neurosci 2014; 8:414. [PMID: 25538564 PMCID: PMC4259121 DOI: 10.3389/fncel.2014.00414] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 11/14/2014] [Indexed: 11/27/2022] Open
Abstract
Most recent estimates indicate that 1 in 68 children are affected by an autism spectrum disorder (ASD). Though decades of research have uncovered much about these disorders, the pathological mechanism remains unknown. Hampering efforts is the seeming inability to integrate findings over the micro to macro scales of study, from changes in molecular, synaptic and cellular function to large-scale brain dysfunction impacting sensory, communicative, motor and cognitive activity. In this review, we describe how studies focusing on neuronal circuit function provide unique context for identifying common neurobiological disease mechanisms of ASD. We discuss how recent EEG and MEG studies in subjects with ASD have repeatedly shown alterations in ensemble population recordings (both in simple evoked related potential latencies and specific frequency subcomponents). Because these disease-associated electrophysiological abnormalities have been recapitulated in rodent models, studying circuit differences in these models may provide access to abnormal circuit function found in ASD. We then identify emerging in vivo and ex vivo techniques, focusing on how these assays can characterize circuit level dysfunction and determine if these abnormalities underlie abnormal clinical electrophysiology. Such circuit level study in animal models may help us understand how diverse genetic and environmental risks can produce a common set of EEG, MEG and anatomical abnormalities found in ASD.
Collapse
Affiliation(s)
- Russell G Port
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Michael J Gandal
- Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles Los Angeles, CA, USA
| | - Timothy P L Roberts
- Bioengineering Graduate Group, University of Pennsylvania Philadelphia, PA, USA
| | - Steven J Siegel
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Gregory C Carlson
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
120
|
Marques AH, Bjørke-Monsen AL, Teixeira AL, Silverman MN. Maternal stress, nutrition and physical activity: Impact on immune function, CNS development and psychopathology. Brain Res 2014; 1617:28-46. [PMID: 25451133 DOI: 10.1016/j.brainres.2014.10.051] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 10/20/2014] [Accepted: 10/25/2014] [Indexed: 12/14/2022]
Abstract
Evidence suggests that maternal and fetal immune dysfunction may impact fetal brain development and could play a role in neurodevelopmental disorders, although the definitive pathophysiological mechanisms are still not completely understood. Stress, malnutrition and physical inactivity are three maternal behavioral lifestyle factors that can influence immune and central nervous system (CNS) functions in both the mother and fetus, and may therefore, increase risk for neurodevelopmental/psychiatric disorders. First, we will briefly review some aspects of maternal-fetal immune system interactions and development of immune tolerance. Second, we will discuss the bidirectional communication between the immune system and CNS and the pathways by which immune dysfunction could contribute to neurodevelopmental disorders. Third, we will discuss the effects of prenatal stress and malnutrition (over and undernutrition) on perinatal programming of the CNS and immune system, and how this might influence neurodevelopment. Finally, we will discuss the beneficial impact of physical fitness during pregnancy on the maternal-fetal unit and infant and how regular physical activity and exercise can be an effective buffer against stress- and inflammatory-related disorders. Although regular physical activity has been shown to promote neuroplasticity and an anti-inflammatory state in the adult, there is a paucity of studies evaluating its impact on CNS and immune function during pregnancy. Implementing stress reduction, proper nutrition and ample physical activity during pregnancy and the childbearing period may be an efficient strategy to counteract the impact of maternal stress and malnutrition/obesity on the developing fetus. Such behavioral interventions could have an impact on early development of the CNS and immune system and contribute to the prevention of neurodevelopmental and psychiatric disorders. Further research is needed to elucidate this relationship and the underlying mechanisms of protection. This article is part of a Special Issue entitled SI: Neuroimmunology in Health And Disease.
Collapse
Affiliation(s)
- Andrea Horvath Marques
- Obsessive--Compulsive Spectrum Disorders Program, Department & Institute of Psychiatry, University of São Paulo, Medical School, São Paulo, Brazil.
| | | | - Antônio L Teixeira
- School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marni N Silverman
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
121
|
Ganguly P, Brenhouse HC. Broken or maladaptive? Altered trajectories in neuroinflammation and behavior after early life adversity. Dev Cogn Neurosci 2014; 11:18-30. [PMID: 25081071 PMCID: PMC4476268 DOI: 10.1016/j.dcn.2014.07.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/23/2014] [Accepted: 07/02/2014] [Indexed: 12/11/2022] Open
Abstract
This paper reviews how early life adversity alters neuroimmune mechanisms. Neuroimmune sensitization from early life adversity impacts circuitry at discrete life stages. Neuroimmune and neurodevelopmental influences can impact behavior and vulnerability. Sexual dimorphism in immune and brain development yield distinct effects of early life adversity.
Exposure to adversity and stress early in development yields vulnerability to mental illnesses throughout the lifespan. Growing evidence suggests that this vulnerability has mechanistic origins involving aberrant development of both neurocircuitry and neuro-immune activity. Here we review the current understanding of when and how stress exposure initiates neuroinflammatory events that interact with brain development. We first review how early life adversity has been associated with various psychopathologies, and how neuroinflammation plays a role in these pathologies. We then summarize data and resultant hypotheses describing how early life adversity may particularly alter neuro-immune development with psychiatric consequences. Finally, we review how sex differences contribute to individualistic vulnerabilities across the lifespan. We submit the importance of understanding how stress during early development might cause outright neural or glial damage, as well as experience-dependent plasticity that may insufficiently prepare an individual for sex-specific or life-stage specific challenges.
Collapse
Affiliation(s)
- Prabarna Ganguly
- Northeastern University, Psychology Department, 125 Nightingale Hall, 360 Huntington Avenue, Boston, MA 02115, USA.
| | - Heather C Brenhouse
- Northeastern University, Psychology Department, 125 Nightingale Hall, 360 Huntington Avenue, Boston, MA 02115, USA.
| |
Collapse
|
122
|
Venkatasubramanian G, Debnath M. Neuroimmunological aberrations and cerebral asymmetry abnormalities in schizophrenia: select perspectives on pathogenesis. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2014; 12:8-18. [PMID: 24851116 PMCID: PMC4022772 DOI: 10.9758/cpn.2014.12.1.8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/03/2014] [Indexed: 11/18/2022]
Abstract
Within the wide-ranging gamut of factors that comprise gene-environment interactions postulated to underlie schizophrenia, the crosstalk between environmental factors and feto-maternal immune components has been put forth as one of the important mechanisms that increase the risk towards schizophrenia in the offspring. Interestingly, immune factors have been shown to critically modulate the brain development during the prenatal stages. Moreover the past many decades, influential theoretical propositions and evidence base (albeit not unequivocally) have compellingly linked prenatal sex hormonal status to critically provoke long lasting immunological changes and subsequently affect developmental programming of cerebral asymmetry in schizophrenia. In this review, we summarize the select perspectives emphasizing the role of neuroimmunoendocrine pathways in anomalous cerebral asymmetry in contemporary understanding of schizophrenia pathogenesis.
Collapse
Affiliation(s)
- Ganesan Venkatasubramanian
- The Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, India
| |
Collapse
|
123
|
Abstract
While emotion is a central component of human health and well-being, traditional approaches to understanding its biological function have been wanting. A dynamic systems model, however, broadly redefines and recasts emotion as a primary sensory system-perhaps the first sensory system to have emerged, serving the ancient autopoietic function of "self-regulation." Drawing upon molecular biology and revelations from the field of epigenetics, the model suggests that human emotional perceptions provide an ongoing stream of "self-relevant" sensory information concerning optimally adaptive states between the organism and its immediate environment, along with coupled behavioral corrections that honor a universal self-regulatory logic, one still encoded within cellular signaling and immune functions. Exemplified by the fundamental molecular circuitry of sensorimotor control in the E coli bacterium, the model suggests that the hedonic (affective) categories emerge directly from positive and negative feedback processes, their good/bad binary appraisals relating to dual self-regulatory behavioral regimes-evolutionary purposes, through which organisms actively participate in natural selection, and through which humans can interpret optimal or deficit states of balanced being and becoming. The self-regulatory sensory paradigm transcends anthropomorphism, unites divergent theoretical perspectives and isolated bodies of literature, while challenging time-honored assumptions. While suppressive regulatory strategies abound, it suggests that emotions are better understood as regulating us, providing a service crucial to all semantic language, learning systems, evaluative decision-making, and fundamental to optimal physical, mental, and social health.
Collapse
Affiliation(s)
- Katherine T Peil
- College of Professional Studies, Northeastern University, Boston, Massachusetts; Harvard Divinity School, Cambridge, Massachusetts, United States
| |
Collapse
|
124
|
Abstract
While autism spectrum disorder (ASD) is characterized by communication impairments, social abnormalities, and stereotypic behaviors, several medical comorbidities are observed in autistic individuals. Of these, gastrointestinal (GI) abnormalities are of particular interest given their reported prevalence and correlation with the severity of core autism-related behavioral abnormalities. This review discusses the GI pathologies seen in ASD individuals and the association of particular GI conditions with known genetic and environmental risk factors for autism. It further addresses how GI abnormalities can affect the neuropathological and behavioral features of ASD, as well as the development of autism-related endophenotypes such as immune dysregulation, hyperserotonemia, and metabolic dysfunction. Finally, it presents emerging evidence for a gut-brain connection in autism, wherein GI dysfunction may contribute to the pathogenesis or severity of ASD symptoms.
Collapse
|
125
|
The Relationship of HLA Class I and II Alleles and Haplotypes with Autism: A Case Control Study. AUTISM RESEARCH AND TREATMENT 2014; 2014:242048. [PMID: 24672722 PMCID: PMC3929985 DOI: 10.1155/2014/242048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/30/2013] [Accepted: 12/02/2013] [Indexed: 11/20/2022]
Abstract
Earlier reports showed the relationship between autism and immune genes located in the human leukocyte antigen (HLA). In this current study, we compared the HLA class I and class II alleles and haplotypes in 35 autistic children with 100 control subjects from Saudi Arabia, using PCR-SSP method and Luminex technology. In class I the HLA-A*01 (P = 0.03, OR 2.68), A*02 (P = 0.001, OR 3.02) and HLA-B*07 (P = 0.01, OR 3.27), were significantly associated with autism. Also, the haplotype A*02-B*07 was significantly higher in autistic patients than in controls (P = 0.007, OR 5.83). In class II, DRB1*1104 was significantly higher in patients than in controls (P = 0.001, OR 8.75). The DQB1*0202 (P = 0.001,
OR 0.24), DQB1*0302 (P = 0.001,
OR 0.14), and DQB1*0501 (P = 0.012, OR 0.25), were negatively associated with disease. While the four-loci genotype study showed that A*01-B*07-DRB1*0701-DQB1*0602 (P = 0.001, OR 41.9) and the A*31-B*51-DRB1*0103-DQB1*0302 (P = 0.012, OR 4.8) are positively associated with autism among Saudi patients. This is the first report on a foreseeable risk of association of HLA-B*07 allele with autism. Thus, HLA-B*07 allele and the closely linked haplotype A*01 B*07 DRB1*0701 DQB1*0602 may serve as a marker for genetic susceptibility to autism in Saudis.
Collapse
|
126
|
Gou Z, Mi Y, Jiang F, Deng B, Yang J, Gou X. PirB is a novel potential therapeutic target for enhancing axonal regeneration and synaptic plasticity following CNS injury in mammals. J Drug Target 2014; 22:365-71. [PMID: 24405091 DOI: 10.3109/1061186x.2013.878939] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A major barrier to axonal regeneration in mammals is the unfavorable extracellular environment that develops following injury to the central nervous system (CNS). In particular, three myelin-associated inhibitory proteins (MAIs) - Nogo, myelin-associated glycoprotein (MAG) and oligodendrocyte myelin glycoprotein (OMgp) - are known to inhibit axonal regeneration and functional recovery. These MAIs share a common receptor, glycosylphosphatidylinositol-anchored Nogo receptor (NgR). However, paired immunoglobulin-like receptor B (PirB) - which was originally identified as a receptor for class I major histocompatibility complex (MHCI) in the immune system - is also expressed in neurones and plays a similarly inhibitory role in axonal regeneration and synaptic plasticity following CNS injury through its association with MAIs. Importantly, suppression of PirB activity through antibody antagonism or genetic means can partially relieve the inhibition of neurite outgrowth in vitro and in vivo. In this review, we present the molecular features, expression patterns and known signaling pathways of PirB, and we specifically focus on putative roles for PirB in the CNS and its potential as a target of molecular therapies for enhancing axonal regeneration and synaptic plasticity following CNS injury.
Collapse
Affiliation(s)
- Zhaoyu Gou
- College of Life Science, China West Normal University , Nanchong , China and
| | | | | | | | | | | |
Collapse
|
127
|
Holder MK, Blaustein JD. Puberty and adolescence as a time of vulnerability to stressors that alter neurobehavioral processes. Front Neuroendocrinol 2014; 35:89-110. [PMID: 24184692 PMCID: PMC3946873 DOI: 10.1016/j.yfrne.2013.10.004] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/03/2013] [Accepted: 10/23/2013] [Indexed: 01/30/2023]
Abstract
Puberty and adolescence are major life transitions during which an individual's physiology and behavior changes from that of a juvenile to that of an adult. Here we review studies documenting the effects of stressors during pubertal and adolescent development on the adult brain and behavior. The experience of complex or compound stressors during puberty/adolescence generally increases stress reactivity, increases anxiety and depression, and decreases cognitive performance in adulthood. These behavioral changes correlate with decreased hippocampal volumes and alterations in neural plasticity. Moreover, stressful experiences during puberty disrupt behavioral responses to gonadal hormones both in sexual performance and on cognition and emotionality. These behavioral changes correlate with altered estrogen receptor densities in some estrogen-concentrating brain areas, suggesting a remodeling of the brain's response to hormones. A hypothesis is presented that activation of the immune system results in chronic neuroinflammation that may mediate the alterations of hormone-modulated behaviors in adulthood.
Collapse
Affiliation(s)
- Mary K Holder
- Neuroscience and Behavior Program, Tobin Hall, University of Massachusetts, Amherst, MA 01003-9271, USA; Center for Neuroendocrine Studies, Tobin Hall, University of Massachusetts, Amherst, MA 01003-9271, USA.
| | - Jeffrey D Blaustein
- Neuroscience and Behavior Program, Tobin Hall, University of Massachusetts, Amherst, MA 01003-9271, USA; Center for Neuroendocrine Studies, Tobin Hall, University of Massachusetts, Amherst, MA 01003-9271, USA.
| |
Collapse
|
128
|
Cui C, Shurtleff D, Harris RA. Neuroimmune mechanisms of alcohol and drug addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 118:1-12. [PMID: 25175859 DOI: 10.1016/b978-0-12-801284-0.00001-4] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alcohol and other drugs of abuse have significant impacts on the neuroimmune system. Studies have demonstrated that drugs of abuse interact with the neuroimmune system and alter neuroimmune gene expression and signaling, which in turn contribute to various aspects of addiction. As the key component of the CNS immune system, neuroimmune factors mediate neuroinflammation and modulate a wide range of brain function including neuronal activity, endocrine function, and CNS development. These neuromodulatory properties of immune factors, together with their essential role in neuroinflammation, provide a new framework to understand neuroimmune mechanisms mediating brain functional and behavioral changes contributing to addiction. This chapter highlights recent advances in understanding neuroimmune changes associated with exposure to alcohol and other drugs of abuse, including opiates, marijuana, methamphetamine, and cocaine. It provides a brief overview on what we know about neuroimmune signaling and its role in drug action and addiction.
Collapse
Affiliation(s)
- Changhai Cui
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA.
| | - David Shurtleff
- National Center for Complementary & Alternative Medicine, Bethesda, Maryland, USA
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
129
|
Gestational exposure to a viral mimetic poly(i:C) results in long-lasting changes in mitochondrial function by leucocytes in the adult offspring. Mediators Inflamm 2013; 2013:609602. [PMID: 24174710 PMCID: PMC3793312 DOI: 10.1155/2013/609602] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 08/16/2013] [Indexed: 12/25/2022] Open
Abstract
Maternal immune activation (MIA) is a potential risk factor for autism spectrum disorder (ASD) and schizophrenia (SZ). In rodents, MIA results in changes in cytokine profiles and abnormal behaviors in the offspring that model these neuropsychiatric conditions. Given the central role that mitochondria have in immunity and other metabolic pathways, we hypothesized that MIA will result in a fetal imprinting that leads to postnatal deficits in the bioenergetics of immune cells. To this end, splenocytes from adult offspring exposed gestationally to the viral mimic poly(I:C) were evaluated for mitochondrial outcomes. A significant decrease in mitochondrial ATP production was observed in poly(I:C)-treated mice (45% of controls) mainly attributed to a lower complex I activity. No differences were observed between the two groups in the coupling of electron transport to ATP synthesis, or the oxygen uptake under uncoupling conditions. Concanavalin A- (ConA-) stimulated splenocytes from poly(I:C) animals showed no statistically significant changes in cytokine levels compared to controls. The present study reports for the first time that MIA activation by poly(I:C) at early gestation, which can lead to behavioral impairments in the offspring similar to SZ and ASD, leads to long-lasting effects in the bioenergetics of splenocytes of adult offspring.
Collapse
|
130
|
Molecular basis of lateral force spectroscopy nano-diagnostics: computational unbinding of autism related chemokine MCP-1 from IgG antibody. J Mol Model 2013; 19:4773-80. [PMID: 24061853 PMCID: PMC3825506 DOI: 10.1007/s00894-013-1972-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 08/01/2013] [Indexed: 12/05/2022]
Abstract
Monocyte-chemoattractant protein-1 (MCP-1), also known as CCL2, is a potent chemoattractant of T cells and monocytes, involved in inflammatory and angio-proliferative brain and retinal diseases. Higher expression of MCP-1 is observed in metastatic tumors. Unusual levels of MCP-1 in the brain may be correlated with autism. Immunochemistry where atomic force microscope (AFM) tips functionalized with appropriate antibodies against MCP-1 are used could in principle support medical diagnostics. Useful signals from single molecule experiments may be generated if interaction forces are large enough. The chemokine-antibody unbinding force depends on a relative motion of the interacting fragments of the complex. In this paper the stability of the medically important MCP-1- immunoglobulin G antibody Fab fragment complex has been studied using steered molecular dynamics (SMD) computer simulations with the aim to model possible arrangements of nano-diagnostics experiments. Using SMD we confirm that molecular recognition in MCP1-IgG is based mainly on six pairs of residues: Glu39A - Arg98H, Lys56A - Asp52H, Asp65A - Arg32L, Asp68A - Arg32L, Thr32A - Glu55L, Gln61A - Tyr33H. The minimum external force required for mechanical dissociation of the complex depends on a direction of the force. The pulling of the MCP-1 antigen in the directions parallel to the antigen-antibody contact plane requires forces about 20 %–40 % lower than in the perpendicular one. Fortunately, these values are large enough that the fast lateral force spectroscopy may be used for effective nano-diagnostics purposes. We show that molecular modeling is a useful tool in planning AFM force spectroscopy experiments. Lateral SMD forces (green arrow) required for mechanical unbinding of MCP-1 chemokine (blue) from Ig G antibody (red/gray) are 20-40% lower than vertical ones (orange arrow) ![]()
Collapse
|
131
|
Wei H, Alberts I, Li X. Brain IL-6 and autism. Neuroscience 2013; 252:320-5. [PMID: 23994594 DOI: 10.1016/j.neuroscience.2013.08.025] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 08/14/2013] [Accepted: 08/15/2013] [Indexed: 12/17/2022]
Abstract
Autism is a severe neurodevelopmental disorder characterized by impairments in social interaction, deficits in verbal and non-verbal communication, and repetitive behavior and restricted interests. Emerging evidence suggests that aberrant neuroimmune responses may contribute to phenotypic deficits and could be appropriate targets for pharmacologic intervention. Interleukin (IL)-6, one of the most important neuroimmune factors, has been shown to be involved in physiological brain development and in several neurological disorders. For instance, findings from postmortem and animal studies suggest that brain IL-6 is an important mediator of autism-like behaviors. In this review, a possible pathological mechanism behind autism is proposed, which suggests that IL-6 elevation in the brain, caused by the activated glia and/or maternal immune activation, could be an important inflammatory cytokine response involved in the mediation of autism-like behaviors through impairments of neuroanatomical structures and neuronal plasticity. Further studies to investigate whether IL-6 could be used for therapeutic interventions in autism would be of great significance.
Collapse
Affiliation(s)
- H Wei
- Central Laboratory, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, China.
| | | | | |
Collapse
|
132
|
Morris GP, Clark IA, Zinn R, Vissel B. Microglia: a new frontier for synaptic plasticity, learning and memory, and neurodegenerative disease research. Neurobiol Learn Mem 2013; 105:40-53. [PMID: 23850597 DOI: 10.1016/j.nlm.2013.07.002] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 12/25/2022]
Abstract
We focus on emerging roles for microglia in synaptic plasticity, cognition and disease. We outline evidence that ramified microglia, traditionally thought to be functionally "resting" (i.e. quiescent) in the normal brain, in fact are highly dynamic and plastic. Ramified microglia continually and rapidly extend processes, contact synapses in an activity and experience dependent manner, and play a functionally dynamic role in synaptic plasticity, possibly through release of cytokines and growth factors. Ramified microglial also contribute to structural plasticity through the elimination of synapses via phagocytic mechanisms, which is necessary for normal cognition. Microglia have numerous mechanisms to monitor neuronal activity and numerous mechanisms also exist to prevent them transitioning to an activated state, which involves retraction of their surveying processes. Based on the evidence, we suggest that maintaining the ramified state of microglia is essential for normal synaptic and structural plasticity that supports cognition. Further, we propose that change of their ramified morphology and function, as occurs in inflammation associated with numerous neurological disorders such as Alzheimer's and Parkinson's disease, disrupts their intricate and essential synaptic functions. In turn altered microglia function could cause synaptic dysfunction and excess synapse loss early in disease, initiating a range of pathologies that follow. We conclude that the future of learning and memory research depends on an understanding of the role of non-neuronal cells and that this should include using sophisticated molecular, cellular, physiological and behavioural approaches combined with imaging to causally link the role of microglia to brain function and disease including Alzheimer's and Parkinson's disease and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Gary P Morris
- Neurodegenerative Disorders, Garvan Institute of Medical Research, Neuroscience Department, Sydney, Australia; Faculty of Medicine, University of New South Wales, Sydney, Australia.
| | | | | | | |
Collapse
|
133
|
Venkatasubramanian G, Debnath M. The TRIPS (Toll-like receptors in immuno-inflammatory pathogenesis) Hypothesis: a novel postulate to understand schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2013; 44:301-11. [PMID: 23587629 DOI: 10.1016/j.pnpbp.2013.04.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/08/2013] [Accepted: 04/05/2013] [Indexed: 02/09/2023]
Abstract
Mounting evidence indicates that immune activation and/or immuno-inflammatory reactions during neurodevelopment apparently contribute to the pathogenesis and progression of schizophrenia. One of the important environmental factors that is known to trigger immune activation/inflammatory responses during early pregnancy is prenatal infection. Recent understanding from animal studies suggests that prenatal infection induced maternal immune activation (MIA)/inflammation in congruence with oxidative/nitrosative stress can lead to neurodevelopmental damage and behavioral abnormalities in the offspring. Although the underlying precise mechanistic processes of MIA/inflammation are yet to be completely elucidated, it is being increasingly recognized that Toll-like receptors (TLRs) that form the first line of defense against invading microorganisms could participate in the prenatal infection induced immune insults. Interestingly, some of the TLRs, especially TLR3 and TLR4 that modulate neurodevelopment, neuronal survival and neuronal plasticity by regulating the neuro-immune cross-talk in the developing and adult brain could also be affected by prenatal infection. Importantly, sustained activation of TLR3/TLR4 due to environmental factors including infection and stress has been found to generate excessive reactive oxygen species (ROS)/reactive nitrogen species (RNS) as well as pro-inflammatory mediators during embryogenesis, which result into neuronal damage by necrosis/apoptosis. In recent times, ROS/RNS and immuno-inflammatory mediators are being increasingly linked to progressive brain changes in schizophrenia. Although a significant role of TLR3/TLR4 in neurodegeneration is gaining certainty, their importance in establishing a causal link between prenatal infection and immuno-inflammatory, oxidative and nitrosative stress (IO&NS) responses and influence on adult presentation of schizophrenia is yet to be ascertained. We review here the current knowledge generated from the animal and human studies on the role of TLRs in schizophrenia and finally propose the "TRIPS Hypothesis" (Toll-like receptors in immuno-inflammatory pathogenesis) to elucidate the underlying mechanism(s) of TLR-mediated risk of schizophrenia. Considering the established role of TLR3 and TLR4 in antiviral and antibacterial responses respectively, we believe that in some cases of schizophrenia where IO&NS responses are evident, prenatal infection might lead to neuroprogressive changes in a TLR3/TLR4-dependent way.
Collapse
Affiliation(s)
- Ganesan Venkatasubramanian
- The Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore 560029, India
| | | |
Collapse
|
134
|
Garay PA, Hsiao EY, Patterson PH, McAllister AK. Maternal immune activation causes age- and region-specific changes in brain cytokines in offspring throughout development. Brain Behav Immun 2013; 31:54-68. [PMID: 22841693 PMCID: PMC3529133 DOI: 10.1016/j.bbi.2012.07.008] [Citation(s) in RCA: 272] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 07/17/2012] [Accepted: 07/18/2012] [Indexed: 01/16/2023] Open
Abstract
Maternal infection is a risk factor for autism spectrum disorder (ASD) and schizophrenia (SZ). Indeed, modeling this risk factor in mice through maternal immune activation (MIA) causes ASD- and SZ-like neuropathologies and behaviors in the offspring. Although MIA upregulates pro-inflammatory cytokines in the fetal brain, whether MIA leads to long-lasting changes in brain cytokines during postnatal development remains unknown. Here, we tested this possibility by measuring protein levels of 23 cytokines in the blood and three brain regions from offspring of poly(I:C)- and saline-injected mice at five postnatal ages using multiplex arrays. Most cytokines examined are present in sera and brains throughout development. MIA induces changes in the levels of many cytokines in the brains and sera of offspring in a region- and age-specific manner. These MIA-induced changes follow a few, unexpected and distinct patterns. In frontal and cingulate cortices, several, mostly pro-inflammatory, cytokines are elevated at birth, followed by decreases during periods of synaptogenesis and plasticity, and increases again in the adult. Cytokines are also altered in postnatal hippocampus, but in a pattern distinct from the other regions. The MIA-induced changes in brain cytokines do not correlate with changes in serum cytokines from the same animals. Finally, these MIA-induced cytokine changes are not accompanied by breaches in the blood-brain barrier, immune cell infiltration or increases in microglial density. Together, these data indicate that MIA leads to long-lasting, region-specific changes in brain cytokines in offspring-similar to those reported for ASD and SZ-that may alter CNS development and behavior.
Collapse
Affiliation(s)
- Paula A. Garay
- Center for Neuroscience, University of California Davis, Davis, CA 95618, USA
| | | | | | | |
Collapse
|
135
|
Lysenko O, Schulte D, Mittelbronn M, Steinle A. BACL is a novel brain-associated, non-NKC-encoded mammalian C-type lectin-like receptor of the CLEC2 family. PLoS One 2013; 8:e65345. [PMID: 23776472 PMCID: PMC3679072 DOI: 10.1371/journal.pone.0065345] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 04/20/2013] [Indexed: 11/24/2022] Open
Abstract
Natural Killer Gene Complex (NKC)–encoded C-type lectin-like receptors (CTLRs) are expressed on various immune cells including T cells, NK cells and myeloid cells and thereby contribute to the orchestration of cellular immune responses. Some NKC-encoded CTLRs are grouped into the C-type lectin family 2 (CLEC2 family) and interact with genetically linked CTLRs of the NKRP1 family. While many CLEC2 family members are expressed by hematopoietic cells (e.g. CD69 (CLEC2C)), others such as the keratinocyte-associated KACL (CLEC2A) are specifically expressed by other tissues. Here we provide the first characterization of the orphan gene CLEC2L. In contrast to other CLEC2 family members, CLEC2L is conserved among mammals and located outside of the NKC. We show that CLEC2L-encoded CTLRs are expressed as non-glycosylated, disulfide-linked homodimers at the cell surface. CLEC2L expression is fairly tissue-restricted with a predominant expression in the brain. Thus CLEC2L-encoded CTLRs were designated BACL (brain-associated C-type lectin). Combining in situ hybridization and immunohistochemistry, we show that BACL is expressed by neurons in the CNS, with a pronounced expression by Purkinje cells. Notably, the CLEC2L locus is adjacent to another orphan CTLR gene (KLRG2), but reporter cell assays did neither indicate interaction of BACL with the KLRG2 ectodomain nor with human NK cell lines or lymphocytes. Along these lines, growth of BACL-expressing tumor cell lines in immunocompetent mice did not provide evidence for an immune-related function of BACL. Altogether, the CLEC2L gene encodes a homodimeric cell surface CTLR that stands out among CLEC2 family members by its conservation in mammals, its biochemical properties and the predominant expression in the brain. Future studies will have to reveal insights into the functional relevance of BACL in the context of its neuronal expression.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Brain/metabolism
- Cell Line
- Flow Cytometry
- Humans
- Immunoblotting
- Immunohistochemistry
- Immunoprecipitation
- In Situ Hybridization
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Mice
- Mice, Inbred C57BL
- Receptors, NK Cell Lectin-Like/genetics
- Receptors, NK Cell Lectin-Like/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Olga Lysenko
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Dorothea Schulte
- Institute of Neurology (Edinger Institute), Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Michel Mittelbronn
- Institute of Neurology (Edinger Institute), Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
- * E-mail:
| |
Collapse
|
136
|
Zhang-James Y, Middleton FA, Faraone SV. Genetic architecture of Wistar-Kyoto rat and spontaneously hypertensive rat substrains from different sources. Physiol Genomics 2013; 45:528-38. [PMID: 23673728 DOI: 10.1152/physiolgenomics.00002.2013] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The spontaneously hypertensive rat (SHR) has been widely used as a model for studies of hypertension and attention deficit/hyperactivity disorder. The inbred Wistar-Kyoto (WKY) rat, derived from the same ancestral outbred Wistar rat as the SHR, are normotensive and have been used as the closest genetic control for the SHR, although the WKY has also been used as a model for depression. Notably, however, substantial behavioral and genetic differences among the WKY substrains, usually from the different vendors and breeders, have been observed. These differences have often been overlooked in prior studies, leading to inconsistent and even contradictory findings. The complicated breeding history of the SHR and WKY rats and the lack of a comprehensive understanding of the genetic background of different commercial substrains make the selection of control rats a daunting task, even for researchers who are mindful of their genetic heterogeneity. In this study, we examined the genetic relationship of 16 commonly used WKY and SHR rat substrains using genome-wide SNP genotyping data. Our results confirmed a large genetic divergence and complex relationships among the SHR and WKY substrains. This understanding, although incomplete without the genome sequence, provides useful guidance in selecting substrains and helps to interpret previous reports when the source of the animals was known. Moreover, we found two closely related, yet distinct WKY substrains that may provide novel opportunities in modeling psychiatric disorders.
Collapse
Affiliation(s)
- Yanli Zhang-James
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, New York, USA
| | | | | |
Collapse
|
137
|
Leslie JD, Mayor R. Complement in animal development: unexpected roles of a highly conserved pathway. Semin Immunol 2013; 25:39-46. [PMID: 23665279 PMCID: PMC3989114 DOI: 10.1016/j.smim.2013.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 04/13/2013] [Indexed: 12/16/2022]
Abstract
The complement pathway is most famous for its role in immunity, orchestrating an exquisitely refined system for immune surveillance. At its core lies a cascade of proteolytic events that ultimately serve to recognise microbes, infected cells or debris and target them for elimination. Mounting evidence has shown that a number of the proteolytic intermediaries in this cascade have, in themselves, other functions in the body, signalling through receptors to drive events that appear to be unrelated to immune surveillance. It seems, then, that the complement system not only functions as an immunological effector, but also has cell-cell signalling properties that are utilised by a number of non-immunological processes. In this review we examine a number of these processes in the context of animal development, all of which share a requirement for precise control of cell behaviour in time and space. As we will see, the scope of the complement system's function is indeed much greater than we might have imagined only a few years ago.
Collapse
Affiliation(s)
- Jonathan D Leslie
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | | |
Collapse
|
138
|
Bilbo SD. Frank A. Beach award: programming of neuroendocrine function by early-life experience: a critical role for the immune system. Horm Behav 2013; 63:684-91. [PMID: 23474365 PMCID: PMC3667966 DOI: 10.1016/j.yhbeh.2013.02.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 02/21/2013] [Accepted: 02/26/2013] [Indexed: 11/26/2022]
Abstract
Many neuropsychiatric disorders are associated with a strong dysregulation of the immune system, and several have a striking etiology in development as well. Our recent evidence using a rodent model of neonatal Escherichia coli infection has revealed novel insight into the mechanisms underlying cognitive deficits in adulthood, and suggests that the early-life immune history of an individual may be critical to understanding the relative risk of developing later-life mental health disorders in humans. A single neonatal infection programs the function of immune cells within the brain, called microglia, for the life of the rodent such that an adult immune challenge results in exaggerated cytokine production within the brain and associated cognitive deficits. I describe the important role of the immune system, notably microglia, during brain development, and discuss some of the many ways in which immune activation during early brain development can affect the later-life outcomes of neural function, immune function, and cognition.
Collapse
Affiliation(s)
- Staci D Bilbo
- Department of Psychology and Neuroscience, Duke Institute for Brain Sciences (DIBS), Duke University, Durham, NC 27708, USA.
| |
Collapse
|
139
|
The impact of placental malaria on neurodevelopment of exposed infants: a role for the complement system? Trends Parasitol 2013; 29:213-9. [DOI: 10.1016/j.pt.2013.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/08/2013] [Accepted: 03/11/2013] [Indexed: 01/01/2023]
|
140
|
Altered cytokine and BDNF levels in autism spectrum disorder. Neurotox Res 2013; 24:491-501. [PMID: 23604965 DOI: 10.1007/s12640-013-9393-4] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 04/09/2013] [Accepted: 04/10/2013] [Indexed: 01/08/2023]
Abstract
The contribution of neuroimmune functioning and brain-derived neurotrophic factor (BDNF) to functional dysregulation in autism spectrum disorder was assessed in 29 patients under treatment in two specialized centers of Basilicata (Chiaromonte and Matera), Southern Italy, through analysis of serum levels of cytokines and BDNF. Elevated levels of the pro-inflammatory cytokine, including interleukin-1, interleukin-6, interleukin-12, interleukin-23, tumor necrosis factor-α and BDNF were observed, regardless of age and gender. Comparisons were made with age- and gender-related healthy controls. The present findings reinforce current notions regarding immunoexcitotoxic mechanisms contributing to the pathophysiology of autistic disorder.
Collapse
|
141
|
Debnath M, Cannon DM, Venkatasubramanian G. Variation in the major histocompatibility complex [MHC] gene family in schizophrenia: associations and functional implications. Prog Neuropsychopharmacol Biol Psychiatry 2013; 42:49-62. [PMID: 22813842 DOI: 10.1016/j.pnpbp.2012.07.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 06/23/2012] [Accepted: 07/09/2012] [Indexed: 02/06/2023]
Abstract
Schizophrenia is a chronic debilitating neuropsychiatric disorder with a complex genetic contribution. Although multiple genetic, immunological and environmental factors are known to contribute to schizophrenia susceptibility, the underlying neurobiological mechanism(s) is yet to be established. The immune system dysfunction theory of schizophrenia is experiencing a period of renewal due to a growth in evidence implicating components of the immune system in brain function and human behavior. Current evidence indicates that certain immune molecules such as Major Histocompatibility Complex (MHC) and cytokines, the key regulators of immunity and inflammation are directly involved in the neurobiological processes related to neurodevelopment, neuronal plasticity, learning, memory and behavior. However, the strongest support in favor of the immune hypothesis has recently emerged from on-going genome wide association studies advocating MHC region variants as major determinants of one's risk for developing schizophrenia. Further identification of the interacting partners and receptors of MHC molecules in the brain and their role in down-stream signaling pathways of neurotransmission have implicated these molecules as potential schizophrenia risk factors. More recently, combined brain imaging and genetic studies have revealed a relationship between genetic variations within the MHC region and neuromorphometric changes during schizophrenia. Furthermore, MHC molecules play a significant role in the immune-infective and neurodevelopmental pathogenetic pathways, currently hypothesized to contribute to the pathophysiology of schizophrenia. Herein, we review the immunological, genetic and expression studies assessing the role of the MHC in conferring risk for developing schizophrenia, we summarize and discuss the possible mechanisms involved, making note of the challenges to, and future directions of, immunogenetic research in schizophrenia.
Collapse
Affiliation(s)
- Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore-560029, India.
| | | | | |
Collapse
|
142
|
Schwartzer JJ, Careaga M, Onore CE, Rushakoff JA, Berman RF, Ashwood P. Maternal immune activation and strain specific interactions in the development of autism-like behaviors in mice. Transl Psychiatry 2013; 3:e240. [PMID: 23481627 PMCID: PMC3625915 DOI: 10.1038/tp.2013.16] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
It is becoming increasingly apparent that the causes of autism spectrum disorders (ASD) are due to both genetic and environmental factors. Animal studies provide important translational models for elucidating specific genetic or environmental factors that contribute to ASD-related behavioral deficits. For example, mouse research has demonstrated a link between maternal immune activation and the expression of ASD-like behaviors. Although these studies have provided insights into the potential causes of ASD, they are limited in their ability to model the important interactions between genetic variability and environmental insults. This is of particular concern given the broad spectrum of severity observed in the human population, suggesting that subpopulations may be more susceptible to the adverse effects of particular environmental insults. It is hypothesized that the severity of effects of maternal immune activation on ASD-like phenotypes is influenced by the genetic background in mice. To test this, pregnant dams of two inbred strains (that is, C57BL/6J and BTBR T(+)tf/J) were exposed to the viral mimic polyinosinic-polycytidylic acid (polyI:C), and their offspring were tested for the presence and severity of ASD-like behaviors. To identify differences in immune system regulation, spleens were processed and measured for alterations in induced cytokine responses. Strain-treatment interactions were observed in social approach, ultrasonic vocalization, repetitive grooming and marble burying behaviors. Interestingly, persistent dysregulation of adaptive immune system function was only observed in BTBR mice. Data suggest that behavioral and immunological effects of maternal immune activation are strain-dependent in mice.
Collapse
Affiliation(s)
- J J Schwartzer
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA 95618, USA.
| | - M Careaga
- The M.I.N.D. Institute, University of California, Davis, CA, USA,Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
| | - C E Onore
- The M.I.N.D. Institute, University of California, Davis, CA, USA,Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
| | - J A Rushakoff
- Department of Neurological Surgery, University of California, Davis. One Shields Avenue, Davis, CA, USA
| | - R F Berman
- The M.I.N.D. Institute, University of California, Davis, CA, USA,Department of Neurological Surgery, University of California, Davis. One Shields Avenue, Davis, CA, USA
| | - P Ashwood
- The M.I.N.D. Institute, University of California, Davis, CA, USA,Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
| |
Collapse
|
143
|
Yim SV, Kim SK, Park HJ, Jeon HS, Jo BC, Kang WS, Lee SM, Kim JW, Chung JH. Assessment of the correlation between TIMP4 SNPs and schizophrenia and autism spectrum disorders. Mol Med Rep 2013; 7:489-94. [PMID: 23229788 DOI: 10.3892/mmr.2012.1221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 10/11/2012] [Indexed: 11/06/2022] Open
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) are involved in synaptic plasticity, neuronal cell differentiation and neuroprotection in the central nervous system. To investigate whether TIMP4 polymorphisms are associated with schizophrenia and autism spectrum disorders (ASDs), 480 patients (schizophrenia, n=287; ASDs, n=193) and 296 controls were enrolled. Clinical symptoms of schizophrenia and ASDs were assessed using the operation criteria checklist for psychotic illness (OPCRIT) and Childhood Autism Rating Scale (CARS), respectively. One promoter single nucleotide polymorphism (SNP; rs3755724, -55C/T) and one exonic SNP (rs17035945, 3'-untranslated region) were selected. SNPStats and SNPAnalyzer Pro programs were used to calculate odds ratios. Multiple logistic regression models were performed to analyze the genetic data. Based on the results, these two SNPs were not associated with schizophrenia and ASD. In the analysis of clinical features of schizophrenia, rs3755724 was nominally associated with schizophrenia with poor concentration (P=0.044 in the codominant2 model, P=0.041 in the log-additive model and P=0.043 in allele frequency). These results suggest that TIMP4 is not associated with the development of schizophrenia and ASD in the population studied.
Collapse
Affiliation(s)
- Sung-Vin Yim
- Department of Clinical Pharmacology, School of Medicine, Kyung Hee University, Seoul 130-702, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Debnath M, Mitra B, Bera NK, Chaudhuri TK, Zhang YP. Lack of association of IL-6 (−174 G>C) and TNF-α (−238 G>A) variants with paranoid schizophrenia in Indian Bengalee population. Cytokine 2013; 61:455-8. [DOI: 10.1016/j.cyto.2012.10.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 10/26/2012] [Accepted: 10/27/2012] [Indexed: 01/05/2023]
|
145
|
Abstract
Autism spectrum disorder (ASD) is a highly heterogeneous disorder diagnosed based on the presence and severity of core abnormalities in social communication and repetitive behavior, yet several studies converge on immune dysregulation as a feature of ASD. Widespread alterations in immune molecules and responses are seen in the brains and periphery of ASD individuals, and early life immune disruptions are associated with ASD. This chapter discusses immune-related environmental and genetic risk factors for ASD, emphasizing population-wide studies and animal research that reveal potential mechanistic pathways involved in the development of ASD-related symptoms. It further reviews immunologic pathologies seen in ASD individuals and how such abnormalities can impact neurodevelopment and behavior. Finally, it evaluates emerging evidence for an immune contribution to the pathogenesis of ASD and a potential role for immunomodulatory effects in current treatments for ASD.
Collapse
Affiliation(s)
- Elaine Y Hsiao
- Division of Biology and Biological Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA.
| |
Collapse
|
146
|
Chacon MA, Boulanger LM. MHC class I protein is expressed by neurons and neural progenitors in mid-gestation mouse brain. Mol Cell Neurosci 2012; 52:117-27. [PMID: 23147111 DOI: 10.1016/j.mcn.2012.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 10/09/2012] [Accepted: 11/02/2012] [Indexed: 02/04/2023] Open
Abstract
Proteins of the major histocompatibility complex class I (MHCI) are known for their role in the vertebrate adaptive immune response, and are required for normal postnatal brain development and plasticity. However, it remains unknown if MHCI proteins are present in the mammalian brain before birth. Here, we show that MHCI proteins are widely expressed in the developing mouse central nervous system at mid-gestation (E9.5-10.5). MHCI is strongly expressed in several regions of the prenatal brain, including the neuroepithelium and olfactory placode. MHCI is expressed by neural progenitors at these ages, as identified by co-expression in cells positive for neuron-specific class III β-tubulin (Tuj1) or for Pax6, a marker of neural progenitors in the dorsal neuroepithelium. MHCI is also co-expressed with nestin, a marker of neural stem/progenitor cells, in olfactory placode, but the co-localization is less extensive in other regions. MHCI is detected in the small population of post-mitotic neurons that are present at this early stage of brain development, as identified by co-expression in cells positive for neuronal microtubule-associated protein-2 (MAP2). Thus MHCI protein is expressed during the earliest stages of neuronal differentiation in the mammalian brain. MHCI expression in neurons and neural progenitors at mid-gestation, prior to the maturation of the adaptive immune system, is consistent with MHCI performing non-immune functions in prenatal brain development. These results raise the possibility that disruption of the levels and/or patterns of MHCI expression in the prenatal brain could contribute to the pathogenesis of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Marcelo A Chacon
- Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, 123 Lewis Thomas Laboratories, Washington Road, Princeton, NJ 08544, USA
| | | |
Collapse
|
147
|
Role of IL-6 in the etiology of hyperexcitable neuropsychiatric conditions: experimental evidence and therapeutic implications. Future Med Chem 2012. [DOI: 10.4155/fmc.12.156] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Many neuropsychiatric conditions are primed or triggered by different types of stressors. The mechanisms through which stress induces neuropsychiatric disease are complex and incompletely understood. A ‘double hit’ hypothesis of neuropsychiatric disease postulates that stress induces maladaptive behavior in two phases separated by a dormant period. Recent research shows that the pleiotropic cytokine IL-6 is released centrally and peripherally following physical and psychological stress. In this article, we analyze evidence from clinics and animal models suggesting that stress-induced elevation in the levels of IL-6 may play a key role in the etiology of a heterogeneous family of hyperexcitable central conditions including epilepsy, schizophrenic psychoses, anxiety and disorders of the autistic spectrum. The cellular mechanism leading to hyperexcitable conditions might be a decrease in inhibitory/excitatory synaptic balance in either or both temporal phases of the conditions. Following these observations, we discuss how they may have important implications for optimal prophylactic and therapeutic pharmacological treatment.
Collapse
|
148
|
Needleman LA, McAllister AK. The major histocompatibility complex and autism spectrum disorder. Dev Neurobiol 2012; 72:1288-301. [PMID: 22760919 PMCID: PMC4365477 DOI: 10.1002/dneu.22046] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 06/22/2012] [Indexed: 01/02/2023]
Abstract
Autism spectrum disorder (ASD) is a complex disorder that appears to be caused by interactions between genetic changes and environmental insults during early development. A wide range of factors have been linked to the onset of ASD, but recently both genetic associations and environmental factors point to a central role for immune-related genes and immune responses to environmental stimuli. Specifically, many of the proteins encoded by the major histocompatibility complex (MHC) play a vital role in the formation, refinement, maintenance, and plasticity of the brain. Manipulations of levels of MHC molecules have illustrated how disrupted MHC signaling can significantly alter brain connectivity and function. Thus, an emerging hypothesis in our field is that disruptions in MHC expression in the developing brain caused by mutations and/or immune dysregulation may contribute to the altered brain connectivity and function characteristic of ASD. This review provides an overview of the structure and function of the three classes of MHC molecules in the immune system, healthy brain, and their possible involvement in ASD.
Collapse
|
149
|
McAllister AK, Patterson PH. Introduction to special issue on neuroimmunology in brain development and disease. Dev Neurobiol 2012; 72:1269-71. [PMID: 22927111 DOI: 10.1002/dneu.22054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 11/12/2022]
|
150
|
Elmer BM, McAllister AK. Major histocompatibility complex class I proteins in brain development and plasticity. Trends Neurosci 2012; 35:660-70. [PMID: 22939644 DOI: 10.1016/j.tins.2012.08.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 06/27/2012] [Accepted: 08/03/2012] [Indexed: 10/28/2022]
Abstract
Proper development of the central nervous system (CNS) requires the establishment of appropriate connections between neurons. Recent work suggests that this process is controlled by a balance between synaptogenic molecules and proteins that negatively regulate synapse formation and plasticity. Surprisingly, many of these newly identified synapse-limiting molecules are classic 'immune' proteins. In particular, major histocompatibility complex class I (MHCI) molecules regulate neurite outgrowth, the establishment and function of cortical connections, activity-dependent refinement in the visual system, and long-term and homeostatic plasticity. This review summarizes our current understanding of MHCI expression and function in the CNS, as well as the potential mechanisms used by MHCI to regulate brain development and plasticity.
Collapse
Affiliation(s)
- Bradford M Elmer
- Center for Neuroscience, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | | |
Collapse
|