101
|
Grilc NK, Sova M, Kristl J. Drug Delivery Strategies for Curcumin and Other Natural Nrf2 Modulators of Oxidative Stress-Related Diseases. Pharmaceutics 2021; 13:2137. [PMID: 34959418 PMCID: PMC8708625 DOI: 10.3390/pharmaceutics13122137] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress is associated with a wide range of diseases characterised by oxidant-mediated disturbances of various signalling pathways and cellular damage. The only effective strategy for the prevention of cellular damage is to limit the production of oxidants and support their efficient removal. The implication of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in the cellular redox status has spurred new interest in the use of its natural modulators (e.g., curcumin, resveratrol). Unfortunately, most natural Nrf2 modulators are poorly soluble and show extensive pre-systemic metabolism, low oral bioavailability, and rapid elimination, which necessitates formulation strategies to circumvent these limitations. This paper provides a brief introduction on the cellular and molecular mechanisms involved in Nrf2 modulation and an overview of commonly studied formulations for the improvement of oral bioavailability and in vivo pharmacokinetics of Nrf2 modulators. Some formulations that have also been studied in vivo are discussed, including solid dispersions, self-microemulsifying drug delivery systems, and nanotechnology approaches, such as polymeric and solid lipid nanoparticles, nanocrystals, and micelles. Lastly, brief considerations of nano drug delivery systems for the delivery of Nrf2 modulators to the brain, are provided. The literature reviewed shows that the formulations discussed can provide various improvements to the bioavailability and pharmacokinetics of natural Nrf2 modulators. This has been demonstrated in animal models and clinical studies, thereby increasing the potential for the translation of natural Nrf2 modulators into clinical practice.
Collapse
Affiliation(s)
- Nina Katarina Grilc
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| | - Matej Sova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| | - Julijana Kristl
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| |
Collapse
|
102
|
Baumgartner A, Planinšek O. Application of commercially available mesoporous silica for drug dissolution enhancement in oral drug delivery. Eur J Pharm Sci 2021; 167:106015. [PMID: 34547382 DOI: 10.1016/j.ejps.2021.106015] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/17/2022]
Abstract
Due to the high number of poorly water-soluble active pharmaceutical ingredients, oral drug delivery development has become challenging. One of the strategies to enhance drug solubility and to achieve high oral bioavailability is to formulate such compounds into amorphous solid dispersions. In recent years, porous materials have been investigated as possible carriers into which a drug can be adsorbed, such as mesoporous silica, in particular. Unlike the ordered mesoporous network of silica, non-ordered silica already has a "generally regarded as safe" status, and is already used as an excipient in pharmaceutical and cosmetic products. Thus, it is reasonable to expect that products that contain solid dispersions with non-ordered carriers will reach the market sooner and more easily than those with ordered mesoporous carriers. The emphasis of this review is therefore on non-ordered commercially available mesoporous silica and the progress that has been made in development of the use of these materials for improved dissolution rates in oral drug delivery. First, a thorough categorisation of the drug loading methods is presented, followed by discussion on the most important characteristics of solid dispersions (i.e., physical state, stability, drug release). Finally, manufacturability and production of a final solid dosage form are considered.
Collapse
Affiliation(s)
- Ana Baumgartner
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, Ljubljana 1000, Slovenia
| | - Odon Planinšek
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, Ljubljana 1000, Slovenia.
| |
Collapse
|
103
|
Alghaith AF, Mahrous GM, Alqahtani AS, Nasr FA, Alotaibi TS, Radwan AA. Enhancement of the dissolution and in-vitro activity of a new antineoplastic agent. Pharm Dev Technol 2021; 27:134-144. [PMID: 34806524 DOI: 10.1080/10837450.2021.2008966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The cell-surface molecule CD44 plays a major role in the regulation of cancer stem cells. The CD44 inhibitor compound N'-(1-dimethylaminomethyl-2-oxoindolin-3-ylidene)-2-(benzyloxy)benzohydrazide (OYB), anticancer agent is practically insoluble in water. Hence, the solid dispersion (SD) technique was used for enhancing the dissolution of OYB. The SD of OYB was achieved using OYB:poloxamer 188 (1:7) via the fusion method. The anticancer activities of the free-OYB solution and the SD formulation (OYB-SD) were investigated in-vitro. The dissolution rate of OYB-SD (1:7) increased by two-fold compared with the untreated drug (51.52% to 100% at pH 1.2 and 8.25% to 19.15% at pH 7 buffer). In addition, OYB-SD afforded 3 folds cytotoxic effect, against LoVo cells, compared to the untreated compound (IC50 4.72 ± 0.57 µg/ml and 13.97 ± 0.90 µg/ml respectively) and against HepG2 (∼3-fold) (4.98 ± 0.368 µg/ml and 13.85 ± 1.82 µg/ml respectively) and MCF-7 (1.4-fold) cells (15.20 ± 0.20 µg/ml and 21.12 ± 0.51 µg/ml respectively), and enhanced the apoptotic potential in LoVo cells compared with free-OYB. The improved cytotoxic activity of the drug might be attributable to the enhanced dissolution of OYB.
Collapse
Affiliation(s)
- Adel F Alghaith
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Gamal M Mahrous
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Ali S Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.,Medicinal, Aromatic and Poisonous Plants Research Center, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahd A Nasr
- Medicinal, Aromatic and Poisonous Plants Research Center, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Talal S Alotaibi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Awwad A Radwan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
104
|
Kimoto M, Sakane T, Katsumi H, Yamamoto A. Quick and Simultaneous Analysis of Dissolved Active Pharmaceutical Ingredients and Formulation Excipients from the Dissolution Test Utilizing UHPLC and Charged Aerosol Detector. AAPS PharmSciTech 2021; 22:262. [PMID: 34725748 DOI: 10.1208/s12249-021-02152-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
The objective of the study is to develop a quick and simultaneous analysis system for the dissolution of the active pharmaceutical ingredient (API) and the formulation excipient in samples from the dissolution test by UHPLC using the charged aerosol and PDA detectors. The combination of two columns for size-exclusion chromatography (SEC) and the equipment of the charged aerosol detector allowed the quick determination of various water-soluble polymers. Three model sustained-release tablets, each containing a different API of different water solubility (propranolol (soluble), ranitidine (very soluble), and cilostazol (practically insoluble)), were prepared from polyethylene oxide (PEO) matrix to verify the applicability and utility of the analysis system. The dissolution of propranolol was the same as that of PEO, indicating that the diffusion rate of propranolol was consistent with the erosion rate of the PEO and that the dissolution of PRO was based on diffusion. Ranitidine was released faster than PEO, suggesting that ranitidine was diffused through the gel layer of PEO early upon contact with the dissolution medium and before PEO gel erosion. Cilostazol was released slower as compared to PEO, indicating that cilostazol dissolution was based on the polymer's erosion. These results suggested that the analysis system developed in this study is a precise and valid tool to study the dissolution behavior of both APIs and excipients. Optimization of the SEC column for the appropriate separation of APIs and excipients makes the analysis system more efficient and convenient to study the drug release mechanisms and to design formulations.
Collapse
|
105
|
Maitra S, Mitra R, Nath TK. Molten Salt Synthesized MgNiO₂ Micro/Nano-Particles for High Energy Density Supercapacitor and Electrocatalyst for Hydrogen Evolution Reaction in Alkaline Medium. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:5556-5568. [PMID: 33980365 DOI: 10.1166/jnn.2021.19457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In recent years, solid solutions have shown promising results as functional materials for different applications. These materials have tunable physiochemical properties and electronic properties, and are being intensively studied for next generation electrochemical charge storage as well as noble metal free low cost electrocatalyts. In the present work, Magnesium Nickel Oxide (MgNiO₂) solid solution is prepared by molten salt synthesis. MgNiO₂ particles having octahedron shaped morphology with size of 550 nm with an agglomerative behavior was observed through morphological studies. Raman studies revealed presence of three two-phonon modes as well as two one-phonon modes, which confirm the phase purity of MgNiO₂ sample. MgNiO₂ particles behaved as a promising supercapacitor candidate by exhibiting a large specific capacitance of 76 F/g. It also revealed electrochemical stability over an expansive potential range under the presence of 0.5 mol L-1Sodium Sulfate (Na₂SO₄) electrolyte, having a high energy density of nearly 51 Wh/kg with a power density of nearly 825 w/kg. Further, MgNiO₂ particle showed improved electrocatalytic potential towards Hydrogen Evolution Reaction (HER) in 1 mol L-1 Potassium Hydroxide (KOH) alkaline medium, by demonstrating an overpotential of 0.636 V with a Tafel slope of 0.22205 v/dec. Based on these observed promising results, it can be conclusively inferred that MgNiO₂ solid solution is a potential candidate for environmental friendly high voltage supercapacitor and HER electrocatalyst applications.
Collapse
Affiliation(s)
- S Maitra
- School of Nano-Science and Technology, Indian Institute of Technology Kharagpur, 721302, West Bengal, India
| | - R Mitra
- School of Nano-Science and Technology, Indian Institute of Technology Kharagpur, 721302, West Bengal, India
| | - T K Nath
- School of Nano-Science and Technology, Indian Institute of Technology Kharagpur, 721302, West Bengal, India
| |
Collapse
|
106
|
Kapourani A, Andriotis EG, Chachlioutaki K, Kontogiannopoulos KN, Klonos PA, Kyritsis A, Pavlidou E, Bikiaris DN, Fatouros DG, Barmpalexis P. High-Drug-Loading Amorphous Solid Dispersions via In Situ Thermal Cross-Linking: Unraveling the Mechanisms of Stabilization. Mol Pharm 2021; 18:4393-4414. [PMID: 34699238 DOI: 10.1021/acs.molpharmaceut.1c00563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This article takes a step forward in understanding the mechanisms involved during the preparation and performance of cross-linked high-drug-loading (HDL) amorphous solid dispersions (ASDs). Specifically, ASDs, having 90 wt % poorly water-soluble drug indomethacin (IND), were prepared via in situ thermal cross-linking of poly(acrylic acid) (PAA) and poly(vinyl alcohol) (PVA) and thoroughly evaluated in terms of physical stability and in vitro supersaturation. Results showed that HDL ASDs having excellent active pharmaceutical ingredient (API) amorphous stability and prolonged in vitro supersaturation were prepared by fine tuning the cross-linking procedure. Unraveling of the processes involved during ASD's formation shed light on the significant role of the cross-linking conditions (i.e., temperature and time), the physicochemical properties of the API, and the hydrolysis level of the cross-linker as key factors in modulating ASD's stability. In-depth analysis of the prepared systems revealed the (1) reduction of API's molecular motions within the cross-linked polymeric networks (through API's strong spatial confinement), (2) the structural changes in the prepared cross-linked matrices (induced by the high API drug loading), and (3) the tuning of the cross-linking density via utilization of low-hydrolyzed PVA as the major mechanisms responsible for ASD's exceptional performance. Complementary analysis by means of molecular dynamics simulations also highlighted the vital role of strong drug-polymer intermolecular interactions evolving among the ASD components. Overall, the impression of the complexity of in situ cross-linked ASDs has been reinforced with the excessive variation of parameters investigated in the current study, offering thus insights up to the submolecular level to lay the groundwork and foundations for the comprehensive assessment of a new emerging class of HDL amorphous API formulations.
Collapse
Affiliation(s)
- Afroditi Kapourani
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Eleftherios G Andriotis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Konstantina Chachlioutaki
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Konstantinos N Kontogiannopoulos
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.,Natural Products Research Centre of Excellence-AUTH (NatPro-AUTH), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001, Greece
| | - Panagiotis A Klonos
- Department of Physics, National Technical University of Athens, Zografou Campus, Athens 15780, Greece
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens, Zografou Campus, Athens 15780, Greece
| | - Eleni Pavlidou
- Solid State Section, Physics Department, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Dimitrios N Bikiaris
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Dimitrios G Fatouros
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Panagiotis Barmpalexis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.,Natural Products Research Centre of Excellence-AUTH (NatPro-AUTH), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001, Greece
| |
Collapse
|
107
|
Iyer R, Petrovska Jovanovska V, Berginc K, Jaklič M, Fabiani F, Harlacher C, Huzjak T, Sanchez-Felix MV. Amorphous Solid Dispersions (ASDs): The Influence of Material Properties, Manufacturing Processes and Analytical Technologies in Drug Product Development. Pharmaceutics 2021; 13:1682. [PMID: 34683975 PMCID: PMC8540358 DOI: 10.3390/pharmaceutics13101682] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022] Open
Abstract
Poorly water-soluble drugs pose a significant challenge to developability due to poor oral absorption leading to poor bioavailability. Several approaches exist that improve the oral absorption of such compounds by enhancing the aqueous solubility and/or dissolution rate of the drug. These include chemical modifications such as salts, co-crystals or prodrugs and physical modifications such as complexation, nanocrystals or conversion to amorphous form. Among these formulation strategies, the conversion to amorphous form has been successfully deployed across the pharmaceutical industry, accounting for approximately 30% of the marketed products that require solubility enhancement and making it the most frequently used technology from 2000 to 2020. This article discusses the underlying scientific theory and influence of the active compound, the material properties and manufacturing processes on the selection and design of amorphous solid dispersion (ASD) products as marketed products. Recent advances in the analytical tools to characterize ASDs stability and ability to be processed into suitable, patient-centric dosage forms are also described. The unmet need and regulatory path for the development of novel ASD polymers is finally discussed, including a description of the experimental data that can be used to establish if a new polymer offers sufficient differentiation from the established polymers to warrant advancement.
Collapse
Affiliation(s)
- Raman Iyer
- Technical Research and Development, c/o Global Drug Development, Novartis Pharmaceuticals Corp., One Health Plaza, East Hanover, NJ 07936, USA
| | - Vesna Petrovska Jovanovska
- Product Development, Lek Pharmaceuticals d.d., Verovškova 57, 1526 Ljubljana, Slovenia; (V.P.J.); (K.B.); (M.J.); (T.H.)
| | - Katja Berginc
- Product Development, Lek Pharmaceuticals d.d., Verovškova 57, 1526 Ljubljana, Slovenia; (V.P.J.); (K.B.); (M.J.); (T.H.)
| | - Miha Jaklič
- Product Development, Lek Pharmaceuticals d.d., Verovškova 57, 1526 Ljubljana, Slovenia; (V.P.J.); (K.B.); (M.J.); (T.H.)
| | - Flavio Fabiani
- Technical Research and Development, c/o Global Drug Development, Novartis Pharma AG, Lichtstrasse 35, CH-4056 Basel, Switzerland; (F.F.); (C.H.)
| | - Cornelius Harlacher
- Technical Research and Development, c/o Global Drug Development, Novartis Pharma AG, Lichtstrasse 35, CH-4056 Basel, Switzerland; (F.F.); (C.H.)
| | - Tilen Huzjak
- Product Development, Lek Pharmaceuticals d.d., Verovškova 57, 1526 Ljubljana, Slovenia; (V.P.J.); (K.B.); (M.J.); (T.H.)
| | | |
Collapse
|
108
|
Sansare S, Aziz H, Sen K, Patel S, Chaudhuri B. Computational Modeling of Fluidized Beds with a Focus on Pharmaceutical Applications: A Review. J Pharm Sci 2021; 111:1110-1125. [PMID: 34555391 DOI: 10.1016/j.xphs.2021.09.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 11/29/2022]
Abstract
The fluidized bed is an essential and standard equipment in the field of process development. It has a wide application in various areas and has been extensively studied. This review paper aims to discuss computational modeling of a fluidized bed with a focus on pharmaceutical applications. Eulerian, Lagrangian, and combined Eulerian-Lagrangian models have been studied for fluid bed applications with the rise of modeling capabilities. Such models assist in optimizing the process parameters and expedite the process development cycle. This paper discusses the background of modeling and then summarizes research papers relevant to pharmaceutical unit operations.
Collapse
Affiliation(s)
- Sameera Sansare
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Hossain Aziz
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Koyel Sen
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Shivangi Patel
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Bodhisattwa Chaudhuri
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA; Institute of Material Sciences, University of Connecticut, Storrs, CT 06269, USA; Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
109
|
Tubtimsri S, Weerapol Y. Improvement in Solubility and Absorption of Nifedipine Using Solid Solution: Correlations between Surface Free Energy and Drug Dissolution. Polymers (Basel) 2021; 13:polym13172963. [PMID: 34503003 PMCID: PMC8434079 DOI: 10.3390/polym13172963] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
Ternary solid solutions composed of nifedipine (NDP), amino methacrylate copolymer (AMCP), and polysorbate (PS) 20, 60, or 65 were prepared using a solvent evaporation method. The dissolution profiles of NDP were used to study the effect of the addition of polysorbate based on hydrophilic properties. A solid solution of NDP and AMCP was recently developed; however, the dissolution of NDP was <70%. In the present study, polysorbate was added to improve the dissolution of the drug by altering its hydrophilicity. The suitable formulation contained NDP and AMCP at a ratio of 1:4 and polysorbate at a concentration of 0.1%, 0.3%, or 0.6%. Differential scanning calorimetry and powder X-ray diffraction were used to examine the solid solutions. No peak representing crystalline NDP was observed in any solid solution samples, suggesting that the drug was molecularly dispersed in AMCP. The NDP dissolution from NDP powder and solid solution without PS were 16.82% and 58.19%, respectively. The highest dissolution of NDP of approximately 95.25% was noted at 120 min for the formulation containing 0.6% PS20. Linear correlations were observed between the surface free energy and percentages of dissolved NDP (R2 = 0.7115–0.9315). Cellular uptake across Caco-2 was selected to determine the drug permeability. The percentages of cellular uptake from the NDP powder, solid solution without and with PS20 were 0.25%, 3.60%, and 7.27%, respectively.
Collapse
|
110
|
Borde S, Paul SK, Chauhan H. Ternary solid dispersions: classification and formulation considerations. Drug Dev Ind Pharm 2021; 47:1011-1028. [PMID: 33818224 DOI: 10.1080/03639045.2021.1908342] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The number of active pharmaceutical compounds from the biopharmaceutical classification system (BCS) belonging to Class II and IV have significantly increased in recent years. These compounds have high therapeutic potential but are difficult to formulate as oral dosage forms due to their poor aqueous solubility. The solubility and bioavailability of these poorly water-soluble compounds can be increased by various formulation approaches, such as amorphous solid dispersions (ASD), salt formation, complexations, etc. Out of these techniques, the ASD approach, where compounds are converted into amorphous form and embedded in the hydrophilic matrix, have been successfully used in many marketed preparations. The recent advancement of this ASD approach is the design of ternary solid dispersions (TSD), where an additional component is added to further improve their performance in terms of solubility, stability, and processability. This review discusses the classification, mechanism of performance improvement, preparation techniques, and characterizations for TSD.
Collapse
Affiliation(s)
- Shambhavi Borde
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA
| | - Sagar Kumar Paul
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA
| | - Harsh Chauhan
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA
| |
Collapse
|
111
|
Long-Acting Risperidone Dual Control System: Preparation, Characterization and Evaluation In Vitro and In Vivo. Pharmaceutics 2021; 13:pharmaceutics13081210. [PMID: 34452171 PMCID: PMC8399464 DOI: 10.3390/pharmaceutics13081210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022] Open
Abstract
Schizophrenia, a psychiatric disorder, requires long-term treatment; however, large fluctuations in blood drug concentration increase the risk of adverse reactions. We prepared a long-term risperidone (RIS) implantation system that can stabilize RIS release and established in-vitro and in-vivo evaluation systems. Cumulative release, drug loading, and entrapment efficiency were used as evaluation indicators to evaluate the effects of different pore formers, polymer ratios, porogen concentrations, and oil–water ratios on a RIS implant (RIS-IM). We also built a mathematical model to identify the optimized formulation by stepwise regression. We also assessed the crystalline changes, residual solvents, solubility and stability after sterilization, in-vivo polymer degradation, pharmacokinetics, and tissue inflammation in the case of the optimized formulation. The surface of the optimized RIS microspheres was small and hollow with 134.4 ± 3.5 µm particle size, 1.60 SPAN, 46.7% ± 2.3% implant drug loading, and 93.4% entrapment efficiency. The in-vitro dissolution behavior of RIS-IM had zero-order kinetics and stable blood concentration; no lag time was released for over three months. Furthermore, the RIS-IM was not only non-irritating to tissues but also had good biocompatibility and product stability. Long-acting RIS-IMs with microspheres and film coatings can provide a new avenue for treating schizophrenia.
Collapse
|
112
|
Yurtdaş-Kırımlıoğlu G. Spray dried nanospheres for inclusion complexes of cefpodoxime proxetil with β-cyclodextrin, 2-hydroxypropyl-β-cyclodextrin and methyl-β-cyclodextrin: improved dissolution and enhanced antibacterial activity. Drug Dev Ind Pharm 2021; 47:1261-1278. [PMID: 34606394 DOI: 10.1080/03639045.2021.1989452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 08/04/2021] [Accepted: 09/10/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The aim of the current research was the development hard cellulose capsules containing cefpodoxime proxetil (CEF) (BCS-Class II) encapsulated nanospheres of inclusion complexes with β-CD, HP-β-CD and M-β-CD for efficient antibacterial therapy. SIGNIFICANCE The reason for this phenomenon is to bring an innovative approach to effective oral antimicrobial therapy with hard cellulose capsules containing spray dried nanospheres of CEF with β-CD, HP-β-CD and M-β-CD by means of increased solubility, dissolution rate and improved antibacterial efficiency with lower oral dose. METHODS Phase solubility analyses was performed to evaluate the drug/CD interaction, involving the stoichiometry and apparent stability constant. Following the preparation of inclusion complexes by spray-drying method, complexes were characterized for physical, solid-state and microbiological analyses. In vitro dissolution from hard cellulose capsules containing CEF and CEF/β-CD, CEF/HP-β-CD and CEF/M-β-CD complexes were performed. RESULTS According to AL type phase solubility curves, complexes were formulated as 1:1 molar ratio. The solubility of pure CEF was determined as 0.241 ± 0.002 mg mL-1, the solubility of inclusion complexes increased solubility from 3 to 5 times. The strong host-guest interaction was confirmed for CEF/HP-β-CD and CEF/M-β-CD complexes with SEM, DSC, FT-IR and 1H-NMR analyses. Inclusion complexes were more efficient on bacterial cells (2-4 fold) than pure CEF both Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae. Hard-cellulose capsules filled with inclusion complexes exhibited significantly faster release than unprocessed CEF. CONCLUSION Hard-cellulose capsules containing CEF/HP-β-CD and CEF/M-β-CD complexes appear to be superior alternative to commercially available CEF tablets for effective antibacterial therapy.
Collapse
|
113
|
Ahmed TA, El-Say KM, Abd-Allah FI, Omar AM, El-Araby ME, Muhammad YA, Pagare PP, Zhang Y, Mohmmad KA, Abdulmalik O, Safo MK. Improving the Solubility and Oral Bioavailability of a Novel Aromatic Aldehyde Antisickling Agent (PP10) for the Treatment of Sickle Cell Disease. Pharmaceutics 2021; 13:1148. [PMID: 34452107 PMCID: PMC8401948 DOI: 10.3390/pharmaceutics13081148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Aromatic aldehydes, with their ability to increase the oxygen affinity of sickle hemoglobin, have become important therapeutic agents for sickle cell disease (SCD). One such compound, voxelotor, was recently approved for SCD treatment. Methyl 6-((2-formyl-3-hydroxyphenoxy)methyl) picolinate (PP10) is another promising aromatic aldehyde, recently reported by our group. Like voxelotor, PP10 exhibits O2-dependent antisickling activity, but, unlike voxelotor, PP10 shows unique O2-independent antisickling effect. PP10, however, has limited solubility. This study therefore aimed to develop oral and parenteral formulations to improve PP10 solubility and bioavailability. METHODS Oral drug tablets with 2-hydroxypropyl beta cyclodextrin (HP-β-CD), polyvinylpyrrolidone, or Eudragit L100-55 PP10-binary system, and an intravenous (IV) formulation with d-α-tocopherol polyethylene glycol 1000 succinate (TPGS) or HP-β-CD, were developed. The pharmacokinetic behavior of the formulations was studied in Sprague-Dawley rats. PP10, a methylester, and its acid metabolite were also studied in vitro with sickle whole blood to determine their effect on Hb modification, Hb oxygen affinity, and sickle red blood cell inhibition. RESULTS Aqueous solubility of PP10 was enhanced ~5 times with the HP-β-CD binary system, while the TPGS aqueous micelle formulation was superior, with a drug concentration of 0.502 ± 0.01 mg/mL and a particle size of 26 ± 3 nm. The oral tablets showed relative and absolute bioavailabilities of 173.4% and 106.34%, respectively. The acid form of PP10 appeared to dominate in vivo, although both PP10 forms demonstrated pharmacologic effect. CONCLUSION Oral and IV formulations of PP10 were successfully developed using HP-β-CD binary system and TPGS aqueous micelles, respectively, resulting in significantly improved solubility and bioavailability.
Collapse
Affiliation(s)
- Tarek A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt;
| | - Khalid M. El-Say
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt;
| | - Fathy I. Abd-Allah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt;
| | - Abdelsattar M. Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.M.O.); (M.E.E.-A.); (Y.A.M.); (K.A.M.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Moustafa E. El-Araby
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.M.O.); (M.E.E.-A.); (Y.A.M.); (K.A.M.)
| | - Yosra A. Muhammad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.M.O.); (M.E.E.-A.); (Y.A.M.); (K.A.M.)
| | - Piyusha P. Pagare
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA; (P.P.P.); (Y.Z.); (M.K.S.)
| | - Yan Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA; (P.P.P.); (Y.Z.); (M.K.S.)
| | - Khadijah A. Mohmmad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.M.O.); (M.E.E.-A.); (Y.A.M.); (K.A.M.)
| | - Osheiza Abdulmalik
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Martin K. Safo
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA; (P.P.P.); (Y.Z.); (M.K.S.)
- Development, School of Pharmacy, The Institute for Structural Biology, Drug Discovery, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
114
|
Jin S, Lee CH, Lim DY, Lee J, Park SJ, Song IS, Choi MK. Improved Hygroscopicity and Bioavailability of Solid Dispersion of Red Ginseng Extract with Silicon Dioxide. Pharmaceutics 2021; 13:pharmaceutics13071022. [PMID: 34371714 PMCID: PMC8309041 DOI: 10.3390/pharmaceutics13071022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
This study aims to develop a powder formulation for the Korean red ginseng extract (RGE) and to evaluate its in vitro and in vivo formulation characteristics. The solid dispersion of RGE was prepared with hydrophilic carriers using a freeze-drying method. After conducting the water sorption–desorption isothermogram (relative humidity between 30 and 70% RH), differential scanning calorimetry thermal behavior, dissolution test, and intestinal permeation study, a solid dispersion formulation of RGE and silicon dioxide (RGE-SiO2) was selected. RGE-SiO2 formulation increased intestinal permeability of ginsenoside Rb1 (GRb1), GRb2, GRc, and GRd by 1.6-fold in rat jejunal segments as measured by the Ussing chamber system. A 1.6- to 1.8-fold increase in plasma exposure of GRb1, GRb2, GRc, and GRd in rats was observed following oral administration of RGE-SiO2 (375 mg/kg as RGE). No significant difference was observed in the time to reach maximum concentration (Tmax) and half-life in comparison to those in RGE administered rats (375 mg/kg). In conclusion, formulating solid dispersion of RGE with amorphous SiO2, the powder formulation of RGE was successfully formulated with improved hygroscopicity, increased intestinal permeability, and enhanced oral bioavailability and is therefore suitable for processing solid formulations of RGE product.
Collapse
Affiliation(s)
- Sojeong Jin
- College of Pharmacy, Dankook University, Cheon-an 31116, Korea; (S.J.); (C.H.L.); (D.Y.L.)
| | - Chul Haeng Lee
- College of Pharmacy, Dankook University, Cheon-an 31116, Korea; (S.J.); (C.H.L.); (D.Y.L.)
| | - Dong Yu Lim
- College of Pharmacy, Dankook University, Cheon-an 31116, Korea; (S.J.); (C.H.L.); (D.Y.L.)
| | - Jaehyeok Lee
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE), Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea;
| | - Soo-Jin Park
- College of Korean Medicine, Daegu Haany University, Daegu 38610, Korea
- Correspondence: (S.-J.P.); (I.-S.S.); (M.-K.C.); Tel.: +82-53-819-1459 (S.-J.P.); +82-53-950-8575 (I.-S.S.); +82-41-550-1438 (M.-K.C.); Fax: +82-53-819-1576 (S.-J.P.); +82-53-950-8557 (I.-S.S.)
| | - Im-Sook Song
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE), Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea;
- Correspondence: (S.-J.P.); (I.-S.S.); (M.-K.C.); Tel.: +82-53-819-1459 (S.-J.P.); +82-53-950-8575 (I.-S.S.); +82-41-550-1438 (M.-K.C.); Fax: +82-53-819-1576 (S.-J.P.); +82-53-950-8557 (I.-S.S.)
| | - Min-Koo Choi
- College of Pharmacy, Dankook University, Cheon-an 31116, Korea; (S.J.); (C.H.L.); (D.Y.L.)
- Correspondence: (S.-J.P.); (I.-S.S.); (M.-K.C.); Tel.: +82-53-819-1459 (S.-J.P.); +82-53-950-8575 (I.-S.S.); +82-41-550-1438 (M.-K.C.); Fax: +82-53-819-1576 (S.-J.P.); +82-53-950-8557 (I.-S.S.)
| |
Collapse
|
115
|
Rajalingam K, Krishnaswami V, Alagarsamy S, Kandasamy R. Solubility Enhancement of Methotrexate by Solid Nanodispersion Approach for the Improved Treatment of Small Cell Lung Carcinoma. Curr Top Med Chem 2021; 21:140-150. [PMID: 32888268 DOI: 10.2174/1568026620999200904120241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 11/22/2022]
Abstract
AIMS The present work aimed to develop MT loaded solid Nano dispersion by improving its solubility, half-life and bioavailability in biological system thereby this formulation may be afforded economically. BACKGROUND Small cell lung carcinoma is a type of malignant tumor characterized by uncontrolled cell growth at lung tissues. The potent anti-cancer drug methotrexate (MT) chosen for the present work is poorly soluble in water (BCS type IV class) with short half-life and hepatotoxic effect. OBJECTIVE With the concept of polymeric surfactant to improve the solubility along with wettability of drugs, the present work has been hypothesized to improve its solubility using polyvinyl pyrollidone (PVP K30) polymer and α- tocopheryl polyethylene glycol 1000 succinate (TPGS) surfactant, thereby the bioavailability is expected to get enhanced. By varying the PVP K30 and TPGS ratios different formulations were developed using emulsification process. METHODS The developed MT loaded solid nanodispersion was further characterized for its particle size, charge, morphology, encapsulation efficiency and in-vitro release behavior etc. Results: The results of FT-IR spectrometric analysis indicated the compatibility nature of MTX, PVPK30 and TPGS. The developed formulations showed spherical morphology, particle size ranging from 59.28±24.2 nm to 169.33±10.85 nm with a surface charge ranging from -10.33 ± 2.81mV to -9.57 ± 1.2 mV. The in vitro release studies as performed by dialysis bag method showed a sustained release pattern as checked by UV Spectrophotometer. Residual solvent analysis for MTXNDs performed by HPLC indicates there is no residual DMSO in the formulation. Transmission electron microscopic image of MTXNDs revealed that the particles are spherical shaped with a solid core structure. Haemolytic assay indicates that the developed formulation is safe for intravenous administration. Cell culture studies in A549 cells indicates the enhanced cytotoxic effect for the developed formulation. CONCLUSION This proof of study indicates that the developed formulation may have anticancer potential for SCLC treatment.
Collapse
Affiliation(s)
- Karthikeyan Rajalingam
- Centre for Excellence in Nanobio Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, India
| | - Venkateshwaran Krishnaswami
- Centre for Excellence in Nanobio Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, India
| | - Shanmugarathinam Alagarsamy
- Centre for Excellence in Nanobio Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, India
| | - Ruckmani Kandasamy
- Centre for Excellence in Nanobio Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, India
| |
Collapse
|
116
|
Phan CU, Shen J, Yu K, Mao J, Tang G. Impact of Crystal Habit on the Dissolution Rate and In Vivo Pharmacokinetics of Sorafenib Tosylate. Molecules 2021; 26:molecules26113469. [PMID: 34200376 PMCID: PMC8201088 DOI: 10.3390/molecules26113469] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/27/2021] [Accepted: 06/05/2021] [Indexed: 02/07/2023] Open
Abstract
The dissolution rate is the rate-limiting step for Biopharmaceutics Classification System (BCS) class II drugs to enhance their in vivo pharmacokinetic behaviors. There are some factors affecting the dissolution rate, such as polymorphism, particle size, and crystal habit. In this study, to improve the dissolution rate and enhance the in vivo pharmacokinetics of sorafenib tosylate (Sor-Tos), a BCS class II drug, two crystal habits of Sor-Tos were prepared. A plate-shaped crystal habit (ST-A) and a needle-shaped crystal habit (ST-B) were harvested by recrystallization from acetone (ACN) and n-butanol (BuOH), respectively. The surface chemistry of the two crystal habits was determined by powder X-ray diffraction (PXRD) data, molecular modeling, and face indexation analysis, and confirmed by X-ray photoelectron spectroscopy (XPS) data. The results showed that ST-B had a larger hydrophilic surface than ST-A, and subsequently a higher dissolution rate and a substantial enhancement of the in vivo pharmacokinetic performance of ST-B.
Collapse
Affiliation(s)
- Chi Uyen Phan
- Faculty of Chemical Technology—Environment, The University of Danang—University of Technology and Education, Danang 550000, Vietnam
- Correspondence: (C.U.P.); (G.T.); Tel.: +84-0962119542 (C.U.P.)
| | - Jie Shen
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China; (J.S.); (K.Y.); (J.M.)
| | - Kaxi Yu
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China; (J.S.); (K.Y.); (J.M.)
| | - Jianming Mao
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China; (J.S.); (K.Y.); (J.M.)
| | - Guping Tang
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China; (J.S.); (K.Y.); (J.M.)
- Correspondence: (C.U.P.); (G.T.); Tel.: +84-0962119542 (C.U.P.)
| |
Collapse
|
117
|
PharmSD: A novel AI-based computational platform for solid dispersion formulation design. Int J Pharm 2021; 604:120705. [PMID: 33991595 DOI: 10.1016/j.ijpharm.2021.120705] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023]
Abstract
Solid dispersion is an effective way to improve the dissolution and oral bioavailability of water-insoluble drugs. To obtain an effective solid dispersion formulation, researchers need to evaluate a series of important properties of the designed formulation, including in vitro dissolution and physical stability of solid dispersion. It is usually time-consuming and labor-intensive to explore these properties by traditional experimental methods. However, the development of machine learning technology provides a powerful way to solve such problems. By using advanced machine learning algorithms, we established a series of robust models and finally formed a systematic strategy to assist the formulation design. Based on these works, we developed a new formulation prediction platform of solid dispersion: PharmSD. This platform provides efficient functionalities for the prediction of physical stability, dissolution type and dissolution rate of solid dispersion independently. Then, a virtual screening pipeline can be produced by considering those prediction results as a whole, which enables users to filter different kinds of drug-polymer combinations in various experimental situations and figure out which combination could form the best formulation. Moreover, it also provides two tools that enable researchers to evaluate the application domain of models and calculate the similarity of dissolution curves. PharmSD is expected to be the first freely available web-based platform that is fully designed for the formulation design of solid dispersion driven by machine learning. We hope this platform could provide a powerful solution to assist the formulation design in the related research area. It is available at: http://pharmsd.computpharm.org.
Collapse
|
118
|
Xin W, Wang Y, Bian Y, Lin J, Weng W, Zhao X, Gou K, Guo X, Li H. Facile synthesis of PEI-based crystalline templated mesoporous silica with molecular chirality for improved oral delivery of the poorly water-soluble drug. Drug Deliv 2021; 28:894-905. [PMID: 33960251 PMCID: PMC8118497 DOI: 10.1080/10717544.2021.1912212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The aim of this study was to build up a novel chiral mesoporous silica called PEIs@TA-CMS through a facile biomimetic strategy and to explore its potential to serve as a drug carrier for improving the delivery efficiency of poorly water-soluble drug. PEIs@TA-CMS was synthesized by using a chiral crystalline complex associated of tartaric acid and polyethyleneimine (PEIs) as templates, scaffolds and catalysts. The structural features including morphology, size, pore structure and texture properties were systematacially studied. The results showed that PEIs@TA-CMS was monodispersed spherical nanoparticles in a uniformed diameter of 120–130 nm with well-developed pore structure (SBET: 1009.94 m2/g, pore size <2.21 nm). Then PEIs@TA-CMS was employed as nimodipine (NMP) carrier and compared with the drug carry ability of MCM41. After drug loading, NMP was effectively transformed from the crystalline state to an amorphous state due to the space confinement in mesopores. As expected, PEIs@TA-CMS had superiority in both drug loading and drug release compared to MCM41. It could incorporate NMP with high efficiency, and the dissolution-promoting effect of PEIs@TA-CMS was more obvious because of the unique interconnected curved pore channels. Meanwhile, PEIs@TA-CMS could significantly improve the oral adsorption of NMP to a satisfactory level, which showed approximately 3.26-fold higher in bioavailability, and could effectively prolong the survival time of mice on cerebral anoxia from 10.98 to 17.33 min.
Collapse
Affiliation(s)
- Wei Xin
- School of Pharmacy, China Medical University, Shenyang, China.,The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yumei Wang
- School of Pharmacy, China Medical University, Shenyang, China.,School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yan Bian
- School of Pharmacy, China Medical University, Shenyang, China
| | - Jiahui Lin
- School of Pharmacy, China Medical University, Shenyang, China
| | - Wenhao Weng
- School of Pharmacy, China Medical University, Shenyang, China
| | - Xinyi Zhao
- School of Pharmacy, China Medical University, Shenyang, China
| | - Kaijun Gou
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xianmou Guo
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Heran Li
- School of Pharmacy, China Medical University, Shenyang, China.,School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
119
|
Zhang Y, Xiao Y, Sun G, Jin X, Guo L, Li T, Yin H. Harnessing the therapeutic potential of extracellular vesicles for cancer treatment. Semin Cancer Biol 2021; 74:92-104. [PMID: 33962020 DOI: 10.1016/j.semcancer.2021.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 12/22/2022]
Abstract
Cancer therapeutic strategies include surgeries, radiotherapy, chemotherapy, targeted therapy and immunotherapies. However, current cancer treatment still faces challenges such as postoperative residuals, postoperative recurrence, chemoradiotherapy resistance and lack of drugs with high specificity, due to the complexity of the cancer environment. Extracellular vesicles (EVs) are lipid-capsuled membrane vesicles secreted from cells, communicating vital messages between cells and regarding function in tumorigenesis and metastasis. Investigation of compositions and functions of EVs may open unprecedented, promising avenues for cancer therapeutics. This review brings new perspectives from both researchers and clinicians in the EV field, emphasizing the ties between basic research and ongoing clinical trials. In sum, our review summarizes the roles EVs play in cancer therapy, ranging from mechanisms to applications in cancer treatment. In particular, it focuses on their therapeutic potential with an eye toward clinical relevance.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100082, China; Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China; Beijing Advanced Innovation, Center for Structural Biology, Tsinghua University, Beijing, China
| | - Yu Xiao
- Zhujiang Hospital, Laboratory of Medicine Center, Southern Medical University, Guangzhou, Guangdong, China
| | - Gaoge Sun
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100082, China; Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China; Beijing Advanced Innovation, Center for Structural Biology, Tsinghua University, Beijing, China
| | - Xue Jin
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100082, China; Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China; Beijing Advanced Innovation, Center for Structural Biology, Tsinghua University, Beijing, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Lerui Guo
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100082, China; Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China; Beijing Advanced Innovation, Center for Structural Biology, Tsinghua University, Beijing, China
| | - Tian Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hang Yin
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100082, China; Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China; Beijing Advanced Innovation, Center for Structural Biology, Tsinghua University, Beijing, China.
| |
Collapse
|
120
|
Hamed R, Mohamed EM, Sediri K, Khan MA, Rahman Z. Development of stable amorphous solid dispersion and quantification of crystalline fraction of lopinavir by spectroscopic-chemometric methods. Int J Pharm 2021; 602:120657. [PMID: 33930489 DOI: 10.1016/j.ijpharm.2021.120657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/21/2021] [Accepted: 04/25/2021] [Indexed: 10/21/2022]
Abstract
This study aimed to improve the dissolution of the poorly soluble drug lopinavir (LPV) by preparing amorphous solid dispersions (ASDs) using solvent evaporation method. The ASD formulations were prepared with ternary mixtures of LPV, Eudragit® E100, and microcrystalline cellulose (MCC) at various weight ratios. The ASDs were subjected to solid-state characterization and in vitro drug dissolution testing. Chemometric models based on near infrared spectroscopy (NIR) and NIR-hyperspectroscopy (NIR-H) data were developed using the partial least squares (PLS) regression and externally validated to estimate the percent of the crystalline LPV in the ASD. Initially, the solid-state characterization data of ASDs showed transformation of the drug from crystalline to amorphous. Negligible fraction of crystalline LPV was present in the ASD (3%). Compared to pure LPV, ASDs showed faster and higher drug dissolution (<2% vs. 60.3-73.5%) in the first 15 min of testing. The ASD was stable against crystallization during stability testing at 40 °C/75% for a month. In conclusion, the prepared ASD was stable against devitrification and enhance the dissolution of LPV.
Collapse
Affiliation(s)
- Rania Hamed
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, United States; Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Eman M Mohamed
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, United States; Department of Pharmaceutics, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Khaldia Sediri
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, United States; Laboratory of Applied Chemistry, ACTR univ. Ain Temouchent DGRCT, BP 248, 46000 Ain Temouchent, Algeria
| | - Mansoor A Khan
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, United States
| | - Ziyaur Rahman
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, United States.
| |
Collapse
|
121
|
Zhou K, Huo M, Ma W, Mi K, Xu X, Algharib SA, Xie S, Huang L. Application of a Physiologically Based Pharmacokinetic Model to Develop a Veterinary Amorphous Enrofloxacin Solid Dispersion. Pharmaceutics 2021; 13:602. [PMID: 33922109 PMCID: PMC8143505 DOI: 10.3390/pharmaceutics13050602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Zoonotic intestinal pathogens threaten human health and cause huge economic losses in farming. Enrofloxacin (ENR) shows high antibacterial activity against common intestinal bacteria. However, its poor palatability and low aqueous solubility limit the clinical application of ENR. To obtain an ENR oral preparation with good palatability and high solubility, a granule containing an amorphous ENR solid dispersion (ENR-SD) was prepared. Meanwhile, a PBPK model of ENR in pigs was built based on the physiological parameters of pigs and the chemical-specific parameters of ENR to simulate the pharmacokinetics (PK) of ENR-SD granules in the intestinal contents. According to the results of parameter sensitivity analysis (PSA) and the predicted PK parameters at different doses of the model, formulation strategies and potential dose regimens against common intestinal infections were provided. The DSC and XRD results showed that no specific interactions existed between the excipients and ENR during the compatibility tests, and ENR presented as an amorphous form in ENR-SD. Based on the similar PK performance of ENR-SD granules and the commercial ENR soluble powder suggesting continued enhancement of the solubility of ENR, a higher drug concentration in intestinal contents could not be obtained. Therefore, a 1:5 ratio of ENR and stearic acid possessing a saturated aqueous solubility of 1190 ± 7.71 µg/mL was selected. The predictive AUC24h/MIC90 ratios against Campylobacter jejuni, Salmonella, and Escherichia coli were 133, 266 and 8520 (>100), respectively, suggesting that satisfactory efficacy against common intestinal infections would be achieved at a dose of 10 mg/kg b.w. once daily. The PSA results indicated that the intestinal absorption rate constant (Ka) was negatively correlated with the Cmax of ENR in the intestine, suggesting that we could obtain higher intestinal Cmax using P-gp inducers to reduce Ka, thus obtaining a higher Cmax. Our studies suggested that the PBPK model is an excellent tool for formulation and dose design.
Collapse
Affiliation(s)
- Kaixiang Zhou
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (K.Z.); (M.H.); (W.M.); (K.M.); (X.X.); (S.A.A.); (S.X.)
| | - Meixia Huo
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (K.Z.); (M.H.); (W.M.); (K.M.); (X.X.); (S.A.A.); (S.X.)
| | - Wenjin Ma
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (K.Z.); (M.H.); (W.M.); (K.M.); (X.X.); (S.A.A.); (S.X.)
| | - Kun Mi
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (K.Z.); (M.H.); (W.M.); (K.M.); (X.X.); (S.A.A.); (S.X.)
| | - Xiangyue Xu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (K.Z.); (M.H.); (W.M.); (K.M.); (X.X.); (S.A.A.); (S.X.)
| | - Samah Attia Algharib
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (K.Z.); (M.H.); (W.M.); (K.M.); (X.X.); (S.A.A.); (S.X.)
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (K.Z.); (M.H.); (W.M.); (K.M.); (X.X.); (S.A.A.); (S.X.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (K.Z.); (M.H.); (W.M.); (K.M.); (X.X.); (S.A.A.); (S.X.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
122
|
Permana AD, Utomo E, Pratama MR, Amir MN, Anjani QK, Mardikasari SA, Sumarheni S, Himawan A, Arjuna A, Usmanengsi U, Donnelly RF. Bioadhesive-Thermosensitive In Situ Vaginal Gel of the Gel Flake-Solid Dispersion of Itraconazole for Enhanced Antifungal Activity in the Treatment of Vaginal Candidiasis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18128-18141. [PMID: 33840187 DOI: 10.1021/acsami.1c03422] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The poor solubility of itraconazole (ITZ) has limited its efficacy in the treatment of vaginal candidiasis. Accordingly, the improvement of ITZ solubility using a solid dispersion technique was important to enhance its antifungal activity. Besides, as the purpose of this research was to develop local-targeting formulations, bioadhesive-thermosensitive in situ vaginal gel combined with the gel-flake system was found to be the most suitable choice. To obtain optimum solubility, entrapment efficiency, and drug-loading capacity, optimization of solid dispersion (SD) and gel-flake formulations of ITZ was performed using a composite central design. The results showed that the optimized formulation of SD-ITZ was able to significantly enhance its solubility in both water and simulated vaginal fluid to reach the values of 4.211 ± 0.23 and 4.291 ± 0.21 mg/mL, respectively. Additionally, the optimized formulation of SD-ITZ gel flakes possessed desirable entrapment efficiency and drug-loading capacity. The in situ vaginal gel containing SD-ITZ gel flakes was prepared using PF-127 and PF-68, as the gelling agents, with the addition of hydroxypropyl methylcellulose (HPMC) as the mucoadhesive polymer. It was found that the obtained in situ vaginal gel provided desirable physicochemical properties and was able to retain an amount of more than 4 mg of ITZ in the vaginal tissue after 8 h. Importantly, according to the in vivo antifungal activity using infection animal models, the incorporation of the solid dispersion technique and gel-flake system in the formulation of the bioadhesive-thermosensitive in situ vaginal gel led to the most significant decrease of the growth of Candida albicans reaching <1 log colony-forming units (CFU)/mL or equivalent to <10% of the total colony after 14 days, indicating the improvement of ITZ antifungal activity compared to other treated groups. Therefore, these studies confirmed a great potential to enhance the efficacy of ITZ in treating vaginal candidiasis. Following these findings, several further experiments need to be performed to ensure acceptability and usability before the research reaches the clinical stage.
Collapse
Affiliation(s)
- Andi Dian Permana
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Emilia Utomo
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Muhammad Rezky Pratama
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Muh Nur Amir
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Qonita Kurnia Anjani
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Sandra Aulia Mardikasari
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Sumarheni Sumarheni
- Department of Clinical Pharmacy, Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Achmad Himawan
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Andi Arjuna
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Usmanengsi Usmanengsi
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| |
Collapse
|
123
|
The application of freeze-drying as a production method of drug nanocrystals and solid dispersions – A review. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102357] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
124
|
Yurtdaş-Kırımlıoğlu G. Development and characterization of lyophilized cefpodoxime proxetil-Pluronic ® F127/polyvinylpyrrolidone K30 solid dispersions with improved dissolution and enhanced antibacterial activity. Pharm Dev Technol 2021; 26:476-489. [PMID: 33616480 DOI: 10.1080/10837450.2021.1889584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 10/22/2022]
Abstract
The aim of this study was the development of hard-cellulose capsules containing cefpodoxime proxetil (CEF) (BCS Class II) loaded novel Pluronic® F127 (P127)/Polyvinylpyrrolidone K30 (PVP) solid dispersions (SDs) using ultrasonic probe induced solvent-lyophilization method for effective antibacterial treatment by means of improved saturated aqueous solubility, dissolution rate, reduced particle size, and wettability. SDs were evaluated for physical and solid-state analyses. The solubility of pure CEF was calculated as 0.269 ± 0.005 mg/mL, SDs formulated with P127/PVP exhibited increased solubility from 3.5- to 8-fold. Molecular distribution of CEF in SDs and formation of CEF loaded amorphous polymeric network were confirmed with morphological study, thermal analysis, Fourier-transform infrared spectroscopy (FT-IR), and 1H-NMR studies. Staphylococcus aureus (ATCC 29213), Escherichia coli (ATCC 25922), and Klebsiella pneumoniae (ATCC 700603) were used to investigate the antibacterial effectiveness of the SDs. The minimum inhibitory concentration (MIC) values of the P127/PVP SDs were found 2-8 times lower than the pure CEF. All SDs from hard-cellulose capsules exhibited significantly faster release than unprocessed CEF. The profiles of SDs and reference were detected to be dissimilar according to difference (f1) and similarity factor (f2). Hard-cellulose capsules containing CEF loaded P127/PVP SDs appear to be feasible alternative to commercially available CEF tablets for effective antibacterial therapy at lowest dose.
Collapse
|
125
|
Cao L, Russo D, Lapkin AA. Automated robotic platforms in design and development of formulations. AIChE J 2021. [DOI: 10.1002/aic.17248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Liwei Cao
- Department of Chemical Engineering and Biotechnology University of Cambridge Cambridge UK
- Cambridge Centre for Advanced Research and Education in Singapore, CARES Ltd. Singapore
| | - Danilo Russo
- Department of Chemical Engineering and Biotechnology University of Cambridge Cambridge UK
| | - Alexei A. Lapkin
- Department of Chemical Engineering and Biotechnology University of Cambridge Cambridge UK
- Cambridge Centre for Advanced Research and Education in Singapore, CARES Ltd. Singapore
| |
Collapse
|
126
|
Abstract
Co-amorphous (CAM) systems are promising drug-delivery systems in the arena of therapeutic drug delivery, addressing the poor aqueous solubility of drugs by enhancing solubility and thereby improving the oral bioavailability and therapeutic effect of the drug. A CAM system is a single-phase homogeneous blend of two or more low molecular weight molecules that can be drug–drug or drug–co-former, stabilized via intermolecular interactions, adding the benefit of thermodynamic stability. This review covers the fundamentals of CAM systems and recent advances in formulation development. In particular, we strive to address the theoretical, molecular, technical and biopharmaceutical aspects, advantages over polymeric amorphous solid dispersions, mechanisms of stabilization of amorphous forms, insights into unexplored in silico tools in excipient selection and regulatory viewpoints.
Collapse
|
127
|
Butreddy A, Bandari S, Repka MA. Quality-by-design in hot melt extrusion based amorphous solid dispersions: An industrial perspective on product development. Eur J Pharm Sci 2021; 158:105655. [PMID: 33253883 PMCID: PMC7855693 DOI: 10.1016/j.ejps.2020.105655] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023]
Abstract
An industrially feasible approach to overcome the solubility and bioavailability limitations of poorly soluble active pharmaceutical ingredients is the development of amorphous solid dispersions (ASDs) using hot-melt extrusion (HME) technique. The application of Quality by Design (QbD) had a profound impact on the development of HME-based ASDs. The formulation and process optimization of ASDs manufactured via HME techniques require an understanding of critical quality attributes, critical material attributes, critical process parameters, risk assessment tools, and experimental designs. The knowledge gained from each of these QbD elements helps ensure the consistency of product quality. The selection and implementation of appropriate Design of Experiments (DoE) methodology to screen and optimize the formulation and process variables remain a major challenge. This review provides a comprehensive overview on QbD concepts in HME-based ASDs with an emphasis on DoE methodologies. Further, the information provided in this review can assist researchers in selecting a suitable design with optimal experimental conditions. Specifically, this review has focused on the prediction of drug-polymer miscibility, the elements and sequence of QbD, and various screening and optimization designs, to provide insights into the formulation and process variables that are encountered routinely in the production of HME-based ASDs.
Collapse
Affiliation(s)
- Arun Butreddy
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Suresh Bandari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
128
|
Tran P, Park JS. Formulation of solid dispersion to improve dissolution and oral bioavailability of poorly soluble dexibuprofen. Pharm Dev Technol 2021; 26:422-430. [PMID: 33543664 DOI: 10.1080/10837450.2021.1884259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Dexibuprofen (DEXI) belongs to BCS class II drug with poor aqueous solubility resulting in poor bioavailability. To enhance solubility and bioavailability of DEXI, DEXI-loaded solid dispersion (SD) was formulated. DEXI-SDs were prepared by melting method and solvent evaporation method. Amphipathic polymer poloxamer 407 (pol 407) was selected based on solubility and dissolution tests. The ratio of DEXI:pol 407 was optimized as 1:2. The physicochemical properties, dissolution, and oral bioavailability of SD3 and SD6 were evaluated to compare preparation methods. The dissolution rate of DEXI from SD formulations was higher at pH 6.8 and pH 7.2 than at pH 1.2. Following oral administration in rats, the Cmax and AUClast of SD3 and SD6 formulations were significantly higher compared with raw DEXI. In addition, the SD6 formulation showed increased Cmax and AUClast by 1.34- and 1.33-fold, compared with those of SD3 formulation, respectively. These results demonstrated that SD formulation has excellent potential as a formulation for poorly soluble drug DEXI.
Collapse
Affiliation(s)
- Phuong Tran
- College of Pharmacy, Chungnam National University, Daejeon, Korea
| | - Jeong-Sook Park
- College of Pharmacy, Chungnam National University, Daejeon, Korea
| |
Collapse
|
129
|
Okonogi S, Kaewpinta A, Khongkhunthian S, Chaijareenont P. Development of Controlled-Release Carbamide Peroxide Loaded Nanoemulgel for Tooth Bleaching: In Vitro and Ex Vivo Studies. Pharmaceuticals (Basel) 2021; 14:ph14020132. [PMID: 33562244 PMCID: PMC7915461 DOI: 10.3390/ph14020132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/25/2021] [Accepted: 02/02/2021] [Indexed: 01/03/2023] Open
Abstract
Burst release of carbamide peroxide (CP) from traditional hydrogels causes severe inflammation to periodontal tissues. The present study explores the development of a novel CP nanoemulgel (CP-NG), an oil-in-water nanoemulsion-based gel in which CP was loaded with a view to controlling CP release. CP solid dispersions were prepared, using white soft paraffin or polyvinylpyrrolidone-white soft paraffin mixture as a carrier, prior to formulating nanoemulsions. It was found that carrier type and the ratio of CP to carrier affected drug crystallinity. Nanoemulsions formulated from the optimized CP solid dispersions were used to prepare CP-NG. It was found that the ratio of drug to carrier in CP solid dispersions affected the particle size and zeta potential of the nanoemulsions as well as drug release behavior and tooth bleaching efficacy of CP-NG. Drug release from CP-NG followed a first-order kinetic reaction and the release mechanism was an anomalous transport. Drug release rate decreased with an increase in solid dispersion carriers. CP-NG obtained from the solid dispersion with a 1:1 ratio of CP to the polymer mixture is suitable for sustaining drug release with high tooth bleaching efficacy and without reduction of enamel microhardness. The developed CP-NG is a promising potential tooth bleaching formulation.
Collapse
Affiliation(s)
- Siriporn Okonogi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (P.C.)
- Correspondence: ; Tel.: +66-53-944-311
| | - Adchareeya Kaewpinta
- Interdisciplinary Program in Nanoscience and Nanotechnology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Sakornrat Khongkhunthian
- Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (P.C.)
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pisaisit Chaijareenont
- Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (P.C.)
- Department of Prosthodontics, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
130
|
Ashwathy P, Anto AT, Sudheesh MS. A mechanistic review on the dissolution phase behavior and supersaturation stabilization of amorphous solid dispersions. Drug Dev Ind Pharm 2021; 47:1-11. [PMID: 33494623 DOI: 10.1080/03639045.2021.1879843] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Amorphous solid dispersion (ASD) technology is an attractive formulation approach for poorly soluble drugs because of the supersaturated state acquired during its dissolution. The high thermodynamic activity of the supersaturated state of the drug is also a driver for the enhanced absorptive flux across a membrane. However, this advantage can easily be lost due to the inherent instability of supersaturation, causing drug precipitation. Stabilizing the supersaturated state during the dissolution of ASD for the relevant absorption time frame is a challenging area in formulation research. Stabilizing the supersaturated state by using polymeric excipients and understanding the phase behavior of drugs during dissolution are required for the optimal performance of ASD formulations. A number of confounding kinetic, formulation and physiological factors can influence the evolution of supersaturation and phase changes during dissolution of ASDs. The review highlights the complex nature of dissolution of ASDs and the need of biorelevant dissolution for proper risk assessment and optimizing formulation development.
Collapse
Affiliation(s)
- P Ashwathy
- Department of Pharmaceutics, Amrita School of Pharmacy, Kochi, India
| | - Akshaya T Anto
- Department of Pharmaceutics, Amrita School of Pharmacy, Kochi, India
| | - M S Sudheesh
- Department of Pharmaceutics, Amrita School of Pharmacy, Kochi, India
| |
Collapse
|
131
|
Tran P, Park JS. Recent trends of self-emulsifying drug delivery system for enhancing the oral bioavailability of poorly water-soluble drugs. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00516-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
132
|
Özdoğan A, Akca G, Şenel S. Development and in vitro evaluation of gel formulation of atorvastatin solid dispersions. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
133
|
Zhang J, Thakkar R, Zhang Y, Maniruzzaman M. Microwave induced dielectric heating for the on-demand development of indomethacin amorphous solid dispersion tablets. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
134
|
Improved Bioavailability and High Photostability of Methotrexate by Spray-Dried Surface-Attached Solid Dispersion with an Aqueous Medium. Pharmaceutics 2021; 13:pharmaceutics13010111. [PMID: 33467157 PMCID: PMC7830624 DOI: 10.3390/pharmaceutics13010111] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/22/2022] Open
Abstract
Low aqueous solubility and poor bioavailability are major concerns in the development of oral solid-dosage drug forms. In this study, we fabricated surface-attached solid dispersion (SASD) to enhance the solubility, bioavailability, and photostability of methotrexate (MTX), a highly lipophilic and photo-unstable drug. Several MTX-loaded SASD formulations were developed for spray-drying using water as the solvent, and were investigated for their aqueous solubility and dissolution kinetics. An optimized ternary SASD formulation composed of MTX/ sodium carboxymethyl cellulose (Na-CMC)/sodium lauryl sulfate (SLS) at 3/0.5/0.5 (w/w) had 31.78-fold and 1.88-fold higher solubility and dissolution, respectively, than MTX powder. For SASD, the in vivo pharmacokinetic parameters AUC and Cmax were 2.90- and 3.41-fold higher, respectively, than for the MTX powder. Solid-state characterizations by differential scanning calorimetry and X-ray diffraction revealed that MTX exists in its crystalline state within the spray-dried SASD. The MTX-loaded SASD formulation showed few physical changes with photostability testing. Overall, the results indicate that the spray-dried MTX-loaded SASD formulation without organic solvents enhances the solubility and oral bioavailability of MTX without a significant deterioration of its photochemical stability.
Collapse
|
135
|
Sun C, Li W, Zhang H, Adu-Frimpong M, Ma P, Zhu Y, Deng W, Yu J, Xu X. Improved Oral Bioavailability and Hypolipidemic Effect of Syringic Acid via a Self-microemulsifying Drug Delivery System. AAPS PharmSciTech 2021; 22:45. [PMID: 33439366 DOI: 10.1208/s12249-020-01901-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
This study aimed to develop a self-microemulsifying drug delivery system (SMEDDS) to enhance the solubility, oral bioavailability, and hypolipidemic effects of syringic acid (SA), a bioactive and poorly-soluble polyphenol. Based on the response surface methodology-central composite design (RSM-CCD), an optimum formulation of SA-SMEDDS, consisting of ethyl oleate (oil, 12.30%), Cremophor-EL (surfactant, 66.25%), 1,2-propanediol (cosurfactant, 21.44%), and drug loading (50 mg/g), was obtained. The droplets of SA-SMEDDS were nanosized (16.38 ± 0.12 nm), spherically shaped, and homogeneously distributed (PDI = 0.058 ± 0.013) nanoparticles with high encapsulation efficiency (98.04 ± 1.39%) and stability. In vitro release study demonstrated a prolonged and controlled release of SA from SMEDDS. In vitro cell studies signified that SA-SMEDDS droplets substantially promoted cellular internalization. In comparison with the SA suspension, SA-SMEDDS showed significant prolonged Tmax, t1/2, and MRT after oral administration. Also, SA-SMEDDS exhibited a delayed in vivo elimination, increased bioavailability (2.1-fold), and enhanced liver accumulation. Furthermore, SA-SMEDDS demonstrated significant improvement in alleviating serum lipid profiles and hepatic steatosis in high-fat diet-induced hyperlipidemia in mice. Collectively, SMEDDS demonstrated potential as a nanosystem for the oral delivery of SA with enhanced bioavailability and hypolipidemic effects.
Collapse
|
136
|
Soliman MAN, Ibrahim HK, Nour SAEK. Diacerein solid dispersion loaded tablets for minimization of drug adverse effects: statistical design, formulation, in vitro, and in vivo evaluation. Pharm Dev Technol 2021; 26:302-315. [PMID: 33356729 DOI: 10.1080/10837450.2020.1869982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Diacerein is a BCS class II drug employed in osteoarthritis management. The acid/base hydrolysis of the unabsorbed diacerein in the colon is responsible for its laxative effect. Therefore, this work aimed to enhance the solubility, dissolution, and oral bioavailability of diacerein. Such enhancement means lower doses and fewer gastrointestinal adverse effects. A 41.31.21 full factorial design was adopted to prepare 24 solid dispersion formulae. Solid-state characterization showed the dissolution of diacerein crystals as metastable amorphous or microcrystalline forms in a matrix system that enhanced the drug dissolution. Desirability factor suggested compounding an optimized formula (F1) of Pluronic®F68 with 1:3 drug:carrier ratio using rotavap that showed higher drug solubility (187.61 µg/mL) than drug powder (22.5 µg/mL). It achieved higher dissolution efficiency (4.04-fold) and rate (6.6-fold) as well as 100% release in 2 min. F1 was compressed into tablets recording greater dissolution efficiency (1.24-fold) and rate (12.5-fold) than the marketed product. The prepared tablet accomplished a 2.66-fold enhancement in diacerein bioavailability compared to the marketed product. In conclusion, the formulation of diacerein as solid dispersion loaded tablets could be of added value for the treatment of osteoarthritis in terms of enhanced patient compliance. Solid dispersion is an easy and scalable technique.
Collapse
Affiliation(s)
- Mohamed Ahmed Naseef Soliman
- Faculty of Pharmacy, Department of Pharmaceutics and Industrial Pharmacy, Cairo University, Cairo, Egypt.,Faculty of Health and Life Sciences, Leicester Institute of Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Howida Kamal Ibrahim
- Faculty of Pharmacy, Department of Pharmaceutics and Industrial Pharmacy, Cairo University, Cairo, Egypt
| | - Samia Abd El-Kader Nour
- Faculty of Pharmacy, Department of Pharmaceutics and Industrial Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
137
|
Shin HW, Kim JE, Park YJ. Nanoporous Silica Entrapped Lipid-Drug Complexes for the Solubilization and Absorption Enhancement of Poorly Soluble Drugs. Pharmaceutics 2021; 13:pharmaceutics13010063. [PMID: 33418969 PMCID: PMC7825318 DOI: 10.3390/pharmaceutics13010063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022] Open
Abstract
This study aims to examine the contribution of nanoporous silica entrapped lipid-drug complexes (NSCs) in improving the solubility and bioavailability of dutasteride (DUT). An NSC was loaded with DUT (dissolved in lipids) and dispersed at a nanoscale level using an entrapment technique. NSC microemulsion formation was confirmed using a ternary phase diagram, while the presence of DUT and lipid entrapment in NSC was confirmed using scanning electron microscopy. Differential scanning calorimetry and X-ray diffraction revealed the amorphous properties of NSC. The prepared all NSC had excellent flowability and enhanced DUT solubility but showed no significant difference in drug content homogeneity. An increase in the lipid content of NSC led to an increase in the DUT solubility. Further the NSC were formulated as tablets using D-α tocopheryl polyethylene glycol 1000 succinate, glyceryl caprylate/caprate, and Neusilin®. The NSC tablets showed a high dissolution rate of 99.6% at 30 min. Furthermore, NSC stored for 4 weeks at 60 °C was stable during dissolution testing. Pharmacokinetic studies performed in beagle dogs revealed enhanced DUT bioavailability when administered as NSC tablets. NSC can be used as a platform to develop methods to overcome the technical and commercial limitations of lipid-based preparations of poorly soluble drugs.
Collapse
Affiliation(s)
- Hey-Won Shin
- College of Pharmacy, Ajou University, Worldcup-ro 206, Yeongtong-gu, Suwon-si 16499, Korea;
| | - Joo-Eun Kim
- Department of Pharmaceutical Engineering, Catholic University of Daegu, Hayang-Ro 13-13, Gyeongsan City 38430, Korea;
| | - Young-Joon Park
- College of Pharmacy, Ajou University, Worldcup-ro 206, Yeongtong-gu, Suwon-si 16499, Korea;
- Correspondence: ; Tel.: +82-031-219-3447
| |
Collapse
|
138
|
Jelić D. Thermal Stability of Amorphous Solid Dispersions. Molecules 2021; 26:E238. [PMID: 33466393 PMCID: PMC7795217 DOI: 10.3390/molecules26010238] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 11/24/2022] Open
Abstract
Amorphous solid dispersion drug delivery systems (ASD DDS) were proved to be efficient for the enhancement of solubility and bioavailability of poorly water-soluble drugs. One of the major keys for successful preparation of ASD is the selection of appropriate excipients, mostly polymers, which have a crucial role in improving drug solubility and its physical stability. Even though, excipients should be chemically inert, there is some evidence that polymers can affect the thermal stability of active pharmaceutical ingredients (API). The thermal stability of a drug is closely related to the shelf-life of pharmaceutical products and therefore it is a matter of high pharmaceutical relevance. An overview of thermal stability of amorphous solids is provided in this paper. Evaluation of thermal stability of amorphous solid dispersion is perceived from the physicochemical perspective, from a kinetic (motions) and thermodynamic (energy) point of view, focusing on activation energy and fragility, as well all other relevant parameters for ASD design, with a glance on computational kinetic analysis of solid-state decomposition.
Collapse
Affiliation(s)
- Dijana Jelić
- Chemistry Department, Faculty of Natural Sciences and Mathematics, University of Banja Luka, dr Mladena Stojanovića 2a, 78 000 Banja Luka, Bosnia and Herzegovina
| |
Collapse
|
139
|
Walden DM, Bundey Y, Jagarapu A, Antontsev V, Chakravarty K, Varshney J. Molecular Simulation and Statistical Learning Methods toward Predicting Drug-Polymer Amorphous Solid Dispersion Miscibility, Stability, and Formulation Design. Molecules 2021; 26:E182. [PMID: 33401494 PMCID: PMC7794704 DOI: 10.3390/molecules26010182] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/20/2022] Open
Abstract
Amorphous solid dispersions (ASDs) have emerged as widespread formulations for drug delivery of poorly soluble active pharmaceutical ingredients (APIs). Predicting the API solubility with various carriers in the API-carrier mixture and the principal API-carrier non-bonding interactions are critical factors for rational drug development and formulation decisions. Experimental determination of these interactions, solubility, and dissolution mechanisms is time-consuming, costly, and reliant on trial and error. To that end, molecular modeling has been applied to simulate ASD properties and mechanisms. Quantum mechanical methods elucidate the strength of API-carrier non-bonding interactions, while molecular dynamics simulations model and predict ASD physical stability, solubility, and dissolution mechanisms. Statistical learning models have been recently applied to the prediction of a variety of drug formulation properties and show immense potential for continued application in the understanding and prediction of ASD solubility. Continued theoretical progress and computational applications will accelerate lead compound development before clinical trials. This article reviews in silico research for the rational formulation design of low-solubility drugs. Pertinent theoretical groundwork is presented, modeling applications and limitations are discussed, and the prospective clinical benefits of accelerated ASD formulation are envisioned.
Collapse
Affiliation(s)
| | | | | | | | | | - Jyotika Varshney
- VeriSIM Life Inc., 1 Sansome St, Suite 3500, San Francisco, CA 94104, USA; (D.M.W.); (Y.B.); (A.J.); (V.A.); (K.C.)
| |
Collapse
|
140
|
Palamidi A, Kapourani A, Christodoulou E, Klonos PA, Kontogiannopoulos KN, Kyritsis A, Bikiaris DN, Barmpalexis P. Low Molecular Weight Oligomers of Poly(alkylene succinate) Polyesters as Plasticizers in Poly(vinyl alcohol) Based Pharmaceutical Applications. Polymers (Basel) 2021; 13:polym13010146. [PMID: 33401411 PMCID: PMC7795009 DOI: 10.3390/polym13010146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 01/30/2023] Open
Abstract
The plasticizing effect of three low molecular weight oligomers of aliphatic poly(alkylene succinate) polyesters, namely poly(butylene succinate) (PBSu), poly(ethylene succinate) (PESu), and poly(propylene succinate) (PPSu), on partially hydrolyzed poly(vinyl alcohol) (PVA) used in melt-based pharmaceutical applications, was evaluated for the first time. Initially, the three aliphatic polyesters were prepared by the melt polycondensation process and characterized by differential scanning calorimetry (DSC), 1H NMR, intrinsic viscosity, and size exclusion chromatography (SEC). Subsequently, their effect on the thermophysical and physicochemical properties of PVA was thoroughly evaluated. According to the obtained results, PVA was completely miscible with all three polyesters, while PESu induced PVA’s thermal degradation, with the phenomenon starting from ~220 °C, in contrast to PBSu and PPSu, where a thermal profile similar to PVA was observed. Furthermore, molecular interactions between PVA and the prepared poly(alkylene succinate) polyesters were revealed by DSC, ATR-FTIR, and molecular dynamics simulations. Finally, melt flow index (MFI) measurements showed that, in contrast to PBSu, the use of PESu or PPSu significantly improved PVA’s melt flow properties. Hence, according to findings of the present work, only the use of low molecular weight PPSu is suitable in order to reduce processing temperature of PVA and improve its melt flow properties (plasticizing ability) without affecting its thermal decomposition.
Collapse
Affiliation(s)
- Artemis Palamidi
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (A.K.); (K.N.K.)
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.C.); (D.N.B.)
| | - Afroditi Kapourani
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (A.K.); (K.N.K.)
| | - Evi Christodoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.C.); (D.N.B.)
| | - Panagiotis A. Klonos
- Department of Physics, Zografou Campus, National Technical University of Athens, 15780 Athens, Greece; (P.A.K.); (A.K.)
| | - Konstantinos N. Kontogiannopoulos
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (A.K.); (K.N.K.)
| | - Apostolos Kyritsis
- Department of Physics, Zografou Campus, National Technical University of Athens, 15780 Athens, Greece; (P.A.K.); (A.K.)
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.C.); (D.N.B.)
| | - Panagiotis Barmpalexis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (A.K.); (K.N.K.)
- Correspondence: ; Tel.: +30-2310-997629
| |
Collapse
|
141
|
Almeida JMFD, Damasceno Júnior E, Silva EMF, Veríssimo LM, Fernandes NS. pH-responsive release system of topiramate transported on silica nanoparticles by melting method. Drug Dev Ind Pharm 2020; 47:126-145. [PMID: 33295812 DOI: 10.1080/03639045.2020.1862171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Incorporating drugs into silica matrices by the melting method can be applied to obtain drug delivery systems because they are governed by electrostatic type interactions, hydrogen bonding and hydrophilic-hydrophobic interactions between the drug and the silica surface. the melting method is an environmentally correct tool since it is free of organic solvent, low cost and with easy execution for the incorporation of drugs in silicas. Drugs delivery systems are very important for improving the treatment of chronic diseases. Topiramate (TPM) is a potent antiepileptic used in high daily doses as it has low bioavailability. In this context, silica nanoparticles (NPS) were used as an inorganic matrix for TPM transport in (in vitro) release studies. The TPM was incorporated into the NPS by hot melt loading employing a new carrier preparation methodology (NPS/TPM) using a thermobalance (by Thermogravimetry-TG) with high temperature control system. The release study using dissolution media simulating gastrointestinal at pH 1.2 (stomach) and 7.4 (intestine), showed that NPS release TPM in a prolonged and pH-responsive manner. The drug was released at intestinal pH ensuring greater absorption, allowing fewer daily doses and less adverse effects. The kinetic study demonstrated the best fit to the zero-order model proving the pH-responsive profile of the developed system.
Collapse
Affiliation(s)
- Janiele Mayara Ferreira de Almeida
- Laboratório de Química Analítica e Meio Ambiente, Instituto de Química, Universidade Federal do Rio Grande do Norte, Campus Universitário Lagoa Nova, Natal-RN, Brasil
| | - Elmar Damasceno Júnior
- Laboratório de Química Analítica e Meio Ambiente, Instituto de Química, Universidade Federal do Rio Grande do Norte, Campus Universitário Lagoa Nova, Natal-RN, Brasil
| | - Elania Maria Fernandes Silva
- Laboratório de Química Analítica e Meio Ambiente, Instituto de Química, Universidade Federal do Rio Grande do Norte, Campus Universitário Lagoa Nova, Natal-RN, Brasil
| | - Lourena Mafra Veríssimo
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal-RN, Brasil
| | - Nedja Suely Fernandes
- Laboratório de Química Analítica e Meio Ambiente, Instituto de Química, Universidade Federal do Rio Grande do Norte, Campus Universitário Lagoa Nova, Natal-RN, Brasil
| |
Collapse
|
142
|
Muqtader Ahmed M, Fatima F, Abul Kalam M, Alshamsan A, Soliman GA, Shaikh AA, Alshahrani SM, Aldawsari MF, Bhatia S, Khalid Anwer M. Development of spray-dried amorphous solid dispersions of tadalafil using glycyrrhizin for enhanced dissolution and aphrodisiac activity in male rats. Saudi Pharm J 2020; 28:1817-1826. [PMID: 33424269 PMCID: PMC7783211 DOI: 10.1016/j.jsps.2020.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/17/2020] [Indexed: 01/01/2023] Open
Abstract
Tadalafil (TDL) is a phosphodiesterase-5 inhibitor (PDE5I), indicated for erectile dysfunction (ED). However, TDL exhibits poor aqueous solubility and dissolution rate, which may limit its application. This study aims to prepare amorphous solid dispersion (ASD) by spray-drying, using glycyrrhizin-a natural drug carrier. Particle and physicochemical characterizations were performed by particle size, polydispersity index measurement, yield, drug content estimation, Fourier Transformed Infrared (FTIR) spectroscopy, Differential scanning calorimetry (DSC), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and dissolution study. In order to evaluate the aphrodisiac activity of the prepared ASD, sexual behavior study was performed in male rats. It is further considered for the stability study. Our results revealed that TDL-GLZ spray-dried dispersion was a successful drug-carrier binary mixture. XRD and SEM showed that ASD of TDL with GLZ presented in the amorphous state and dented-spherical shape, unlike the drug indicating crystalline and spiked shaped. The optimized ASD3 formulation with particle size (1.92 µm), PDI (0.32), yield (97.78%) and drug content (85.00%) showed 4.07 folds' increase in dissolution rate compared to pure TDL. The results obtained from the in vivo study exhibit significantly improved aphrodisiac activity with ASD3. The stability study revealed that the prepared ASD3 did not show any remarkable changes in the dissolution and drug content for 1 month storage at room temperature.
Collapse
Affiliation(s)
- Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Farhat Fatima
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohd Abul Kalam
- Nanobiotechnology Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Aws Alshamsan
- Nanobiotechnology Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Gamal A. Soliman
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abdul Azim Shaikh
- Riyadh Pharma Medical and Cosmetics Company Limited, Riyadh, Saudi Arabia
| | - Saad M Alshahrani
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Saurabh Bhatia
- Amity Institute of Pharmacy, Amity University Haryana, 122413, India
- Natural and Medical Sciences Research Center, University of Nizwa, Oman
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
143
|
Zhang Z, Dong L, Guo J, Li L, Tian B, Zhao Q, Yang J. Prediction of the physical stability of amorphous solid dispersions: relationship of aging and phase separation with the thermodynamic and kinetic models along with characterization techniques. Expert Opin Drug Deliv 2020; 18:249-264. [PMID: 33112679 DOI: 10.1080/17425247.2021.1844181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: Solid dispersion has been considered to be one of the most promising methods for improving the solubility and bioavailability of insoluble drugs. However, the physical stability of solid dispersions (SDs), including its aging and recrystallization, or phase separation, has always been one of the most challenging problems in the process of formulation development and storage.Areas covered: The high energy state of SDs is one of the primary reasons for the poor physical stability. The factors affecting the physical stability of SDs have been described from the perspective of thermodynamics and kinetics, and the corresponding theoretical model is put forward. We briefly summarize several commonly used techniques to characterize the thermodynamic and kinetic properties of SDs. Specific measures to improve the physical stability of SDs have been proposed from the perspective of prescription screening, process parameters, and storage conditions.Expert opinion: The separation of the drug from the polymer, the formation, and migration of drug crystals will cause the SDs to shift toward the direction of energy reduction, which is the intrinsic cause of instability. Furthermore, computational simulation can be used for efficient and rapid screening suitable for the excipients to improve the physical stability of SDs.
Collapse
Affiliation(s)
- Zhaoyang Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Luning Dong
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Jueshuo Guo
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Li Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Bin Tian
- Department of Pharmaceutical Sciences, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, People's Republic of China
| | - Qipeng Zhao
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Jianhong Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, People's Republic of China
| |
Collapse
|
144
|
Alshehri S, Imam SS, Hussain A, Altamimi MA, Alruwaili NK, Alotaibi F, Alanazi A, Shakeel F. Potential of solid dispersions to enhance solubility, bioavailability, and therapeutic efficacy of poorly water-soluble drugs: newer formulation techniques, current marketed scenario and patents. Drug Deliv 2020; 27:1625-1643. [PMID: 33207947 PMCID: PMC7737680 DOI: 10.1080/10717544.2020.1846638] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 12/29/2022] Open
Abstract
In the last few decades, solid dispersion (SD) technology had been studied as an approach to produce an amorphous carrier to enhance the solubility, dissolution rate, and bioavailability of poorly water-soluble drugs. The use of suitable carrier and methodology in the preparation of SDs play a significant role in the biological behavior of the SDs. SDs have been prepared using a variety of pharmaceutically acceptable polymers utilizing various novel technologies. In the recent years, much attention has been paid toward the use of novel carriers and methodologies in exploring novel types of SDs to enhance therapeutic efficacy and bioavailability. The use of novel carriers and methodologies would be very beneficial for formulation scientists to develop some SDs-based formulations for their commercial use and clinical applications. In the present review, current literature of novel methodologies for SD preparation to enhance the dissolution rate, solubility, therapeutic efficacy, and bioavailability of poorly water-soluble drugs has been summarized and analyzed. Further, the current status of SDs, patent status, and future prospects have also been discussed.
Collapse
Affiliation(s)
- Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- College of Pharmacy, Almaarefa University, Riyadh, Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Afzal Hussain
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad A. Altamimi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nabil K. Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Fahad Alotaibi
- General Directorate Health Affairs, Ministry of Health, Riyadh, Saudi Arabia
| | - Abdullah Alanazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
145
|
Mai NNS, Nakai R, Kawano Y, Hanawa T. Enhancing the Solubility of Curcumin Using a Solid Dispersion System with Hydroxypropyl-β-Cyclodextrin Prepared by Grinding, Freeze-Drying, and Common Solvent Evaporation Methods. PHARMACY 2020; 8:E203. [PMID: 33147710 PMCID: PMC7712988 DOI: 10.3390/pharmacy8040203] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/12/2020] [Accepted: 10/29/2020] [Indexed: 01/21/2023] Open
Abstract
Cyclodextrins (CDs) and their derivatives significantly increase drug solubility by forming drug/CD complexes known as solid dispersions (SDs), which consist of an inclusion complex (IC), where the drug is entrapped within the CD cavity, and a non-IC. Here, the SDs of curcumin (CUR) and hydroxypropyl-β-cyclodextrin (HPβCD) were prepared using the grinding, freeze-drying (FD), and common solvent evaporation (CSE) methods and were physicochemically characterized using solubility, powder X-ray diffraction, Fourier transform infrared, differential scanning calorimetry, and dissolution studies. The second or higher order complex of CUR-HPβCD indicated the co-existence of ICs and non-ICs known as the SD system. When comparing the soluble drug amount with CUR crystals, the solubility of SDs was enhanced by up to 299-, 180-, and 489-fold, corresponding to the ground mixtures (GMs), freeze-drying mixtures (FDs), and common solvent evaporation mixtures (CSEs), respectively. The total transformation into the amorphous phase of CUR was observed in GMs and in CSE12, CSE14, and CSE18. The drug was well dispersed within HPβCD in GMs and CSEs, suggesting the formation of hydrogen bonds between CUR and HPβCD, whereas the dispersed behavior of FDs was similar to that of physical mixtures. In SDs, the melting temperature of CUR was in an increased order of CUR in 1:2 ICs, CUR in 1:1 ICs, and CUR crystals. The dissolution rate of CUR was positively improved as the amount of HPβCD in SDs increased. The SD system consisting of CUR and HPβCD significantly increased the drug solubility compared to ICs.
Collapse
Affiliation(s)
| | | | - Yayoi Kawano
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; (N.N.S.M.); (R.N.)
| | - Takehisa Hanawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; (N.N.S.M.); (R.N.)
| |
Collapse
|
146
|
Development and Characterization of Glimepiride Novel Solid Nanodispersion for Improving Its Oral Bioavailability. Sci Pharm 2020. [DOI: 10.3390/scipharm88040052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Glimepiride is an antidiabetic drug which is one of the third generation sulfonylureas. It belongs to class II, according to the BCS (Biopharmaceutical Classification System), which is characterized by low solubility and high permeability. The aim of this work was to formulate glimepiride as solid dispersion using water-soluble carriers to enhance its aqueous solubility and thus enhance its bioavailability. Nine formulations of glimepiride solid dispersion were prepared by a solvent evaporation technique using three different carriers (mannitol, polyethylene glycol 6000, and β-cyclodextrin) with three different drug carrier ratio (1:1, 1:3, and 1:6). Formulation variables were optimized using 32 full factorial design. The prepared formulations were evaluated for production yield, drug content, micromeritic properties, thermal analysis, in-vitro release, and in-vivo hypoglycemic effect. All prepared formulations showed high production yield ranged from 98.4 ± 2.8 to 99.8 ± 2.2% and high drug content in the range of 97.2 ± 3.2 to 99.6 ± 2.1%. The micromeritic properties revealed that all prepared glimepiride formulations showed good flowability. The differential scanning calorimetry study revealed the presence of the drug in the more soluble amorphous form. In accordance with the results of in vitro release study, it was found that the solubility of glimepiride was increased by increasing the drug carrier ratio, compared with the pure form of the drug. It was found that F9 showed a high and rapid reduction in blood glucose levels in diabetic rats, which indicated the success of a solid dispersion technique in improving the solubility and hence the bioavailability of glimepiride.
Collapse
|
147
|
Iemtsev A, Hassouna F, Mathers A, Klajmon M, Dendisová M, Malinová L, Školáková T, Fulem M. Physical stability of hydroxypropyl methylcellulose-based amorphous solid dispersions: Experimental and computational study. Int J Pharm 2020; 589:119845. [DOI: 10.1016/j.ijpharm.2020.119845] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 01/26/2023]
|
148
|
Dolci LS, Albertini B, Di Filippo MF, Bonvicini F, Passerini N, Panzavolta S. Development and in vitro evaluation of mucoadhesive gelatin films for the vaginal delivery of econazole. Int J Pharm 2020; 591:119979. [PMID: 33068694 DOI: 10.1016/j.ijpharm.2020.119979] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 02/02/2023]
Abstract
Several strategies have been explored to obtain effective econazole nitrate (ECN) concentrations at the site of application for a prolonged time. In this paper, different gelatin-based film formulations for vaginal application were investigated, containing ECN (10% w/w with respect to gelatin) as pure drug or as drug-solid dispersions (SD). For the production of SD, different polymers were evaluated: polyvinylpyrrolidone (PVP), Soluplus® (polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer) and Gelucire® 50/13 (mixture of mono-, di- and triglycerides of fatty acids, esters of PEG 1500 and free PEG). Gelucire®-SD showed the best solubility enhancement, increasing 9.2 times the ECN solubility in pH 4.5 solution respect to pure drug; DSC and XRD analysis confirmed the crystalline form of the drug. XRD results evidenced that all gelatin-based films, containing either the drug or the SD, underwent the topotactic transformation of ECN into crystalline econazole (EC), owing to a strong interaction between the drug and the gelatin. Films containing Gelucire®-based SD displayed lower brittleness and rigidity with respect to the other samples; moreover they demonstrated good structural integrity after 24 h of incubation in the acidic solution (swelling degree of about 350%). Then, Gelucire®-SD based films were compared with the corresponding formulations cross-linked by genipin (2% w/w). The addition of genipin did not interfere with the drug-gelatin interaction. Gelucire®-SD based films showed similar release profiles to neat gelatin films, enhancing the drug release in the first 5 h and controlling the EC release over time, avoiding the use of a crosslinking additive. Finally, gelatin films containing Gelucire® solid dispersion displayed good adhesiveness and anti-Candida activity. Overall, results support the potential use of this film formulation as noncytotoxic EC delivery system for the treatment of vaginal candidiasis.
Collapse
Affiliation(s)
- Luisa Stella Dolci
- Department of Pharmacy and BioTechnology, Pharm. Tech. Lab, University of Bologna, Via S. Donato 19/2, 40127, Italy
| | - Beatrice Albertini
- Department of Pharmacy and BioTechnology, Pharm. Tech. Lab, University of Bologna, Via S. Donato 19/2, 40127, Italy.
| | | | - Francesca Bonvicini
- Department of Pharmacy and Biotechnology, Microbiology and Clinical Microbiology Lab, University of Bologna, Via Massarenti 9, 40138, Italy
| | - Nadia Passerini
- Department of Pharmacy and BioTechnology, Pharm. Tech. Lab, University of Bologna, Via S. Donato 19/2, 40127, Italy
| | - Silvia Panzavolta
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126, Italy
| |
Collapse
|
149
|
Extracellular vesicles as natural therapeutic agents and innate drug delivery systems for cancer treatment: Recent advances, current obstacles, and challenges for clinical translation. Semin Cancer Biol 2020; 80:340-355. [DOI: 10.1016/j.semcancer.2020.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022]
|
150
|
Zhao L, Wang L, Chang L, Hou Y, Wei C, Wu Y. Ginsenoside CK-loaded self-nanomicellizing solid dispersion with enhanced solubility and oral bioavailability. Pharm Dev Technol 2020; 25:1127-1138. [PMID: 32729758 DOI: 10.1080/10837450.2020.1800730] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Liyan Zhao
- Hebei Medical University, Yiling Affiliated Hospital, Shijiazhuang, China
- Department of Pharmacy, Hebei North University, Zhangjiakou, PR China
| | - Lei Wang
- National Key Laboratory of Luobing Research and Innovative Chinese Medicine, Shijiazhuang, China
| | - Liping Chang
- National Key Laboratory of Luobing Research and Innovative Chinese Medicine, Shijiazhuang, China
| | - Yunlong Hou
- National Key Laboratory of Luobing Research and Innovative Chinese Medicine, Shijiazhuang, China
| | - Cong Wei
- National Key Laboratory of Luobing Research and Innovative Chinese Medicine, Shijiazhuang, China
| | - Yiling Wu
- Hebei Medical University, Yiling Affiliated Hospital, Shijiazhuang, China
- National Key Laboratory of Luobing Research and Innovative Chinese Medicine, Shijiazhuang, China
| |
Collapse
|