101
|
Bortolami M, Pandolfi F, Tudino V, Messore A, Madia VN, De Vita D, Di Santo R, Costi R, Romeo I, Alcaro S, Colone M, Stringaro A, Espargaró A, Sabatè R, Scipione L. Design, Synthesis, and In Vitro, In Silico and In Cellulo Evaluation of New Pyrimidine and Pyridine Amide and Carbamate Derivatives as Multi-Functional Cholinesterase Inhibitors. Pharmaceuticals (Basel) 2022; 15:ph15060673. [PMID: 35745594 PMCID: PMC9227096 DOI: 10.3390/ph15060673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/29/2022] Open
Abstract
Alzheimer disease is an age-linked neurodegenerative disorder representing one of the greatest medical care challenges of our century. Several drugs are useful in ameliorating the symptoms, even if none could stop or reverse disease progression. The standard approach is represented by the cholinesterase inhibitors (ChEIs) that restore the levels of acetylcholine (ACh) by inhibiting the acetylcholinesterase (AChE). Still, their limited efficacy has prompted researchers to develop new ChEIs that could also reduce the oxidative stress by exhibiting antioxidant properties and by chelating the main metals involved in the disease. Recently, we developed some derivatives constituted by a 2-amino-pyrimidine or a 2-amino-pyridine moiety connected to various aromatic groups by a flexible amino-alkyl linker as new dual inhibitors of AChE and butyrylcholinesterase (BChE). Following our previous studies, in this work we explored the role of the flexible linker by replacing the amino group with an amide or a carbamic group. The most potent compounds showed higher selectivity against BChE in respect to AChE, proving also to possess a weak anti-aggregating activity toward Aβ42 and tau and to be able to chelate Cu2+ and Fe3+ ions. Molecular docking and molecular dynamic studies proposed possible binding modes with the enzymes. It is noteworthy that these compounds were predicted as BBB-permeable and showed low cytotoxicity on the human brain cell line.
Collapse
Affiliation(s)
- Martina Bortolami
- Department of Scienze di Base e Applicate per l’Ingegneria, Sapienza University of Rome, Via Castro Laurenziano 7, 00185 Rome, Italy; (M.B.); (F.P.)
| | - Fabiana Pandolfi
- Department of Scienze di Base e Applicate per l’Ingegneria, Sapienza University of Rome, Via Castro Laurenziano 7, 00185 Rome, Italy; (M.B.); (F.P.)
| | - Valeria Tudino
- Department of Chimica e Tecnologia del Farmaco, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (V.T.); (A.M.); (V.N.M.); (R.D.S.); (R.C.)
| | - Antonella Messore
- Department of Chimica e Tecnologia del Farmaco, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (V.T.); (A.M.); (V.N.M.); (R.D.S.); (R.C.)
| | - Valentina Noemi Madia
- Department of Chimica e Tecnologia del Farmaco, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (V.T.); (A.M.); (V.N.M.); (R.D.S.); (R.C.)
| | - Daniela De Vita
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Roberto Di Santo
- Department of Chimica e Tecnologia del Farmaco, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (V.T.); (A.M.); (V.N.M.); (R.D.S.); (R.C.)
- Instituto Pasteur, Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Roberta Costi
- Department of Chimica e Tecnologia del Farmaco, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (V.T.); (A.M.); (V.N.M.); (R.D.S.); (R.C.)
- Instituto Pasteur, Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Isabella Romeo
- Net4Science Academic Spin-Off, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy;
- Dipartimento di Scienze della Salute, Università degli Studi “Magna Græcia” di Catanzaro, 88100 Catanzaro, Italy
| | - Stefano Alcaro
- Net4Science Academic Spin-Off, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy;
- Dipartimento di Scienze della Salute, Università degli Studi “Magna Græcia” di Catanzaro, 88100 Catanzaro, Italy
- Correspondence: (S.A.); (L.S.)
| | - Marisa Colone
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.C.); (A.S.)
| | - Annarita Stringaro
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.C.); (A.S.)
| | - Alba Espargaró
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08007 Barcelona, Spain; (A.E.); (R.S.)
- Institute of Nanoscience and Nanotechnology (INUB), 08028 Barcelona, Spain
| | - Raimon Sabatè
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08007 Barcelona, Spain; (A.E.); (R.S.)
- Institute of Nanoscience and Nanotechnology (INUB), 08028 Barcelona, Spain
| | - Luigi Scipione
- Department of Chimica e Tecnologia del Farmaco, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (V.T.); (A.M.); (V.N.M.); (R.D.S.); (R.C.)
- Correspondence: (S.A.); (L.S.)
| |
Collapse
|
102
|
Adewole KE, Gyebi GA, Ishola AA, Falade AO. Computer-aided identification of cholinergic and monoaminergic inhibitory flavonoids from Hibiscus sabdariffa L. Curr Drug Discov Technol 2022; 19:e250522205232. [PMID: 35619271 DOI: 10.2174/1570163819666220525101039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/18/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND The reduced levels of acetylcholine and dopamine lead to Alzheimer's disease AD and Parkinson disease PD, respectively, due to the action of cholinesterase and monoamine oxidase B. METHODS Therapeutic options for AD and PD involve respective cholinergic and monoaminergic inhibitors, and considering the adverse outcomes of cholinergic- and monoaminergic- inhibitory therapeutics, phytoconstituents may be promising alternatives. Reports have shown that different extracts of the calyx of Hibiscus sabdariffa exhibit anticholinesterase and monoamine oxidase B inhibitory properties with potential to delay and prevent the development of AD and PD. However, there is limited knowledge on the multitarget cholinergic and monoaminergic inhibitory activities of individual compounds in this plant. Computational methods were used to identify the specific compounds responsible for the observed cholinergic and monoaminergic inhibitory activities of the H. sabdariffa calyx extracts. RESULTS Results confirm that three flavonoids: delphinidin-3-sambubioside, kaempferol-3-O-rutinoside and quercetin-3-rutinoside showed strong binding affinity with acetylcholinesterase, butyrylcholinesterase and monoamine oxidase B while the observed stability of the ligands-enzymes complexes over the MD simulation time suggests their cholinergic and monoaminergic inhibitory properties. CONCLUSION The three flavonoids may be responsible for the reported anticholinergic and monoaminergic inhibitory potentials of H. sabdariffa extracts and could be enlisted as multi-target inhibitory agents for cholinesterases and monoamine oxidase B.
Collapse
Affiliation(s)
- Kayode Ezekiel Adewole
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Medical Sciences, P.M.B. 536, Ondo City, Ondo State, Nigeria
| | - Gideon Ampoma Gyebi
- Department of Biochemistry, Faculty of Science and Technology, Bingham University, Karu, Nasarawa, Nigeria.,NpsBC-Cr: Natural products and structural (Bio-Chem)-informatics Computing Research Lab. Bingham University, Karu, Nasarawa, Nigeria
| | | | - Ayodeji Osmund Falade
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Medical Sciences, P.M.B. 536, Ondo City, Ondo State, Nigeria
| |
Collapse
|
103
|
Jansa P, Barvík I, Hulcová D, Matoušová E. Synthesis and cholinesterase inhibitory activity study of Amaryllidaceae alkaloid analogues with N-methyl substitution. Org Biomol Chem 2022; 20:3960-3966. [PMID: 35471452 DOI: 10.1039/d2ob00553k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polycyclic compounds with N-methyl substitution, structurally related to Amaryllidaceae alkaloids, have been synthesised, together with their analogues bearing a quaternary nitrogen atom. To prevent the lone electron pair of the nitrogen from interfering with the reaction sequence, two approaches to the synthesis were investigated: N-oxidation and Boc protection of the nitrogen. The second method was more successful due to the limited stability of N-oxides in the halocyclisation step. An asymmetric version of the synthesis was also developed for this type of compounds. The prepared products were tested in vitro for their cholinesterase inhibitory activity and the results were rationalised by molecular docking studies with human acetylcholinesterase (hAChE) and butyrylcholinesterase (hBuChE). In general, our products were more active against BuChE than against AChE, and it was noted that larger ligands should be prepared for future studies, since in some cases acetylcholine can still fit into the active site along with the bound ligand.
Collapse
Affiliation(s)
- Petr Jansa
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Praha 2, Czech Republic.
| | - Ivan Barvík
- Faculty of Mathematics and Physics, Institute of Physics, Charles University, Ke Karlovu 2026/5, 121 16 Praha 2, Czech Republic
| | - Daniela Hulcová
- Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Eliška Matoušová
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Praha 2, Czech Republic.
| |
Collapse
|
104
|
da Silva Mesquita R, Kyrylchuk A, Cherednichenko A, Costa Sá IS, Macedo Bastos L, Moura Araújo da Silva F, Saraiva Nunomura RDC, Grafov A. In Vitro and In Silico Evaluation of Cholinesterase Inhibition by Alkaloids Obtained from Branches of Abuta panurensis Eichler. Molecules 2022; 27:molecules27103138. [PMID: 35630611 PMCID: PMC9144276 DOI: 10.3390/molecules27103138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
Alkaloids are natural products known as ethnobotanicals that have attracted increasing attention due to a wide range of their pharmacological properties. In this study, cholinesterase inhibitors were obtained from branches of Abuta panurensis Eichler (Menispermaceae), an endemic species from the Amazonian rainforest. Five alkaloids were isolated, and their structure was elucidated by a combination of 1D and 2D 1H and 13C NMR spectroscopy, HPLC-MS, and high-resolution MS: Lindoldhamine isomer m/z 569.2674 (1), stepharine m/z 298.1461 (2), palmatine m/z 352.1616 (3), 5-N-methylmaytenine m/z 420.2669 (4) and the N-trans-feruloyltyramine m/z 314.1404 (5). The compounds 1, 3, and 5 were isolated from A. panurensis for the first time. Interaction of the above-mentioned alkaloids with acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes was investigated in silico by molecular docking and molecular dynamics. The molecules under investigation were able to bind effectively with the active sites of the AChE and BChE enzymes. The compounds 1–4 demonstrated in vitro an inhibitory effect on acetylcholinesterase with IC50 values in the range of 19.55 µM to 61.24 µM. The data obtained in silico corroborate the results of AChE enzyme inhibition.
Collapse
Affiliation(s)
- Rochelly da Silva Mesquita
- Analytical Central—Multidisciplinary Support Center—CAM, Federal University of Amazonas—UFAM, Manaus 69077-000, Amazonas, Brazil; (R.d.S.M.); (I.S.C.S.); (L.M.B.); (F.M.A.d.S.); (R.d.C.S.N.)
| | - Andrii Kyrylchuk
- Institute of Organic Chemistry, National Academy of Sciences—NAS, 5 Murmanska Str., 02660 Kyiv, Ukraine;
- Chemspace LLC, Of. 1, 85 Chervonotkatska Str., 02094 Kyiv, Ukraine
| | - Anton Cherednichenko
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006 Riga, Latvia;
- Institute of High Technologies, T. Shevchenko National University, 4-g Prosp. Glushkova, 03022 Kyiv, Ukraine
| | - Ingrity Suelen Costa Sá
- Analytical Central—Multidisciplinary Support Center—CAM, Federal University of Amazonas—UFAM, Manaus 69077-000, Amazonas, Brazil; (R.d.S.M.); (I.S.C.S.); (L.M.B.); (F.M.A.d.S.); (R.d.C.S.N.)
| | - Lílian Macedo Bastos
- Analytical Central—Multidisciplinary Support Center—CAM, Federal University of Amazonas—UFAM, Manaus 69077-000, Amazonas, Brazil; (R.d.S.M.); (I.S.C.S.); (L.M.B.); (F.M.A.d.S.); (R.d.C.S.N.)
| | - Felipe Moura Araújo da Silva
- Analytical Central—Multidisciplinary Support Center—CAM, Federal University of Amazonas—UFAM, Manaus 69077-000, Amazonas, Brazil; (R.d.S.M.); (I.S.C.S.); (L.M.B.); (F.M.A.d.S.); (R.d.C.S.N.)
| | - Rita de Cássia Saraiva Nunomura
- Analytical Central—Multidisciplinary Support Center—CAM, Federal University of Amazonas—UFAM, Manaus 69077-000, Amazonas, Brazil; (R.d.S.M.); (I.S.C.S.); (L.M.B.); (F.M.A.d.S.); (R.d.C.S.N.)
- Department of Chemistry, Federal University of Amazonas-UFAM, Manaus 69077-000, Amazonas, Brazil
| | - Andriy Grafov
- Department of Chemistry, University of Helsinki, A.I. Virtasen Aukio 1, 00560 Helsinki, Finland
- Correspondence: ; Tel.: +358-2-94150-221
| |
Collapse
|
105
|
André C, Guillaume YC. Development of nano Bio LC columns for the search of acethylcholinesterase molecular targets. J Sep Sci 2022; 45:2109-2117. [PMID: 35384306 DOI: 10.1002/jssc.202200047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/07/2022] [Accepted: 03/28/2022] [Indexed: 11/10/2022]
Abstract
A novel acetylcholinesterase (AChE) Nano LC capillary column (75μm i.d * 50 mm length) was developed for the fast screening of AChE inhibitors and the evaluation of their molecular recognition mechanism. Biotinylated AChE was immobilized on a streptavidin Nano LC capillary column. Because of the very strong streptavidin biotin interaction, the AChE immobilization step performed by frontal analysis is very fast (required less than 10 min) and the amount of immobilized AChE was in the microgram range (1μg). The yellow anion obtained from the enzymatic reaction detected at 412 nm was achieved within 60 s and the immobilized acetylcholinesterase retained 96% of the initial activity beyond 90 days. This column was successfully applied for the discrimination of weak affinity ligands to AChE from non-binders which is the heart of the Fragment Based Drug Design (FBDD). This column was used for the determination of the IC50 values of a series of inhibitor molecules. In addition, it was demonstrated that competitive experiments could be performed with our miniaturized system to confirm the existence and the binding pocket of a ligand to AChE contained in a methanol plant extract. The results revealed that our AChE Nano LC capillary column developed in this work represents a useful tool for the rapid screening of inhibitor candidates and evaluation of action mechanism. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Claire André
- Univ Franche - Comté, Besançon, F-25000, France.,EA481 Neurosciences Intégratives et Cliniques/Pôle Chimie Analytique Bioanalytique et Physique (PCABP), Besançon, F-25000, France
| | - Yves Claude Guillaume
- Univ Franche - Comté, Besançon, F-25000, France.,EA481 Neurosciences Intégratives et Cliniques/Pôle Chimie Analytique Bioanalytique et Physique (PCABP), Besançon, F-25000, France.,CHRU Besançon, Pôle Pharmaceutique, Besançon, F- 25000, France
| |
Collapse
|
106
|
Zorbaz T, Malinak D, Hofmanova T, Maraković N, Žunec S, Hrvat NM, Andrys R, Psotka M, Zandona A, Svobodova J, Prchal L, Fingler S, Katalinić M, Kovarik Z, Musilek K. Halogen substituents enhance oxime nucleophilicity for reactivation of cholinesterases inhibited by nerve agents. Eur J Med Chem 2022; 238:114377. [DOI: 10.1016/j.ejmech.2022.114377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/28/2022] [Accepted: 04/09/2022] [Indexed: 11/03/2022]
|
107
|
Mukhametgalieva AR, Lushchekina SV, Aglyamova AR, Masson P. Steady-state kinetic analysis of human cholinesterases over wide concentration ranges of competing substrates. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140733. [PMID: 34662731 DOI: 10.1016/j.bbapap.2021.140733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Substrate competition for human acetylcholinesterase (AChE) and human butyrylcholinesterase (BChE) was studies under steady-state conditions using wide range of substrate concentrations. Competing couples of substates were acetyl-(thio)esters. Phenyl acetate (PhA) was the reporter substrate and competitor were either acetylcholine (ACh) or acetylthiocholine (ATC). The common point between investigated substrates is that the acyl moiety is acetate, i.e. same deacylation rate constant for reporter and competitor substrate. Steady-state kinetics of cholinesterase-catalyzed hydrolysis of PhA in the presence of ACh or ATC revealed 3 phases of inhibition as concentration of competitor increased: a) competitive inhibition, b) partially mixed inhibition, c) partially uncompetitive inhibition for AChE and partially uncompetitive activation for BChE. This sequence reflects binding of competitor in the active centrer at low concentration and on the peripheral anionic site (PAS) at high concentration. In particular, it showed that binding of a competing ligand on PAS may affect the catalytic behavior of AChE and BChE in an opposite way, i.e. inhibition of AChE and activation of BChE, regardless the nature of the reporter substrate. For both enzymes, progress curves for hydrolysis of PhA at very low concentration (≪Km) in the presence of increasing concentration of ATC showed that: a) the competing substrate and the reporter substrate are hydrolyzed at the same time, b) complete hydrolysis of PhA cannot be reached above 1 mM competing substrate. This likely results from accumulation of hydrolysis products (P) of competing substrate and/or accumulation of acetylated enzyme·P complex that inhibit hydrolysis of the reporter substrate.
Collapse
Affiliation(s)
- Aliya R Mukhametgalieva
- Kazan Federal University, Neuropharmacology Laboratory, 18 ul. Kremlevskaya, 420008 Kazan, Russian Federation
| | - Sofya V Lushchekina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 ul. Kosygina, Moscow 119334, Russian Federation
| | - Aliya R Aglyamova
- Kazan Federal University, Neuropharmacology Laboratory, 18 ul. Kremlevskaya, 420008 Kazan, Russian Federation
| | - Patrick Masson
- Kazan Federal University, Neuropharmacology Laboratory, 18 ul. Kremlevskaya, 420008 Kazan, Russian Federation.
| |
Collapse
|
108
|
Li S, Li AJ, Travers J, Xu T, Sakamuru S, Klumpp-Thomas C, Huang R, Xia M. Identification of Compounds for Butyrylcholinesterase Inhibition. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2021; 26:1355-1364. [PMID: 34269114 PMCID: PMC8637366 DOI: 10.1177/24725552211030897] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/30/2021] [Accepted: 06/10/2021] [Indexed: 11/24/2022]
Abstract
Butyrylcholinesterase (BChE) is a nonspecific cholinesterase enzyme that hydrolyzes choline-based esters. BChE plays a critical role in maintaining normal cholinergic function like acetylcholinesterase (AChE) through hydrolyzing acetylcholine (ACh). Selective BChE inhibition has been regarded as a viable therapeutic approach in Alzheimer's disease. As of now, a limited number of selective BChE inhibitors are available. To identify BChE inhibitors rapidly and efficiently, we have screened 8998 compounds from several annotated libraries against an enzyme-based BChE inhibition assay in a quantitative high-throughput screening (qHTS) format. From the primary screening, we identified a group of 125 compounds that were further confirmed to inhibit BChE activity, including previously reported BChE inhibitors (e.g., bambuterol and rivastigmine) and potential novel BChE inhibitors (e.g., pancuronium bromide and NNC 756), representing diverse structural classes. These BChE inhibitors were also tested for their selectivity by comparing their IC50 values in BChE and AChE inhibition assays. The binding modes of these compounds were further studied using molecular docking analyses to identify the differences between the interactions of these BChE inhibitors within the active sites of AChE and BChE. Our qHTS approach allowed us to establish a robust and reliable process to screen large compound collections for potential BChE inhibitors.
Collapse
Affiliation(s)
- Shuaizhang Li
- Division for Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Andrew J. Li
- Division for Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Jameson Travers
- Division for Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Tuan Xu
- Division for Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Srilatha Sakamuru
- Division for Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Carleen Klumpp-Thomas
- Division for Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Ruili Huang
- Division for Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Menghang Xia
- Division for Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
109
|
Bortolami M, Pandolfi F, Tudino V, Messore A, Madia VN, De Vita D, Di Santo R, Costi R, Romeo I, Alcaro S, Colone M, Stringaro A, Espargaró A, Sabatè R, Scipione L. New Pyrimidine and Pyridine Derivatives as Multitarget Cholinesterase Inhibitors: Design, Synthesis, and In Vitro and In Cellulo Evaluation. ACS Chem Neurosci 2021; 12:4090-4112. [PMID: 34652128 PMCID: PMC8569681 DOI: 10.1021/acschemneuro.1c00485] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
![]()
A new series of pyrimidine
and pyridine diamines was designed as
dual binding site inhibitors of cholinesterases (ChEs), characterized
by two small aromatic moieties separated by a diaminoalkyl flexible
linker. Many compounds are mixed or uncompetitive acetylcholinesterase
(AChE) and/or butyrylcholinesterase (BChE) nanomolar inhibitors, with
compound 9 being the most active on Electrophorus
electricus AChE (EeAChE) (Ki = 0.312 μM) and compound 22 on equine BChE (eqBChE) (Ki = 0.099 μM). Molecular docking and molecular dynamic
studies confirmed the interaction mode of our compounds with the enzymatic
active site. UV–vis spectroscopic studies showed that these
compounds can form complexes with Cu2+ and Fe3+ and that compounds 18, 20, and 30 have antioxidant properties. Interestingly, some compounds were
also able to reduce Aβ42 and tau aggregation, with
compound 28 being the most potent (22.3 and 17.0% inhibition
at 100 μM on Aβ42 and tau, respectively). Moreover,
the most active compounds showed low cytotoxicity on a human brain
cell line and they were predicted as BBB-permeable.
Collapse
Affiliation(s)
- Martina Bortolami
- Department of Scienze di Base e Applicate per l’Ingegneria, Sapienza University of Rome, via Castro Laurenziano 7, I-00161 Rome, Italy
| | - Fabiana Pandolfi
- Department of Scienze di Base e Applicate per l’Ingegneria, Sapienza University of Rome, via Castro Laurenziano 7, I-00161 Rome, Italy
| | - Valeria Tudino
- Department of Chimica e Tecnologia del Farmaco, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Antonella Messore
- Department of Chimica e Tecnologia del Farmaco, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Valentina Noemi Madia
- Department of Chimica e Tecnologia del Farmaco, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Daniela De Vita
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Roberto Di Santo
- Istituto Pasteur, Fondazione Cenci Bolognetti, Department of Chemistry and Technology of Drug, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Roberta Costi
- Istituto Pasteur, Fondazione Cenci Bolognetti, Department of Chemistry and Technology of Drug, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Isabella Romeo
- Net4Science s.r.l., Campus universitario ″S. Venuta″, Viale Europa, 88100 Catanzaro, Italy
- Dipartimento di Scienze della Salute, Università ″Magna Græcia″ di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Stefano Alcaro
- Net4Science s.r.l., Campus universitario ″S. Venuta″, Viale Europa, 88100 Catanzaro, Italy
- Dipartimento di Scienze della Salute, Università ″Magna Græcia″ di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Marisa Colone
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena, 00161 Rome, Italy
| | - Annarita Stringaro
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena, 00161 Rome, Italy
| | - Alba Espargaró
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII, 27-31 Barcelona, Catalonia, Spain
| | - Raimon Sabatè
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII, 27-31 Barcelona, Catalonia, Spain
| | - Luigi Scipione
- Department of Chimica e Tecnologia del Farmaco, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
110
|
Assessment of four organophosphorus pesticides as inhibitors of human acetylcholinesterase and butyrylcholinesterase. Sci Rep 2021; 11:21486. [PMID: 34728713 PMCID: PMC8563940 DOI: 10.1038/s41598-021-00953-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/20/2021] [Indexed: 11/08/2022] Open
Abstract
Toxicity of organophosphorus compounds (OPs) remains a major public health concern due to their widespread use as pesticides and the existence of nerve agents. Their common mechanism of action involves inhibition of enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) which are crucial for neurotransmission. Both chronic and acute poisoning by OPs can leave long-lasting health effects even when the patients are treated with standard medical therapy. Therefore, an increasing urgency exists to find more effective oxime reactivators for compounds which are resistant to reactivation, especially phosphoramidates. Here, we investigated in silico and in vitro interactions and kinetics of inhibition for human cholinesterases with four organophosphate pesticides-ethoprophos, fenamiphos, methamidophos and phosalone. Overall, ethoprophos and fenamiphos displayed higher potency as inhibitors for tested cholinesterases. Our results show that methamidophos-inhibited hAChE was more susceptible to reactivation than hAChE inhibited by fenamiphos by selected oximes. Molecular modelling enabled an evaluation of interactions important for specificity and selectivity of both inhibition and reactivation of cholinesterases. Two newly developed reactivators-bispyridinium triazole oxime 14A and zwitterionic oxime RS194B possess remarkable potential for further development of antidotes directed against pesticides and related phosphoramidate exposures, such as nerve agents tabun or Novichoks.
Collapse
|
111
|
Komagata O, Kasai S, Itokawa K, Minagawa K, Kazuma T, Mizutani K, Muto A, Tanikawa T, Adachi M, Komatsu N, Tomita T. Common substitution mutation F348Y of acetylcholinesterase gene contributes to organophosphate and carbamate resistance in Cimex lectularius and C. hemipterus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 138:103637. [PMID: 34454015 DOI: 10.1016/j.ibmb.2021.103637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Bed bug control highly depends on insecticides with a limited number of modes of action, especially since the global prevalence of pyrethroid resistance. De facto insecticide options against bed bugs in Japan are acetylcholinesterase inhibitors (AChEis) that consist of organophosphates and carbamates. However, the status of AChEi resistance and the mechanisms involved have not been ascertained. An amino acid substitution mutation, F348Y (or F331Y in standard numbering), occurring at an acyl-binding site of the paralogous AChE gene (p-Ace), was identified among AChEi-resistant colonies of both common and tropical bed bugs (Cimex lectularius and C. hemipterus, respectively). This mutation was genetically associated with propoxur and fenitrothion resistance in F348Y-segregating colonies of C. hemipterus. Inhibition of heterologously expressed C. lectularius p-Ace with insecticides revealed that the sensitivities of F348Y-carrying AChE decreased by orders of 10- to more than 100-fold for diazoxon, carbaryl, fenitroxon, paraoxon, chlorpyrifos-methyl, malaoxon, azamethiphos, methyl-paraoxon, and propoxur. In contrast, the mutant AChE showed a slightly decreased degree of sensitivity for dichlorvos and almost unchanged sensitivity for metoxadiazone. Further studies are needed to ascertain whether the practical efficacies of dichlorvos and metoxadiazone are ensured against F348Y-carrying bed bugs and whether other resistance mechanisms are involved.
Collapse
Affiliation(s)
- Osamu Komagata
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, 162-8640, Japan.
| | - Shinji Kasai
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Kentaro Itokawa
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Keiko Minagawa
- Environmental Biology and Living Environmental Department, Japan Environmental Sanitation Center, Kawasaki-ku, Kawasaki, 210-0828, Japan
| | - Toru Kazuma
- Environmental Biology and Living Environmental Department, Japan Environmental Sanitation Center, Kawasaki-ku, Kawasaki, 210-0828, Japan
| | - Kiyoshi Mizutani
- Environmental Biology and Living Environmental Department, Japan Environmental Sanitation Center, Kawasaki-ku, Kawasaki, 210-0828, Japan
| | - Atsuhiko Muto
- Environmental Biology and Living Environmental Department, Japan Environmental Sanitation Center, Kawasaki-ku, Kawasaki, 210-0828, Japan
| | - Tsutomu Tanikawa
- Technical Research Laboratory, IKARI Shodoku Co., Ltd., Narashino, Chiba, 275-0024, Japan
| | | | - Noriyuki Komatsu
- Civil International Corporation, Taito-ku, Tokyo, 110-0014, Japan
| | - Takashi Tomita
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, 162-8640, Japan
| |
Collapse
|
112
|
Sharma V, Slathia N, Mahajan S, Kapoor KK, Gupta VK. Synthesis, Characterization, Crystal Structure, Molecular Docking Analysis and Other Physico-Chemical Properties of (E)-2-(3,4-Dimethoxystyryl)Quinoline. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1996409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Varun Sharma
- Department of Physics, University of Jammu, Jammu-Tawi, India
| | - Nancy Slathia
- Department of Chemistry, University of Jammu, Jammu-Tawi, India
| | - Sheena Mahajan
- CSIR-Indian Institute of Integrative Medicine, Jammu-Tawi, India
| | - Kamal K. Kapoor
- Department of Chemistry, University of Jammu, Jammu-Tawi, India
| | | |
Collapse
|
113
|
Malik AA, Ojha SC, Schaduangrat N, Nantasenamat C. ABCpred: a webserver for the discovery of acetyl- and butyryl-cholinesterase inhibitors. Mol Divers 2021; 26:467-487. [PMID: 34609711 DOI: 10.1007/s11030-021-10292-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
Alzheimer's disease (AD) is one of the most common forms of dementia and is associated with a decline in cognitive function and language ability. The deficiency of the cholinergic neurotransmitter known as acetylcholine (ACh) is associated with AD. Acetylcholinesterase (AChE) hydrolyses ACh and inhibits the cholinergic transmission. Furthermore, both AChE and butyrylcholinesterase (BChE) plays important roles in early and late stages of AD. Therefore, the inhibition of either or both cholinesterase enzymes represent a promising therapeutic route for treating AD. In this study, a large-scale classification structure-activity relationship model was developed to predict cholinesterase inhibitory activities as well as revealing important substructures governing their activities. Herein, a non-redundant dataset constituting 985 and 1056 compounds for AChE and BChE, respectively, was obtained from the ChEMBL database. These inhibitors were described by 12 sets of molecular fingerprints and predictive models were developed using the random forest algorithm. Evaluation of the model performance by means of Matthews correlation coefficient and consideration of the model's interpretability indicated that the SubstructureCount fingerprint was the most robust with five-fold cross-validated MCC of [0.76, 0.82] for AChE and BChE, respectively, and test MCC of [0.73, 0.97]. Feature interpretation revealed that the aromatic ring system, heterocyclic nitrogen containing compounds and amines are important for cholinesterase inhibition. Finally, the model was deployed as a publicly available webserver called the ABCpred at http://codes.bio/abcpred/ .
Collapse
Affiliation(s)
- Aijaz Ahmad Malik
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Suvash Chandra Ojha
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Nalini Schaduangrat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
114
|
Boy S, Aras A, Türkan F, Akyıldırım O, Beytur M, Sedef Karaman H, Manap S, Yüksek H. Synthesis, Spectroscopic Analysis, and in Vitro/in Silico Biological Studies of Novel Piperidine Derivatives Heterocyclic Schiff-Mannich Base Compounds. Chem Biodivers 2021; 18:e2100433. [PMID: 34596972 DOI: 10.1002/cbdv.202100433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/01/2021] [Indexed: 01/20/2023]
Abstract
In the present study, 3-substitued-4-(4-hydroxybenzylidenamino)-4,5-dihydro-1H-1,2,4-triazol-5-ones (S1-8) were synthesized by treating 4-hydroxybenzaldehyde (B) with eight different 3-substitued-4-amino-4,5-dihydro-1H-1,2,4-triazole-5-ones (T1-8) in acetic acid medium, separately. The synthesized Schiff bases (S) were reacted with formaldehyde and secondary amine such as 4-piperidinecarboxyamide to afford novel heterocyclic bases. 3-Substitued-4-(4-hydroxybenzylidenamino)-4,5-dihydro-1H-1,2,4-triazol-5-ones (T) were treated with 4-piperidinecarboxyamide in the presence of formaldehyde to synthesize eight new 1-(4-piperidinecarboxyamide-1-yl-methyl)-3-substitued-4-(4-hydroxybenzylidenamino)-4,5-dihydro-1H-1,2,4-triazol-5-ones (M1-8). The structure characterization of compounds was carried out using 1 H-NMR, IR, HR-MS, and 13 C-NMR spectroscopic methods. The inhibitory properties of the newly synthesized compounds were calculated against the acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and glutathione S-transferase (GST) enzymes. Ki values were calculated in the range of 20.06±3.11-36.86±6.17 μM for GST, 17.87±2.91-30.53±4.25 μM for AChE, 9.08±0.69-20.02±2.88 μM for BChE, respectively, Besides, IC50 values were also calculated. Best binding scores of -inhibitors against used enzymes were calculated as -12.095 kcal/mol, -12.775 kcal/mol, and -9.336 kcal/mol, respectively. While 5-oxo-triazole piperidine-4-carboxamide moieties have a critical role in the inhibition of AChE and GST enzymes, hydroxy benzyl moiety is important for BChE enzyme inhibition.
Collapse
Affiliation(s)
- Songül Boy
- Atatürk Vocational College of Health Service, Kafkas University, Kars, 36100, Turkey
| | - Abdülmelik Aras
- Department of Biochemistry, Faculty of Science and Arts, Iğdır University, Iğdır, 76100, Turkey
| | - Fikret Türkan
- Health Services Vocational School, Iğdır University, Iğdır, 76000, Turkey
| | - Onur Akyıldırım
- Department of Chemical Engineering, Faculty of Engineering and Architecture, Kafkas University, Kars, 36100, Turkey
| | - Murat Beytur
- Department of Chemistry, Faculty of Science and Letters, Kafkas University, Kars, 36100, Turkey
| | - Halide Sedef Karaman
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, 25240, Turkey
| | - Sevda Manap
- Department of Chemistry, Faculty of Science and Letters, Kafkas University, Kars, 36100, Turkey
| | - Haydar Yüksek
- Department of Chemistry, Faculty of Science and Letters, Kafkas University, Kars, 36100, Turkey
| |
Collapse
|
115
|
Design, synthesis of novel peripherally tetra-chalcone substituted phthalocyanines and their inhibitory effects on acetylcholinesterase and carbonic anhydrases (hCA I and II). J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
116
|
Raghuvanshi R, Nuthakki VK, Singh L, Singh B, Bharate SS, Bhatti R, Bharate SB. Identification of plant-based multitargeted leads for Alzheimer's disease: In-vitro and in-vivo validation of Woodfordia fruticosa (L.) Kurz. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153659. [PMID: 34332286 DOI: 10.1016/j.phymed.2021.153659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/01/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a complex neurodegenerative disease with no availability of disease-modifying therapeutics. The complex etiology and recent failures in clinical trials indicate the need for multitargeted agents. PURPOSE The present study aims to discover new plant-based multitargeted anti-AD leads. METHODS A library of plant extracts was screened for inhibition of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and beta-site amyloid precursor protein cleaving enzyme 1 (BACE-1). The secondary metabolites of active extracts were also tested, followed by enzyme-kinetics and molecular modeling to understand the mechanism of inhibition. The most active extract was investigated for in-vivo anti-dementia activity in behavioral mice models. RESULTS Among the library of 105 extracts, Woodfordia fruticosa (SBE-80) and Bergenia ciliata (SBE-65) extracts displayed significant inhibition of all three enzymes. Gallic acid, one of the constituents of both plants, shows moderate inhibition of AChE and BACE-1. Catechin-3-O-gallate (CG), another constituent of SBE-65, inhibits EeAChE, rHuAChE, and eqBChE with IC50's of 29.9, 1.77, and 8.4 µM, respectively; along with a mild-inhibition of BACE-1. Ellagic acid, the constituent of SBE-80, inhibits BACE-1 with an IC50 value of 16 µM. The W. fruticosa extract SBE-80 at the dose of 25 mg/kg QD × 9 (PO) displayed memory-enhancing activity in Morris Water Maze and Passive Avoidance Test in Swiss albino mice. Treatment with SBE-80 also inhibits AChE in-vivo; whereas, a non-significant decrease in the serum TBARS was observed. CONCLUSION W. fruticosa is identified for the first time as an anti-AD lead candidate. The in-vitro and in-vivo data presented herein and the documented safety profile of W. fruticosa indicate its strong potential for preclinical development as a botanical drug for dementia/AD.
Collapse
Affiliation(s)
- Rinky Raghuvanshi
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Vijay K Nuthakki
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
| | - Lovedeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar-143005, Punjab, India
| | - Bikarma Singh
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India; Biodiversity and Applied Botany Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India; Botanical Garden Division, CSIR- National Botanical Research Institute, Lucknow-226001, UP, India
| | - Sonali S Bharate
- PK-PD Toxicology & Formulation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India; Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai-400056, India
| | - Rajbir Bhatti
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar-143005, Punjab, India
| | - Sandip B Bharate
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
117
|
Schwarthoff S, Tischer N, Sager H, Schätz B, Rohrbach MM, Raztsou I, Robaa D, Gaube F, Arndt HD, Winckler T. Evaluation of γ-carboline-phenothiazine conjugates as simultaneous NMDA receptor blockers and cholinesterase inhibitors. Bioorg Med Chem 2021; 46:116355. [PMID: 34391122 DOI: 10.1016/j.bmc.2021.116355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/19/2021] [Accepted: 07/30/2021] [Indexed: 10/20/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. It is associated with the impairment of memory and other cognitive functions that are mainly caused by progressive defects in cholinergic and glutamatergic signaling in the central nervous system. Inhibitors of acetylcholinesterase (AChE) and ionotropic glutamate receptors of the N-methyl-d-aspartate (NMDA) receptor family are currently approved as AD therapeutics. We previously showed using a cell-based assay of NMDA receptor-mediated glutamate-induced excitotoxicity that bis-γ-carbolinium conjugates are useful NMDA receptor blockers. However, these compounds also act as subnanomolar AChE inhibitors, which may cause serious anticholinergic side effects when applied in vivo. Here, we evaluated new structures containing γ-carbolines linked to phenothiazine via a propionyl spacer. These compounds were superior to the previously characterized bis-γ-carbolinium conjugates because they blocked NMDA receptors without requiring a quaternary pyridine N-atom and inhibited AChE with moderate IC50 values of 0.54-5.3 µM. In addition, these new compounds displayed considerable selectivity for the inhibition of butyrylcholinesterase (BChE; IC50 = 0.008-0.041 µM), which may be favorable for AD treatment. Inhibitory activities towards the NMDA receptors and AChE were in the same micromolar range, which may be beneficial for equal dosing against multiple targets in AD patients.
Collapse
Affiliation(s)
- Sigrid Schwarthoff
- Institute of Pharmacy, Pharmaceutical Biology, University of Jena, Semmelweisstrasse 10, 07743 Jena, Germany
| | - Nicolas Tischer
- Institute of Pharmacy, Pharmaceutical Biology, University of Jena, Semmelweisstrasse 10, 07743 Jena, Germany
| | - Henrike Sager
- Institute of Pharmacy, Pharmaceutical Biology, University of Jena, Semmelweisstrasse 10, 07743 Jena, Germany
| | - Bianca Schätz
- Institute of Pharmacy, Pharmaceutical Biology, University of Jena, Semmelweisstrasse 10, 07743 Jena, Germany
| | - Marius M Rohrbach
- Institute of Pharmacy, Pharmaceutical Biology, University of Jena, Semmelweisstrasse 10, 07743 Jena, Germany
| | - Ihar Raztsou
- Institute of Organic Chemistry and Macromolecular Chemistry, University of Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Dina Robaa
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle/Saale, Germany
| | - Friedemann Gaube
- Institute of Pharmacy, Pharmaceutical Biology, University of Jena, Semmelweisstrasse 10, 07743 Jena, Germany
| | - Hans-Dieter Arndt
- Institute of Organic Chemistry and Macromolecular Chemistry, University of Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Thomas Winckler
- Institute of Pharmacy, Pharmaceutical Biology, University of Jena, Semmelweisstrasse 10, 07743 Jena, Germany.
| |
Collapse
|
118
|
Grigorev VY, Rasdolsky AN, Grigoreva LD, Tinkov OV. Structural Fractal Analysis of the Active Site of Acetylcholinesterase in Complexes with Huperzine A, Galantamine, and Donepezil. Mol Inform 2021; 40:e2100127. [PMID: 34363318 DOI: 10.1002/minf.202100127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 07/25/2021] [Indexed: 01/06/2023]
Abstract
The fractal dimension (D) of the active site of hAChE in the unliganded state and as part of complexes with hyperzine A, galantamine, and donepezil is calculated using molecular interatomic-distance histograms. Fractal matrices of structural changes (FMSCs) are formed by pairwise comparison of the values of D and by revealing the significance of their differences. FMSCs are found to be used to quantitatively estimate the changes in the structures of the molecules in various states. When analyzing FMSCs, we found that the most significant structural changes are related to the Glu202 amino acid residue. No structural perturbations are revealed in the case of Trp86, Gly122, Ala204, Phe338, Tyr341, Gly448, and Ile451.
Collapse
Affiliation(s)
- Veniamin Y Grigorev
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Severniy proezd 1, 142432, Chernogolovka, Moscow region, Russia
| | - Alexander N Rasdolsky
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Severniy proezd 1, 142432, Chernogolovka, Moscow region, Russia
| | - Ludmila D Grigoreva
- Department of Fundamental Physical and Chemical Engineering, Moscow State University, Leninskiye Gory 1/51, 119991, Moscow, Russia
| | - Oleg V Tinkov
- Department of Computer Science, Military Institute of the Ministry of Defense, Gogol Str. 2B, 3300, Tiraspol, Transdniestria, Moldova.,Department of Pharmacology and Pharmaceutical Chemistry, Medical Faculty, Transnistrian State University, October 25 Str. 128, 3300, Tiraspol, Transdniestria, Moldova
| |
Collapse
|
119
|
de Andrade Ramos G, Souza de Oliveira A, Bartolini M, Naldi M, Liparulo I, Bergamini C, Uliassi E, Wu L, Fraser PE, Abreu M, Kiametis AS, Gargano R, Silveira ER, Brand GD, Prchal L, Soukup O, Korábečný J, Bolognesi ML, Soares Romeiro LA. Discovery of sustainable drugs for Alzheimer's disease: cardanol-derived cholinesterase inhibitors with antioxidant and anti-amyloid properties. RSC Med Chem 2021; 12:1154-1163. [PMID: 34355181 PMCID: PMC8293282 DOI: 10.1039/d1md00046b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/29/2021] [Indexed: 01/21/2023] Open
Abstract
As part of our efforts to develop sustainable drugs for Alzheimer's disease (AD), we have been focusing on the inexpensive and largely available cashew nut shell liquid (CNSL) as a starting material for the identification of new acetylcholinesterase (AChE) inhibitors. Herein, we decided to investigate whether cardanol, a phenolic CNSL component, could serve as a scaffold for improved compounds with concomitant anti-amyloid and antioxidant activities. Ten new derivatives, carrying the intact phenolic function and an aminomethyl functionality, were synthesized and first tested for their inhibitory potencies towards AChE and butyrylcholinesterase (BChE). 5 and 11 were found to inhibit human BChE at a single-digit micromolar concentration. Transmission electron microscopy revealed the potential of five derivatives to modulate Aβ aggregation, including 5 and 11. In HORAC assays, 5 and 11 performed similarly to standard antioxidant ferulic acid as hydroxyl scavenging agents. Furthermore, in in vitro studies in neuronal cell cultures, 5 and 11 were found to effectively inhibit reactive oxygen species production at a 10 μM concentration. They also showed a favorable initial ADME/Tox profile. Overall, these results suggest that CNSL is a promising raw material for the development of potential disease-modifying treatments for AD.
Collapse
Affiliation(s)
- Giselle de Andrade Ramos
- Department of Pharmacy, Health Sciences Faculty, University of Brasília, Campus Universitário Darcy Ribeiro 70910-900 Brasília DF Brazil
| | - Andressa Souza de Oliveira
- Department of Pharmacy, Health Sciences Faculty, University of Brasília, Campus Universitário Darcy Ribeiro 70910-900 Brasília DF Brazil
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, University of Bologna Via Belmeloro 6 40126 Bologna Italy
| | - Marina Naldi
- Department of Pharmacy and Biotechnology, University of Bologna Via Belmeloro 6 40126 Bologna Italy
| | - Irene Liparulo
- Department of Pharmacy and Biotechnology, University of Bologna Via Belmeloro 6 40126 Bologna Italy
| | - Christian Bergamini
- Department of Pharmacy and Biotechnology, University of Bologna Via Belmeloro 6 40126 Bologna Italy
| | - Elisa Uliassi
- Department of Pharmacy and Biotechnology, University of Bologna Via Belmeloro 6 40126 Bologna Italy
| | - Ling Wu
- Tanz Centre for Research in Neurodegenerative Diseases and Dept. of Medical Biophysics, University of Toronto Krembil Discovery Tower, 60 Leonard Avenue, 6KD-402 M5T 2S8 Toronto ON Canada
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases and Dept. of Medical Biophysics, University of Toronto Krembil Discovery Tower, 60 Leonard Avenue, 6KD-402 M5T 2S8 Toronto ON Canada
| | - Monica Abreu
- Physics Institute, University of Brasília, Campus Universitário Darcy Ribeiro 70910-900 Brasília DF Brazil
| | - Alessandra Sofia Kiametis
- Physics Institute, University of Brasília, Campus Universitário Darcy Ribeiro 70910-900 Brasília DF Brazil
| | - Ricardo Gargano
- Physics Institute, University of Brasília, Campus Universitário Darcy Ribeiro 70910-900 Brasília DF Brazil
| | - Edilberto Rocha Silveira
- CENAUREMN, Department of Organic and Inorganic Chemistry, Federal University of Ceará 60021-970 Fortaleza CE Brazil
| | - Guilherme D Brand
- Chemistry Institute, University of Brasília, Campus Universitário Darcy Ribeiro 70910-900 Brasília DF Brazil
| | - Lukas Prchal
- Biomedical Research Centre, University Hospital Hradec Kralove Sokolska 581, 500 05 Hradec Kralove Czech Republic
| | - Ondřej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove Sokolska 581, 500 05 Hradec Kralove Czech Republic
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence Trebesska 1575, 500 01 Hradec Kralove Czech Republic
| | - Jan Korábečný
- Biomedical Research Centre, University Hospital Hradec Kralove Sokolska 581, 500 05 Hradec Kralove Czech Republic
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence Trebesska 1575, 500 01 Hradec Kralove Czech Republic
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, University of Bologna Via Belmeloro 6 40126 Bologna Italy
| | - Luiz Antonio Soares Romeiro
- Department of Pharmacy, Health Sciences Faculty, University of Brasília, Campus Universitário Darcy Ribeiro 70910-900 Brasília DF Brazil
| |
Collapse
|
120
|
Barut B, Sari S, Sabuncuoğlu S, Özel A. Azole antifungal compounds could have dual cholinesterase inhibitory potential according to virtual screening, enzyme kinetics, and toxicity studies of an inhouse library. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
121
|
Rossi M, Freschi M, de Camargo Nascente L, Salerno A, de Melo Viana Teixeira S, Nachon F, Chantegreil F, Soukup O, Prchal L, Malaguti M, Bergamini C, Bartolini M, Angeloni C, Hrelia S, Soares Romeiro LA, Bolognesi ML. Sustainable Drug Discovery of Multi-Target-Directed Ligands for Alzheimer's Disease. J Med Chem 2021; 64:4972-4990. [PMID: 33829779 PMCID: PMC8154578 DOI: 10.1021/acs.jmedchem.1c00048] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 12/12/2022]
Abstract
The multifactorial nature of Alzheimer's disease (AD) is a reason for the lack of effective drugs as well as a basis for the development of "multi-target-directed ligands" (MTDLs). As cases increase in developing countries, there is a need of new drugs that are not only effective but also accessible. With this motivation, we report the first sustainable MTDLs, derived from cashew nutshell liquid (CNSL), an inexpensive food waste with anti-inflammatory properties. We applied a framework combination of functionalized CNSL components and well-established acetylcholinesterase (AChE)/butyrylcholinesterase (BChE) tacrine templates. MTDLs were selected based on hepatic, neuronal, and microglial cell toxicity. Enzymatic studies disclosed potent and selective AChE/BChE inhibitors (5, 6, and 12), with subnanomolar activities. The X-ray crystal structure of 5 complexed with BChE allowed rationalizing the observed activity (0.0352 nM). Investigation in BV-2 microglial cells revealed antineuroinflammatory and neuroprotective activities for 5 and 6 (already at 0.01 μM), confirming the design rationale.
Collapse
Affiliation(s)
- Michele Rossi
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Michela Freschi
- Department
for Life Quality Studies, Alma Mater Studiorum
- University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
| | - Luciana de Camargo Nascente
- Department
of Pharmacy, Health Sciences Faculty, University
of Brasília, Campus Universitário Darcy Ribeiro, 70910-900 Brasília, DF, Brazil
| | - Alessandra Salerno
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Sarah de Melo Viana Teixeira
- Department
of Pharmacy, Health Sciences Faculty, University
of Brasília, Campus Universitário Darcy Ribeiro, 70910-900 Brasília, DF, Brazil
| | - Florian Nachon
- Département
de Toxicologie et Risques Chimiques, Institut
de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France
| | - Fabien Chantegreil
- Département
de Toxicologie et Risques Chimiques, Institut
de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France
| | - Ondrej Soukup
- Biomedical
Research Center, University Hospital, Sokolska 581, 500 05 Hradec Kralove, Czech
Republic
- Department
of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500
01 Hradec Kralove, Czech Republic
| | - Lukáš Prchal
- Biomedical
Research Center, University Hospital, Sokolska 581, 500 05 Hradec Kralove, Czech
Republic
| | - Marco Malaguti
- Department
for Life Quality Studies, Alma Mater Studiorum
- University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
| | - Christian Bergamini
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Manuela Bartolini
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Cristina Angeloni
- School
of Pharmacy, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, MC, Italy
| | - Silvana Hrelia
- Department
for Life Quality Studies, Alma Mater Studiorum
- University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
| | - Luiz Antonio Soares Romeiro
- Department
of Pharmacy, Health Sciences Faculty, University
of Brasília, Campus Universitário Darcy Ribeiro, 70910-900 Brasília, DF, Brazil
| | - Maria Laura Bolognesi
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
122
|
De Boer D, Nguyen N, Mao J, Moore J, Sorin EJ. A Comprehensive Review of Cholinesterase Modeling and Simulation. Biomolecules 2021; 11:580. [PMID: 33920972 PMCID: PMC8071298 DOI: 10.3390/biom11040580] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 01/18/2023] Open
Abstract
The present article reviews published efforts to study acetylcholinesterase and butyrylcholinesterase structure and function using computer-based modeling and simulation techniques. Structures and models of both enzymes from various organisms, including rays, mice, and humans, are discussed to highlight key structural similarities in the active site gorges of the two enzymes, such as flexibility, binding site location, and function, as well as differences, such as gorge volume and binding site residue composition. Catalytic studies are also described, with an emphasis on the mechanism of acetylcholine hydrolysis by each enzyme and novel mutants that increase catalytic efficiency. The inhibitory activities of myriad compounds have been computationally assessed, primarily through Monte Carlo-based docking calculations and molecular dynamics simulations. Pharmaceutical compounds examined herein include FDA-approved therapeutics and their derivatives, as well as several other prescription drug derivatives. Cholinesterase interactions with both narcotics and organophosphate compounds are discussed, with the latter focusing primarily on molecular recognition studies of potential therapeutic value and on improving our understanding of the reactivation of cholinesterases that are bound to toxins. This review also explores the inhibitory properties of several other organic and biological moieties, as well as advancements in virtual screening methodologies with respect to these enzymes.
Collapse
Affiliation(s)
- Danna De Boer
- Department of Chemistry & Biochemistry, California State University, Long Beach, CA 90840, USA;
| | - Nguyet Nguyen
- Department of Chemical Engineering, California State University, Long Beach, CA 90840, USA; (N.N.); (J.M.)
| | - Jia Mao
- Department of Chemical Engineering, California State University, Long Beach, CA 90840, USA; (N.N.); (J.M.)
| | - Jessica Moore
- Department of Biomedical Engineering, California State University, Long Beach, CA 90840, USA;
| | - Eric J. Sorin
- Department of Chemistry & Biochemistry, California State University, Long Beach, CA 90840, USA;
| |
Collapse
|
123
|
Pankin D, Khokhlova A, Kolesnikov I, Vasileva A, Pilip A, Egorova A, Erkhitueva E, Zigel V, Gureev M, Manshina A. Laser-induced twisting of phosphorus functionalized thiazolotriazole as a way of cholinesterase activity change. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:118979. [PMID: 33017791 DOI: 10.1016/j.saa.2020.118979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/18/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Herein, the synthesis, design, and the physicochemical characterization of phosphorus functionalized thiazolotriazole (PFT) compound are presented. The PFT tests on the biological activity revealed butyrylcholinesterase inhibition that was confirmed and explained with molecular docking studies. The pronounced reduction of optical density and biological activity was found as a result of irradiation of the PFT water solution with laser beam at wavelength 266 nm. The observed phenomenon was explained on the base of molecular dynamics, docking, and density functional theory modeling by the formation of PFT conformers via laser-induced phosphonate group twisting. The reorganization of the PFT geometry was found to be a reason of butyrylcholinesterase inhibition mechanism change and the site-specificity loss. These results demonstrate that PFT combines photoswitching and bioactive properties in one molecule that makes it promising as a molecular basis for the further design of bioactive substances with photosensitive properties based on the mechanism of the phosphonate group phototwisting.
Collapse
Affiliation(s)
- Dmitrii Pankin
- Center for Optical and Laser Materials Research, St. Petersburg State University, Uljanovskaya 5, 198504 St. Petersburg, Russia
| | - Anastasia Khokhlova
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Ilya Kolesnikov
- Center for Optical and Laser Materials Research, St. Petersburg State University, Uljanovskaya 5, 198504 St. Petersburg, Russia
| | - Anna Vasileva
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Anna Pilip
- St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences.18, Korpusnaya st., St. Petersburg, 197110, Russia
| | - Anastasia Egorova
- St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences.18, Korpusnaya st., St. Petersburg, 197110, Russia
| | - Elena Erkhitueva
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Vladislav Zigel
- St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences.18, Korpusnaya st., St. Petersburg, 197110, Russia
| | - Maxim Gureev
- I.M. Sechenov First Moscow State Medical University, Trubetskaya st. 8/2, 119048 Moscow, Russian Federation
| | - Alina Manshina
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504 St. Petersburg, Russia.
| |
Collapse
|
124
|
Da Silva AMPW, Mittersteiner M, Da Silva FM, D'Avila F, Nogara PA, Nogara KF, Rocha JBT, Bonacorso HG, Martins MAP, Zanatta N. Design, Synthesis, and Cholinesterase Inhibitory Activity of 4‐Substituted‐6‐(trihalomethyl)‐2‐methylsulfanyl Pyrimidines. ChemistrySelect 2021. [DOI: 10.1002/slct.202100125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Andreia M. P. W. Da Silva
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química Universidade Federal de Santa Maria 97105-900 Santa Maria, RS Brazil
| | - Mateus Mittersteiner
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química Universidade Federal de Santa Maria 97105-900 Santa Maria, RS Brazil
| | - Fabio M. Da Silva
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química Universidade Federal de Santa Maria 97105-900 Santa Maria, RS Brazil
| | - Fernanda D'Avila
- Laboratório de Bioquímica Toxicológica Departamento de Bioquímica e Biologia Molecular Universidade Federal de Santa Maria 97105-900 Santa Maria, RS Brazil
| | - Pablo A. Nogara
- Laboratório de Bioquímica Toxicológica Departamento de Bioquímica e Biologia Molecular Universidade Federal de Santa Maria 97105-900 Santa Maria, RS Brazil
| | - Karise F. Nogara
- Laboratório de Bioquímica Toxicológica Departamento de Bioquímica e Biologia Molecular Universidade Federal de Santa Maria 97105-900 Santa Maria, RS Brazil
| | - João B. T. Rocha
- Laboratório de Bioquímica Toxicológica Departamento de Bioquímica e Biologia Molecular Universidade Federal de Santa Maria 97105-900 Santa Maria, RS Brazil
| | - Helio G. Bonacorso
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química Universidade Federal de Santa Maria 97105-900 Santa Maria, RS Brazil
| | - Marcos A. P. Martins
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química Universidade Federal de Santa Maria 97105-900 Santa Maria, RS Brazil
| | - Nilo Zanatta
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química Universidade Federal de Santa Maria 97105-900 Santa Maria, RS Brazil
| |
Collapse
|
125
|
Bortolami M, Rocco D, Messore A, Di Santo R, Costi R, Madia VN, Scipione L, Pandolfi F. Acetylcholinesterase inhibitors for the treatment of Alzheimer's disease - a patent review (2016-present). Expert Opin Ther Pat 2021; 31:399-420. [PMID: 33428491 DOI: 10.1080/13543776.2021.1874344] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction - AD, the most common form of dementia, has a multifactorial etiology, and the current therapy (AChEIs and memantine) is unable to interrupt its progress and fatal outcome. This is reflected in the research programs that are oriented toward the development of new therapeutics able to operate on multiple targets involved in the disease progression.Areas covered - The patents from 2016 to present regarding the use of AChEIs in AD, concerns the development of new AChEIs, multitarget or multifunctional ligands, or the associations of currently used AChEIs with other compounds acting on different targets involved in the AD.Expert opinion - The development of new multitarget AChEIs promises to identify compounds with great therapeutic potential but requires more time and effort in order to obtain drugs with the optimal pharmacodynamic profile. Otherwise, the research on new combinations of existing drugs, with known pharmacodynamic and ADME profile, could shorten the time and reduce the costs to develop a new therapeutic treatment for AD. From the analyzed data, it seems more likely that a response to the urgent need to develop effective treatments for AD therapy could come more quickly from studies on drug combinations than from the development of new AChEIs.
Collapse
Affiliation(s)
- Martina Bortolami
- Department of Scienze Di Base E Applicate per l'Ingegneria, Sapienza University of Rome, Rome, Italy
| | - Daniele Rocco
- Department of Scienze Di Base E Applicate per l'Ingegneria, Sapienza University of Rome, Rome, Italy
| | - Antonella Messore
- Department of Chimica E Tecnologia Del Farmaco, Dipartimento Di Eccellenza 2018-2022, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Roberto Di Santo
- Department of Chimica E Tecnologia Del Farmaco, Dipartimento Di Eccellenza 2018-2022, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Roberta Costi
- Department of Chimica E Tecnologia Del Farmaco, Dipartimento Di Eccellenza 2018-2022, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Valentina Noemi Madia
- Department of Chimica E Tecnologia Del Farmaco, Dipartimento Di Eccellenza 2018-2022, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Luigi Scipione
- Department of Chimica E Tecnologia Del Farmaco, Dipartimento Di Eccellenza 2018-2022, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Fabiana Pandolfi
- Department of Scienze Di Base E Applicate per l'Ingegneria, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
126
|
Silva LB, Nogara PA, Halmenschelager PT, Alvim JC, Silva FD, Feitosa SC, Rocha JBT, Martins MAP, Zanatta N, Bonacorso HG. 7-Amine-spiro[chromeno[4,3-b]quinoline-6,1'-cycloalkanes]: Synthesis and cholinesterase inhibitory activity of structurally modified tacrines. Bioorg Chem 2021; 108:104649. [PMID: 33517001 DOI: 10.1016/j.bioorg.2021.104649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/17/2020] [Accepted: 01/06/2021] [Indexed: 12/31/2022]
Abstract
Five new examples of 9,10-chloro(bromo)-7-amine-spiro[chromeno[4,3-b]quinoline-6,1'-cycloalkanes] - in which cycloalkanes = cyclopentane, cyclohexane, and cycloheptane - were synthesized at yields of 42-56%, using a sequential one-pot two-step cyclocondensation reaction of three different scaffolds of 2-aminobenzonitriles and the respective spiro[chroman-2,1'-cycloalkan]-4-ones, and using AlCl3 as the catalyst in a solvent-free method. Subsequently, the five new spirochromeno-quinolines and nine quinolines previously published by us (14 modified tacrine scaffolds) were subjected to AChE and BChE inhibitory activity evaluation. The molecule containing a spirocyclopentane derivative had the highest AChE and BChE inhibitory activity (IC50 = 3.60 and 4.40 μM, respectively), and in general, the non-halogenated compounds were better inhibitors of AChE and BChE than the halogenated molecules. However, the inhibitory potency of compounds 3a-n was weaker than that of tacrine. By molecular docking simulations, it was found that the size of the spirocarbocyclic moieties is inversely proportional to the inhibitory activity of the cholinesterases, probably because an increase in the size of the spirocyclic component sterically hindered the interaction of tacrine derivatives with the active site of tested cholinesterases. The findings obtained here may help in the design and development of new anticholinesterase drugs.
Collapse
Affiliation(s)
- Letícia B Silva
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Pablo A Nogara
- Laboratório de Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Paula T Halmenschelager
- Laboratório de Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Jéssica C Alvim
- Laboratório de Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Fernanda D'A Silva
- Laboratório de Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Sarah C Feitosa
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - João B T Rocha
- Laboratório de Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Marcos A P Martins
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Nilo Zanatta
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Helio G Bonacorso
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil.
| |
Collapse
|
127
|
Kareem RT, Abedinifar F, Mahmood EA, Ebadi AG, Rajabi F, Vessally E. The recent development of donepezil structure-based hybrids as potential multifunctional anti-Alzheimer's agents: highlights from 2010 to 2020. RSC Adv 2021; 11:30781-30797. [PMID: 35498922 PMCID: PMC9041380 DOI: 10.1039/d1ra03718h] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/14/2021] [Indexed: 11/21/2022] Open
Abstract
Dementia is a term used to define different brain disorders that affect memory, thinking, behavior, and emotion. Alzheimer's disease (AD) is the second cause of dementia that is generated by the death of cholinergic neurons (especially acetylcholine (ACh)), which have a vital role in cognition. Acetylcholinesterase inhibitors (AChEI) affect acetylcholine levels in the brain and are broadly used to treat Alzheimer's. Donepezil, rivastigmine, and galantamine, which are FDA-approved drugs for AD, are cholinesterase inhibitors. In addition, scientists are attempting to develop hybrid molecules and multi-target-directed ligands (MTDLs) that can simultaneously modulate multiple biological targets. This review highlights recent examples of MTDLs and fragment-based strategy in the rational design of new potential AD medications from 2010 onwards. This review highlights recent examples of multi-target-directed ligands (MTDLs) based on donepezil structure modification from 2010 onwards.![]()
Collapse
Affiliation(s)
- Rzgar Tawfeeq Kareem
- Department of Chemistry, College of Science, University of Bu Ali Sina, Hamadan, Iran
| | - Fahimeh Abedinifar
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Evan Abdolkareem Mahmood
- College of Health Sciences, University of Human Development, Sulaimaniyah, Kurdistan region of Iraq
| | - Abdol Ghaffar Ebadi
- Department of Agriculture, Jouybar Branch, Islamic Azad University, Jouybar, Iran
| | - Fatemeh Rajabi
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran
| | - Esmail Vessally
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran
| |
Collapse
|
128
|
Viayna E, Coquelle N, Cieslikiewicz-Bouet M, Cisternas P, Oliva CA, Sánchez-López E, Ettcheto M, Bartolini M, De Simone A, Ricchini M, Rendina M, Pons M, Firuzi O, Pérez B, Saso L, Andrisano V, Nachon F, Brazzolotto X, García ML, Camins A, Silman I, Jean L, Inestrosa NC, Colletier JP, Renard PY, Muñoz-Torrero D. Discovery of a Potent Dual Inhibitor of Acetylcholinesterase and Butyrylcholinesterase with Antioxidant Activity that Alleviates Alzheimer-like Pathology in Old APP/PS1 Mice. J Med Chem 2020; 64:812-839. [PMID: 33356266 DOI: 10.1021/acs.jmedchem.0c01775] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The combination of the scaffolds of the cholinesterase inhibitor huprine Y and the antioxidant capsaicin results in compounds with nanomolar potencies toward human acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) that retain or improve the antioxidant properties of capsaicin. Crystal structures of their complexes with AChE and BChE revealed the molecular basis for their high potency. Brain penetration was confirmed by biodistribution studies in C57BL6 mice, with one compound (5i) displaying better brain/plasma ratio than donepezil. Chronic treatment of 10 month-old APP/PS1 mice with 5i (2 mg/kg, i.p., 3 times per week, 4 weeks) rescued learning and memory impairments, as measured by three different behavioral tests, delayed the Alzheimer-like pathology progression, as suggested by a significantly reduced Aβ42/Aβ40 ratio in the hippocampus, improved basal synaptic efficacy, and significantly reduced hippocampal oxidative stress and neuroinflammation. Compound 5i emerges as an interesting anti-Alzheimer lead with beneficial effects on cognitive symptoms and on some underlying disease mechanisms.
Collapse
Affiliation(s)
- Elisabet Viayna
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Nicolas Coquelle
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS UMR 5075, F-38054 Grenoble, France.,Large Scale Structures Group, Institut Laue-Langevin, F-38042 Grenoble Cedex 9, France
| | | | - Pedro Cisternas
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, P.O. Box 114, 8331150 Santiago, Chile
| | - Carolina A Oliva
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, P.O. Box 114, 8331150 Santiago, Chile
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, E-28031 Madrid, Spain
| | - Miren Ettcheto
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, E-28031 Madrid, Spain.,Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Neuroscience, University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain.,Department of Biochemistry and Biotechnology, Faculty of Medicine and Health Sciences, University Rovira i Virgili, E-43201 Reus, Spain
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Angela De Simone
- Department of Drug Science and Technology, University of Turin, I-10125 Torino, Italy
| | - Mattia Ricchini
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Marisa Rendina
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Mégane Pons
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, PO Box 3288, 71345 Shiraz, Iran
| | - Belén Pérez
- Department of Pharmacology, Therapeutics and Toxicology, Autonomous University of Barcelona, E-08193 Bellaterra, Barcelona, Spain
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Vincenza Andrisano
- Department for Life Quality Studies, University of Bologna, Corso d'Augusto 237, I-47921 Rimini, Italy
| | - Florian Nachon
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées BP73, 91993 Brétigny sur Orge, France
| | - Xavier Brazzolotto
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées BP73, 91993 Brétigny sur Orge, France
| | - Maria Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, E-28031 Madrid, Spain
| | - Antoni Camins
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, E-28031 Madrid, Spain.,Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Neuroscience, University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Israel Silman
- Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Ludovic Jean
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Nibaldo C Inestrosa
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, P.O. Box 114, 8331150 Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, 6200000 Punta Arenas, Chile
| | - Jacques-Philippe Colletier
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS UMR 5075, F-38054 Grenoble, France
| | - Pierre-Yves Renard
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Diego Muñoz-Torrero
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| |
Collapse
|
129
|
Nuthakki VK, Yadav Bheemanaboina RR, Bharate SB. Identification of aplysinopsin as a blood-brain barrier permeable scaffold for anti-cholinesterase and anti-BACE-1 activity. Bioorg Chem 2020; 107:104568. [PMID: 33418314 DOI: 10.1016/j.bioorg.2020.104568] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 11/17/2022]
Abstract
Aplysinopsins are a group of marine-derived indole alkaloids that display diverse array of pharmacological effects. However, their effect on anti-Alzheimer targets has not been reported. Herein, we report the synthesis of aplysinopsin (1) and its effect on cholinesterases and beta-site amyloid-precursor protein cleaving enzyme 1 (BACE-1). It inhibits electric eel acetylcholinesterase (AChE), equine serum butyrylcholinesterase (BChE), and human BACE-1 with IC50 values of 33.9, 30.3, and 33.7 µM, respectively, and excellent BBB permeability (Pe 8.92 × 10-6 cm/s). To optimize its sub-micromolar activity, the first-generation analogs were prepared and screened. Two most active analogs 5b and (Z)-8g were found to effectively permeate the BBB (Pe > 5 × 10-6 cm/s). The N-sulphonamide derivative 5b display better cholinesterase inhibition, whereas the other analog (Z)-8g strongly inhibits BACE-1 (IC50 0.78 µM) activity. The analog 5b interacts primarily with PAS of AChE, and thus exhibit a mixed-type of inhibition. In addition, aplysinopsin along with new analogs inhibited the self-induced Aβ1-42 aggregation. The data presented herein indicate that the aplysinopsin-scaffold holds a potential for further investigation as a multi-targeted anti-Alzheimer agent.
Collapse
Affiliation(s)
- Vijay K Nuthakki
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| | - Rammohan R Yadav Bheemanaboina
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| | - Sandip B Bharate
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific & Innovative Research, Ghaziabad 201002, India.
| |
Collapse
|
130
|
Inhibition of cholinesterases by safranin O: Integration of inhibition kinetics with molecular docking simulations. Arch Biochem Biophys 2020; 698:108728. [PMID: 33345803 DOI: 10.1016/j.abb.2020.108728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022]
Abstract
In the present study, the inhibitory mechanisms and effects of a synthetic phenazine dye, safranin O (SO) on human plasma butyrylcholinesterase (BChE), human erythrocyte acetylcholinesterase (AChE) and recombinant BChE mutants were investigated. Kinetic studies showed the following information: SO leaded to linear competitive inhibition of human plasma BChE with Ki = 0.44 ± 0.085 μM; α = ∞. It acted as a hyperbolic noncompetitive inhibitor of human erythrocyte AChE with Ki = 0.69 ± 0.13; α = 1; β = 0.08 ± 0.02. On the other hand, the inhibitory effects of SO on two BChE mutants, where A328 was modified to either F or Y, revealed differences in terms of inhibitory patterns and Ki values, compared to the obtained results with recombinant wild type BChE. SO was found to act as a linear competitive inhibitor of A328F and A328Y BChE mutants. Compared to recombinant wild type BChE, A328Y and A328F BChE mutants caused a 4- and 10-fold decrease in Ki value for SO, respectively. These findings were supported by molecular modelling studies. In conclusion, SO is a potent inhibitor of human cholinesterases and may be useful in the design and development of new drugs for the treatment of AD.
Collapse
|
131
|
Discovery of methoxy-naphthyl linked N-(1-benzylpiperidine) benzamide as a blood-brain permeable dual inhibitor of acetylcholinesterase and butyrylcholinesterase. Eur J Med Chem 2020; 207:112761. [DOI: 10.1016/j.ejmech.2020.112761] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/15/2020] [Accepted: 08/15/2020] [Indexed: 02/06/2023]
|
132
|
Akkoç S, Yavuz SÇ, Türkmenoğlu B, İlhan İÖ, Akkurt M. Single Crystal, DFT and Docking Studies of a Benzimidazolium Salt. CRYSTALLOGR REP+ 2020. [DOI: 10.1134/s1063774520070032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
133
|
Vitamin B3-Based Biologically Active Compounds as Inhibitors of Human Cholinesterases. Int J Mol Sci 2020; 21:ijms21218088. [PMID: 33138280 PMCID: PMC7663184 DOI: 10.3390/ijms21218088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 12/21/2022] Open
Abstract
We evaluated the potential of nine vitamin B3 scaffold-based derivatives as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors, as a starting point for the development of novel drugs for treating disorders with cholinergic neurotransmission-linked pathology. As the results indicate, all compounds reversibly inhibited both enzymes in the micromolar range pointing to the preference of AChE over BChE for binding the tested derivatives. Molecular docking studies revealed the importance of interactions with AChE active site residues Tyr337 and Tyr124, which dictated most of the observed differences. The most potent inhibitor of both enzymes with Ki of 4 μM for AChE and 8 μM for BChE was the nicotinamide derivative 1-(4′-phenylphenacyl)-3-carbamoylpyridinium bromide. Such a result places it within the range of several currently studied novel cholinesterase inhibitors. Cytotoxicity profiling did not classify this compound as highly toxic, but the induced effects on cells should not be neglected in any future detailed studies and when considering this scaffold for drug development.
Collapse
|
134
|
Ortiz CJC, Damasio CM, Pruccoli L, Nadur NF, de Azevedo LL, Guedes IA, Dardenne LE, Kümmerle AE, Tarozzi A, Viegas C. Cinnamoyl-N-Acylhydrazone-Donepezil Hybrids: Synthesis and Evaluation of Novel Multifunctional Ligands Against Neurodegenerative Diseases. Neurochem Res 2020; 45:3003-3020. [PMID: 33079324 DOI: 10.1007/s11064-020-03148-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/25/2020] [Accepted: 10/07/2020] [Indexed: 11/30/2022]
Abstract
A new series of ten multifunctional Cinnamoyl-N-acylhydrazone-donepezil hybrids was synthesized and evaluated as multifunctional ligands against neurodegenerative diseases. The molecular hybridization approach was based on the combination of 1-benzyl-4-piperidine fragment from the anti-Alzheimer AChE inhibitor donepezil (1) and the cinnamoyl subunit from curcumin (2), a natural product with remarkable antioxidant, neuroprotective and anti-inflammatory properties, using a N-acylhydrazone fragment as a spacer subunit. Compounds 4a and 4d showed moderate inhibitory activity towards AChE with IC50 values of 13.04 and 9.1 µM, respectively. In addition, compound 4a and 4d showed a similar predicted binding mode to that observed for donepezil in the molecular docking studies. On the other hand, compounds 4a and 4c exhibited significant radical scavenging activity, showing the best effects on the DPPH test and also exhibited a significant protective neuronal cell viability exposed to t-BuOOH and against 6-OHDA insult to prevent the oxidative stress in Parkinson's disease. Similarly, compound 4c was capable to prevent the ROS formation, with indirect antioxidant activity increasing intracellular GSH levels and the ability to counteract the neurotoxicity induced by both OAβ1-42 and 3-NP. In addition, ADMET in silico prediction indicated that both compounds 4a and 4c did not show relevant toxic effects. Due to their above-mentioned biological properties, compounds 4a and 4c could be explored as lead compounds in search of more effective and low toxic small molecules with multiple neuroprotective effects for neurodegenerative diseases.
Collapse
Affiliation(s)
- Cindy Juliet Cristancho Ortiz
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Federal University of Alfenas, Jovino Fernandes Sales Avenue 2600, Alfenas, MG, 37130-840, Brazil
| | - Caio Miranda Damasio
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Federal University of Alfenas, Jovino Fernandes Sales Avenue 2600, Alfenas, MG, 37130-840, Brazil
| | - Letizia Pruccoli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, 47921, Rimini, Italy
| | - Nathália Fonseca Nadur
- Laboratory of Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, 21941-902, Brazil
| | - Luciana Luiza de Azevedo
- Laboratory of Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, 21941-902, Brazil
| | | | | | - Arthur Eugen Kümmerle
- Laboratory of Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, 21941-902, Brazil
| | - Andrea Tarozzi
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, 47921, Rimini, Italy.
| | - Claudio Viegas
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Federal University of Alfenas, Jovino Fernandes Sales Avenue 2600, Alfenas, MG, 37130-840, Brazil.
| |
Collapse
|
135
|
Mollazadeh M, Mohammadi‐Khanaposhtani M, Azizian H, Zonouzi A, Abdolahi Z, Nadri H, Larijani B, Biglar M, Mahdavi M. Design and synthesis of 2,4‐dioxochroman‐pyridinium‐phenylacetamide derivatives as new
anti‐Alzheimer
agents: in vitro and in silico studies. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.202000013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Marjan Mollazadeh
- School of Chemistry, College of Science University of Tehran Tehran Iran
| | - Maryam Mohammadi‐Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute Babol University of Medical Sciences Babol Iran
| | - Homa Azizian
- Department of Medicinal Chemistry, School of Pharmacy‐International Campus Iran University of Medical Sciences Tehran Iran
| | - Afsaneh Zonouzi
- School of Chemistry, College of Science University of Tehran Tehran Iran
| | - Zahra Abdolahi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center Shahid Sadoughi University of Medical Sciences Yazd Iran
| | - Hamid Nadri
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center Shahid Sadoughi University of Medical Sciences Yazd Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Mahmood Biglar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
136
|
Scheiner M, Sink A, Spatz P, Endres E, Decker M. Photopharmacology on Acetylcholinesterase: Novel Photoswitchable Inhibitors with Improved Pharmacological Profiles. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Matthias Scheiner
- Pharmazeutische und Medizinische Chemie Institut für Pharmazie und Lebensmittelchemie Julius-Maximilians Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Alexandra Sink
- Pharmazeutische und Medizinische Chemie Institut für Pharmazie und Lebensmittelchemie Julius-Maximilians Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Philipp Spatz
- Pharmazeutische und Medizinische Chemie Institut für Pharmazie und Lebensmittelchemie Julius-Maximilians Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Erik Endres
- Pharmazeutische und Medizinische Chemie Institut für Pharmazie und Lebensmittelchemie Julius-Maximilians Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Michael Decker
- Pharmazeutische und Medizinische Chemie Institut für Pharmazie und Lebensmittelchemie Julius-Maximilians Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
137
|
Le-Nhat-Thuy G, Nguyen Thi N, Pham-The H, Dang Thi TA, Nguyen Thi H, Nguyen Thi TH, Nguyen Hoang S, Nguyen TV. Synthesis and biological evaluation of novel quinazoline-triazole hybrid compounds with potential use in Alzheimer’s disease. Bioorg Med Chem Lett 2020; 30:127404. [DOI: 10.1016/j.bmcl.2020.127404] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022]
|
138
|
Geissoschizoline, a promising alkaloid for Alzheimer's disease: Inhibition of human cholinesterases, anti-inflammatory effects and molecular docking. Bioorg Chem 2020; 104:104215. [PMID: 32920358 DOI: 10.1016/j.bioorg.2020.104215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 12/29/2022]
Abstract
Due to the lack of effective pharmacotherapy options to treats Alzheimer's disease, new strategies have been approached in the search for multi-target molecules as therapeutic options. In this work, four indole alkaloids, geissoschizoline, geissoschizone, geissospermine, and 3',4',5',6'-tetradehydrogeissospermine were isolated from Geissospermum vellosii (Pao pereira) and evaluated for their anticholinesterase activities. While geissospermine inhibited only butyrylcholinesterase (BChE), the other alkaloids behaved as non-selective inhibitors of acetylcholinesterase (AChE) and BChE. In cell viability tests, only geissoschizoline was not cytotoxic. Therefore, geissoschizoline actions were also evaluated in human cholinesterases, where it was twice as potent inhibitor of hBChE (IC50 = 10.21 ± 0.01 µM) than hAChE (IC50 = 20.40 ± 0.93 µM). On enzyme kinetic studies, geissoschizoline presented a mixed-type inhibition mechanism for both enzymes. Molecular docking studies pointed interactions of geissoschizoline with active site and peripheral anionic site of hAChE and hBChE, indicating a dual site inhibitor profile. Moreover, geissoschizoline also played a promising anti-inflammatory role, reducing microglial release of NO and TNF-α at a concentration (1 μM) ten and twenty times lower than the IC50 values of hBChE and hAChE inhibition, respectively. These actions give geissoschizoline a strong neuroprotective character. In addition, the ability to inhibit hAChE and hBChE, with approximate inhibitory potencies, accredits this alkaloid for therapeutic use in the moderate to severe phase of AD. Thus, geissoschizoline emerges as a possible multi-target prototype that can be very useful in preventing neurodegeneration and restore neurotransmission.
Collapse
|
139
|
Phenethyl Esters and Amide of Ferulic Acid, Hydroferulic Acid, Homovanillic Acid, and Vanillic Acid: Synthesis, Free Radicals Scavenging Activity, and Molecular Modeling as Potential Cholinesterases Inhibitors. MOLBANK 2020. [DOI: 10.3390/m1151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
As ferulic acid was reported to be involved in novel potential mechanisms associated with Alzheimer’s disease (AD) therapy, five closely related phenethyl esters and amide of this natural product were synthesized and screened for their free radicals scavenging activity. Ferulic acid and its analogue′s absorption, distribution, metabolism, and excretion (ADME) properties were predicted. All compounds obey Lipinski′s rules. Moreover, all evaluated compounds seem to present a high oral bioavailability and blood–brain barrier (BBB) permeation which is crucial for Alzheimer′s disease drug candidates. Molecular docking of analogues 4 and 8 with acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) showed interactions with the residues of the catalytic triad of AChE and BChE. In addition to their interactions with the anionic subsite, hydroferulic acid phenethyl ester 4 and homovanillic acid phenethyl ester 8 may have potential as inhibitors of AChE and BChE, respectively.
Collapse
|
140
|
Lushchekina SV, Masson P. Slow-binding inhibitors of acetylcholinesterase of medical interest. Neuropharmacology 2020; 177:108236. [PMID: 32712274 DOI: 10.1016/j.neuropharm.2020.108236] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/11/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022]
Abstract
Certain ligands slowly bind to acetylcholinesterase. As a result, there is a slow establishment of enzyme-inhibitor equilibrium characterized by a slow onset of inhibition prior reaching steady state. Three mechanisms account for slow-binding inhibition: a) slow binding rate constant kon, b) slow ligand induced-fit following a fast binding step, c) slow conformational selection of an enzyme form. The slow equilibrium may be followed by a chemical step. This later that can be irreversible has been observed with certain alkylating agents and substrate transition state analogs. Slow-binding inhibitors present long residence times on target. This results in prolonged pharmacological or toxicological action. Through several well-known molecules (e.g. huperzine) and new examples (tocopherol, trifluoroacetophenone and a 6-methyluracil alkylammonium derivative), we show that slow-binding inhibitors of acetylcholinesterase are promising drugs for treatment of neurological diseases such as Alzheimer disease and myasthenia gravis. Moreover, they may be of interest for neuroprotection (prophylaxis) against organophosphorus poisoning. This article is part of the special issue entitled 'Acetylcholinesterase Inhibitors: From Bench to Bedside to Battlefield'.
Collapse
Affiliation(s)
- Sofya V Lushchekina
- Laboratory of Computer Modeling of Biomolecular Systems and Nanomaterials, Emanuel Institute of Biochemical Physics of RAS, 4 Kosygina St., Moscow, 119334, Russia.
| | - Patrick Masson
- Laboratory of Neuropharmacology, Kazan Federal University, 18 Kremlyovskaya St., Kazan, 420008, Russia.
| |
Collapse
|
141
|
Synthesis, crystal structure, biological evaluation, docking study, and DFT calculations of 1-amidoalkyl-2-naphthol derivative. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
142
|
Pham VD, To TA, Gagné-Thivierge C, Couture M, Lagüe P, Yao D, Picard MÈ, Lortie LA, Attéré SA, Zhu X, Levesque RC, Charette SJ, Shi R. Structural insights into the putative bacterial acetylcholinesterase ChoE and its substrate inhibition mechanism. J Biol Chem 2020; 295:8708-8724. [PMID: 32371400 PMCID: PMC7324521 DOI: 10.1074/jbc.ra119.011809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 05/04/2020] [Indexed: 01/01/2023] Open
Abstract
Mammalian acetylcholinesterase (AChE) is well-studied, being important in both cholinergic brain synapses and the peripheral nervous systems and also a key drug target for many diseases. In contrast, little is known about the structures and molecular mechanism of prokaryotic acetylcholinesterases. We report here the structural and biochemical characterization of ChoE, a putative bacterial acetylcholinesterase from Pseudomonas aeruginosa Analysis of WT and mutant strains indicated that ChoE is indispensable for P. aeruginosa growth with acetylcholine as the sole carbon and nitrogen source. The crystal structure of ChoE at 1.35 Å resolution revealed that this enzyme adopts a typical fold of the SGNH hydrolase family. Although ChoE and eukaryotic AChEs catalyze the same reaction, their overall structures bear no similarities constituting an interesting example of convergent evolution. Among Ser-38, Asp-285, and His-288 of the catalytic triad residues, only Asp-285 was not essential for ChoE activity. Combined with kinetic analyses of WT and mutant proteins, multiple crystal structures of ChoE complexed with substrates, products, or reaction intermediate revealed the structural determinants for substrate recognition, snapshots of the various catalytic steps, and the molecular basis of substrate inhibition at high substrate concentrations. Our results indicate that substrate inhibition in ChoE is due to acetate release being blocked by the binding of a substrate molecule in a nonproductive mode. Because of the distinct overall folds and significant differences of the active site between ChoE and eukaryotic AChEs, these structures will serve as a prototype for other prokaryotic acetylcholinesterases.
Collapse
Affiliation(s)
- Van Dung Pham
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada; PROTEO, the Québec Network for Research on Protein Function, Engineering, and Applications, Québec, Canada
| | - Tuan Anh To
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada; PROTEO, the Québec Network for Research on Protein Function, Engineering, and Applications, Québec, Canada
| | - Cynthia Gagné-Thivierge
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Hôpital Laval, Québec, Canada
| | - Manon Couture
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada; PROTEO, the Québec Network for Research on Protein Function, Engineering, and Applications, Québec, Canada
| | - Patrick Lagüe
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada; PROTEO, the Québec Network for Research on Protein Function, Engineering, and Applications, Québec, Canada
| | - Deqiang Yao
- iHuman Institute, ShanghaiTech University, Shanghai, P.R. China
| | - Marie-Ève Picard
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada; PROTEO, the Québec Network for Research on Protein Function, Engineering, and Applications, Québec, Canada
| | - Louis-André Lortie
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, Canada
| | - Sabrina A Attéré
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Hôpital Laval, Québec, Canada
| | - Xiaojun Zhu
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada; PROTEO, the Québec Network for Research on Protein Function, Engineering, and Applications, Québec, Canada
| | - Roger C Levesque
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| | - Steve J Charette
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Hôpital Laval, Québec, Canada
| | - Rong Shi
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada; PROTEO, the Québec Network for Research on Protein Function, Engineering, and Applications, Québec, Canada.
| |
Collapse
|
143
|
Mahajan S, Slathia N, Nuthakki VK, Bharate SB, Kapoor KK. Malononitrile-activated synthesis and anti-cholinesterase activity of styrylquinoxalin-2(1 H)-ones. RSC Adv 2020; 10:15966-15975. [PMID: 35493659 PMCID: PMC9052867 DOI: 10.1039/d0ra02816a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Herein, we report a base-free malononitrile activated condensation of 3-methylquinoxaline-2(1H)-one (3MQ) 1 with aryl aldehydes 3a–3ad for synthesis of styrylquinoxalin-2(1H)-ones (SQs) 4a–4ad with excellent yields. In this reaction, malononitrile activates the aldehyde via Knoevenagel condensation towards reaction with 3MQ 1 and gets liberated during the course of reaction to yield the desired SQs 4a–4ad. The SQs were evaluated for in vitro cholinesterase inhibition and 4n was found to display a mixed type of inhibition of AChE, which was supported by molecular modelling studies. This study has led to the discovery of a new chemotype for cholinesterase inhibition which might be useful in finding a remedy for Alzheimer's disease. SQs displaying anti-Alzheimer activity is serendipitous. Malononitrile as a handle to facilitate nucleophilic attack has been applied for the first time for the easy access of SQs.![]()
Collapse
Affiliation(s)
- Sheena Mahajan
- Department of Chemistry, University of Jammu Jammu-180006 India
| | - Nancy Slathia
- Department of Chemistry, University of Jammu Jammu-180006 India
| | - Vijay K Nuthakki
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu-180001 India.,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Sandip B Bharate
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu-180001 India.,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Kamal K Kapoor
- Department of Chemistry, University of Jammu Jammu-180006 India
| |
Collapse
|
144
|
Arylaminopropanone Derivatives as Potential Cholinesterase Inhibitors: Synthesis, Docking Study and Biological Evaluation. Molecules 2020; 25:molecules25071751. [PMID: 32290227 PMCID: PMC7180927 DOI: 10.3390/molecules25071751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 11/18/2022] Open
Abstract
Neurodegenerative diseases in which the decrease of the acetylcholine is observed are growing worldwide. In the present study, a series of new arylaminopropanone derivatives with N-phenylcarbamate moiety (1–16) were prepared as potential acetylcholinesterase and butyrylcholinesterase inhibitors. In vitro enzyme assays were performed; the results are expressed as a percentage of inhibition and the IC50 values. The inhibitory activities were compared with reference drugs galantamine and rivastigmine showing piperidine derivatives (1–3) as the most potent. A possible mechanism of action for these compounds was determined from a molecular modelling study by using combined techniques of docking, molecular dynamics simulations and quantum mechanics calculations.
Collapse
|
145
|
Plazas E, Hagenow S, Avila Murillo M, Stark H, Cuca LE. Isoquinoline alkaloids from the roots of Zanthoxylum rigidum as multi-target inhibitors of cholinesterase, monoamine oxidase A and Aβ 1-42 aggregation. Bioorg Chem 2020; 98:103722. [PMID: 32155491 DOI: 10.1016/j.bioorg.2020.103722] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 12/22/2022]
Abstract
Multifactorial neurodegenerative disorders such as Alzheimer's disease (AD) are considered a growing public health problem due the rising incidence and low effectiveness of current treatments [6]. Since pharmacotherapy based on a single target has been insufficient for drug development in complex diseases, the emerging multi-target approach is a promising strategy for the search of new anti-AD drug candidates. Herein described natural isoquinoline alkaloids were investigated for multi-target activity on key mechanisms associated with the AD's pathogenesis, i.e. cholinergic depletion, beta amyloid (Aβ) aggregation and oxidative stress. Alkaloid isolation from root extract of Zanthoxylum rigidum was carried out using multi-step chromatography and TLC-bioautography against acetylcholinesterase (AChE) giving eight purified isoquinoline alkaloids. Isolated compounds were tested for inhibitory activity against cholinesterase (AChE and BChE), monoamine oxidase (MAO-A and B) and Aβ aggregation. Our study revealed two benzophenanthridine alkaloids, nitidine (5) and avicine (7), as the most potent multi-target candidates. Both showed dual cholinesterase inhibition, being more active against AChE over BChE, with IC50 values in sub-micromolar range in AChE. Kinetic analysis with cholinesterase showed, that both compounds are reversible-mixed inhibitors, where avicine (7) presented highest potency with Ki values of 0.063 µM (EeAChE), 0.511 µM (HrAChE) and 0.123 µM (EqBChE). In addition, these alkaloids presented moderate Aβ1-42 anti-aggregation activity and MAO-A inhibition with IC50 values between 0.5 and 2 µM. Our findings suggest that avicine (7) is a promising natural compound and multifunctional candidate representing a suitable starting point for the development of new therapeutic agents for Alzheimer's disease.
Collapse
Affiliation(s)
- Erika Plazas
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Grupo de Investigación en Productos Naturales Vegetales Bioactivos, Cr 30 N°45-03, 111321 Bogotá, Colombia.
| | - Stefanie Hagenow
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Monica Avila Murillo
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Grupo de Investigación en Productos Naturales Vegetales Bioactivos, Cr 30 N°45-03, 111321 Bogotá, Colombia
| | - Holger Stark
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany.
| | - Luis Enrique Cuca
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Grupo de Investigación en Productos Naturales Vegetales Bioactivos, Cr 30 N°45-03, 111321 Bogotá, Colombia
| |
Collapse
|
146
|
Augustin N, Nuthakki VK, Abdullaha M, Hassan QP, Gandhi SG, Bharate SB. Discovery of Helminthosporin, an Anthraquinone Isolated from Rumex abyssinicus Jacq as a Dual Cholinesterase Inhibitor. ACS OMEGA 2020; 5:1616-1624. [PMID: 32010836 PMCID: PMC6990627 DOI: 10.1021/acsomega.9b03693] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/31/2019] [Indexed: 05/08/2023]
Abstract
Natural products have extensively contributed toward the discovery of new leads for Alzheimer's disease. During our search for new inhibitors of cholinesterase enzymes from natural sources, the ethyl acetate (EtOAc) extract of Rumex abyssinicus Jacq was identified as a dual cholinesterase inhibitor with IC50 values of 2.7 and 11.4 μg/mL against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), respectively. The phytochemical investigation of the EtOAc extract has resulted in isolation of four anthraquinones, namely, helminthosporin, emodin, chrysophanol, and physcion, amongst which the helminthosporin has been isolated for the first time from Rumex sp. All isolated secondary metabolites have displayed significant inhibition of EeAChE with IC50 values of 2.63, 15.21, 33.7, and 12.16 μM, respectively. In addition, the helminthosporin was also found to inhibit BChE with an IC50 value of 2.99 μM. The enzyme kinetic study has indicated that helminthosporin inhibits AChE and BChE in a noncompetitive manner with k i values of 10.3 and 12.3 μM, respectively. The results of molecular modeling and propidium iodide displacement assay have revealed that helminthosporin occupies the peripheral anionic site of the active site gorge of AChE. In the PAMPA-BBB permeability assay, helminthosporin was found to possess high BBB permeability (P e = 6.16 × 10-6 cm/s). In a nutshell, helminthosporin has been identified as a brain permeable dual cholinesterase inhibitor, and thus its further synthetic exploration is warranted for optimization of its potency.
Collapse
Affiliation(s)
- Ntemafack Augustin
- Plant
Biotechnology Division and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vijay K. Nuthakki
- Plant
Biotechnology Division and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohd. Abdullaha
- Plant
Biotechnology Division and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Qazi Parvaiz Hassan
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- Plant
Biotechnology Division, CSIR-Indian Institute
of Integrative Medicine, Sanat Nagar, Srinagar 190005, India
| | - Sumit G. Gandhi
- Plant
Biotechnology Division and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sandip B. Bharate
- Plant
Biotechnology Division and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- E-mail: , . Phone: +91-191-2586333, +91-191-2585006 ext.
345
| |
Collapse
|
147
|
Hosseini F, Mohammadi-Khanaposhtani M, Azizian H, Ramazani A, Tehrani MB, Nadri H, Larijani B, Biglar M, Adibi H, Mahdavi M. 4-Oxobenzo[d]1,2,3-triazin-pyridinium-phenylacetamide derivatives as new anti-Alzheimer agents: design, synthesis, in vitro evaluation, molecular modeling, and molecular dynamic study. Struct Chem 2020. [DOI: 10.1007/s11224-019-01472-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
148
|
Wei Z, Li H, Wu J, Dong Y, Zhang H, Chen H, Ren C. 3DRGO-NiFe2O4/NiO nanoparticles for fast and simple detection of organophosphorus pesticides. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.05.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
149
|
Arslan T, Buğrahan Ceylan M, Baş H, Biyiklioglu Z, Senturk M. Design, synthesis, characterization of peripherally tetra-pyridine-triazole-substituted phthalocyanines and their inhibitory effects on cholinesterases (AChE/BChE) and carbonic anhydrases (hCA I, II and IX). Dalton Trans 2020; 49:203-209. [DOI: 10.1039/c9dt03897c] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this study, phthalocyanine precursors (5and9) and 1,2,3-triazole-substituted metal-free and metallo phthalocyanines (9a–c) were designed and synthesized for the first time and evaluatedin vitrofor key molecular targets.
Collapse
Affiliation(s)
- Tayfun Arslan
- Department of Chemistry
- Faculty of Sciences
- Giresun
- Turkey
- Department of Textile
| | | | - Hüseyin Baş
- Department of Chemistry
- Faculty of Science
- Karadeniz Technical University
- 61080 Trabzon
- Turkey
| | - Zekeriya Biyiklioglu
- Department of Chemistry
- Faculty of Science
- Karadeniz Technical University
- 61080 Trabzon
- Turkey
| | - Murat Senturk
- Department of Basic Sciences of Pharmacy
- Faculty of Pharmacy
- Agri Ibrahim Cecen University
- 04100 Agri
- Turkey
| |
Collapse
|
150
|
Pourshojaei Y, Abiri A, Eskandari K, Haghighijoo Z, Edraki N, Asadipour A. Phenoxyethyl Piperidine/Morpholine Derivatives as PAS and CAS Inhibitors of Cholinesterases: Insights for Future Drug Design. Sci Rep 2019; 9:19855. [PMID: 31882733 PMCID: PMC6934599 DOI: 10.1038/s41598-019-56463-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022] Open
Abstract
Acetylcholinesterase (AChE) catalyzes the conversion of Aβ peptide to its aggregated form and the peripheral anionic site (PAS) of AChE is mainly involved in this phenomenon. Also catalytic active site (CAS) of donepezil stimulates the break-down of acetylcholine (ACh) and depletion of ACh in cholinergic synapses are well established in brains of patients with AD. In this study, a set of compounds bearing phenoxyethyl amines were synthesized and their inhibitory activity toward electric eel AChE (eeAChE) and equine butyrylcholinesterase (eqBuChE) were evaluated. Molecular dynamics (MD) was employed to record the binding interactions of best compounds against human cholinesterases (hAChE and hBuChE) as well as donepezil as reference drug. In vitro results revealed that compound 5c is capable of inhibiting eeAChE activity at IC50 of 0.50 µM while no inhibitory activity was found for eqBuChE for up to 100 µM concentrations. Compound 5c, also due to its facile synthesis, small structure and high selectivity for eeAChE would be very interesting candidate in forthcoming studies. The main interacting parts of compound 5c and compound 7c (most potent eeAChE and eqBuChE inhibitors respectively) with receptors which confer selectivity for AChE and BuChE inhibition were identified, discussed, and compared with donepezil’s interactions. Also during MD simulation it was discovered for the first time that binding of substrates like donepezil to dual CAS and PAS or solely CAS region might have a suppressive impact on 4-α-helical bundles near the tryptophan amphiphilic tetramerization (WAT) domain of AChE and residues which are far away from AChE active site. The results proposed that residues involved in donepezil interactions (Trp86 and Phe295) which are located in CAS and mid-gorge are the mediator of conformational changes in whole protein structure.
Collapse
Affiliation(s)
- Yaghoub Pourshojaei
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran.,Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ardavan Abiri
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Khalil Eskandari
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Zahra Haghighijoo
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Asadipour
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|