101
|
Hoang VT, Matossian MD, Ucar DA, Elliott S, La J, Wright MK, Burks HE, Perles A, Hossain F, King CT, Browning VE, Bursavich J, Fang F, Del Valle L, Bhatt AB, Cavanaugh JE, Flaherty PT, Anbalagan M, Rowan BG, Bratton MR, Nephew KP, Miele L, Collins-Burow BM, Martin EC, Burow ME. ERK5 Is Required for Tumor Growth and Maintenance Through Regulation of the Extracellular Matrix in Triple Negative Breast Cancer. Front Oncol 2020; 10:1164. [PMID: 32850332 PMCID: PMC7416559 DOI: 10.3389/fonc.2020.01164] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 06/09/2020] [Indexed: 12/16/2022] Open
Abstract
Conventional mitogen-activated protein kinase (MAPK) family members regulate diverse cellular processes involved in tumor initiation and progression, yet the role of ERK5 in cancer biology is not fully understood. Triple-negative breast cancer (TNBC) presents a clinical challenge due to the aggressive nature of the disease and a lack of targeted therapies. ERK5 signaling contributes to drug resistance and metastatic progression through distinct mechanisms, including activation of epithelial-to-mesenchymal transition (EMT). More recently a role for ERK5 in regulation of the extracellular matrix (ECM) has been proposed, and here we investigated the necessity of ERK5 in TNBC tumor formation. Depletion of ERK5 expression using the CRISPR/Cas9 system in MDA-MB-231 and Hs-578T cells resulted in loss of mesenchymal features, as observed through gene expression profile and cell morphology, and suppressed TNBC cell migration. In vivo xenograft experiments revealed ERK5 knockout disrupted tumor growth kinetics, which was restored using high concentration Matrigel™ and ERK5-ko reduced expression of the angiogenesis marker CD31. These findings implicated a role for ERK5 in the extracellular matrix (ECM) and matrix integrity. RNA-sequencing analyses demonstrated downregulation of matrix-associated genes, integrins, and pro-angiogenic factors in ERK5-ko cells. Tissue decellularization combined with cryo-SEM and interrogation of biomechanical properties revealed that ERK5-ko resulted in loss of key ECM fiber alignment and mechanosensing capabilities in breast cancer xenografts compared to parental wild-type cells. In this study, we identified a novel role for ERK5 in tumor growth kinetics through modulation of the ECM and angiogenesis axis in breast cancer.
Collapse
Affiliation(s)
- Van T. Hoang
- Section of Hematology & Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Margarite D. Matossian
- Section of Hematology & Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Deniz A. Ucar
- Department of Genetics, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Steven Elliott
- Section of Hematology & Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Jacqueline La
- Section of Hematology & Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Maryl K. Wright
- Section of Hematology & Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Hope E. Burks
- Section of Hematology & Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Aaron Perles
- Section of Hematology & Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Fokhrul Hossain
- Department of Genetics, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Connor T. King
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Valentino E. Browning
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Jacob Bursavich
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Fang Fang
- Medical Sciences, School of Medicine, Indiana University Bloomington, Bloomington, IN, United States
| | - Luis Del Valle
- Department of Pathology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Akshita B. Bhatt
- Department of Pharmacology, School of Pharmacy, Duquesne University, Pittsburgh, PA, United States
| | - Jane E. Cavanaugh
- Department of Pharmacology, School of Pharmacy, Duquesne University, Pittsburgh, PA, United States
| | - Patrick T. Flaherty
- Department of Medicinal Chemistry, School of Pharmacy, Duquesne University, Pittsburgh, PA, United States
| | - Muralidharan Anbalagan
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Brian G. Rowan
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Melyssa R. Bratton
- Cellular and Molecular Biology Core, Xavier University, New Orleans, LA, United States
| | - Kenneth P. Nephew
- Medical Sciences, School of Medicine, Indiana University Bloomington, Bloomington, IN, United States
| | - Lucio Miele
- Department of Genetics, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Bridgette M. Collins-Burow
- Section of Hematology & Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane Cancer Center, New Orleans, LA, United States
| | - Elizabeth C. Martin
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Matthew E. Burow
- Section of Hematology & Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
102
|
Atherosclerotic Pre-Conditioning Affects the Paracrine Role of Circulating Angiogenic Cells Ex-Vivo. Int J Mol Sci 2020; 21:ijms21155256. [PMID: 32722151 PMCID: PMC7432497 DOI: 10.3390/ijms21155256] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
In atherosclerosis, circulating angiogenic cells (CAC), also known as early endothelial progenitor cells (eEPC), are thought to participate mainly in a paracrine fashion by promoting the recruitment of other cell populations such as late EPC, or endothelial colony-forming cells (ECFC), to the injured areas. There, ECFC replace the damaged endothelium, promoting neovascularization. However, despite their regenerative role, the number and function of EPC are severely affected under pathological conditions, being essential to further understand how these cells react to such environments in order to implement their use in regenerative cell therapies. Herein, we evaluated the effect of direct incubation ex vivo of healthy CAC with the secretome of atherosclerotic arteries. By using a quantitative proteomics approach, 194 altered proteins were identified in the secretome of pre-conditioned CAC, many of them related to inhibition of angiogenesis (e.g., endostatin, thrombospondin-1, fibulins) and cell migration. Functional assays corroborated that healthy CAC released factors enhanced ECFC angiogenesis, but, after atherosclerotic pre-conditioning, the secretome of pre-stimulated CAC negatively affected ECFC migration, as well as their ability to form tubules on a basement membrane matrix assay. Overall, we have shown here, for the first time, the effect of atherosclerotic factors over the paracrine role of CAC ex vivo. The increased release of angiogenic inhibitors by CAC in response to atherosclerotic factors induced an angiogenic switch, by blocking ECFC ability to form tubules in response to pre-conditioned CAC. Thus, we confirmed here that the angiogenic role of CAC is highly affected by the atherosclerotic environment.
Collapse
|
103
|
De Pieri A, Rana S, Korntner S, Zeugolis DI. Seaweed polysaccharides as macromolecular crowding agents. Int J Biol Macromol 2020; 164:434-446. [PMID: 32679331 DOI: 10.1016/j.ijbiomac.2020.07.087] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
Abstract
Development of mesenchymal stem cell-based tissue engineered implantable devices requires prolonged in vitro culture for the development of a three-dimensional implantable device, which leads to phenotypic drift, thus hindering the clinical translation and commercialisation of such approaches. Macromolecular crowding, a biophysical phenomenon based on the principles of excluded-volume effect, dramatically accelerates and increases extracellular matrix deposition during in vitro culture. However, the optimal macromolecular crowder is still elusive. Herein, we evaluated the biophysical properties of various concentrations of different seaweed in origin sulphated polysaccharides and their effect on human adipose derived stem cell cultures. Carrageenan, possibly due to its high sulphation degree, exhibited the highest negative charge values. No correlation was observed between the different concentrations of the crowders and charge, polydispersity index, hydrodynamic radius and fraction volume occupancy across all crowders. None of the crowders, but arabinogalactan, negatively affected cell viability. Carrageenan, fucoidan, galactofucan and ulvan increased extracellular matrix (especially collagen type I and collagen type V) deposition. Carrageenan induced the highest osteogenic effect and galactofucan and fucoidan demonstrated the highest chondrogenic effect. All crowders were relatively ineffective with respect to adipogenesis. Our data highlight the potential of sulphated seaweed polysaccharides for tissue engineering purposes.
Collapse
Affiliation(s)
- Andrea De Pieri
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Proxy Biomedical Ltd., Coilleach, Spiddal, Galway, Ireland
| | - Shubhasmin Rana
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Stefanie Korntner
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.
| |
Collapse
|
104
|
Linville RM, Arevalo D, Maressa JC, Zhao N, Searson PC. Three-dimensional induced pluripotent stem-cell models of human brain angiogenesis. Microvasc Res 2020; 132:104042. [PMID: 32673611 DOI: 10.1016/j.mvr.2020.104042] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022]
Abstract
During brain development, chemical cues released by developing neurons, cellular signaling with pericytes, and mechanical cues within the brain extracellular matrix (ECM) promote angiogenesis of brain microvascular endothelial cells (BMECs). Angiogenesis is also associated with diseases of the brain due to pathological chemical, cellular, and mechanical signaling. Existing in vitro and in vivo models of brain angiogenesis have key limitations. Here, we develop a high-throughput in vitro blood-brain barrier (BBB) bead assay of brain angiogenesis utilizing 150 μm diameter beads coated with induced pluripotent stem-cell (iPSC)-derived human BMECs (dhBMECs). After embedding the beads within a 3D matrix, we introduce various chemical cues and extracellular matrix components to explore their effects on angiogenic behavior. Based on the results from the bead assay, we generate a multi-scale model of the human cerebrovasculature within perfusable three-dimensional tissue-engineered blood-brain barrier microvessels. A sprouting phenotype is optimized in confluent monolayers of dhBMECs using chemical treatment with vascular endothelial growth factor (VEGF) and wnt ligands, and the inclusion of pro-angiogenic ECM components. As a proof-of-principle that the bead angiogenesis assay can be applied to study pathological angiogenesis, we show that oxidative stress can exert concentration-dependent effects on angiogenesis. Finally, we demonstrate the formation of a hierarchical microvascular model of the human blood-brain barrier displaying key structural hallmarks. We develop two in vitro models of brain angiogenesis: the BBB bead assay and the tissue-engineered BBB microvessel model. These platforms provide a tool kit for studies of physiological and pathological brain angiogenesis, with key advantages over existing two-dimensional models.
Collapse
Affiliation(s)
- Raleigh M Linville
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States of America; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - Diego Arevalo
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States of America; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - Joanna C Maressa
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States of America; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - Nan Zhao
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States of America
| | - Peter C Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States of America; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, United States of America.
| |
Collapse
|
105
|
Reinhard J, Wagner N, Krämer MM, Jarocki M, Joachim SC, Dick HB, Faissner A, Kakkassery V. Expression Changes and Impact of the Extracellular Matrix on Etoposide Resistant Human Retinoblastoma Cell Lines. Int J Mol Sci 2020; 21:ijms21124322. [PMID: 32560557 PMCID: PMC7352646 DOI: 10.3390/ijms21124322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022] Open
Abstract
Retinoblastoma (RB) represents the most common malignant childhood eye tumor worldwide. Several studies indicate that the extracellular matrix (ECM) plays a crucial role in tumor growth and metastasis. Moreover, recent studies indicate that the ECM composition might influence the development of resistance to chemotherapy drugs. The objective of this study was to evaluate possible expression differences in the ECM compartment of the parental human cell lines WERI-RB1 (retinoblastoma 1) and Y79 and their Etoposide resistant subclones via polymerase chain reaction (PCR). Western blot analyses were performed to analyze protein levels. To explore the influence of ECM molecules on RB cell proliferation, death, and cluster formation, WERI-RB1 and resistant WERI-ETOR cells were cultivated on Fibronectin, Laminin, Tenascin-C, and Collagen IV and analyzed via time-lapse video microscopy as well as immunocytochemistry. We revealed a significantly reduced mRNA expression of the proteoglycans Brevican, Neurocan, and Versican in resistant WERI-ETOR compared to sensitive WERI-RB1 cells. Also, for the glycoproteins α1-Laminin, Fibronectin, Tenascin-C, and Tenascin-R as well as Collagen IV, reduced expression levels were observed in WERI-ETOR. Furthermore, a downregulation was detected for the matrix metalloproteinases MMP2, MMP7, MMP9, the tissue-inhibitor of metalloproteinase TIMP2, the Integrin receptor subunits ITGA4, ITGA5 and ITGB1, and all receptor protein tyrosine phosphatase β/ζ isoforms. Downregulation of Brevican, Collagen IV, Tenascin-R, MMP2, TIMP2, and ITGA5 was also verified in Etoposide resistant Y79 cells compared to sensitive ones. Protein levels of Tenascin-C and MMP-2 were comparable in both WERI cell lines. Interestingly, Fibronectin displayed an apoptosis-inducing effect on WERI-RB1 cells, whereas an anti-apoptotic influence was observed for Tenascin-C. Conversely, proliferation of WERI-ETOR cells was enhanced on Tenascin-C, while an anti-proliferative effect was observed on Fibronectin. In WERI-ETOR, cluster formation was decreased on the substrates Collagen IV, Fibronectin, and Tenascin-C. Collectively, we noted a different ECM mRNA expression and behavior of Etoposide resistant compared to sensitive RB cells. These findings may indicate a key role of ECM components in chemotherapy resistance formation of RB.
Collapse
Affiliation(s)
- Jacqueline Reinhard
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany; (N.W.); (M.M.K.); (M.J.); (A.F.)
- Correspondence: (J.R.); (V.K.); Tel.: +49-234-32-24-314 (J.R.); +49-451-500-43911 (V.K.); Fax: +49-234-32-143-13 (J.R.); +49-451-500-43914 (V.K.)
| | - Natalie Wagner
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany; (N.W.); (M.M.K.); (M.J.); (A.F.)
| | - Miriam M. Krämer
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany; (N.W.); (M.M.K.); (M.J.); (A.F.)
| | - Marvin Jarocki
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany; (N.W.); (M.M.K.); (M.J.); (A.F.)
| | - Stephanie C. Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany; (S.C.J.); (H.B.D.)
| | - H. Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany; (S.C.J.); (H.B.D.)
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany; (N.W.); (M.M.K.); (M.J.); (A.F.)
| | - Vinodh Kakkassery
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany; (S.C.J.); (H.B.D.)
- Department of Ophthalmology, University of Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany
- Correspondence: (J.R.); (V.K.); Tel.: +49-234-32-24-314 (J.R.); +49-451-500-43911 (V.K.); Fax: +49-234-32-143-13 (J.R.); +49-451-500-43914 (V.K.)
| |
Collapse
|
106
|
Andreuzzi E, Capuano A, Poletto E, Pivetta E, Fejza A, Favero A, Doliana R, Cannizzaro R, Spessotto P, Mongiat M. Role of Extracellular Matrix in Gastrointestinal Cancer-Associated Angiogenesis. Int J Mol Sci 2020; 21:E3686. [PMID: 32456248 PMCID: PMC7279269 DOI: 10.3390/ijms21103686] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal tumors are responsible for more cancer-related fatalities than any other type of tumors, and colorectal and gastric malignancies account for a large part of these diseases. Thus, there is an urgent need to develop new therapeutic approaches to improve the patients' outcome and the tumor microenvironment is a promising arena for the development of such treatments. In fact, the nature of the microenvironment in the different gastrointestinal tracts may significantly influence not only tumor development but also the therapy response. In particular, an important microenvironmental component and a potential therapeutic target is the vasculature. In this context, the extracellular matrix is a key component exerting an active effect in all the hallmarks of cancer, including angiogenesis. Here, we summarized the current knowledge on the role of extracellular matrix in affecting endothelial cell function and intratumoral vascularization in the context of colorectal and gastric cancer. The extracellular matrix acts both directly on endothelial cells and indirectly through its remodeling and the consequent release of growth factors. We envision that a deeper understanding of the role of extracellular matrix and of its remodeling during cancer progression is of chief importance for the development of new, more efficacious, targeted therapies.
Collapse
Affiliation(s)
- Eva Andreuzzi
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Alessandra Capuano
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Eliana Pivetta
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Albina Fejza
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Andrea Favero
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Roberto Doliana
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Renato Cannizzaro
- Department of Clinical Oncology, Experimental Gastrointestinal Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy;
| | - Paola Spessotto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| |
Collapse
|
107
|
Abbaszadegan MR, Mojarrad M, Moghbeli M. Role of extra cellular proteins in gastric cancer progression and metastasis: an update. Genes Environ 2020; 42:18. [PMID: 32467737 PMCID: PMC7227337 DOI: 10.1186/s41021-020-00157-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Background Gastric cancer (GC) is one of the most common cancers in the world with a high ratio of mortality. Regarding the late diagnosis, there is a high ratio of distant metastasis among GC cases. Despite the recent progresses in therapeutic modalities, there is not still an efficient therapeutic method to increase survival rate of metastatic GC cases. Main body Apart from the various intracellular signaling pathways which are involved in tumor cell migration and metastasis, the local microenvironment is also a critical regulator of tumor cell migration. Indeed, the intracellular signaling pathways also exert their final metastatic roles through regulation of extra cellular matrix (ECM). Therefore, it is required to assess the role of extra cellular components in biology of GC. Conclusion In the present review, we summarize 48 of the significant ECM components including 17 ECM modifying enzymes, seven extracellular angiogenic factors, 13 cell adhesion and cytoskeletal organizers, seven matricellular proteins and growth factors, and four proteoglycans and extra cellular glycoproteins. This review paves the way of determination of a specific extra cellular diagnostic and prognostic panel marker for the GC patients.
Collapse
Affiliation(s)
| | - Majid Mojarrad
- 2Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- 2Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
108
|
Pellicani R, Poletto E, Andreuzzi E, Paulitti A, Doliana R, Bizzotto D, Braghetta P, Colladel R, Tarticchio G, Sabatelli P, Bucciotti F, Bressan G, Iozzo RV, Colombatti A, Bonaldo P, Mongiat M. Multimerin-2 maintains vascular stability and permeability. Matrix Biol 2020; 87:11-25. [DOI: 10.1016/j.matbio.2019.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/12/2022]
|
109
|
Unterleuthner D, Neuhold P, Schwarz K, Janker L, Neuditschko B, Nivarthi H, Crncec I, Kramer N, Unger C, Hengstschläger M, Eferl R, Moriggl R, Sommergruber W, Gerner C, Dolznig H. Cancer-associated fibroblast-derived WNT2 increases tumor angiogenesis in colon cancer. Angiogenesis 2020; 23:159-177. [PMID: 31667643 PMCID: PMC7160098 DOI: 10.1007/s10456-019-09688-8] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/26/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022]
Abstract
WNT2 acts as a pro-angiogenic factor in placental vascularization and increases angiogenesis in liver sinusoidal endothelial cells (ECs) and other ECs. Increased WNT2 expression is detectable in many carcinomas and participates in tumor progression. In human colorectal cancer (CRC), WNT2 is selectively elevated in cancer-associated fibroblasts (CAFs), leading to increased invasion and metastasis. However, if there is a role for WNT2 in colon cancer, angiogenesis was not addressed so far. We demonstrate that WNT2 enhances EC migration/invasion, while it induces canonical WNT signaling in a small subset of cells. Knockdown of WNT2 in CAFs significantly reduced angiogenesis in a physiologically relevant assay, which allows precise assessment of key angiogenic properties. In line with these results, expression of WNT2 in otherwise WNT2-devoid skin fibroblasts led to increased angiogenesis. In CRC xenografts, WNT2 overexpression resulted in enhanced vessel density and tumor volume. Moreover, WNT2 expression correlates with vessel markers in human CRC. Secretome profiling of CAFs by mass spectrometry and cytokine arrays revealed that proteins associated with pro-angiogenic functions are elevated by WNT2. These included extracellular matrix molecules, ANG-2, IL-6, G-CSF, and PGF. The latter three increased angiogenesis. Thus, stromal-derived WNT2 elevates angiogenesis in CRC by shifting the balance towards pro-angiogenic signals.
Collapse
Affiliation(s)
- Daniela Unterleuthner
- Institute of Medical Genetics, Medical University of Vienna, Währinger Straße 10, 1090, Vienna, Austria
| | - Patrick Neuhold
- Institute of Medical Genetics, Medical University of Vienna, Währinger Straße 10, 1090, Vienna, Austria
| | - Katharina Schwarz
- Institute of Medical Genetics, Medical University of Vienna, Währinger Straße 10, 1090, Vienna, Austria
| | - Lukas Janker
- Institute of Analytical Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Benjamin Neuditschko
- Institute of Analytical Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Harini Nivarthi
- Ludwig Boltzmann Institute for Cancer Research, Währinger Straße 13a, 1090, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Ilija Crncec
- Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8, 1090, Vienna, Austria
- Servier Pharma, Tuškanova 37, 10 000, Zagreb, Croatia
| | - Nina Kramer
- Institute of Medical Genetics, Medical University of Vienna, Währinger Straße 10, 1090, Vienna, Austria
- Department for Companion Animals and Horses, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Christine Unger
- Institute of Medical Genetics, Medical University of Vienna, Währinger Straße 10, 1090, Vienna, Austria
| | - Markus Hengstschläger
- Institute of Medical Genetics, Medical University of Vienna, Währinger Straße 10, 1090, Vienna, Austria
| | - Robert Eferl
- Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8, 1090, Vienna, Austria
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research, Währinger Straße 13a, 1090, Vienna, Austria
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Wolfgang Sommergruber
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, 1130, Vienna, Austria
- Biotechnology, University of Applied Sciences, FH Campus Wien, Helmut- Qualtinger-Gasse 2, 1030, Vienna, Austria
| | - Christopher Gerner
- Institute of Analytical Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Helmut Dolznig
- Institute of Medical Genetics, Medical University of Vienna, Währinger Straße 10, 1090, Vienna, Austria.
| |
Collapse
|
110
|
Extracellular matrix: the gatekeeper of tumor angiogenesis. Biochem Soc Trans 2020; 47:1543-1555. [PMID: 31652436 DOI: 10.1042/bst20190653] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/22/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022]
Abstract
The extracellular matrix is a network of secreted macromolecules that provides a harmonious meshwork for the growth and homeostatic development of organisms. It conveys multiple signaling cascades affecting specific surface receptors that impact cell behavior. During cancer growth, this bioactive meshwork is remodeled and enriched in newly formed blood vessels, which provide nutrients and oxygen to the growing tumor cells. Remodeling of the tumor microenvironment leads to the formation of bioactive fragments that may have a distinct function from their parent molecules, and the balance among these factors directly influence cell viability and metastatic progression. Indeed, the matrix acts as a gatekeeper by regulating the access of cancer cells to nutrients. Here, we will critically evaluate the role of selected matrix constituents in regulating tumor angiogenesis and provide up-to-date information concerning their primary mechanisms of action.
Collapse
|
111
|
Finnell JG, Tsang TM, Cryan L, Garrard S, Lee SL, Ackroyd PC, Rogers MS, Christensen KA. A Canstatin-Derived Peptide Provides Insight into the Role of Capillary Morphogenesis Gene 2 in Angiogenic Regulation and Matrix Uptake. ACS Chem Biol 2020; 15:587-596. [PMID: 32003961 DOI: 10.1021/acschembio.0c00064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Capillary Morphogenesis Gene 2 protein (CMG2) is a transmembrane, integrin-like receptor and the primary receptor for the anthrax toxin. CMG2 also plays a role in angiogenic processes. However, the molecular mechanism that mediates the observed CMG2-related angiogenic effects is not fully elucidated. Previous studies have reported that CMG2 binds type IV collagen (Col-IV), a vital component of the vascular basement membrane, as well as other ECM proteins. Here, we further characterize the interaction between CMG2 and individual peptides from Col-IV and explore the effects of this interaction on angiogenesis. Using a peptide array, we observed that CMG2 preferentially binds peptide fragments of the NC1 (noncollagenous domain 1) domains of Col-IV. These domains are also known as the fragments arresten (from the α1 chain) and canstatin (from the α2 chain) and have documented antiangiogenic properties. A second peptide array was probed to map a putative peptide-binding epitope onto the Col-IV structure. A top hit from the initial array, a canstatin-derived peptide, binds to the CMG2 ligand-binding von Willebrand factor A (vWA) domain with a submicromolar affinity (peptide S16, Kd = 400 ± 200 nM). This peptide competes with anthrax protective antigen (PA) for CMG2 binding and does not bind CMG2 in the presence of EDTA. Together these data suggest that, like PA, S16 interacts with CMG2 at the metal-ion dependent adhesion site (MIDAS) of its vWA domain. CMG2 specifically mediates endocytic uptake of S16; both CMG2-/- endothelial cells and WT cells treated with PA show markedly reduced S16 uptake. Furthermore, S16 dramatically reduces directional endothelial cell migration with no impact on cell proliferation. These data demonstrate that this canstatin-derived peptide acts via CMG2 to elicit a marked effect on a critical process required for angiogenesis.
Collapse
Affiliation(s)
- Jordan G. Finnell
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Tsz-Ming Tsang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Lorna Cryan
- Vascular Biology Program, Boston Children’s Hospital, Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Samuel Garrard
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Sai-Lun Lee
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - P. Christine Ackroyd
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Michael S. Rogers
- Vascular Biology Program, Boston Children’s Hospital, Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Kenneth A. Christensen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
112
|
Ai X, Pellegrini M, Freeman JW. The Use of Alginate to Inhibit Mineralization for Eventual Vascular Development. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020. [DOI: 10.1007/s40883-019-00104-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
113
|
Andreuzzi E, Fejza A, Capuano A, Poletto E, Pivetta E, Doliana R, Pellicani R, Favero A, Maiero S, Fornasarig M, Cannizzaro R, Iozzo RV, Spessotto P, Mongiat M. Deregulated expression of Elastin Microfibril Interfacer 2 (EMILIN2) in gastric cancer affects tumor growth and angiogenesis. Matrix Biol Plus 2020; 6-7:100029. [PMID: 33543026 PMCID: PMC7852313 DOI: 10.1016/j.mbplus.2020.100029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is a frequent human tumor and often a lethal disease. Targeted therapy for gastric carcinomas is far behind vis-à-vis other solid tumors, primarily because of the paucity of cancer-driving mutations that could be efficiently and specifically targeted by current therapy. Thus, there is a need to discover actionable pathways/proteins and new diagnostic and prognostic biomarkers. In this study, we explored the role of the extracellular matrix glycoprotein EMILIN2, Elastin Microfibril Interfacer 2, in a cohort of gastric cancer patients. We discovered that EMILIN2 expression was consistently suppressed in gastric cancer and high expression levels of this glycoprotein were linked to abnormal vascular density. Furthermore, we found that EMILIN2 had a dual effect on gastric carcinoma cells: on one hand, it decreased tumor cell proliferation by triggering apoptosis, and on the other hand, it evoked the production of a number of cytokines involved in angiogenesis and inflammation, such as IL-8. Collectively, our findings posit EMILIN2 as an important onco-regulator exerting pleiotropic effects on the gastric cancer microenvironment. EMILIN2 is localized in the gastric lamina propria and its expression is down-regulated in gastric cancer. High levels of EMILIN2 associate with elevated vascular density. EMILIN2 impairs the proliferation of gastric cancer cells by evoking apoptosis. Surprisingly, EMILIN2 triggers the expression of pro-angiogenic and pro-inflammatory cytokines.
Collapse
Key Words
- 5-FU, 5-fluorouracil
- Angiogenesis
- CAFCA, Centrifugal Assay for Fluorescence-based Cell Adhesion
- CD31, cluster of differentiation 31 also known as PECAM-1
- ECM, extracellular matrix
- EGFR, epidermalgrowth factor receptor
- EMILIN 2, Elastin Microfibril Interfacer 2
- Extracellular matrix
- GC, gastric cancer
- Gastric cancer
- HER2, human epidermal growth factor receptor 2
- IGFBP2, insulin growth factor-binding protein 2
- Inflammation
- PFS, progression free survival
- Serpin 1, serine protease inhibitor 1
- Tumor microenvironment
- VEGFA, vascular endothelial growth factor A
Collapse
Affiliation(s)
- Eva Andreuzzi
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Albina Fejza
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Alessandra Capuano
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Eliana Pivetta
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Roberto Doliana
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Rosanna Pellicani
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Andrea Favero
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Stefania Maiero
- Department of Clinical Oncology, Experimental Gastrointestinal, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Mara Fornasarig
- Department of Clinical Oncology, Experimental Gastrointestinal, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Renato Cannizzaro
- Department of Clinical Oncology, Experimental Gastrointestinal, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Paola Spessotto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| |
Collapse
|
114
|
Recapitulating the Vasculature Using Organ-On-Chip Technology. Bioengineering (Basel) 2020; 7:bioengineering7010017. [PMID: 32085464 PMCID: PMC7175276 DOI: 10.3390/bioengineering7010017] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 12/23/2022] Open
Abstract
The development of Vasculature-on-Chip has progressed rapidly over the last decade and recently, a wealth of fabrication possibilities has emerged that can be used for engineering vessels on a chip. All these fabrication methods have their own advantages and disadvantages but, more importantly, the capability of recapitulating the in vivo vasculature differs greatly between them. The first part of this review discusses the biological background of the in vivo vasculature and all the associated processes. We then evaluate the biological relevance of different fabrication methods proposed for Vasculature-on-Chip, we indicate their possibilities and limitations, and we assess which fabrication methods are capable of recapitulating the intrinsic complexity of the vasculature. This review illustrates the complexity involved in developing in vitro vasculature and provides an overview of fabrication methods for Vasculature-on-Chip in relation to the biological relevance of such methods.
Collapse
|
115
|
Kaposi's Sarcoma-Associated Herpesvirus Viral Interleukin-6 Signaling Upregulates Integrin β3 Levels and Is Dependent on STAT3. J Virol 2020; 94:JVI.01384-19. [PMID: 31801855 DOI: 10.1128/jvi.01384-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of two B-cell lymphoproliferative diseases and Kaposi's sarcoma, an endothelial-cell-driven cancer. KSHV viral interleukin-6 (vIL-6) is a viral homolog of human IL-6 (hIL-6) that is expressed in KSHV-associated malignancies. Previous studies have shown that the expression of the integrin β3 (ITGB3) subunit is induced upon KSHV infection. Here we report that KSHV vIL-6 is able to induce the expression of ITGB3 and increase surface expression of the αVβ3 integrin heterodimer. We demonstrated using small interfering RNA (siRNA) depletion and inhibitor studies that KSHV vIL-6 can increase ITGB3 by inducing STAT3 signaling. Furthermore, we found that secreted vIL-6 is capable of inducing ITGB3 in endothelial cells in a paracrine manner. Importantly, the ability to induce ITGB3 in endothelial cells seems to be specific to vIL-6, as overexpression of hIL-6 alone did not affect levels of this integrin. Our lab and others have previously shown that vIL-6 can induce angiogenesis, and we investigated whether ITGB3 was involved in this process. We found that siRNA depletion of ITGB3 in vIL-6-expressing endothelial cells resulted in a decrease in adhesion to extracellular matrix proteins. Moreover, depletion of ITGB3 hindered the ability of vIL-6 to promote angiogenesis. In conclusion, we found that vIL-6 can singularly induce ITGB3 and that this induction is dependent on vIL-6 activation of the STAT3 signaling pathway.IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of three human malignancies: multicentric Castleman's disease, primary effusion lymphoma, and Kaposi's sarcoma. Kaposi's sarcoma is a highly angiogenic tumor that arises from endothelial cells. It has been previously reported that KSHV infection of endothelial cells leads to an increase of integrin αVβ3, a molecule observed to be involved in the angiogenic process of several malignancies. Our data demonstrate that the KSHV protein viral interleukin-6 (vIL-6) can induce integrin β3 in an intracellular and paracrine manner. Furthermore, we showed that this induction is necessary for vIL-6-mediated cell adhesion and angiogenesis, suggesting a potential role of integrin β3 in KSHV pathogenesis and development of Kaposi's sarcoma.
Collapse
|
116
|
Yang G, Mahadik B, Choi JY, Fisher JP. Vascularization in tissue engineering: fundamentals and state-of-art. ACTA ACUST UNITED AC 2020; 2. [PMID: 34308105 DOI: 10.1088/2516-1091/ab5637] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vascularization is among the top challenges that impede the clinical application of engineered tissues. This challenge has spurred tremendous research endeavor, defined as vascular tissue engineering (VTE) in this article, to establish a pre-existing vascular network inside the tissue engineered graft prior to implantation. Ideally, the engineered vasculature can be integrated into the host vasculature via anastomosis to supply nutrient to all cells instantaneously after surgery. Moreover, sufficient vascularization is of great significance in regenerative medicine from many other perspectives. Due to the critical role of vascularization in successful tissue engineering, we aim to provide an up-to-date overview of the fundamentals and VTE strategies in this article, including angiogenic cells, biomaterial/bio-scaffold design and bio-fabrication approaches, along with the reported utility of vascularized tissue complex in regenerative medicine. We will also share our opinion on the future perspective of this field.
Collapse
Affiliation(s)
- Guang Yang
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, United States of America.,Center for Engineering Complex Tissues, University of Maryland, College Park, MD, United States of America
| | - Bhushan Mahadik
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, United States of America.,Center for Engineering Complex Tissues, University of Maryland, College Park, MD, United States of America
| | - Ji Young Choi
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, United States of America
| | - John P Fisher
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, United States of America.,Center for Engineering Complex Tissues, University of Maryland, College Park, MD, United States of America
| |
Collapse
|
117
|
Yan D, Yan C, Yu F, Zhang S, Chen L, Wu N, Shao C, Yao Q, Sun H, Fu Y. Exploitation of human mesenchymal stromal cell derived matrix towards the structural and functional restoration of the ocular surface. Biomater Sci 2020; 8:4712-4727. [PMID: 32725006 DOI: 10.1039/d0bm00787k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Decellularized matrix of ADMSCs is a promising conjunctival substitute with superb wound repairing property by promoting proliferation of conjunctival epithelial cells and restoring goblet cells without causing cosmetic differences.
Collapse
|
118
|
Ghane N, Beigi MH, Labbaf S, Nasr-Esfahani MH, Kiani A. Design of hydrogel-based scaffolds for the treatment of spinal cord injuries. J Mater Chem B 2020; 8:10712-10738. [DOI: 10.1039/d0tb01842b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hydrogel-based scaffold design approaches for the treatment of spinal cord injuries.
Collapse
Affiliation(s)
- Nazanin Ghane
- Department of Cellular Biotechnology Cell Science Research Center
- Royan Institute for Biotechnology
- ACECR
- Isfahan
- Iran
| | - Mohammad-Hossein Beigi
- Department of Cellular Biotechnology Cell Science Research Center
- Royan Institute for Biotechnology
- ACECR
- Isfahan
- Iran
| | - Sheyda Labbaf
- Biomaterials Research Group
- Department of Materials Engineering
- Isfahan University of Technology
- Isfahan
- Iran
| | | | - Amirkianoosh Kiani
- Silicon Hall: Micro/Nano Manufacturing Facility
- Faculty of Engineering and Applied Science
- Ontario Tech University
- Ontario
- Canada
| |
Collapse
|
119
|
Abstract
Angiogenesis is a natural and vital phenomenon of neovascularization that occurs from pre-existing vasculature, being present in many physiological processes, namely in development, reproduction and regeneration. Being a highly dynamic and tightly regulated process, its abnormal expression can be on the basis of several pathologies. For that reason, angiogenesis has been a subject of major interest among the scientific community, being transverse to different areas and founding particular attention in tissue engineering and cancer research fields. Microfluidics has emerged as a powerful tool for modelling this phenomenon, thereby surpassing the limitations associated to conventional angiogenic models. Holding a tremendous flexibility in terms of experimental design towards a specific goal, microfluidic systems can offer an unlimited number of opportunities for investigating angiogenesis in many relevant scenarios, namely from its fundamental comprehension in normal physiological processes to the identification and testing of new therapeutic targets involved on pathological angiogenesis. Additionally, microvascular 3D in vitro models are now opening up new prospects in different fields, being used for investigating and establishing guidelines for the development of next generation of 3D functional vascularized grafts. The promising applications of this emerging technology in angiogenesis studies are herein overviewed, encompassing fundamental and applied research.
Collapse
|
120
|
Checchi M, Bertacchini J, Cavani F, Magarò MS, Reggiani Bonetti L, Pugliese GR, Tamma R, Ribatti D, Maurel DB, Palumbo C. Scleral ossicles: angiogenic scaffolds, a novel biomaterial for regenerative medicine applications. Biomater Sci 2019; 8:413-425. [PMID: 31738355 DOI: 10.1039/c9bm01234f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Given the current prolonged life expectancy, various pathologies affect increasingly the aging subjects. Regarding the musculoskeletal apparatus, bone fragility induces more susceptibility to fractures, often not accompanied by good ability of self-repairing, in particular when critical-size defects (CSD) occur. Currently orthopedic surgery makes use of allografting and autografting which, however, have limitations due to the scarce amount of tissue that can be taken from the donor, the possibility of disease transmission and donor site morbidity. The need to develop new solutions has pushed the field of tissue engineering (TE) research to study new scaffolds to be functionalized in order to obtain constructs capable of promoting tissue regeneration and achieve stable bone recovery over time. This investigation focuses on the most important aspect related to bone tissue regeneration: the angiogenic properties of the scaffold to be used. As an innovative solution, scleral ossicles (SOs), previously characterized as natural, biocompatible and spontaneously decellularized scaffolds used for bone repair, were tested for angiogenic potential and biocompatibility. To reach this purpose, in ovo Chorioallantoic Membrane Assay (CAM) was firstly used to test the angiogenic potential; secondly, in vivo subcutaneous implantation of SOs (in a rat model) was performed in order to assess the biocompatibility and the inflammatory response. Finally, thanks to the analysis of mass spectrometry (LCMSQE), the putative proteins responsible for the SO angiogenic properties were identified. Thus, a novel natural biomaterial is proposed, which is (i) able to induce an angiogenic response in vivo by subcutaneous implantation in a non-immunodeficient animal model, (ii) which does not induce any inflammatory response, and (iii) is useful for regenerative medicine application for the healing of bone CSD.
Collapse
Affiliation(s)
- Marta Checchi
- Department of Biomedical, Metabolic Science and Neuroscience, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
He L, Wei JY, Liu DX, Zhao WD, Chen YH. Atg7 Silencing Inhibits Laminin-5 Expression to Suppress Tube Formation by Brain Endothelial Cells. Anat Rec (Hoboken) 2019; 302:2255-2260. [PMID: 31265765 DOI: 10.1002/ar.24223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/05/2019] [Accepted: 04/17/2019] [Indexed: 12/15/2022]
Abstract
Cerebral angiogenesis is a key event during brain development and recovery from brain injury. We previously demonstrated that Atg7 knockout impaired angiogenesis in the mouse brain. However, the role of Atg7 in angiogenesis is not completely understood. In this study, we used human brain microvascular endothelial cells (HBMECs) to investigate the mechanism of Atg7-regulated cerebral angiogenesis. We found that Atg7 depletion specifically diminished the expression of the β3 and γ2 chains of laminin-5, a major component of the extracellular matrix. In contrast, autophagy inhibitors did not affect laminin-5 expression, suggesting that Atg7-regulated laminin-5 expression is autophagy-independent. We also found that Atg7-regulated laminin-5 expression occurred at the transcriptional level through NF-κB signaling. Exogenous laminin-5 or the NF-κB agonist betulinic acid effectively rescued tube formation by Atg7-deficient HBMECs. Taken together, our study identified a novel mechanism by which Atg7 regulates laminin-5 expression via NF-κB to modulate tube formation by brain endothelial cells during cerebral angiogenesis. Anat Rec, 302:2255-2260, 2019. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Lin He
- Department of Developmental Cell Biology, School of Life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Jia-Yi Wei
- Department of Developmental Cell Biology, School of Life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Dong-Xin Liu
- Department of Developmental Cell Biology, School of Life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Wei-Dong Zhao
- Department of Developmental Cell Biology, School of Life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Yu-Hua Chen
- Department of Developmental Cell Biology, School of Life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
122
|
Alabi BR, LaRanger R, Shay JW. Decellularized mice colons as models to study the contribution of the extracellular matrix to cell behavior and colon cancer progression. Acta Biomater 2019; 100:213-222. [PMID: 31562987 DOI: 10.1016/j.actbio.2019.09.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/11/2019] [Accepted: 09/21/2019] [Indexed: 12/13/2022]
Abstract
Current 3D culture models to study colorectal cancer lack architectural support and signaling proteins provided by the tissue extracellular matrix (ECM) which may influence cell behavior and cancer progression. Therefore, the ability to study cancer cells in the context of a matrix that is physiologically more relevant and to understand how the ECM affects cancer progression has been understudied. To address this, we developed an ex-vivo 3D system, provided by intact wild type (WT) and colon cancer susceptible decellularized mouse colons (DMC), to support the growth of human cancer cells. DMC are free of viable cells but still contain extracellular matrix proteins including subsets of collagens. Stiffness, an important mechanical property, is also maintained in DMCs. Importantly, we observed that the DMC is permissive for cell proliferation and differentiation of a human colon cancer cell line (HT-29). Notably, the ability of cells in the WT DMC to differentiate was also greater when compared to Matrigel™, an extracellular matrix extract from a mouse tumor cell line. Additionally, we observed in invasion assays that DMC obtained from polyps from a colon cancer susceptible mouse model facilitated increased cell migration/invasion of colorectal cancer cells and immortalized non-tumor colonic epithelial cells compared to DMC from WT mice. Finally, using mass spectrometry, we identified extracellular matrix proteins that are more abundant in DMC from a colorectal cancer mouse model compared to age and sex-matched WT mice. We propose that these abundantly expressed proteins in the tumor microenvironment are potentially involved in colorectal cancer progression. STATEMENT OF SIGNIFICANCE: Decellularized matrices, when properly produced, are attractive biomaterials for tissue regeneration and replacement. We show here that the mouse decellularized matrices can also be repurposed to elucidate how the extracellular matrix influences human cell behavior and cancer progression. To do this we produce decellularized matrices, from mice colonic tissue, that have preserved tissue mechanical and structural properties. We demonstrate that the matrix better supports the differentiation of HT-29 cells, a colonic cancer cell line, compared to Matrigel™. Additionally, we show that the extracellular matrix contributes to colon cancer progression via invasion assays using extracellular matrix extracts. Finally, we use mass spectrometry to identify ECM proteins that are more abundant in colonic polyps compared to adjacent tissue regions. This model system may have therapeutic implications for colorectal cancer patients.
Collapse
Affiliation(s)
- Busola R Alabi
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9039, United States
| | - Ryan LaRanger
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9039, United States
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9039, United States.
| |
Collapse
|
123
|
Autenshlyus AI, Davletova KI, Studenikina AA, Mikhaylova ES, Varaksin NA, Zhurakovsky IP, Proskura AV, Sidorov SV, Lyakhovich VV. [Cytokine production by blood immune cells, tumor and its microenvironment, characteristic of extracellular matrix in patients with invasive ductal carcinoma of no special type]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 65:424-431. [PMID: 31666416 DOI: 10.18097/pbmc20196505424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aim of this research was to study cytokine production by blood immune cells, tumor, and its microenvironment, and characterize extracellular matrix of patients with invasive ductal carcinoma of no special type and lymphatic metastases. Spontaneous and polyclonal activators stimulated production of cytokines by blood immune cells, tumor and its microenvironment were studied in 95 patients with invasive ductal carcinoma of no special type. The concentration of IL-2, IL-4, IL-6, IL-8, IL-10, IL-17, IL-18, IL-1β, IL-1Ra, TNF-α, IFN-γ, G-CSF, GM-CSF, VEGF and MCP-1 was determined by the solid-phase enzyme-linked immunosorbent assay. The condition of fibrous component and presence of neutral glycoproteins and sulfated glycosaminoglycans were evaluated during the research of extracellular matrix. Regional lymphatic metastases were detected in 35 of 95 patients. It was shown that in the presence or absence of lymphatic metastases index of polyclonal activators influence on the production of cytokines by blood immune cells was different for IL-6, IL-8, and IL-1β; while in the case of cytokine production by tumor and its microenvironment the index of influence was different for IL-2 and IL-17. The presence of lymphatic metastases corresponded with the rise of cytokines spontaneous production, while the absence of lymphatic metastases corresponded with the rise of cytokines production stimulated by polyclonal activators. The value of indices of polyclonal activators influence on the production of cytokines by blood immune cells pointed to the highly stimulating effect of polyclonal activators while the value of indices of polyclonal activators influence on cytokines production by tumor and its microenvironments pointed to the low and sometimes even absent effect of polyclonal activators. Basing on these data we propose a ratio of indices of polyclonal activators influence for the better evaluation of the probability of lymphatic metastases during preoperative period. After characterizing extracellular matrix we found out a point threshold, which, in 100% of cases, predicted the presence of lymphatic metastases basing on the condition of extracellular matrix. Using the data acquired, we are proposing a risk group for metastasis among women with no lymphatic metastases in the moment of check-up.
Collapse
Affiliation(s)
- A I Autenshlyus
- Novosibirsk State Medical University, Novosibirsk, Russia; Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
| | - K I Davletova
- Novosibirsk State Medical University, Novosibirsk, Russia
| | | | - E S Mikhaylova
- Novosibirsk State Medical University, Novosibirsk, Russia; Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
| | - N A Varaksin
- JSC "Vector-Best", Koltsovo, Novosibirsk Region, Russia
| | - I P Zhurakovsky
- Novosibirsk State Medical University, Novosibirsk, Russia; Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
| | - A V Proskura
- Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
| | - S V Sidorov
- Novosibirsk State University, Novosibirsk, Russia
| | - V V Lyakhovich
- Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
| |
Collapse
|
124
|
Ribeiro Franco PI, Rodrigues AP, de Menezes LB, Pacheco Miguel M. Tumor microenvironment components: Allies of cancer progression. Pathol Res Pract 2019; 216:152729. [PMID: 31735322 DOI: 10.1016/j.prp.2019.152729] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/06/2019] [Accepted: 11/10/2019] [Indexed: 12/12/2022]
Abstract
Cancer is a disease that affects millions of individuals worldwide and has a great impact on public health. Therefore, the study of tumor biology and an understanding of how the components of the tumor microenvironment behave and interact is extremely important for cancer research. Factors expressed by the components of the tumor microenvironment and induce angiogenesis have important roles in the onset and progression of the tumor. These components are represented by the extracellular matrix, fibroblasts, adipocytes, immune cells, and macrophages, besides endothelial cells, which modulate tumor cells and the tumor microenvironment to favor survival and the progression of cancer. The characteristics and function of the main stromal components and their mechanisms of interaction with the tumor cells that contribute to progression, tumor invasion, and tumor spread will be addressed in this review. Furthermore, reviewing these components is expected to indicate their importance as possible prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Pablo Igor Ribeiro Franco
- Escola de Veterinária e Zootecnia, Programa de Pós-Graduação em Ciência Animal, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| | - Arthur Perillo Rodrigues
- Escola de Veterinária e Zootecnia, Programa de Pós-Graduação em Ciência Animal, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | - Marina Pacheco Miguel
- Escola de Veterinária e Zootecnia, Programa de Pós-Graduação em Ciência Animal, Universidade Federal de Goiás, Goiânia, GO, Brazil
| |
Collapse
|
125
|
Barbariga M, Vallone F, Mosca E, Bignami F, Magagnotti C, Fonteyne P, Chiappori F, Milanesi L, Rama P, Andolfo A, Ferrari G. The role of extracellular matrix in mouse and human corneal neovascularization. Sci Rep 2019; 9:14272. [PMID: 31582785 PMCID: PMC6776511 DOI: 10.1038/s41598-019-50718-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 09/12/2019] [Indexed: 02/07/2023] Open
Abstract
Corneal neo-vascularization (CNV) is a highly prevalent medical condition which impairs visual acuity. The role of specific proteins in modulating CNV has been extensively reported, although no studies have described the entire human proteome in CNV corneas. In this paper, we performed a proteomic analysis of vascularized vs healthy corneal stroma, in a CNV mouse model and in CNV-affected patients, with a specific focus on extracellular matrix (ECM) proteins. We identified and quantified 2315 murine proteins, 691 human proteins and validated 5 proteins which are differentially expressed in vascularized samples and conserved in mice and humans: tenascin-C and fibronectin-1 were upregulated, while decorin, lumican and collagen-VI were downregulated in CNV samples. Interestingly, among CNV patients, those affected with Acanthamoeba keratitis showed the highest levels of fibronectin-1 and tenascin-C, suggesting a specific role of these two proteins in Acanthamoeba driven corneal CNV. On a broader picture, our findings support the hypothesis that the corneal stroma in CNV samples is disorganized and less compact. We are confident that the dissection of the human corneal proteome may shed new light on the complex pathophysiology of human CNV, and finally lead to improved treatments.
Collapse
Affiliation(s)
- M Barbariga
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - F Vallone
- ProMiFa, Protein Microsequencing Facility, IRCCS-San Raffaele Scientific Institute, Milan, Italy
| | - E Mosca
- Institute of Biomedical Technologies, National Research Council, Segrate, MI, Italy
| | - F Bignami
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - C Magagnotti
- ProMiFa, Protein Microsequencing Facility, IRCCS-San Raffaele Scientific Institute, Milan, Italy
| | - P Fonteyne
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - F Chiappori
- Institute of Biomedical Technologies, National Research Council, Segrate, MI, Italy
| | - L Milanesi
- Institute of Biomedical Technologies, National Research Council, Segrate, MI, Italy
| | - P Rama
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - A Andolfo
- ProMiFa, Protein Microsequencing Facility, IRCCS-San Raffaele Scientific Institute, Milan, Italy.
| | - G Ferrari
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
126
|
Rick JW, Chandra A, Dalle Ore C, Nguyen AT, Yagnik G, Aghi MK. Fibronectin in malignancy: Cancer-specific alterations, protumoral effects, and therapeutic implications. Semin Oncol 2019; 46:284-290. [PMID: 31488338 DOI: 10.1053/j.seminoncol.2019.08.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/21/2019] [Accepted: 08/07/2019] [Indexed: 01/10/2023]
Abstract
Initial studies on cancer primarily focused on malignant cells themselves. The overarching narrative of cancer revolved around unchecked and rapidly proliferating cells. Special attention was given to the molecular, genetic, and metabolic profiles of isolated cancer cells in hopes of elucidating a critical factor in malignancy. However, the scope of cancer research has broadened over the past few decades to include the local environment around cancer. It has become increasingly apparent that the immune cells, vascular networks, and the extracellular matrix all have a part in cancer progression. The impact of the extracellular matrix is particularly fascinating and key stromal changes have been identified in various cancers. Pioneering work studying laminin and hyaluronate has shown that these molecules have vital roles in cancer progression. More recently, fibronectin has been included as an extracellular driver of malignancy. Fibronectin is thought to play a considerable, albeit poorly understood, role in cancer pathogenesis. In this review, we present fundamental studies that have investigated the impact of fibronectin in cancer. As an abundant component of the extracellular matrix, understanding the effect of this molecule has the potential to elucidate cancer biology.
Collapse
Affiliation(s)
- Jonathan W Rick
- Department of Neurosurgery, University of California at San Francisco (UCSF), San Francisco, California
| | - Ankush Chandra
- Department of Neurosurgery, University of California at San Francisco (UCSF), San Francisco, California
| | - Cecilia Dalle Ore
- Department of Neurosurgery, University of California at San Francisco (UCSF), San Francisco, California
| | - Alan T Nguyen
- Department of Neurosurgery, University of California at San Francisco (UCSF), San Francisco, California
| | - Garima Yagnik
- Department of Neurosurgery, University of California at San Francisco (UCSF), San Francisco, California
| | - Manish K Aghi
- Department of Neurosurgery, University of California at San Francisco (UCSF), San Francisco, California.
| |
Collapse
|
127
|
Safari Z, Soudi S, Jafarzadeh N, Hosseini AZ, Vojoudi E, Sadeghizadeh M. Promotion of angiogenesis by M13 phage and RGD peptide in vitro and in vivo. Sci Rep 2019; 9:11182. [PMID: 31371773 PMCID: PMC6672002 DOI: 10.1038/s41598-019-47413-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 07/16/2019] [Indexed: 01/11/2023] Open
Abstract
One of the most important goals of regenerative medicines is to generate alternative tissues with a developed vascular network. Endothelial cells are the most important cell type required in angiogenesis process, contributing to the blood vessels formation. The stimulation of endothelial cells to initiate angiogenesis requires appropriate extrinsic signals. The aim of this study was to evaluate the effects of M13 phage along with RGD peptide motif on in vitro and in vivo vascularization. The obtained results demonstrated the increased cellular proliferation, HUVECs migration, cells altered morphology, and cells attachment to M13 phage-RGD coated surface. In addition, the expression of Vascular Endothelial Growth Factor A (VEGF-A), VEGF Receptors 2 and 3, Matrix Metalloproteinase 9 (MMP9), and epithelial nitric oxide synthase (eNOS) transcripts were significantly upregulated due to the HUVECs culturing on M13 phage-RGD coated surface. Furthermore, VEGF protein secretion, nitric oxide, and reactive oxygen species (ROS) production were significantly increased in cells cultured on M13 phage-RGD coated surface.
Collapse
Affiliation(s)
- Zohreh Safari
- Department of genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Nazli Jafarzadeh
- Department of genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Zavaran Hosseini
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elham Vojoudi
- Department of Regenerative Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
128
|
Zanotelli MR, Reinhart-King CA. Mechanical Forces in Tumor Angiogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1092:91-112. [PMID: 30368750 PMCID: PMC6986816 DOI: 10.1007/978-3-319-95294-9_6] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A defining hallmark of cancer and cancer development is upregulated angiogenesis. The vasculature formed in tumors is structurally abnormal, not organized in the conventional hierarchical arrangement, and more permeable than normal vasculature. These features contribute to leaky, tortuous, and dilated blood vessels, which act to create heterogeneous blood flow, compression of vessels, and elevated interstitial fluid pressure. As such, abnormalities in the tumor vasculature not only affect the delivery of nutrients and oxygen to the tumor, but also contribute to creating an abnormal tumor microenvironment that further promotes tumorigenesis. The role of chemical signaling events in mediating tumor angiogenesis has been well researched; however, the relative contribution of physical cues and mechanical regulation of tumor angiogenesis is less understood. Growing research indicates that the physical microenvironment plays a significant role in tumor progression and promoting abnormal tumor vasculature. Here, we review how mechanical cues found in the tumor microenvironment promote aberrant tumor angiogenesis. Specifically, we discuss the influence of matrix stiffness and mechanical stresses in tumor tissue on tumor vasculature, as well as the mechanosensory pathways utilized by endothelial cells to respond to the physical cues found in the tumor microenvironment. We also discuss the impact of the resulting aberrant tumor vasculature on tumor progression and therapeutic treatment.
Collapse
Affiliation(s)
- Matthew R Zanotelli
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Cynthia A Reinhart-King
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
129
|
Carvalho MS, Silva JC, Cabral JMS, da Silva CL, Vashishth D. Cultured cell-derived extracellular matrices to enhance the osteogenic differentiation and angiogenic properties of human mesenchymal stem/stromal cells. J Tissue Eng Regen Med 2019; 13:1544-1558. [PMID: 31151132 DOI: 10.1002/term.2907] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/02/2019] [Accepted: 02/13/2019] [Indexed: 12/20/2022]
Abstract
Cell-derived extracellular matrix (ECM) consists of a complex assembly of fibrillary proteins, matrix macromolecules, and associated growth factors that mimic the composition and organization of native ECM micro-environment. Therefore, cultured cell-derived ECM has been used as a scaffold for tissue engineering settings to create a biomimetic micro-environment, providing physical, chemical, and mechanical cues to cells, and support cell adhesion, proliferation, migration, and differentiation. Here, we present a new strategy to produce different combinations of decellularized cultured cell-derived ECM (dECM) obtained from different cultured cell types, namely, mesenchymal stem/stromal cells (MSCs) and human umbilical vein endothelial cells (HUVECs), as well as the coculture of MSC:HUVEC and investigate the effects of its various compositions on cell metabolic activity, osteogenic differentiation, and angiogenic properties of human bone marrow (BM)-derived MSCs, vital features for adult bone tissue regeneration and repair. Our findings demonstrate that dECM presented higher cell metabolic activity compared with tissue culture polystyrene. More importantly, we show that MSC:HUVEC ECM enhanced the osteogenic and angiogenic potential of BM MSCs, as assessed by in vitro assays. Interestingly, MSC:HUVEC (1:3) ECM demonstrated the best angiogenic response of MSCs in the conditions tested. To the best of our knowledge, this is the first study that demonstrates that dECM derived from a coculture of MSC:HUVEC impacts the osteogenic and angiogenic capabilities of BM MSCs, suggesting the potential use of MSC:HUVEC ECM as a therapeutic product to improve clinical outcomes in bone regeneration.
Collapse
Affiliation(s)
- Marta S Carvalho
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.,Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - João C Silva
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.,Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Deepak Vashishth
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
130
|
Loureiro J, Torres AL, Neto T, Aguiar P, Barrias CC, Pinto MT, Amaral IF. Conjugation of the T1 sequence from CCN1 to fibrin hydrogels for therapeutic vascularization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109847. [PMID: 31500049 DOI: 10.1016/j.msec.2019.109847] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/13/2019] [Accepted: 05/31/2019] [Indexed: 12/12/2022]
Abstract
Hydrogel matrices with angiogenic properties are much desirable for therapeutic vascularization strategies, namely to provide vascular supply to ischemic areas, transplanted cells, or bioengineered tissues. Here we report the pro-angiogenic effect of fibrin (Fb) functionalization with the T1 sequence from the angiogenic inducer CCN1, forseeing its use in the injured brain and spinal cord. Fibrin functionalization with 40 μM of T1 peptide effectively improved cellular sprouting of human brain microvascular endothelial cells (hCMEC/D3) in the absence of vascular endothelial growth factor (VEGF), without impacting the viscoelastic properties of Fb, cell viability, or proliferation. The pro-angiogenic effect of immobilized T1 was potentiated in the presence of VEGF and partially mediated through α6β1 integrin. The tethering of T1 also enhanced sprouting of human cord blood-derived outgrowth endothelial cells (OEC). Still, to elicit such effect, a higher input T1 concentration was required (60 μM), in line with the lower protein levels of α6 and β1 integrin subunits found in OEC comparing to hCMEC/D3, prior to embedment in Fb gel. Finally, the ability of T1-functionalized Fb in inducing cappilary invasion in vivo was assessed using the CAM assay, which evidenced a significant increase in the number of newly formed vessels at sites of implantation of T1-functionalized Fb, in the absence of soluble angiogenic factors. Overall these results demonstrate the potential of T1 peptide-presenting gels for use in therapeutic vascularization approaches. Considering T1 neurite-extension promoting capability and pro-angiogenic properties, T1-functionalized Fb hydrogels are particularly promising for application in the injured central nervous system.
Collapse
Affiliation(s)
- Joana Loureiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto (UPorto), Portugal; INEB - Instituto de Engenharia Biomédica, UPorto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, UPorto, Portugal; FEUP - Faculdade de Engenharia, UPorto, Portugal
| | - Ana Luísa Torres
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto (UPorto), Portugal; INEB - Instituto de Engenharia Biomédica, UPorto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, UPorto, Portugal
| | - Tânia Neto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto (UPorto), Portugal; INEB - Instituto de Engenharia Biomédica, UPorto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, UPorto, Portugal; FEUP - Faculdade de Engenharia, UPorto, Portugal
| | - Paulo Aguiar
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto (UPorto), Portugal; INEB - Instituto de Engenharia Biomédica, UPorto, Portugal
| | - Cristina Carvalho Barrias
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto (UPorto), Portugal; INEB - Instituto de Engenharia Biomédica, UPorto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, UPorto, Portugal
| | - Marta Teixeira Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto (UPorto), Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology, UPorto, Portugal
| | - Isabel Freitas Amaral
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto (UPorto), Portugal; INEB - Instituto de Engenharia Biomédica, UPorto, Portugal; FEUP - Faculdade de Engenharia, UPorto, Portugal.
| |
Collapse
|
131
|
Capuano A, Andreuzzi E, Pivetta E, Doliana R, Favero A, Canzonieri V, Maiero S, Fornasarig M, Magris R, Cannizzaro R, Mongiat M, Spessotto P. The Probe Based Confocal Laser Endomicroscopy (pCLE) in Locally Advanced Gastric Cancer: A Powerful Technique for Real-Time Analysis of Vasculature. Front Oncol 2019; 9:513. [PMID: 31263680 PMCID: PMC6584847 DOI: 10.3389/fonc.2019.00513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/29/2019] [Indexed: 12/24/2022] Open
Abstract
Probe based confocal laser endomicroscopy (pCLE) is an advanced technique which provides imaging of gastrointestinal mucosa at subcellular resolution and, importantly, a valid tool for the evaluation of microvasculature during endoscopic examination. In order to assess intratumoral vascularization and the efficiency of blood flow in locally advanced gastric cancer, we examined 57 patients through pCLE imaging. The vascular alterations in gastric cancer were mainly characterized by leakage and by the presence of tortuous and large size vessels. Defects in blood flow were detected very rarely. No association between the angiogenic score and the gastric tumor site or histological type was observed. Interestingly, no correlation was also found with the tumor grading indicating that the vascular angiogenic anomalies in gastric cancer represent an early pathological event to be observed and detected. The majority of patients displayed unchanged vascular alterations following neoadjuvant chemotherapy and this positively correlated with stable or progressive disease, suggesting that an unaltered angiogenic score could per se be indicative of poor therapeutic efficacy. Different vascular parameters were evaluated by immunofluorescence using bioptic samples and the vessel density did not correlate with clinical staging, site or histologic type. Interestingly, only CD105, Multimerin-2 and GLUT1 were able to discriminate normal from tumoral gastric mucosa. Taken together, these findings indicate that functional and structural angiogenic parameters characteristic of tumor blood network were fully detectable by pCLE. Moreover, the evaluation of tumor vasculature by real-time assessment may provide useful information to achieve tailored therapeutic interventions for gastric cancer patients.
Collapse
Affiliation(s)
- Alessandra Capuano
- Molecular Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Eva Andreuzzi
- Molecular Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Eliana Pivetta
- Molecular Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Roberto Doliana
- Molecular Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Andrea Favero
- Molecular Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | | | - Stefania Maiero
- Oncological Gastroenterology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Mara Fornasarig
- Oncological Gastroenterology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Raffaella Magris
- Oncological Gastroenterology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Renato Cannizzaro
- Oncological Gastroenterology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Maurizio Mongiat
- Molecular Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Paola Spessotto
- Molecular Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| |
Collapse
|
132
|
Kang PL, Huang HH, Chen T, Ju KC, Kuo SM. Angiogenesis-promoting effect of LIPUS on hADSCs and HUVECs cultured on collagen/hyaluronan scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:22-33. [PMID: 31146993 DOI: 10.1016/j.msec.2019.04.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/07/2019] [Accepted: 04/12/2019] [Indexed: 02/08/2023]
Abstract
Angiogenesis refers to blood vessel formation through endothelial cell migration and proliferation. Angiogenesis is crucial and beneficial for wound healing and tissue regeneration. In the current study, we prepared porous collagen and collagen/hyaluronan (Col/HA) scaffolds composed of collagen (7 mg/mL) and hyaluronan (HA) (0.5 w%, 1 w%, and 1.5 w%) as culture vehicles for coculture of human adipose-derived stem cells (hADSCs) and human umbilical vein endothelial cells (HUVECs). These scaffolds were combined with low-intensity pulsed ultrasound (LIPUS) to investigate and evaluate angiogenesis in the coculture cell/scaffold constructs in vitro and in vivo. Scaffold porosity decreased (from 74.4% to 60.7%) and readily degraded after addition of various ratios of HA. The porous scaffolds all had high water content (~98%) and similar mechanical properties. The hADSCs alone and hADSCs cocultured with HUVECs exhibited stable proliferative profiles on the Col/HA scaffolds; furthermore, LIPUS significantly enhanced cell growth on the collagen and Col/0.5HA scaffolds by approximately 1.85- and 1.5-fold, respectively, compared with the cells that did not receive LIPUS treatment. In vivo immunohistochemistry results indicated stronger immunofluorescent CD31 presence and vascular endothelial cadherin messenger RNA expression in the hADSCs/HUVECs coculture/scaffold implantation in rats that received LIPUS treatment compared with those that received no such treatment. Our results demonstrated that the hADSCs/HUVECs cocultured on fabricated collagen and Col/HA scaffolds combined with LIPUS treatment had angiogenesis-promoting capability and therapeutic potential when angiogenesis is demanded.
Collapse
Affiliation(s)
- Pei Leun Kang
- Cardiac Surgery, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan; Shu-Zen Junior College of Medicine and Management, Kaohsiung City, Taiwan
| | - Han Hsiang Huang
- Department of Veterinary Medicine, National Chiayi University, Chiayi City, Taiwan
| | - Ting Chen
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City, Taiwan
| | - Kuen Cheng Ju
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City, Taiwan
| | - Shyh Ming Kuo
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City, Taiwan.
| |
Collapse
|
133
|
Henn D, Abu-Halima M, Wermke D, Falkner F, Thomas B, Köpple C, Ludwig N, Schulte M, Brockmann MA, Kim YJ, Sacks JM, Kneser U, Keller A, Meese E, Schmidt VJ. MicroRNA-regulated pathways of flow-stimulated angiogenesis and vascular remodeling in vivo. J Transl Med 2019; 17:22. [PMID: 30635008 PMCID: PMC6330440 DOI: 10.1186/s12967-019-1767-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 01/02/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Vascular shear stress promotes endothelial cell sprouting in vitro. The impact of hemodynamic forces on microRNA (miRNA) and gene expression within growing vascular networks in vivo, however, remain poorly investigated. Arteriovenous (AV) shunts are an established model for induction of neoangiogenesis in vivo and can serve as a tool for analysis of hemodynamic effects on miRNA and gene expression profiles over time. METHODS AV shunts were microsurgically created in rats and explanted on postoperative days 5, 10 and 15. Neoangiogenesis was confirmed by histologic analysis and micro-computed tomography. MiRNA and gene expression profiles were determined in tissue specimens from AV shunts by microarray analysis and quantitative real-time polymerase chain reaction and compared with sham-operated veins by bioinformatics analysis. Changes in protein expression within AV shunt endothelial cells were determined by immunohistochemistry. RESULTS Samples from AV shunts exhibited a strong overexpression of proangiogenic cytokines, oxygenation-associated genes (HIF1A, HMOX1), and angiopoetic growth factors. Significant inverse correlations of the expressions of miR-223-3p, miR-130b-3p, miR-19b-3p, miR-449a-5p, and miR-511-3p which were up-regulated in AV shunts, and miR-27b-3p, miR-10b-5p, let-7b-5p, and let-7c-5p, which were down-regulated in AV shunts, with their predicted interacting targets C-X-C chemokine receptor 2 (CXCR2), interleukin-1 alpha (IL1A), ephrin receptor kinase 2 (EPHA2), synaptojanin-2 binding protein (SYNJ2BP), forkhead box C1 (FOXC1) were present. CXCL2 and IL1A overexpression in AV shunt endothelium was confirmed at the protein level by immunohistochemistry. CONCLUSIONS Our data indicate that flow-stimulated angiogenesis is determined by an upregulation of cytokines, oxygenation associated genes and miRNA-dependent regulation of FOXC1, EPHA2 and SYNJ2BP.
Collapse
Affiliation(s)
- Dominic Henn
- Department of Hand, Plastic and Reconstructive Surgery, University of Heidelberg, BG Trauma Center Ludwigshafen, Ludwig-Guttmann Str. 13, 67071, Ludwigshafen, Germany
| | - Masood Abu-Halima
- Institute of Human Genetics, Saarland University, Homburg-Saar, Germany
| | - Dominik Wermke
- Institute of Clinical Bioinformatics, Saarland University, Saarbruecken, Germany
| | - Florian Falkner
- Department of Hand, Plastic and Reconstructive Surgery, University of Heidelberg, BG Trauma Center Ludwigshafen, Ludwig-Guttmann Str. 13, 67071, Ludwigshafen, Germany
| | - Benjamin Thomas
- Department of Hand, Plastic and Reconstructive Surgery, University of Heidelberg, BG Trauma Center Ludwigshafen, Ludwig-Guttmann Str. 13, 67071, Ludwigshafen, Germany
| | - Christoph Köpple
- Department of Hand, Plastic and Reconstructive Surgery, University of Heidelberg, BG Trauma Center Ludwigshafen, Ludwig-Guttmann Str. 13, 67071, Ludwigshafen, Germany
| | - Nicole Ludwig
- Institute of Human Genetics, Saarland University, Homburg-Saar, Germany
| | - Matthias Schulte
- Department of Hand, Plastic and Reconstructive Surgery, University of Heidelberg, BG Trauma Center Ludwigshafen, Ludwig-Guttmann Str. 13, 67071, Ludwigshafen, Germany
| | - Marc A Brockmann
- Department of Neuroradiology, University Medical Center Mainz, Mainz, Germany
| | - Yoo-Jin Kim
- Institute of Pathology, Kaiserslautern, Germany
| | - Justin M Sacks
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ulrich Kneser
- Department of Hand, Plastic and Reconstructive Surgery, University of Heidelberg, BG Trauma Center Ludwigshafen, Ludwig-Guttmann Str. 13, 67071, Ludwigshafen, Germany
| | - Andreas Keller
- Institute of Clinical Bioinformatics, Saarland University, Saarbruecken, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, Homburg-Saar, Germany
| | - Volker J Schmidt
- Department of Hand, Plastic and Reconstructive Surgery, University of Heidelberg, BG Trauma Center Ludwigshafen, Ludwig-Guttmann Str. 13, 67071, Ludwigshafen, Germany.
| |
Collapse
|
134
|
Loss of Multimerin-2 and EMILIN-2 Expression in Gastric Cancer Associate with Altered Angiogenesis. Int J Mol Sci 2018; 19:ijms19123983. [PMID: 30544909 PMCID: PMC6321373 DOI: 10.3390/ijms19123983] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/06/2018] [Indexed: 01/25/2023] Open
Abstract
Gastric cancer is a deadly tumor and a relatively common disease worldwide. Surgical resection and chemotherapy are the main clinical options to treat this type of disease, however the median overall survival rate is limited to one year. Thus, the development of new therapies is a highly necessary clinical need. Angiogenesis is a promising target for this tumor type, however clinical trials with the use of anti-angiogenic drugs have so far not met expectations. Therefore, it is important to better characterize the expression of molecules whose expression levels may impact on the efficacy of the treatments. In this study the characteristics of the gastric tumor associated blood vessels were first assessed by endomicroscopy. Next, we analyzed the expression of Multimerin-2, EMILIN-2 and EMILIN-1, three molecules of the EMI Domain ENdowed (EDEN) protein family. These molecules play important functions in the tumor microenvironment, affecting cancer progression both directly and indirectly impinging on angiogenesis and lymphangiogenesis. All the molecules were highly expressed in the normal mucosa whereas in a number of patients their expression was altered. We consider that better characterizing the gastric tumor microenvironment and the quality of the vasculature may achieve effective patient tailored therapies.
Collapse
|
135
|
Yeldag G, Rice A, Del Río Hernández A. Chemoresistance and the Self-Maintaining Tumor Microenvironment. Cancers (Basel) 2018; 10:E471. [PMID: 30487436 PMCID: PMC6315745 DOI: 10.3390/cancers10120471] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/24/2018] [Accepted: 11/27/2018] [Indexed: 12/15/2022] Open
Abstract
The progression of cancer is associated with alterations in the tumor microenvironment, including changes in extracellular matrix (ECM) composition, matrix rigidity, hypervascularization, hypoxia, and paracrine factors. One key malignant phenotype of cancer cells is their ability to resist chemotherapeutics, and elements of the ECM can promote chemoresistance in cancer cells through a variety of signaling pathways, inducing changes in gene expression and protein activity that allow resistance. Furthermore, the ECM is maintained as an environment that facilitates chemoresistance, since its constitution modulates the phenotype of cancer-associated cells, which themselves affect the microenvironment. In this review, we discuss how the properties of the tumor microenvironment promote chemoresistance in cancer cells, and the interplay between these external stimuli. We focus on both the response of cancer cells to the external environment, as well as the maintenance of the external environment, and how a chemoresistant phenotype emerges from the complex signaling network present.
Collapse
Affiliation(s)
- Gulcen Yeldag
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, UK.
| | - Alistair Rice
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, UK.
| | - Armando Del Río Hernández
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
136
|
Edwards DN, Bix GJ. Roles of blood-brain barrier integrins and extracellular matrix in stroke. Am J Physiol Cell Physiol 2018; 316:C252-C263. [PMID: 30462535 DOI: 10.1152/ajpcell.00151.2018] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ischemicstroke is a leading cause of death and disability in the United States, but recent advances in treatments [i.e., endovascular thrombectomy and tissue plasminogen activator (t-PA)] that target the stroke-causing blood clot, while improving overall stroke mortality rates, have had much less of an impact on overall stroke morbidity. This may in part be attributed to the lack of therapeutics targeting reperfusion-induced injury after the blood clot has been removed, which, if left unchecked, can expand injury from its core into the surrounding at risk tissue (penumbra). This occurs in two phases of increased permeability of the blood-brain barrier, a physical barrier that under physiologic conditions regulates brain influx and efflux of substances and consists of tight junction forming endothelial cells (and transporter proteins), astrocytes, pericytes, extracellular matrix, and their integrin cellular receptors. During, embryonic development, maturity, and following stroke reperfusion, cerebral vasculature undergoes significant changes including changes in expression of integrins and degradation of surrounding extracellular matrix. Integrins, heterodimers with α and β subunits, and their extracellular matrix ligands, a collection of proteoglycans, glycoproteins, and collagens, have been modestly studied in the context of stroke compared with other diseases (e.g., cancer). In this review, we describe the effect that various integrins and extracellular matrix components have in embryonic brain development, and how this changes in both maturity and in the poststroke environment. Particular focus will be on how these changes in integrins and the extracellular matrix affect blood-brain barrier components and their potential as diagnostic and therapeutic targets for ischemic stroke.
Collapse
Affiliation(s)
- Danielle N Edwards
- Sanders-Brown Center on Aging, University of Kentucky , Lexington, Kentucky.,Department of Neuroscience, University of Kentucky , Lexington, Kentucky
| | - Gregory J Bix
- Sanders-Brown Center on Aging, University of Kentucky , Lexington, Kentucky.,Department of Neuroscience, University of Kentucky , Lexington, Kentucky.,Department of Neurology, University of Kentucky , Lexington, Kentucky.,Department of Neurosurgery, University of Kentucky , Lexington, Kentucky
| |
Collapse
|
137
|
Guo S, Deng CX. Effect of Stromal Cells in Tumor Microenvironment on Metastasis Initiation. Int J Biol Sci 2018; 14:2083-2093. [PMID: 30585271 PMCID: PMC6299363 DOI: 10.7150/ijbs.25720] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 06/02/2018] [Indexed: 12/11/2022] Open
Abstract
The cellular environment where tumor cells reside is called the tumor microenvironment (TME), which consists of borders, blood vessels, lymph vessels, extracellular matrix (ECM), stromal cells, immune/inflammatory cells, secreted proteins, RNAs and small organelles. By dynamically interacting with tumor cells, stromal cells participate in all stages of tumor initiation, progression, metastasis, recurrence and drug response, and consequently, affect the fate of patients. During the processes of tumor evolution and metastasis initiation, stromal cells in TME also experience some changes and play roles in both the suppression and promotion of metastasis, while the overall function of stromal cells is beneficial for cancer cell survival and movement. In this review, we examine the effects of stromal cells in TME on metastasis initiation, including angiogenesis, epithelial-mesenchymal transition (EMT) and invasion. We also highlight functions of proteins, RNAs and small organelles secreted by stromal cells in their influences on multiple stages of tumor metastasis.
Collapse
Affiliation(s)
| | - Chu-Xia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
138
|
Pang N, Li J, Sun A, Yang Z, Cheng S, Qi XR. Prior anti-CAFs break down the CAFs barrier and improve accumulation of docetaxel micelles in tumor. Int J Nanomedicine 2018; 13:5971-5990. [PMID: 30323586 PMCID: PMC6178342 DOI: 10.2147/ijn.s171224] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Abnormal expression of stromal cells and extracellular matrix in tumor stroma creates a tight barrier, leading to insufficient extravasation and penetration of therapeutic agents. Cancer-associated fibroblasts (CAFs) take on pivotal roles encouraging tumor progression. METHOD To surmount the refractoriness of stroma, we constructed a multi-targeting combined scenario of anti-CAFs agent tranilast and antitumor agent docetaxel micelles (DTX-Ms). Tranilast cut down crosstalk between tumor cells and stromal cells, ameliorated the tumor microenvironment, and enhanced the antiproliferation efficacy of DTX-Ms on cancer cells. RESULTS Diverse experiments demonstrated that tranilast enhanced DTX-Ms' antitumor effect in a two-stage pattern by CAFs ablation, tumor cell migration blocking, and metastasis inhibition. Along with activated CAFs decreasing in vivo, the two-stage therapy succeeded in reducing interstitial fluid pressure, normalizing microvessels, improving micelles penetration and retention, and inhibiting tumor growth and metastasis. Interestingly, tranilast alone failed to inhibit tumor growth in vivo, and it could only be used as an adjuvant medicine together with an antitumor agent. CONCLUSION Our proposed two-stage therapy offers a promising strategy to enhance antitumor effects by breaking down CAFs barrier and increasing micellar delivery efficiency.
Collapse
Affiliation(s)
- Ning Pang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China,
| | - Ji Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China,
| | - Aning Sun
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China,
| | - Zhenzhen Yang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China,
| | - Shixuan Cheng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China,
| | - Xian-Rong Qi
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China,
| |
Collapse
|
139
|
Mijuskovic M, Saunders EJ, Leongamornlert DA, Wakerell S, Whitmore I, Dadaev T, Cieza-Borrella C, Govindasami K, Brook MN, Haiman CA, Conti DV, Eeles RA, Kote-Jarai Z. Rare germline variants in DNA repair genes and the angiogenesis pathway predispose prostate cancer patients to develop metastatic disease. Br J Cancer 2018; 119:96-104. [PMID: 29915322 PMCID: PMC6035259 DOI: 10.1038/s41416-018-0141-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 05/01/2018] [Accepted: 05/17/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Prostate cancer (PrCa) demonstrates a heterogeneous clinical presentation ranging from largely indolent to lethal. We sought to identify a signature of rare inherited variants that distinguishes between these two extreme phenotypes. METHODS We sequenced germline whole exomes from 139 aggressive (metastatic, age of diagnosis < 60) and 141 non-aggressive (low clinical grade, age of diagnosis ≥60) PrCa cases. We conducted rare variant association analyses at gene and gene set levels using SKAT and Bayesian risk index techniques. GO term enrichment analysis was performed for genes with the highest differential burden of rare disruptive variants. RESULTS Protein truncating variants (PTVs) in specific DNA repair genes were significantly overrepresented among patients with the aggressive phenotype, with BRCA2, ATM and NBN the most frequently mutated genes. Differential burden of rare variants was identified between metastatic and non-aggressive cases for several genes implicated in angiogenesis, conferring both deleterious and protective effects. CONCLUSIONS Inherited PTVs in several DNA repair genes distinguish aggressive from non-aggressive PrCa cases. Furthermore, inherited variants in genes with roles in angiogenesis may be potential predictors for risk of metastases. If validated in a larger dataset, these findings have potential for future clinical application.
Collapse
Affiliation(s)
- Martina Mijuskovic
- Oncogenetics, Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Edward J Saunders
- Oncogenetics, Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Daniel A Leongamornlert
- Oncogenetics, Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Sarah Wakerell
- Oncogenetics, Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Ian Whitmore
- Oncogenetics, Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Tokhir Dadaev
- Oncogenetics, Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Clara Cieza-Borrella
- Oncogenetics, Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Koveela Govindasami
- Oncogenetics, Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Mark N Brook
- Oncogenetics, Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA, 90015, USA
| | - David V Conti
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA, 90015, USA
| | - Rosalind A Eeles
- Oncogenetics, Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
- The Royal Marsden NHS Foundation Trust, London, SW3 6JJ, UK
| | - Zsofia Kote-Jarai
- Oncogenetics, Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK.
| |
Collapse
|
140
|
Hutchenreuther J, Vincent K, Norley C, Racanelli M, Gruber SB, Johnson TM, Fullen DR, Raskin L, Perbal B, Holdsworth DW, Postovit LM, Leask A. Activation of cancer-associated fibroblasts is required for tumor neovascularization in a murine model of melanoma. Matrix Biol 2018; 74:52-61. [PMID: 29885461 DOI: 10.1016/j.matbio.2018.06.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/10/2018] [Accepted: 06/05/2018] [Indexed: 01/08/2023]
Abstract
Metastatic melanoma is highly fatal. Within the tumor microenvironment, the role of cancer-associated fibroblasts (CAFs) in melanoma metastasis and progression is relatively understudied. The matricellular protein CCN2 (formerly termed connective tissue growth factor, CTGF) is overexpressed, in a fashion independent of BRAF mutational status, by CAFs in melanoma. Herein, we find, in human melanoma patients, that CCN2 expression negatively correlates with survival and positively correlates with expression of neovascularization markers. To assess the role of CAFs in melanoma progression, we used C57BL/6 mice expressing a tamoxifen-dependent cre recombinase expressed under the control of a fibroblast-specific promoter/enhancer (COL1A2) to delete CCN2 postnatally in fibroblasts. Mice deleted or not for CCN2 in fibroblasts were injected subcutaneously with B16-F10 melanoma cells. Loss of CCN2 in CAFs resulted in reduced CAF activation, as detected by staining with anti-α-smooth muscle actin antibodies, and reduced tumor-induced neovascularization, as detected by micro-computed tomography (micro-CT) and staining with anti-CD31 antibodies. CCN2-deficient B16(F10) cells were defective in a tubule formation/vasculogenic mimicry assay in vitro. Mice deleted for CCN2 in CAFs also showed impaired vasculogenic mimicry of subcutaneously-injected B16-F10 cells in vivo. Our results provide new insights into the cross-talk among different cell types in the tumor microenvironment and suggest CAFs play a heretofore unappreciated role by being essential for tumor neovascularization via the production of CCN2. Our data are consistent with the hypothesis that activated CAFs are essential for melanoma metastasis and that, due to its role in this process, CCN2 is a therapeutic target for melanoma.
Collapse
Affiliation(s)
- James Hutchenreuther
- Departments of Physiology and Pharmacology, University of Western Ontario, London N6A 5C1, ON, Canada
| | - Krista Vincent
- Departments of Anatomy and Cell Biology, University of Western Ontario, London N6A 5C1, ON, Canada; Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Chris Norley
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Michael Racanelli
- Departments of Physiology and Pharmacology, University of Western Ontario, London N6A 5C1, ON, Canada
| | - Stephen B Gruber
- Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Timothy M Johnson
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Douglas R Fullen
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Leon Raskin
- Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | | | - David W Holdsworth
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | | | - Andrew Leask
- Departments of Physiology and Pharmacology, University of Western Ontario, London N6A 5C1, ON, Canada; Departments of Dentistry, University of Western Ontario, London N6A 5C1, ON, Canada.
| |
Collapse
|
141
|
Wat JM, Audette MC, Kingdom JC. Molecular actions of heparin and their implications in preventing pre-eclampsia. J Thromb Haemost 2018; 16:S1538-7836(22)02212-7. [PMID: 29877031 DOI: 10.1111/jth.14191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Indexed: 12/17/2022]
Abstract
Pre-eclampsia, a hypertensive disorder of pregnancy, continues to be a significant cause of global maternal morbidity. Low-dose aspirin remains the only standard-of-care prophylactic therapy for preventing pre-eclampsia, but is limited in efficacy. Heparin and its derivatives may further enhance the efficacy of aspirin therapy to prevent pre-eclampsia, but the mechanisms mediating this augmentative effect are not known. Although heparin is an anticoagulant agent, it also possesses many anticoagulant-independent properties that may be relevant in the prevention of pre-eclampsia, including effects on placental, vascular and inflammatory function. This review summarizes the non-anticoagulant properties of heparin, and extrapolates how these actions may influence the trajectory of pre-eclampsia pathogenesis as a means of pathway-specific therapy.
Collapse
Affiliation(s)
- J M Wat
- Research Centre for Women's and Infant's Health, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - M C Audette
- Research Centre for Women's and Infant's Health, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | - J C Kingdom
- Research Centre for Women's and Infant's Health, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
- Department of Obstetrics and Gynaecology, Sinai Health System, Toronto, Ontario, Canada
| |
Collapse
|
142
|
Ishikawa H, Xu L, Sone K, Kobayashi T, Wang G, Shozu M. Hypoxia Induces Hypoxia-Inducible Factor 1α and Potential HIF-Responsive Gene Expression in Uterine Leiomyoma. Reprod Sci 2018; 26:428-435. [PMID: 29779471 DOI: 10.1177/1933719118776793] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Uterine leiomyoma is characterized by abundant extracellular matrix and broad avascular areas, both constantly resulting in hypoxia, suggesting some hypoxia-induced response function. Here, we examined whether hypoxia-inducible factor 1α (HIF-1α)- mediated hypoxic response function in uterine leiomyoma. Immunoblotting detected higher basal HIF-1α protein expression in nuclear extracts from uterine leiomyoma tissues than in those from the adjacent myometrium ( P = .0011). Immunohistochemical analysis revealed the presence of HIF-1α-positive cellular components in both leiomyoma and surrounding myometrial tissues. Hypoxia decreased HIF-1α messenger RNA (mRNA), but increased HIF-1α protein in primary culture leiomyoma smooth muscle cells, and caused translocation of HIF-1α from the cytoplasm to the nucleus. Hypoxia upregulated mRNAs of 6 potential HIF-responsive genes ( ALDOA, ENO1, LDHA, VEGFA, PFKFB3, and SLC2A1). Chromatin immunoprecipitation quantitative polymerase chain reaction revealed that hypoxia significantly increased recruitment of HIF-1α binding to putative HIF-responsive elements in the HIF-responsive genes, suggesting that the HIF transcriptional complex initiates hypoxia-induced transcription of HIF-responsive genes. These results demonstrated a HIF-1α-mediated hypoxic response in uterine leiomyoma.
Collapse
Affiliation(s)
- Hiroshi Ishikawa
- 1 Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Linlin Xu
- 1 Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kunizui Sone
- 1 Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tatsuya Kobayashi
- 1 Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Guiwen Wang
- 1 Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Makio Shozu
- 1 Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
143
|
Haller C, Chaskar P, Piccand J, Cominetti O, Macron C, Dayon L, Kraus MRC. Insights into Islet Differentiation and Maturation through Proteomic Characterization of a Human iPSC-Derived Pancreatic Endocrine Model. Proteomics Clin Appl 2018; 12:e1600173. [PMID: 29578310 DOI: 10.1002/prca.201600173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 02/09/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE Great progresses have been made for generating in vitro pluripotent stem cell pancreatic β-like cells. However, the maturation stage of the cells still requires in vivo maturation to recreate the environmental niche. A deeper understanding of the factors promoting maturation of the cells is of great interest for clinical applications. EXPERIMENTAL DESIGN Label-free mass spectrometry based proteomic analysis is performed on samples from a longitudinal study of differentiation of human induced pluripotent stem cells toward glucose responsive insulin producing cells. RESULTS Proteome patterns correlate with specific transcription factor gene expression levels during in vitro differentiation, showing the relevance of the technology for identification of pancreatic-specific markers. The analysis of proteomes of the implanted cells in a longitudinal study shows that the neovascularization process linked to the extracellular matrix environment is time-dependent and conditions the proper maturation of the cells in β-like cells secreting insulin in response to glucose. CONCLUSIONS AND CLINICAL RELEVANCE Proteomic profiling is valuable to qualify and better understand in vivo maturation of progenitor cells toward β-cells. This is critical for future clinical trials where in vivo maturation still needs to be improved for robustness and effectiveness of cell therapy. Novel biomarkers for predicting the efficiency of maturation represents noninvasive monitoring tools for following efficiency of the implant.
Collapse
Affiliation(s)
- Corinne Haller
- Stem Cells, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Prasad Chaskar
- Stem Cells, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Julie Piccand
- Stem Cells, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Ornella Cominetti
- Proteomics, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Charlotte Macron
- Proteomics, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Loïc Dayon
- Proteomics, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Marine R-C Kraus
- Stem Cells, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| |
Collapse
|
144
|
Kryza T, Parent C, Pardessus J, Petit A, Burlaud-Gaillard J, Reverdiau P, Iochmann S, Labas V, Courty Y, Heuzé-Vourc'h N. Human kallikrein-related peptidase 12 stimulates endothelial cell migration by remodeling the fibronectin matrix. Sci Rep 2018; 8:6331. [PMID: 29679011 PMCID: PMC5910384 DOI: 10.1038/s41598-018-24576-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/05/2018] [Indexed: 12/30/2022] Open
Abstract
Kallikrein-related peptidase 12 (KLK12) is a kallikrein family peptidase involved in angiogenesis - a complex biological process in which the sprouting, migration and stabilization of endothelial cells requires extracellular matrix remodeling. To characterize the molecular mechanisms associated with KLK12's proangiogenic activity, we evaluated its ability to hydrolyze various matrix proteins. Our results show that KLK12 efficiently cleaved the human extracellular matrix proteins fibronectin and tenascin, both of which are involved in the regulation of endothelial cell adhesion and migration. For fibronectin, the major proteolytic product generated by KLK12 was a 29 kDa fragment containing the amino-terminal domain and the first five type I fibronectin-domains, which are essential for regulating fibronectin assembly. We also demonstrated that KLK12-mediated fibronectin proteolysis antagonizes fibronectin polymerization and fibronectin fibril formation by endothelial cells, leading to an increase in cell migration. Furthermore, a polyclonal antibody raised against KLK12's proteolytic cleavage site on fibronectin prevented the KLK12-dependent inhibition of fibronectin polymerization and the KLK12-mediated pro-migratory effect on endothelial cells. Taken as a whole, our results indicate that KLK12's proangiogenic effect is mediated through several molecular mechanisms.
Collapse
Affiliation(s)
- T Kryza
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032, Tours, France.,Université François Rabelais de Tours, F-37032, Tours, France.,Australian Prostate Cancer Research Centre - Queensland, Translational Research Institute, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Australia
| | - C Parent
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032, Tours, France.,Université François Rabelais de Tours, F-37032, Tours, France
| | - J Pardessus
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032, Tours, France.,Université François Rabelais de Tours, F-37032, Tours, France
| | - A Petit
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032, Tours, France.,Université François Rabelais de Tours, F-37032, Tours, France
| | - J Burlaud-Gaillard
- Université François Rabelais de Tours, F-37032, Tours, France.,Plateforme IBiSA de Microscopie Electronique, Université François Rabelais de Tours, F-37032, Tours, France
| | - P Reverdiau
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032, Tours, France.,Université François Rabelais de Tours, F-37032, Tours, France
| | - S Iochmann
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032, Tours, France.,Université François Rabelais de Tours, F-37032, Tours, France
| | - V Labas
- PRC, INRA, CNRS, Université François Rabelais de Tours, IFCE, F-37380, Nouzilly, France.,PAIB, CIRE, INRA, CHRU de Tours, Université François Rabelais de Tours, F-37380, Nouzilly, France
| | - Y Courty
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032, Tours, France.,Université François Rabelais de Tours, F-37032, Tours, France
| | - N Heuzé-Vourc'h
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032, Tours, France. .,Université François Rabelais de Tours, F-37032, Tours, France.
| |
Collapse
|
145
|
Owyong M, Efe G, Owyong M, Abbasi AJ, Sitarama V, Plaks V. Overcoming Barriers of Age to Enhance Efficacy of Cancer Immunotherapy: The Clout of the Extracellular Matrix. Front Cell Dev Biol 2018; 6:19. [PMID: 29546043 PMCID: PMC5837988 DOI: 10.3389/fcell.2018.00019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/09/2018] [Indexed: 12/12/2022] Open
Abstract
There is a growing list of cancer immunotherapeutics approved for use in a population with an increasing number of aged individuals. Cancer immunotherapy (CIT) mediates tumor destruction by activating anti-tumor immune responses that have been silenced through the oncogenic process. However, in an aging individual, immune deregulation is positively correlated with age. In this context, it is vital to examine the age-related changes in the tumor microenvironment (TME) and specifically, those directly affecting critical players to ensure CIT efficacy. Effector T cells, regulatory T cells, myeloid-derived suppressor cells, tumor-associated macrophages, and tumor-associated neutrophils play important roles in promoting or inhibiting the inflammatory response, while cancer-associated fibroblasts are key mediators of the extracellular matrix (ECM). Immune checkpoint inhibitors function optimally in inflamed tumors heavily invaded by CD4 and CD8 T cells. However, immunosenescence curtails the effector T cell response within the TME and causes ECM deregulation, creating a biophysical barrier impeding both effective drug delivery and pro-inflammatory responses. The ability of the chimeric antigen receptor T (CAR-T) cell to artificially induce an adaptive immune response can be modified to degrade essential components of the ECM and alleviate the age-related changes to the TME. This review will focus on the age-related alterations in ECM and immune-stroma interactions within the TME. We will discuss strategies to overcome the barriers of immunosenescence and matrix deregulation to ameliorate the efficacy of CIT in aged subjects.
Collapse
Affiliation(s)
- Mark Owyong
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, United States
| | - Gizem Efe
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, United States
| | - Michael Owyong
- University of Miami Miller School of Medicine, Miami, FL, United States
| | - Aamna J Abbasi
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, United States
| | - Vaishnavi Sitarama
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, United States
| | - Vicki Plaks
- Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
146
|
Paulitti A, Andreuzzi E, Bizzotto D, Pellicani R, Tarticchio G, Marastoni S, Pastrello C, Jurisica I, Ligresti G, Bucciotti F, Doliana R, Colladel R, Braghetta P, Poletto E, Di Silvestre A, Bressan G, Colombatti A, Bonaldo P, Mongiat M. The ablation of the matricellular protein EMILIN2 causes defective vascularization due to impaired EGFR-dependent IL-8 production affecting tumor growth. Oncogene 2018; 37:3399-3414. [PMID: 29483644 DOI: 10.1038/s41388-017-0107-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 11/07/2017] [Accepted: 11/13/2017] [Indexed: 12/14/2022]
Abstract
EMILIN2 is an extracellular matrix constituent playing an important role in angiogenesis; however, the underlying mechanism is unknown. Here we show that EMILIN2 promotes angiogenesis by directly binding epidermal growth factor receptor (EGFR), which enhances interleukin-8 (IL-8) production. In turn, IL-8 stimulates the proliferation and migration of vascular endothelial cells. Emilin2 null mice were generated and exhibited delayed retinal vascular development, which was rescued by the administration of the IL-8 murine ortholog MIP-2. Next, we assessed tumor growth and tumor-associated angiogenesis in these mice. Tumor cell growth in Emilin2 null mice was impaired as well as the expression of MIP-2. The vascular density of the tumors developed in Emilin2 null mice was prejudiced and vessels perfusion, as well as response to chemotherapy, decreased. Accordingly, human tumors expressing high levels of EMILIN2 were more responsive to chemotherapy. These results point at EMILIN2 as a key microenvironmental cue affecting vessel formation and unveil the possibility to develop new prognostic tools to predict chemotherapy efficacy.
Collapse
Affiliation(s)
- Alice Paulitti
- Department of Translational Research, Division of Molecular Oncology, CRO, Aviano, Italy
| | - Eva Andreuzzi
- Department of Translational Research, Division of Molecular Oncology, CRO, Aviano, Italy
| | - Dario Bizzotto
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Rosanna Pellicani
- Department of Translational Research, Division of Molecular Oncology, CRO, Aviano, Italy
| | - Giulia Tarticchio
- Department of Translational Research, Division of Molecular Oncology, CRO, Aviano, Italy
| | - Stefano Marastoni
- Department of Computer Science, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Chiara Pastrello
- Department of Computer Science, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Igor Jurisica
- Department of Computer Science, Princess Margaret Cancer Centre, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Giovanni Ligresti
- Department of Tissue Repair and Meccano Biology, Mayo Clinic, Rochester, NY, USA
| | - Francesco Bucciotti
- Department of Translational Research, Division of Molecular Oncology, CRO, Aviano, Italy
| | - Roberto Doliana
- Department of Translational Research, Division of Molecular Oncology, CRO, Aviano, Italy
| | - Roberta Colladel
- Department of Translational Research, Division of Molecular Oncology, CRO, Aviano, Italy
| | - Paola Braghetta
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Evelina Poletto
- Department of Translational Research, Division of Molecular Oncology, CRO, Aviano, Italy
| | - Alessia Di Silvestre
- Department of Translational Research, Division of Molecular Oncology, CRO, Aviano, Italy
| | - Giorgio Bressan
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Alfonso Colombatti
- Department of Translational Research, Division of Molecular Oncology, CRO, Aviano, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, Padova, Italy.
| | - Maurizio Mongiat
- Department of Translational Research, Division of Molecular Oncology, CRO, Aviano, Italy.
| |
Collapse
|
147
|
Morgan R, Keen J, Halligan D, O’Callaghan A, Andrew R, Livingstone D, Abernethie A, Maltese G, Walker B, Hadoke P. Species-specific regulation of angiogenesis by glucocorticoids reveals contrasting effects on inflammatory and angiogenic pathways. PLoS One 2018; 13:e0192746. [PMID: 29447208 PMCID: PMC5813970 DOI: 10.1371/journal.pone.0192746] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/30/2018] [Indexed: 12/11/2022] Open
Abstract
Glucocorticoids are potent inhibitors of angiogenesis in the rodent in vivo and in vitro but the mechanism by which this occurs has not been determined. Administration of glucocorticoids is used to treat a number of conditions in horses but the angiogenic response of equine vessels to glucocorticoids and, therefore, the potential role of glucocorticoids in pathogenesis and treatment of equine disease, is unknown. This study addressed the hypothesis that glucocorticoids would be angiostatic both in equine and murine blood vessels.The mouse aortic ring model of angiogenesis was adapted to assess the effects of cortisol in equine vessels. Vessel rings were cultured under basal conditions or exposed to: foetal bovine serum (FBS; 3%); cortisol (600 nM), cortisol (600nM) plus FBS (3%), cortisol (600nM) plus either the glucocorticoid receptor antagonist RU486 or the mineralocorticoid receptor antagonist spironolactone. In murine aortae cortisol inhibited and FBS stimulated new vessel growth. In contrast, in equine blood vessels FBS alone had no effect but cortisol alone, or in combination with FBS, dramatically increased new vessel growth compared with controls. This effect was blocked by glucocorticoid receptor antagonism but not by mineralocorticoid antagonism. The transcriptomes of murine and equine angiogenesis demonstrated cortisol-induced down-regulation of inflammatory pathways in both species but up-regulation of pro-angiogenic pathways selectively in the horse. Genes up-regulated in the horse and down-regulated in mice were associated with the extracellular matrix. These data call into question our understanding of glucocorticoids as angiostatic in every species and may be of clinical relevance in the horse.
Collapse
Affiliation(s)
- Ruth Morgan
- University/ BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| | - John Keen
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel Halligan
- Fios Genomics Ltd, Nine Edinburgh Bioquarter, Edinburgh, United Kingdom
| | - Alan O’Callaghan
- Fios Genomics Ltd, Nine Edinburgh Bioquarter, Edinburgh, United Kingdom
| | - Ruth Andrew
- University/ BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Dawn Livingstone
- University/ BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Amber Abernethie
- University/ BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Giorgia Maltese
- University/ BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Brian Walker
- University/ BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Patrick Hadoke
- University/ BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
148
|
Keck M, van Dijk RM, Deeg CA, Kistler K, Walker A, von Rüden EL, Russmann V, Hauck SM, Potschka H. Proteomic profiling of epileptogenesis in a rat model: Focus on cell stress, extracellular matrix and angiogenesis. Neurobiol Dis 2018; 112:119-135. [PMID: 29413716 DOI: 10.1016/j.nbd.2018.01.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/11/2018] [Accepted: 01/17/2018] [Indexed: 12/26/2022] Open
Abstract
Information about epileptogenesis-associated changes in protein expression patterns is of particular interest for future selection of target and biomarker candidates. Bioinformatic analysis of proteomic data sets can increase our knowledge about molecular alterations characterizing the different phases of epilepsy development following an initial epileptogenic insult. Here, we report findings from a focused analysis of proteomic data obtained for the hippocampus and parahippocampal cortex samples collected during the early post-insult phase, latency phase, and chronic phase of a rat model of epileptogenesis. The study focused on proteins functionally associated with cell stress, cell death, extracellular matrix (ECM) remodeling, cell-ECM interaction, cell-cell interaction, angiogenesis, and blood-brain barrier function. The analysis revealed prominent pathway enrichment providing information about the complex expression alterations of the respective protein groups. In the hippocampus, the number of differentially expressed proteins declined over time during the course of epileptogenesis. In contrast, a peak in the regulation of proteins linked with cell stress and death as well as ECM and cell-cell interaction became evident at later phases during epileptogenesis in the parahippocampal cortex. The data sets provide valuable information about the time course of protein expression patterns during epileptogenesis for a series of proteins. Moreover, the findings provide comprehensive novel information about expression alterations of proteins that have not been discussed yet in the context of epileptogenesis. These for instance include different members of the lamin protein family as well as the fermitin family member 2 (FERMT2). Induction of FERMT2 and other selected proteins, CD18 (ITGB2), CD44 and Nucleolin were confirmed by immunohistochemistry. Taken together, focused bioinformatic analysis of the proteomic data sets completes our knowledge about molecular alterations linked with cell death and cellular plasticity during epileptogenesis. The analysis provided can guide future selection of target and biomarker candidates.
Collapse
Affiliation(s)
- Michael Keck
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Roelof Maarten van Dijk
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Cornelia A Deeg
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Katharina Kistler
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Andreas Walker
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Eva-Lotta von Rüden
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Vera Russmann
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, Neuherberg, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany.
| |
Collapse
|
149
|
Galvagni F, Nardi F, Spiga O, Trezza A, Tarticchio G, Pellicani R, Andreuzzi E, Caldi E, Toti P, Tosi GM, Santucci A, Iozzo RV, Mongiat M, Orlandini M. Dissecting the CD93-Multimerin 2 interaction involved in cell adhesion and migration of the activated endothelium. Matrix Biol 2017; 64:112-127. [DOI: 10.1016/j.matbio.2017.08.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/18/2017] [Accepted: 08/24/2017] [Indexed: 01/20/2023]
|
150
|
Kaessmeyer S, Sehl J, Khiao In M, Merle R, Richardson K, Plendl J. Subcellular Interactions during Vascular Morphogenesis in 3D Cocultures between Endothelial Cells and Fibroblasts. Int J Mol Sci 2017; 18:ijms18122590. [PMID: 29194374 PMCID: PMC5751193 DOI: 10.3390/ijms18122590] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/23/2017] [Accepted: 11/28/2017] [Indexed: 12/28/2022] Open
Abstract
Background: Increasing the complexity of in vitro systems to mimic three-dimensional tissues and the cellular interactions within them will increase the reliability of data that were previously collected with in vitro systems. In vivo vascularization is based on complex and clearly defined cell–matrix and cell–cell interactions, where the extracellular matrix (ECM) seems to play a very important role. The aim of this study was to monitor and visualize the subcellular and molecular interactions between endothelial cells (ECs), fibroblasts, and their surrounding microenvironment during vascular morphogenesis in a three-dimensional coculture model. Methods: Quantitative and qualitative analyses during the generation of a coculture tissue construct consisting of endothelial cells and fibroblasts were done using transmission electron microscopy and immunohistochemistry. Results: Dynamic interactions were found in cocultures between ECs, between fibroblasts (FBs), between ECs and FBs, and between the cells and the ECM. Microvesicles were involved in intercellular information transfer. FBs took an active and physical part in the angiogenesis process. The ECM deposited by the cells triggered endothelial angiogenic activity. Capillary-like tubular structures developed and matured. Moreover, some ECM assembled into a basement membrane (BM) having three different layers equivalent to those seen in vivo. Finally, the three-dimensional in vitro construct mirrored the topography of histological tissue sections. Conclusion: Our results visualize the importance of the physical contact between all cellular and acellular components of the cocultures.
Collapse
Affiliation(s)
- Sabine Kaessmeyer
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie Universitaet Berlin, Koserstraße 20, 14195 Berlin, Germany.
| | - Julia Sehl
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie Universitaet Berlin, Koserstraße 20, 14195 Berlin, Germany.
| | - Maneenooch Khiao In
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie Universitaet Berlin, Koserstraße 20, 14195 Berlin, Germany.
| | - Roswitha Merle
- Department of Veterinary Medicine, Institute of Veterinary Epidemiology and Biostatistics, Freie Universitaet Berlin, Koenigsweg 67, 14163 Berlin, Germany.
| | - Ken Richardson
- College of Veterinary Medicine, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia.
| | - Johanna Plendl
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie Universitaet Berlin, Koserstraße 20, 14195 Berlin, Germany.
| |
Collapse
|