101
|
Exosomes and Other Extracellular Vesicles with High Therapeutic Potential: Their Applications in Oncology, Neurology, and Dermatology. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041303. [PMID: 35209095 PMCID: PMC8879284 DOI: 10.3390/molecules27041303] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023]
Abstract
Until thirty years ago, it was believed that extracellular vesicles (EVs) were used to remove unnecessary compounds from the cell. Today, we know about their enormous potential in diagnosing and treating various diseases. EVs are essential mediators of intercellular communication, enabling the functional transfer of bioactive molecules from one cell to another. Compared to laboratory-created drug nanocarriers, they are stable in physiological conditions. Furthermore, they are less immunogenic and cytotoxic compared to polymerized vectors. Finally, EVs can transfer cargo to particular cells due to their membrane proteins and lipids, which can implement them to specific receptors in the target cells. Recently, new strategies to produce ad hoc exosomes have been devised. Cells delivering exosomes have been genetically engineered to overexpress particular macromolecules, or transformed to release exosomes with appropriate targeting molecules. In this way, we can say tailor-made therapeutic EVs are created. Nevertheless, there are significant difficulties to solve during the application of EVs as drug-delivery agents in the clinic. This review explores the diversity of EVs and the potential therapeutic options for exosomes as natural drug-delivery vehicles in oncology, neurology, and dermatology. It also reflects future challenges in clinical translation.
Collapse
|
102
|
Singh A, Verma S, Modak SB, Chaturvedi MM, Purohit JS. Extra-nuclear histones: origin, significance and perspectives. Mol Cell Biochem 2022; 477:507-524. [PMID: 34796445 DOI: 10.1007/s11010-021-04300-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022]
Abstract
Histones are classically known to organize the eukaryotic DNA into chromatin. They are one of the key players in regulating transcriptionally permissive and non-permissive states of the chromatin. Nevertheless, their context-dependent appearance within the cytoplasm and systemic circulation has also been observed. The past decade has also witnessed few scientific communications on the existence of vesicle-associated histones. Diverse groups have attempted to determine the significance of these extra-nuclear histones so far, with many of those studies still underway. Of note amongst these are interactions of extra-nuclear or free histones with cellular membranes, mediated by mutual cationic and anionic natures, respectively. It is here aimed to consolidate the mechanism of formation of extra-nuclear histones; implications of histone-induced membrane destabilization and explore the mechanisms of their association/release with extracellular vesicles, along with the functional aspects of these extra-nuclear histones in cell and systemic physiology.
Collapse
Affiliation(s)
- Abhilasha Singh
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Sudhir Verma
- Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, Delhi, 110078, India
| | | | | | - Jogeswar S Purohit
- Department of Zoology, University of Delhi, Delhi, 110007, India.
- Molecular and Systems Biology Lab, Cluster Innovation Centre, University of Delhi, North Campus, DREAM Building, Delhi, 110007, India.
| |
Collapse
|
103
|
Jo CS, Myung CH, Yoon YC, Ahn BH, Min JW, Seo WS, Lee DH, Kang HC, Heo YH, Choi H, Hong IK, Hwang JS. The Effect of Lactobacillus plantarum Extracellular Vesicles from Korean Women in Their 20s on Skin Aging. Curr Issues Mol Biol 2022; 44:526-540. [PMID: 35723322 PMCID: PMC8928950 DOI: 10.3390/cimb44020036] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles, which are highly conserved in most cells, contain biologically active substances. The vesicles and substances interact with cells and impact physiological mechanisms. The skin is the most external organ and is in direct contact with the external environment. Photoaging and skin damage are caused by extrinsic factors. The formation of wrinkles is a major indicator of skin aging and is caused by a decrease in collagen and hyaluronic acid. MMP-1 expression is also increased. Due to accruing damage, skin aging reduces the ability of the skin barrier, thereby lowering the skin's ability to contain water and increasing the amount of water loss. L. plantarum suppresses various harmful bacteria by secreting an antimicrobial substance. L. plantarum is also found in the skin, and research on the interactions between the bacteria and the skin is in progress. Although several studies have investigated L. plantarum, there are only a limited number of studies on extracellular vesicles (EV) derived from L. plantarum, especially in relation to skin aging. Herein, we isolated EVs that were secreted from L. plantarum of women in their 20s (LpEVs). We then investigated the effect of LpEVs on skin aging in CCD986sk. We showed that LpEVs modulated the mRNA expression of ECM related genes in vitro. Furthermore, LpEVs suppressed wrinkle formation and pigmentation in clinical trials. These results demonstrated that LpEVs have a great effect on skin aging by regulating ECM related genes. In addition, our study offers important evidence on the depigmentation effect of LpEVs.
Collapse
Affiliation(s)
- Chan Song Jo
- Department of Genetic Engineering & Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Gyeonggi-do, Korea; (C.S.J.); (C.H.M.)
| | - Cheol Hwan Myung
- Department of Genetic Engineering & Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Gyeonggi-do, Korea; (C.S.J.); (C.H.M.)
| | - Yeo Cho Yoon
- Human & Microbiome Communicating Laboratory, GFC Co., Ltd., Hwasung 18471, Gyeonggi-do, Korea; (Y.C.Y.); (B.H.A.); (W.S.S.); (H.C.K.)
| | - Beom Hee Ahn
- Human & Microbiome Communicating Laboratory, GFC Co., Ltd., Hwasung 18471, Gyeonggi-do, Korea; (Y.C.Y.); (B.H.A.); (W.S.S.); (H.C.K.)
| | - Jin Woo Min
- Green & Biome Customizing Laboratory, GFC Co., Ltd., Hwasung 18471, Gyeonggi-do, Korea;
| | - Won Sang Seo
- Human & Microbiome Communicating Laboratory, GFC Co., Ltd., Hwasung 18471, Gyeonggi-do, Korea; (Y.C.Y.); (B.H.A.); (W.S.S.); (H.C.K.)
- Green & Biome Customizing Laboratory, GFC Co., Ltd., Hwasung 18471, Gyeonggi-do, Korea;
| | - Dong Hwan Lee
- Clinical Business Division, Korea Dermatology Research Institute, GFC Co., Ltd., Sungnam 13517, Gyeonggi-do, Korea;
| | - Hee Cheol Kang
- Human & Microbiome Communicating Laboratory, GFC Co., Ltd., Hwasung 18471, Gyeonggi-do, Korea; (Y.C.Y.); (B.H.A.); (W.S.S.); (H.C.K.)
- Green & Biome Customizing Laboratory, GFC Co., Ltd., Hwasung 18471, Gyeonggi-do, Korea;
| | - Yun Hoe Heo
- R&D Complex, HK Kolmar Co., Ltd., Seoul 30004, Korea; (Y.H.H.); (H.C.); (I.K.H.)
| | - Hyeong Choi
- R&D Complex, HK Kolmar Co., Ltd., Seoul 30004, Korea; (Y.H.H.); (H.C.); (I.K.H.)
| | - In Ki Hong
- R&D Complex, HK Kolmar Co., Ltd., Seoul 30004, Korea; (Y.H.H.); (H.C.); (I.K.H.)
| | - Jae Sung Hwang
- Department of Genetic Engineering & Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Gyeonggi-do, Korea; (C.S.J.); (C.H.M.)
| |
Collapse
|
104
|
Jafari N, Khoradmehr A, Moghiminasr R, Seyed Habashi M. Mesenchymal Stromal/Stem Cells-Derived Exosomes as an Antimicrobial Weapon for Orodental Infections. Front Microbiol 2022; 12:795682. [PMID: 35058912 PMCID: PMC8764367 DOI: 10.3389/fmicb.2021.795682] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/08/2021] [Indexed: 11/14/2022] Open
Abstract
The oral cavity as the second most various microbial community in the body contains a broad spectrum of microorganisms which are known as the oral microbiome. The oral microbiome includes different types of microbes such as bacteria, fungi, viruses, and protozoa. Numerous factors can affect the equilibrium of the oral microbiome community which can eventually lead to orodental infectious diseases. Periodontitis, dental caries, oral leukoplakia, oral squamous cell carcinoma are some multifactorial infectious diseases in the oral cavity. In defending against infection, the immune system has an essential role. Depending on the speed and specificity of the reaction, immunity is divided into two different types which are named the innate and the adaptive responses but also there is much interaction between them. In these responses, different types of immune cells are present and recent evidence demonstrates that these cell types both within the innate and adaptive immune systems are capable of secreting some extracellular vesicles named exosomes which are involved in the response to infection. Exosomes are 30-150 nm lipid bilayer vesicles that consist of variant molecules, including proteins, lipids, and genetic materials and they have been associated with cell-to-cell communications. However, some kinds of exosomes can be effective on the pathogenicity of various microorganisms and promoting infections, and some other ones have antimicrobial and anti-infective functions in microbial diseases. These discrepancies in performance are due to the origin of the exosome. Exosomes can modulate the innate and specific immune responses of host cells by participating in antigen presentation for activation of immune cells and stimulating the release of inflammatory factors and the expression of immune molecules. Also, mesenchymal stromal/stem cells (MSCs)-derived exosomes participate in immunomodulation by different mechanisms. Ease of expansion and immunotherapeutic capabilities of MSCs, develop their applications in hundreds of clinical trials. Recently, it has been shown that cell-free therapies, like exosome therapies, by having more advantages than previous treatment methods are emerging as a promising strategy for the treatment of several diseases, in particular inflammatory conditions. In orodental infectious disease, exosomes can also play an important role by modulating immunoinflammatory responses. Therefore, MSCs-derived exosomes may have potential therapeutic effects to be a choice for controlling and treatment of orodental infectious diseases.
Collapse
Affiliation(s)
- Nazanin Jafari
- Department of Endodontics, School of Dentistry, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Reza Moghiminasr
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mina Seyed Habashi
- Department of Endodontics, School of Dentistry, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
105
|
Li L, Görgens A, Mussack V, Pepeldjiyska E, Hartz AS, Rank A, Schmohl J, Krämer D, Andaloussi SE, Pfaffl MW, Schmetzer H. Description and optimization of a multiplex bead-based flow cytometry method (MBFCM) to characterize extracellular vesicles in serum samples from patients with hematological malignancies. Cancer Gene Ther 2022; 29:1600-1615. [PMID: 35477770 PMCID: PMC9663305 DOI: 10.1038/s41417-022-00466-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/25/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023]
Abstract
Extracellular Vesicles (EVs) are membranous vesicles produced by all cells under physiological and pathological conditions. In hematological malignancies, tumor-derived EVs might reprogram the bone marrow environment, suppress antileukemic immunity, mediate drug resistance and interfere with immunotherapies. EVs collected from the serum of leukemic samples might correlate with disease stage, drug-/immunological resistance, or might correlate with antileukemic immunity/immune response. Special EV surface protein patterns in serum have the potential as noninvasive biomarker candidates to distinguish several disease-related patterns ex vivo or in vivo. EVs were isolated from the serum of acute myeloid leukemia (AML), acute lymphoid leukemia (ALL), chronic lymphoid leukemia (CLL) patients, and healthy volunteers. EVs were characterized by transmission electron microscopy and fluorescence nanoparticle tracking analysis, and EV surface protein profiles were analyzed by multiplex bead-based flow cytometry to identify tumor- or immune system-related EVs of AML, ALL, CLL, and healthy samples. Aiming to provide proof-of-concept evidence and methodology for the potential role of serum-derived EVs as biomarkers in leukemic versus healthy samples in this study, we hope to pave the way for future detection of promising biomarkers for imminent disease progression and the identification of potential targets to be used in a therapeutic strategy.
Collapse
Affiliation(s)
- Lin Li
- grid.411095.80000 0004 0477 2585Working-group: Immune-Modulation, Medical Department III, University Hospital of Munich, Munich, Germany
| | - André Görgens
- grid.4714.60000 0004 1937 0626Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Veronika Mussack
- grid.6936.a0000000123222966Department of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Elena Pepeldjiyska
- grid.411095.80000 0004 0477 2585Working-group: Immune-Modulation, Medical Department III, University Hospital of Munich, Munich, Germany
| | - Anne Sophie Hartz
- grid.411095.80000 0004 0477 2585Working-group: Immune-Modulation, Medical Department III, University Hospital of Munich, Munich, Germany
| | - Andreas Rank
- grid.419801.50000 0000 9312 0220Department of Hematology and Oncology, University Hospital of Augsburg, Augsburg, Germany
| | - Jörg Schmohl
- Department of Hematology and Oncology, Hospital of Stuttgart, Stuttgart, Germany
| | - Doris Krämer
- Department of Heamatology, Oncology and Palliative Care, Ameos Klinikum Mitte, Bremerhaven, Germany
| | - Samir El Andaloussi
- grid.4714.60000 0004 1937 0626Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael W. Pfaffl
- grid.6936.a0000000123222966Department of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Helga Schmetzer
- grid.411095.80000 0004 0477 2585Working-group: Immune-Modulation, Medical Department III, University Hospital of Munich, Munich, Germany
| |
Collapse
|
106
|
Fluitt MB, Mohit N, Gambhir KK, Nunlee-Bland G. To the Future: The Role of Exosome-Derived microRNAs as Markers, Mediators, and Therapies for Endothelial Dysfunction in Type 2 Diabetes Mellitus. J Diabetes Res 2022; 2022:5126968. [PMID: 35237694 PMCID: PMC8885279 DOI: 10.1155/2022/5126968] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/08/2022] [Indexed: 01/19/2023] Open
Abstract
The prevalence of diabetes mellitus (DM) is increasing at a staggering rate around the world. In the United States, more than 30.3 million Americans have DM. Type 2 diabetes mellitus (T2DM) accounts for 91.2% of diabetic cases and disproportionately affects African Americans and Hispanics. T2DM is a major risk factor for cardiovascular disease (CVD) and is the leading cause of morbidity and mortality among diabetic patients. While significant advances in T2DM treatment have been made, intensive glucose control has failed to reduce the development of macro and microvascular related deaths in this group. This highlights the need to further elucidate the underlying molecular mechanisms contributing to CVD in the setting of T2DM. Endothelial dysfunction (ED) plays an important role in the development of diabetes-induced vascular complications, including CVD and diabetic nephropathy (DN). Thus, the endothelium provides a lucrative means to investigate the molecular events involved in the development of vascular complications associated with T2DM. microRNAs (miRNA) participate in numerous cellular responses, including mediating messages in vascular homeostasis. Exosomes are small extracellular vesicles (40-160 nanometers) that are abundant in circulation and can deliver various molecules, including miRNAs, from donor to recipient cells to facilitate cell-to-cell communication. Endothelial cells are in constant contact with exosomes (and exosomal content) that can induce a functional response. This review discusses the modulatory role of exosomal miRNAs and proteins in diabetes-induced endothelial dysfunction, highlighting the significance of miRNAs as markers, mediators, and potential therapeutic interventions to ameliorate ED in this patient group.
Collapse
Affiliation(s)
- Maurice B. Fluitt
- Division of Endocrinology and Metabolism, Department of Medicine, Howard University College of Medicine, 520 W St NW, Washington, DC 20059, USA
| | - Neal Mohit
- Division of Endocrinology and Metabolism, Department of Medicine, Howard University College of Medicine, 520 W St NW, Washington, DC 20059, USA
- Department of Biology, Howard University, 415 College St. NW, Washington, DC 20059, USA
| | - Kanwal K. Gambhir
- Division of Endocrinology and Metabolism, Department of Medicine, Howard University College of Medicine, 520 W St NW, Washington, DC 20059, USA
| | - Gail Nunlee-Bland
- Division of Endocrinology and Metabolism, Department of Medicine, Howard University College of Medicine, 520 W St NW, Washington, DC 20059, USA
- Diabetes Treatment Center, Howard University Hospital, 2041 Georgia Ave, NW, Washington, DC 20060, USA
| |
Collapse
|
107
|
Van den Broek B, Wuyts C, Irobi J. Extracellular vesicle-associated small heat shock proteins as therapeutic agents in neurodegenerative diseases and beyond. Adv Drug Deliv Rev 2021; 179:114009. [PMID: 34673130 DOI: 10.1016/j.addr.2021.114009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/11/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Increasing evidence points towards using extracellular vesicles (EVs) as a therapeutic strategy in neurodegenerative diseases such as multiple sclerosis, Parkinson's, and Alzheimer's disease. EVs are nanosized carriers that play an essential role in intercellular communication and cellular homeostasis by transporting an active molecular cargo, including a large variety of proteins. Recent publications demonstrate that small heat shock proteins (HSPBs) exhibit a beneficial role in neurodegenerative diseases. Moreover, it is defined that HSPBs target the autophagy and the apoptosis pathway, playing a prominent role in chaperone activity and cell survival. This review elaborates on the therapeutic potential of EVs and HSPBs, in particular HSPB1 and HSPB8, in neurodegenerative diseases. We conclude that EVs and HSPBs positively influence neuroinflammation, central nervous system (CNS) repair, and protein aggregation in CNS disorders. Moreover, we propose the use of HSPB-loaded EVs as advanced nanocarriers for the future development of neurodegenerative disease therapies.
Collapse
Affiliation(s)
- Bram Van den Broek
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Charlotte Wuyts
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Joy Irobi
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
108
|
Mantilla-Escalante DC, López de Las Hazas MC, Crespo MC, Martín-Hernández R, Tomé-Carneiro J, Del Pozo-Acebo L, Salas-Salvadó J, Bulló M, Dávalos A. Mediterranean diet enriched in extra-virgin olive oil or nuts modulates circulating exosomal non-coding RNAs. Eur J Nutr 2021; 60:4279-4293. [PMID: 34027583 DOI: 10.1007/s00394-021-02594-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 05/14/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE Exosomes are extracellular vesicles secreted by cells, which can transport different molecules, including nucleic acids. Dietary habits may induce gene regulation through the modulation of exosomal RNAs. We aimed at characterizing exosomal lncRNAs, mRNA and miRNAs modulation after a 1-year adherence to a low-fat diet (LFD) or to Mediterranean-based diets enriched in extra-virgin olive oil (MedDiet + EVOO) or in a mixture of nuts (MedDiet + Nuts). METHODS Plasma samples were collected, at baseline and after 1 year of dietary interventions, from 150 participants included in the PREDIMED study (Reus Center). LncRNAs, mRNAs and miRNAs were isolated from plasma exosomes and screened. RT-qPCR validation was performed for miRNAs. RESULTS Compared with LFD, 413 lncRNAs and 188 mRNAs, and 476 lncRNAs and 235 mRNAs were differentially modulated in response to the MedDiet + EVOO and MedDiet + Nuts interventions, respectively. In addition, after 1 year of dietary interventions, 26 circulating miRNAs were identified as differentially expressed between groups. After 1 year of intervention, 11 miRNAs significantly changed in LFD group, while 8 and 21 were modulated in response to the MedDiet enriched with EVOO or nuts, respectively. Bioinformatic analyses of differentially expressed miRNAs and their validated target genes suggest certain metabolic pathways are modulated by LFD (PI3K-Akt and AMPK), MedDiet + EVOO (PI3K-Akt, NF-kappa B, HIF-1, and insulin resistance), and MedDiet-Nuts (FoxO, PI3K-Akt, AMPK, p53 and HIF-1) interventions. CONCLUSION Results show that 1-year MedDiet + Nuts and MedDiet + EVOO dietary interventions modulate exosomal RNA content, with the former affecting a higher number of miRNAs. The modulation of exosomal RNAs could help explain how the adherence to a Mediterranean diet may lead to beneficial effects and deserves further investigation.
Collapse
Affiliation(s)
- Diana C Mantilla-Escalante
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, IMDEA Food Institute, CEI UAM + CSIC, Ctra. De Cantoblanco 8, 28049, Madrid, Spain
| | - María-Carmen López de Las Hazas
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, IMDEA Food Institute, CEI UAM + CSIC, Ctra. De Cantoblanco 8, 28049, Madrid, Spain
| | - M Carmen Crespo
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, 28049, Madrid, Spain
| | - Roberto Martín-Hernández
- Bioinformatics and Biostatistics Unit, IMDEA Food Institute, CEI UAM+CSIC, Ctra. De Canto Blanco 8, 28049, Madrid, Spain
| | - Joao Tomé-Carneiro
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, 28049, Madrid, Spain
| | - Lorena Del Pozo-Acebo
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, IMDEA Food Institute, CEI UAM + CSIC, Ctra. De Cantoblanco 8, 28049, Madrid, Spain
| | - Jordi Salas-Salvadó
- Institut d'Investigació Sanitària Pere Virgili, 43204, Reus, Spain
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43201, Reus, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Nutrition Unit, University Hospital of Sant Joan de Reus, 43204, Reus, Spain
| | - Mónica Bulló
- Institut d'Investigació Sanitària Pere Virgili, 43204, Reus, Spain
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43201, Reus, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, IMDEA Food Institute, CEI UAM + CSIC, Ctra. De Cantoblanco 8, 28049, Madrid, Spain.
| |
Collapse
|
109
|
Abstract
Exosomes are extracellular vesicles (EVs) released from cells that are a part of many biological and pathological processes, especially in intercellular communication. These vesicles are involved cell signaling, influence tissue and immune response, and serve as biomarkers for diseases. Most interesting are the exosomes that are released from mesenchymal stem cells (MSCs) for inflammation in joint diseases. Preliminary studies have demonstrated the advantages of using EVs rather than MSCs for cell free therapy. Research on exosomes have shown promising results as biomarkers for tracking the pathogenesis and prognosis of inflammatory arthritis. Therapeutically, animal studies have demonstrated immunosuppression, reversing inflammation, increasing chondrocyte proliferation, and drug delivery properties. The field of exosomes continues to develop and more basic science and clinical studies with safety and efficacy studies are needed.
Collapse
Affiliation(s)
- William Fang
- Department of Orthopaedic Surgery, Keck
School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - C. Thomas Vangsness
- Department of Orthopaedic Surgery, Keck
School of Medicine, University of Southern California, Los Angeles, CA, USA,C. Thomas Vangsness Jr., Department of
Orthopaedic Surgery, Keck School of Medicine, University of Southern California,
1520 San Pablo Street 2000, Los Angeles, CA 90033, USA.
| |
Collapse
|
110
|
Molecular Profile Study of Extracellular Vesicles for the Identification of Useful Small “Hit” in Cancer Diagnosis. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112210787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tumor-secreted extracellular vesicles (EVs) are the main mediators of cell-cell communication, permitting cells to exchange proteins, lipids, and metabolites in varying physiological and pathological conditions. They contain signature tumor-derived molecules that reflect the intracellular status of their cell of origin. Recent studies have shown that tumor cell-derived EVs can aid in cancer metastasis through the modulation of the tumor microenvironment, suppression of the immune system, pre-metastatic niche formation, and subsequent metastasis. EVs can easily be isolated from a variety of biological fluids, and their content makes them useful biomarkers for the diagnosis, prognosis, monitorization of cancer progression, and response to treatment. This review aims to explore the biomarkers of cancer cell-derived EVs obtained from liquid biopsies, in order to understand cancer progression and metastatic evolution for early diagnosis and precision therapy.
Collapse
|
111
|
Giovannelli P, Di Donato M, Galasso G, Monaco A, Licitra F, Perillo B, Migliaccio A, Castoria G. Communication between cells: exosomes as a delivery system in prostate cancer. Cell Commun Signal 2021; 19:110. [PMID: 34772427 PMCID: PMC8586841 DOI: 10.1186/s12964-021-00792-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/03/2021] [Indexed: 02/08/2023] Open
Abstract
Despite the considerable efforts in screening and diagnostic protocols, prostate cancer still represents the second leading cause of cancer-related death in men. Many patients with localized disease and low risk of recurrence have a favourable outcome. In a substantial proportion of patients, however, the disease progresses and becomes aggressive. The mechanisms that promote prostate cancer progression remain still debated. Many findings point to the role of cross-communication between prostate tumor cells and their surrounding microenvironment during the disease progression. Such a connection fosters survival, proliferation, angiogenesis, metastatic spreading and drug-resistance of prostate cancer. Recent years have seen a profound interest in understanding the way by which prostate cancer cells communicate with the surrounding cells in the microenvironment. In this regard, direct cell-to-cell contacts and soluble factors have been identified. Increasing evidence indicates that PC cells communicate with the surrounding cells through the release of extracellular vesicles, mainly the exosomes. By directly acting in stromal or prostate cancer epithelial cells, exosomes represent a critical intercellular communication system. By querying the public database ( https://pubmed.ncbi.nlm.nih.gov ) for the past 10 years, we have found more than four hundred papers. Among them, we have extrapolated the most relevant about the role of exosomes in prostate cancer malignancy and progression. Emerging data concerning the use of these vesicles in diagnostic management and therapeutic guidance of PC patients are also presented. Video Abstract.
Collapse
Affiliation(s)
- Pia Giovannelli
- Dipartimento di Medicina di Precisione, Università Della Campania ‘L. Vanvitelli’, Via L. De Crecchio, 7, 80138 Naples, Italy
| | - Marzia Di Donato
- Dipartimento di Medicina di Precisione, Università Della Campania ‘L. Vanvitelli’, Via L. De Crecchio, 7, 80138 Naples, Italy
| | - Giovanni Galasso
- Dipartimento di Medicina di Precisione, Università Della Campania ‘L. Vanvitelli’, Via L. De Crecchio, 7, 80138 Naples, Italy
| | - Alessandra Monaco
- Dipartimento di Medicina di Precisione, Università Della Campania ‘L. Vanvitelli’, Via L. De Crecchio, 7, 80138 Naples, Italy
| | - Fabrizio Licitra
- Dipartimento di Medicina di Precisione, Università Della Campania ‘L. Vanvitelli’, Via L. De Crecchio, 7, 80138 Naples, Italy
| | - Bruno Perillo
- Istituto di Scienze dell’Alimentazione, C.N.R., 83100 Avellino, Italy
| | - Antimo Migliaccio
- Dipartimento di Medicina di Precisione, Università Della Campania ‘L. Vanvitelli’, Via L. De Crecchio, 7, 80138 Naples, Italy
| | - Gabriella Castoria
- Dipartimento di Medicina di Precisione, Università Della Campania ‘L. Vanvitelli’, Via L. De Crecchio, 7, 80138 Naples, Italy
| |
Collapse
|
112
|
Zhang L, Wei W, Ai X, Kilic E, Hermann DM, Venkataramani V, Bähr M, Doeppner TR. Extracellular vesicles from hypoxia-preconditioned microglia promote angiogenesis and repress apoptosis in stroke mice via the TGF-β/Smad2/3 pathway. Cell Death Dis 2021; 12:1068. [PMID: 34753919 PMCID: PMC8578653 DOI: 10.1038/s41419-021-04363-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/15/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022]
Abstract
Systemic transplantation of oxygen-glucose deprivation (OGD)-preconditioned primary microglia enhances neurological recovery in rodent stroke models, albeit the underlying mechanisms have not been sufficiently addressed. Herein, we analyzed whether or not extracellular vesicles (EVs) derived from such microglia are the biological mediators of these observations and which signaling pathways are involved in the process. Exposing bEnd.3 endothelial cells (ECs) and primary cortical neurons to OGD, the impact of EVs from OGD-preconditioned microglia on angiogenesis and neuronal apoptosis by the tube formation assay and TUNEL staining was assessed. Under these conditions, EV treatment stimulated both angiogenesis and tube formation in ECs and repressed neuronal cell injury. Characterizing microglia EVs by means of Western blot analysis and other techniques revealed these EVs to be rich in TGF-β1. The latter turned out to be a key compound for the therapeutic potential of microglia EVs, affecting the Smad2/3 pathway in both ECs and neurons. EV infusion in stroke mice confirmed the aforementioned in vitro results, demonstrating an activation of the TGF-β/Smad2/3 signaling pathway within the ischemic brain. Furthermore, enriched TGF-β1 in EVs secreted from OGD-preconditioned microglia stimulated M2 polarization of residing microglia within the ischemic cerebral environment, which may contribute to a regulation of an early inflammatory response in postischemic hemispheres. These observations are not only interesting from the mechanistic point of view but have an immediate therapeutic implication as well, since stroke mice treated with such EVs displayed a better functional recovery in the behavioral test analyses. Hence, the present findings suggest a new way of action of EVs derived from OGD-preconditioned microglia by regulating the TGF-β/Smad2/3 pathway in order to promote tissue regeneration and neurological recovery in stroke mice.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Wei Wei
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Xiaoyu Ai
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Ertugrul Kilic
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Vivek Venkataramani
- Department of Medicine II, University Hospital Frankfurt, Frankfurt, Germany
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Thorsten R Doeppner
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey.
| |
Collapse
|
113
|
Gołębiewska JE, Wardowska A, Pietrowska M, Wojakowska A, Dębska-Ślizień A. Small Extracellular Vesicles in Transplant Rejection. Cells 2021; 10:2989. [PMID: 34831212 PMCID: PMC8616261 DOI: 10.3390/cells10112989] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/31/2021] [Accepted: 10/31/2021] [Indexed: 12/28/2022] Open
Abstract
Small extracellular vesicles (sEV), which are released to body fluids (e.g., serum, urine) by all types of human cells, may stimulate or inhibit the innate and adaptive immune response through multiple mechanisms. Exosomes or sEV have on their surface many key receptors of immune response, including major histocompatibility complex (MHC) components, identical to their cellular origin. They also exhibit an ability to carry antigen and target leukocytes either via interaction with cell surface receptors or intracellular delivery of inflammatory mediators, receptors, enzymes, mRNAs, and noncoding RNAs. By the transfer of donor MHC antigens to recipient antigen presenting cells sEV may also contribute to T cell allorecognition and alloresponse. Here, we review the influence of sEV on the development of rejection or tolerance in the setting of solid organ and tissue allotransplantation. We also summarize and discuss potential applications of plasma and urinary sEV as biomarkers in the context of transplantation. We focus on the attempts to use sEV as a noninvasive approach to detecting allograft rejection. Preliminary studies show that both sEV total levels and a set of specific molecules included in their cargo may be an evidence of ongoing allograft rejection.
Collapse
Affiliation(s)
- Justyna E. Gołębiewska
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Anna Wardowska
- Department of Physiopathology, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Monika Pietrowska
- Centre for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland;
| | - Anna Wojakowska
- Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznań, Poland;
| | - Alicja Dębska-Ślizień
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| |
Collapse
|
114
|
Lim HJ, Yoon H, Kim H, Kang YW, Kim JE, Kim OY, Lee EY, Twizere JC, Rak J, Kim DK. Extracellular Vesicle Proteomes Shed Light on the Evolutionary, Interactive, and Functional Divergence of Their Biogenesis Mechanisms. Front Cell Dev Biol 2021; 9:734950. [PMID: 34660591 PMCID: PMC8517337 DOI: 10.3389/fcell.2021.734950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are membranous structures containing bioactive molecules, secreted by most cells into the extracellular environment. EVs are classified by their biogenesis mechanisms into two major subtypes: ectosomes (enriched in large EVs; lEVs), budding directly from the plasma membrane, which is common in both prokaryotes and eukaryotes, and exosomes (enriched in small EVs; sEVs) generated through the multivesicular bodies via the endomembrane system, which is unique to eukaryotes. Even though recent proteomic analyses have identified key proteins associated with EV subtypes, there has been no systematic analysis, thus far, to support the general validity and utility of current EV subtype separation methods, still largely dependent on physical properties, such as vesicular size and sedimentation. Here, we classified human EV proteomic datasets into two main categories based on distinct centrifugation protocols commonly used for isolating sEV or lEV fractions. We found characteristic, evolutionarily conserved profiles of sEV and lEV proteins linked to their respective biogenetic origins. This may suggest that the evolutionary trajectory of vesicular proteins may result in a membership bias toward specific EV subtypes. Protein-protein interaction (PPI) network analysis showed that vesicular proteins formed distinct clusters with proteins in the same EV fraction, providing evidence for the existence of EV subtype-specific protein recruiters. Moreover, we identified functional modules enriched in each fraction, including multivesicular body sorting for sEV, and mitochondria cellular respiration for lEV proteins. Our analysis successfully captured novel features of EVs embedded in heterogeneous proteomics studies and suggests specific protein markers and signatures to be used as quality controllers in the isolation procedure for subtype-enriched EV fractions.
Collapse
Affiliation(s)
- Hyobin Julianne Lim
- Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Haejin Yoon
- Department of Cell Biology, Blavatnik Institute and Harvard Medical School, Boston, MA, United States
| | - Hyeyeon Kim
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Yun-Won Kang
- Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Ji-Eun Kim
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Oh Youn Kim
- College of Medicine, Yonsei University, Seoul, South Korea
| | - Eun-Young Lee
- Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jean-Claude Twizere
- Laboratory of Viral Interactomes, GIGA Institute, University of Liège, Liege, Belgium.,TERRA Teaching and Research Centre, University of Liège, Liege, Belgium
| | - Janusz Rak
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, Montreal, QC, Canada
| | - Dae-Kyum Kim
- Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
115
|
Novoa-Herrán S. Challenges and opportunities in the study of extracellular vesicles: Global institutional context and national state of the art. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2021; 41:555-589. [PMID: 34559503 PMCID: PMC8519601 DOI: 10.7705/biomedica.5749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 05/16/2021] [Indexed: 11/23/2022]
Abstract
In the last decade, the number of studies and publications on extracellular vesicles (EV) and exosomes has boomed. Colombia has displayed interest and progress in their study as shown in the increase of research project publications and products. However, this research field is still developing and has its own analytical challenges and technical limitations. For planning research projects and developing EV studies it is necessary to consider what is the state of the scientific field worldwide concerning EV nomenclature and classification, available techniques, resources, requirements and quality specifications, and the institutions that regulate the field. Answering this question will elicit EV studies that comply with international standards and respond to institutional demands and recommendations. However, the scientific information available is scattered and not all the aspects are considered in full. In this update, the available information is condensed and the official terms and currently defined nomenclature is presented, as well as the evolution of the field, the homogenization of the experimental parameters, the establishment of scientific authorities, institutions, and resources, and the recommendations generated worldwide for their development and research including their isolation, characterization, and functional studies. Finally, I analyzed the national context in a critical way, considering institutional strengths, common mistakes, and available analytical techniques and technologies.
Collapse
Affiliation(s)
- Susana Novoa-Herrán
- Grupo de Fisiología Molecular, Instituto Nacional de Salud, Bogotá, D.C., Colombia.
| |
Collapse
|
116
|
Razzauti A, Laurent P. Ectocytosis prevents accumulation of ciliary cargo in C. elegans sensory neurons. eLife 2021; 10:67670. [PMID: 34533135 PMCID: PMC8492061 DOI: 10.7554/elife.67670] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
Cilia are sensory organelles protruding from cell surfaces. Release of extracellular vesicles (EVs) from cilia was previously observed in mammals, Chlamydomonas, and in male Caenorhabditis elegans. Using the EV marker TSP-6 (an ortholog of mammalian CD9) and other ciliary receptors, we show that EVs are formed from ciliated sensory neurons in C. elegans hermaphrodites. Release of EVs is observed from two ciliary locations: the cilia tip and/or periciliary membrane compartment (PCMC). Outward budding of EVs from the cilia tip leads to their release into the environment. EVs' budding from the PCMC is concomitantly phagocytosed by the associated glial cells. To maintain cilia composition, a tight regulation of cargo import and removal is achieved by the action of intra-flagellar transport (IFT). Unbalanced IFT due to cargo overexpression or mutations in the IFT machinery leads to local accumulation of ciliary proteins. Disposal of excess ciliary proteins via EVs reduces their local accumulation and exports them to the environment and/or to the glia associated to these ciliated neurons. We suggest that EV budding from cilia subcompartments acts as a safeguard mechanism to remove deleterious excess of ciliary material.
Collapse
Affiliation(s)
- Adria Razzauti
- Laboratory of Neurophysiology, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles(ULB), Brussels, Belgium
| | - Patrick Laurent
- Laboratory of Neurophysiology, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles(ULB), Brussels, Belgium
| |
Collapse
|
117
|
Liu J, Ren L, Li S, Li W, Zheng X, Yang Y, Fu W, Yi J, Wang J, Du G. The biology, function, and applications of exosomes in cancer. Acta Pharm Sin B 2021; 11:2783-2797. [PMID: 34589397 PMCID: PMC8463268 DOI: 10.1016/j.apsb.2021.01.001] [Citation(s) in RCA: 332] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/30/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
Exosomes are cell-derived nanovesicles with diameters from 30 to 150 nm, released upon fusion of multivesicular bodies with the cell surface. They can transport nucleic acids, proteins, and lipids for intercellular communication and activate signaling pathways in target cells. In cancers, exosomes may participate in growth and metastasis of tumors by regulating the immune response, blocking the epithelial-mesenchymal transition, and promoting angiogenesis. They are also involved in the development of resistance to chemotherapeutic drugs. Exosomes in liquid biopsies can be used as non-invasive biomarkers for early detection and diagnosis of cancers. Because of their amphipathic structure, exosomes are natural drug delivery vehicles for cancer therapy.
Collapse
Key Words
- ABCA3, ATP-binding cassette transporter A3
- APCs, antigen-presenting cells
- Biomarkers
- CAFs, cancer-associated fibroblasts
- CCRCC, clear-cell renal cell carcinoma
- CD-UPRT, cytosine deaminase-uracil phosphoribosyltransferase
- CDH3, cadherin 3
- CRC, colorectal cancer
- DC, dendritic cells
- DEXs, DC-derived exosomes
- DLBCL, diffuse large B-cell lymphoma
- DNM3, dynamin 3
- Del-1, developmental endothelial locus-1
- Drug delivery
- Drug resistance
- ECM, extracellular matrix
- EMT, epithelial–mesenchymal transition
- ESCRT, endosomal sorting complex required for transport
- Exosomes
- GPC1, glypican-1
- HA, hyaluronic acid
- HCC, hepatocellular carcinoma
- HIF1, hypoxia-inducible factor 1
- HTR, hormone therapy-resistant
- HUVECs, human umbilical vein endothelial cells
- ILVs, intraluminal vesicles
- MDSCs, myeloid-derived suppressor cells
- MIF, migration inhibitory factor
- MSC, mesenchymal stem cells
- MVB, multivesicular body
- NKEXOs, natural killer cell-derived exosomes
- NNs, nanoparticles
- NSCLC, non-small cell lung cancer
- PA, phosphatidic acid
- PCC, pheochromocytoma
- PD-L1, programmed cell death receptor ligand 1
- PDAC, pancreatic ductal adenocarcinoma
- PGL, paraganglioma
- PI, phosphatidylinositol
- PS, phosphatidylserine
- PTRF, polymerase I and transcript release factor
- RCC, renal cell carcinoma
- SM, sphingomyelin
- SNARE, soluble NSF-attachment protein receptor
- TEX, tumor-derived exosomes
- TSG101, tumor susceptibility gene 101
- Tumor immunity
- Tumor metastasis
- circRNAs, circular RNAs
- dsDNA, double stranded DNA
- hTERT, human telomerase reverse transcriptase
- lamp2b, lysosome-associated membrane glycoprotein 2b
- lncRNAs, long non-coding RNAs
- miRNA, microRNA
- mtDNA, mitochondrial DNA
- ncRNA, non-coding RNAs
Collapse
Affiliation(s)
- Jinyi Liu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Sha Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Xiangjin Zheng
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yihui Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Weiqi Fu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jie Yi
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Beijing 100730, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
118
|
Tóth EÁ, Turiák L, Visnovitz T, Cserép C, Mázló A, Sódar BW, Försönits AI, Petővári G, Sebestyén A, Komlósi Z, Drahos L, Kittel Á, Nagy G, Bácsi A, Dénes Á, Gho YS, Szabó‐Taylor KÉ, Buzás EI. Formation of a protein corona on the surface of extracellular vesicles in blood plasma. J Extracell Vesicles 2021; 10:e12140. [PMID: 34520123 PMCID: PMC8439280 DOI: 10.1002/jev2.12140] [Citation(s) in RCA: 227] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/20/2021] [Accepted: 08/15/2021] [Indexed: 12/15/2022] Open
Abstract
In this study we tested whether a protein corona is formed around extracellular vesicles (EVs) in blood plasma. We isolated medium-sized nascent EVs of THP1 cells as well as of Optiprep-purified platelets, and incubated them in EV-depleted blood plasma from healthy subjects and from patients with rheumatoid arthritis. EVs were subjected to differential centrifugation, size exclusion chromatography, or density gradient ultracentrifugation followed by mass spectrometry. Plasma protein-coated EVs had a higher density compared to the nascent ones and carried numerous newly associated proteins. Interactions between plasma proteins and EVs were confirmed by confocal microscopy, capillary Western immunoassay, immune electron microscopy and flow cytometry. We identified nine shared EV corona proteins (ApoA1, ApoB, ApoC3, ApoE, complement factors 3 and 4B, fibrinogen α-chain, immunoglobulin heavy constant γ2 and γ4 chains), which appear to be common corona proteins among EVs, viruses and artificial nanoparticles in blood plasma. An unexpected finding of this study was the high overlap of the composition of the protein corona with blood plasma protein aggregates. This is explained by our finding that besides a diffuse, patchy protein corona, large protein aggregates also associate with the surface of EVs. However, while EVs with an external plasma protein cargo induced an increased expression of TNF-α, IL-6, CD83, CD86 and HLA-DR of human monocyte-derived dendritic cells, EV-free protein aggregates had no effect. In conclusion, our data may shed new light on the origin of the commonly reported plasma protein 'contamination' of EV preparations and may add a new perspective to EV research.
Collapse
Affiliation(s)
- Eszter Á. Tóth
- Department of GeneticsCell‐ and ImmunobiologySemmelweis UniversityBudapestHungary
| | - Lilla Turiák
- ELKH‐SE Immune‐Proteogenomics Extracellular Vesicle Research GroupBudapestHungary
- MS Proteomics Research GroupResearch Centre for Natural SciencesEötvös Loránd Research NetworkBudapestHungary
| | - Tamás Visnovitz
- Department of GeneticsCell‐ and ImmunobiologySemmelweis UniversityBudapestHungary
| | - Csaba Cserép
- Laboratory of NeuroimmunologyInstitute of Experimental MedicineEötvös Loránd Research NetworkBudapestHungary
| | - Anett Mázló
- Department of ImmunologyFaculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Barbara W. Sódar
- Department of GeneticsCell‐ and ImmunobiologySemmelweis UniversityBudapestHungary
- HCEMM‐SE Extracellular Vesicles Research GroupBudapestHungary
| | - András I. Försönits
- Department of GeneticsCell‐ and ImmunobiologySemmelweis UniversityBudapestHungary
| | - Gábor Petővári
- Tumour BiologyTumour Metabolism Research Group1st Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
| | - Anna Sebestyén
- Tumour BiologyTumour Metabolism Research Group1st Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
| | - Zsolt Komlósi
- Department of GeneticsCell‐ and ImmunobiologySemmelweis UniversityBudapestHungary
| | - László Drahos
- ELKH‐SE Immune‐Proteogenomics Extracellular Vesicle Research GroupBudapestHungary
- MS Proteomics Research GroupResearch Centre for Natural SciencesEötvös Loránd Research NetworkBudapestHungary
| | - Ágnes Kittel
- Institute of Experimental MedicineEötvös Loránd Research NetworkBudapestHungary
| | - György Nagy
- Department of GeneticsCell‐ and ImmunobiologySemmelweis UniversityBudapestHungary
- Department of Rheumatology & Clinical ImmunologySemmelweis UniversityBudapestHungary
| | - Attila Bácsi
- Department of ImmunologyFaculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Ádám Dénes
- Laboratory of NeuroimmunologyInstitute of Experimental MedicineEötvös Loránd Research NetworkBudapestHungary
| | - Yong Song Gho
- Department of Life SciencesPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
| | | | - Edit I. Buzás
- Department of GeneticsCell‐ and ImmunobiologySemmelweis UniversityBudapestHungary
- ELKH‐SE Immune‐Proteogenomics Extracellular Vesicle Research GroupBudapestHungary
- HCEMM‐SE Extracellular Vesicles Research GroupBudapestHungary
| |
Collapse
|
119
|
Jayaraman S, Gnanasampanthapandian D, Rajasingh J, Palaniyandi K. Stem Cell-Derived Exosomes Potential Therapeutic Roles in Cardiovascular Diseases. Front Cardiovasc Med 2021; 8:723236. [PMID: 34447796 PMCID: PMC8382889 DOI: 10.3389/fcvm.2021.723236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Owing to myocardial abnormalities, cardiac ailments are considered to be the major cause of morbidity and mortality worldwide. According to a recent study, membranous vesicles that are produced naturally, termed as "exosomes", have emerged as the potential candidate in the field of cardiac regenerative medicine. A wide spectrum of stem cells has also been investigated in the treatment of cardiovascular diseases (CVD). Exosomes obtained from the stem cells are found to be cardioprotective and offer great hope in the treatment of CVD. The basic nature of exosomes is to deal with the intracellular delivery of both proteins and nucleic acids. This activity of exosomes helps us to rely on them as the attractive pharmaceutical delivery agents. Most importantly, exosomes derived from microRNAs (miRNAs) hold great promise in assessing the risk of CVD, as they serve as notable biomarkers of the disease. Exosomes are small, less immunogenic, and lack toxicity. These nanovesicles harbor immense potential as a therapeutic entity and would provide fruitful benefits if consequential research were focused on their upbringing and development as a useful diagnostic and therapeutic tool in the field of medicine.
Collapse
Affiliation(s)
- Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Dhanavathy Gnanasampanthapandian
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai, India
| | - Johnson Rajasingh
- Department of Bioscience Research & Medicine-Cardiology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Kanagaraj Palaniyandi
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai, India
| |
Collapse
|
120
|
Weiliang Z, Lili G. Research Advances in the Application of Adipose-Derived Stem Cells Derived Exosomes in Cutaneous Wound Healing. Ann Dermatol 2021; 33:309-317. [PMID: 34341631 PMCID: PMC8273313 DOI: 10.5021/ad.2021.33.4.309] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/21/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Cutaneous wound healing has always been an intractable medical problem for both clinicians and researchers, with an urgent need for more efficacious methods to achieve optimal outcomes morphologically and functionally. Stem cells, the body's rapid response 'road repair crew,' being on standby to combat tissue injuries, are an essential part of regenerative medicine. Currently, the use of adipose-derived stem cells (ADSCs), a kind of mesenchymal stem cells with multipotent differentiation and self-renewal capacity, is surging in the field of cutaneous wound healing. ADSCs may exert influences either by releasing paracrine signalling factors or differentiating into mature adipose cells to provide the 'building blocks' for engineered tissue. As an important paracrine substance released from ADSCs, exosomes are a kind of extracellular vesicles and carrying various bioactive molecules mediating adjacent or distant intercellular communication. Previous studies have indicated that ADSCs derived exosomes (ADSCs-Exos) promoted skin wound healing by affecting all stages of wound healing, including regulating inflammatory response, promoting proliferation and migration of fibroblasts or keratinocytes, facilitating angiogenesis, and regulating remodeling of extracellular matrix, which have provided new opportunities for understanding how ADSCs-Exos mediate intercellular communication in pathological processes of the skin and therapeutic strategies for cutaneous wound repair. In this review, we focus on elucidating the role of ADSCs-Exos at various stages of cutaneous wound healing, detailing the latest developments, and presenting some challenges necessary to be addressed in this field, with the expectation of providing a new perspective on how to best utilize this powerful cell-free therapy in the future.
Collapse
Affiliation(s)
- Zeng Weiliang
- Department of Cosmetic and Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guo Lili
- Department of Cosmetic and Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
121
|
Silva AM, Lázaro‐Ibáñez E, Gunnarsson A, Dhande A, Daaboul G, Peacock B, Osteikoetxea X, Salmond N, Friis KP, Shatnyeva O, Dekker N. Quantification of protein cargo loading into engineered extracellular vesicles at single-vesicle and single-molecule resolution. J Extracell Vesicles 2021; 10:e12130. [PMID: 34377376 PMCID: PMC8329990 DOI: 10.1002/jev2.12130] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 06/20/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
Extracellular Vesicles (EVs) have been intensively explored for therapeutic delivery of proteins. However, methods to quantify cargo proteins loaded into engineered EVs are lacking. Here, we describe a workflow for EV analysis at the single-vesicle and single-molecule level to accurately quantify the efficiency of different EV-sorting proteins in promoting cargo loading into EVs. Expi293F cells were engineered to express EV-sorting proteins fused to green fluorescent protein (GFP). High levels of GFP loading into secreted EVs was confirmed by Western blotting for specific EV-sorting domains, but quantitative single-vesicle analysis by Nanoflow cytometry detected GFP in less than half of the particles analysed, reflecting EV heterogeneity. Anti-tetraspanin EV immunostaining in ExoView confirmed a heterogeneous GFP distribution in distinct subpopulations of CD63+, CD81+, or CD9+ EVs. Loading of GFP into individual vesicles was quantified by Single-Molecule Localization Microscopy. The combined results demonstrated TSPAN14, CD63 and CD63/CD81 fused to the PDGFRβ transmembrane domain as the most efficient EV-sorting proteins, accumulating on average 50-170 single GFP molecules per vesicle. In conclusion, we validated a set of complementary techniques suitable for high-resolution analysis of EV preparations that reliably capture their heterogeneity, and propose highly efficient EV-sorting proteins to be used in EV engineering applications.
Collapse
Affiliation(s)
- Andreia M. Silva
- Discovery BiologyDiscovery SciencesBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Elisa Lázaro‐Ibáñez
- Discovery BiologyDiscovery SciencesBioPharmaceuticals R&DAstraZenecaGothenburgSweden
- Advanced Drug DeliveryPharmaceutical SciencesBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Anders Gunnarsson
- Structure and BiophysicsDiscovery SciencesBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | | | | | | | - Xabier Osteikoetxea
- Discovery BiologyDiscovery SciencesBioPharmaceuticals R&DAstraZenecaAlderley ParkUK
| | - Nikki Salmond
- Discovery BiologyDiscovery SciencesBioPharmaceuticals R&DAstraZenecaAlderley ParkUK
| | - Kristina Pagh Friis
- Advanced Drug DeliveryPharmaceutical SciencesBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Olga Shatnyeva
- Discovery BiologyDiscovery SciencesBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Niek Dekker
- Discovery BiologyDiscovery SciencesBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| |
Collapse
|
122
|
Gurunathan S, Kang MH, Kim JH. Diverse Effects of Exosomes on COVID-19: A Perspective of Progress From Transmission to Therapeutic Developments. Front Immunol 2021; 12:716407. [PMID: 34394121 PMCID: PMC8355618 DOI: 10.3389/fimmu.2021.716407] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/05/2021] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new strain of coronavirus and the causative agent of the current global pandemic of coronavirus disease 2019 (COVID-19). There are currently no FDA-approved antiviral drugs for COVID-19 and there is an urgent need to develop treatment strategies that can effectively suppress SARS-CoV-2 infection. Numerous approaches have been researched so far, with one of them being the emerging exosome-based therapies. Exosomes are nano-sized, lipid bilayer-enclosed structures, share structural similarities with viruses secreted from all types of cells, including those lining the respiratory tract. Importantly, the interplay between exosomes and viruses could be potentially exploited for antiviral drug and vaccine development. Exosomes are produced by virus-infected cells and play crucial roles in mediating communication between infected and uninfected cells. SARS-CoV-2 modulates the production and composition of exosomes, and can exploit exosome formation, secretion, and release pathways to promote infection, transmission, and intercellular spread. Exosomes have been exploited for therapeutic benefits in patients afflicted with various diseases including COVID-19. Furthermore, the administration of exosomes loaded with immunomodulatory cargo in combination with antiviral drugs represents a novel intervention for the treatment of diseases such as COVID-19. In particular, exosomes derived from mesenchymal stem cells (MSCs) are used as cell-free therapeutic agents. Mesenchymal stem cell derived exosomes reduces the cytokine storm and reverse the inhibition of host anti-viral defenses associated with COVID-19 and also enhances mitochondrial function repair lung injuries. We discuss the role of exosomes in relation to transmission, infection, diagnosis, treatment, therapeutics, drug delivery, and vaccines, and present some future perspectives regarding their use for combating COVID-19.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, South Korea
| | - Min Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, South Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, South Korea
| |
Collapse
|
123
|
Fostering "Education": Do Extracellular Vesicles Exploit Their Own Delivery Code? Cells 2021; 10:cells10071741. [PMID: 34359911 PMCID: PMC8305232 DOI: 10.3390/cells10071741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs), comprising large microvesicles (MVs) and exosomes (EXs), play a key role in intercellular communication, both in physiological and in a wide variety of pathological conditions. However, the education of EV target cells has so far mainly been investigated as a function of EX cargo, while few studies have focused on the characterization of EV surface membrane molecules and the mechanisms that mediate the addressability of specific EVs to different cell types and tissues. Identifying these mechanisms will help fulfill the diagnostic, prognostic, and therapeutic promises fueled by our growing knowledge of EVs. In this review, we first discuss published studies on the presumed EV “delivery code” and on the combinations of the hypothesized EV surface membrane “sender” and “recipient” molecules that may mediate EV targeting in intercellular communication. Then we briefly review the main experimental approaches and techniques, and the bioinformatic tools that can be used to identify and characterize the structure and functional role of EV surface membrane molecules. In the final part, we present innovative techniques and directions for future research that would improve and deepen our understandings of EV-cell targeting.
Collapse
|
124
|
Feng J, Zhang Y, Zhu Z, Gu C, Waqas A, Chen L. Emerging Exosomes and Exosomal MiRNAs in Spinal Cord Injury. Front Cell Dev Biol 2021; 9:703989. [PMID: 34307384 PMCID: PMC8299525 DOI: 10.3389/fcell.2021.703989] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/18/2021] [Indexed: 12/16/2022] Open
Abstract
Acute spinal cord injury (SCI) is a serious traumatic event to the spinal cord with considerable morbidity and mortality. This injury leads to short- and long-term variations in the spinal cord, and can have a serious effect on the patient's sensory, motor, or autonomic functions. Due to the complicated pathological process of SCI, there is currently no successful clinical treatment strategy. Exosomes, extracellular vesicles (EVs) with a double-layer membrane structure of 30-150 nm diameter, have recently been considered as critical mediators for communication between cells and tissues by transferring proteins, lipids, and nucleic acids. Further studies verified that exosomes participate in the pathophysiological process of several diseases, including cancer, neurodegenerative diseases, and cardiovascular diseases, and could have a significant impact in their treatment. As natural carriers of biologically active cargos, exosomes have emerged as pathological mediators of SCI. In this review article, we critically discuss the functions of exosomes as intracellular mediators and potential treatments in SCI and provide an outlook on future research.
Collapse
Affiliation(s)
- Jia Feng
- Department of Neurosurgery, Neuroscience Center, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yifan Zhang
- Department of Neurosurgery, Neuroscience Center, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhihan Zhu
- School of Medicine, Southeast University, Nanjing, China
| | - Chenyang Gu
- Department of Neurosurgery, Neuroscience Center, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ahmed Waqas
- School of Medicine, Southeast University, Nanjing, China
| | - Lukui Chen
- Department of Neurosurgery, Neuroscience Center, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
125
|
Bahrami A, Moradi Binabaj M, A Ferns G. Exosomes: Emerging modulators of signal transduction in colorectal cancer from molecular understanding to clinical application. Biomed Pharmacother 2021; 141:111882. [PMID: 34218003 DOI: 10.1016/j.biopha.2021.111882] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/10/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022] Open
Abstract
Exosomes are small cell derived membrane nano-vesicles that carry various components including lipids, proteins and nucleic acids. There is accumulating evidence that exosomes have a role in tumorigenesis, tumor invasiveness and metastasis. Furthermore, oncogene mutation may influence exosome release from tumor cells. Exosomes may induce colorectal cancer by altering signaling cascades such as the Wnt/β-catenin and KRAS pathways that are involved in cell proliferation, apoptosis, dissemination, angiogenesis, and drug resistance. The aim of this review was to overview recent findings evaluating the association between tumor cells-derived exosomes and their content in modulating signaling pathways in colorectal cancer.
Collapse
Affiliation(s)
- Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Maryam Moradi Binabaj
- Non-Communicable Diseases Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| |
Collapse
|
126
|
Interplay between Hypoxia and Extracellular Vesicles in Cancer and Inflammation. BIOLOGY 2021; 10:biology10070606. [PMID: 34209290 PMCID: PMC8301089 DOI: 10.3390/biology10070606] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022]
Abstract
Simple Summary Mounting evidence suggests a role for extracellular vesicles in cell-to-cell communication, in both physiological and pathological conditions. Moreover, the molecular content of vesicles can be exploited for diagnostic and therapeutic purposes. Inflamed tissues and tumors are often characterized by hypoxic areas, where oxygen levels drop dramatically. Several studies demonstrated that hypoxic stress affects the release of vesicles and their content. This review is intended to provide an exhaustive overview on the relationship between hypoxia and vesicles in inflammatory diseases and cancer. Abstract Hypoxia is a severe stress condition often observed in cancer and chronically inflamed cells and tissues. Extracellular vesicles play pivotal roles in these pathological processes and carry biomolecules that can be detected in many biofluids and may be exploited for diagnostic purposes. Several studies report the effects of hypoxia on extracellular vesicles’ release, molecular content, and biological functions in disease. This review summarizes the most recent findings in this field, highlighting the areas that warrant further investigation.
Collapse
|
127
|
Review of Methodological Approaches to Human Milk Small Extracellular Vesicle Proteomics. Biomolecules 2021; 11:biom11060833. [PMID: 34204944 PMCID: PMC8228857 DOI: 10.3390/biom11060833] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022] Open
Abstract
Proteomics can map extracellular vesicles (EVs), including exosomes, across disease states between organisms and cell types. Due to the diverse origin and cargo of EVs, tailoring methodological and analytical techniques can support the reproducibility of results. Proteomics scans are sensitive to in-sample contaminants, which can be retained during EV isolation procedures. Contaminants can also arise from the biological origin of exosomes, such as the lipid-rich environment in human milk. Human milk (HM) EVs and exosomes are emerging as a research interest in health and disease, though the experimental characterization and functional assays remain varied. Past studies of HM EV proteomes have used data-dependent acquisition methods for protein detection, however, improvements in data independent acquisition could allow for previously undetected EV proteins to be identified by mass spectrometry. Depending on the research question, only a specific population of proteins can be compared and measured using isotope and other labelling techniques. In this review, we summarize published HM EV proteomics protocols and suggest a methodological workflow with the end-goal of effective and reproducible analysis of human milk EV proteomes.
Collapse
|
128
|
Kleinjan M, van Herwijnen MJ, Libregts SF, van Neerven RJ, Feitsma AL, Wauben MH. Regular Industrial Processing of Bovine Milk Impacts the Integrity and Molecular Composition of Extracellular Vesicles. J Nutr 2021; 151:1416-1425. [PMID: 33768229 DOI: 10.1093/jn/nxab031] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/13/2020] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Bovine milk contains extracellular vesicles (EVs), which act as mediators of intercellular communication by regulating the recipients' cellular processes via their selectively incorporated bioactive molecules. Because some of these EV components are evolutionarily conserved, EVs present in commercial milk might have the potential to regulate cellular processes in human consumers. OBJECTIVES Because commercial milk is subjected to industrial processing, we investigated its effect on the number and integrity of isolated milk EVs and their bioactive components. For this, we compared EVs isolated from raw bovine milk with EVs isolated from different types of commercial milk, including pasteurized milk, either homogenized or not, and ultra heat treated (UHT) milk. METHODS EVs were separated from other milk components by differential centrifugation, followed by density gradient ultracentrifugation. EVs from different milk types were compared by single-particle high-resolution fluorescence-based flow cytometry to determine EV numbers, Cryo-electron microscopy to visualize EV integrity and morphology, western blot analysis to investigate EV-associated protein cargo, and RNA analysis to assess total small RNA concentration and milk-EV-specific microRNA expression. RESULTS In UHT milk, we could not detect intact EVs. Interestingly, although pasteurization (irrespective of homogenization) did not affect mean ± SD EV numbers (3.4 × 108 ± 1.2 × 108-2.8 × 108 ± 0.3 × 107 compared with 3.1 × 108 ± 1.2 × 108 in raw milk), it affected EV integrity and appearance, altered their protein signature, and resulted in a loss of milk-EV-associated RNAs (from 40.2 ± 3.4 ng/μL in raw milk to 17.7 ± 5.4-23.3 ± 10.0 mg/μL in processed milk, P < 0.05). CONCLUSIONS Commercial milk, that has been heated by either pasteurization or UHT, contains fewer or no intact EVs, respectively. Although most EVs seemed resistant to pasteurization based on particle numbers, their integrity was affected and their molecular composition was altered. Thus, the possible transfer of bioactive components via bovine milk EVs to human consumers is likely diminished or altered in heat-treated commercial milk.
Collapse
Affiliation(s)
- Marije Kleinjan
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Martijn Jc van Herwijnen
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Sten Fwm Libregts
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Rj Joost van Neerven
- FrieslandCampina, Amersfoort, Netherlands.,Cell Biology and Immunology, Wageningen University, Wageningen, Netherlands
| | | | - Marca Hm Wauben
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
129
|
Dysfunction of the Neurovascular Unit in Ischemic Stroke: Highlights on microRNAs and Exosomes as Potential Biomarkers and Therapy. Int J Mol Sci 2021; 22:ijms22115621. [PMID: 34070696 PMCID: PMC8198979 DOI: 10.3390/ijms22115621] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke is a damaging cerebral vascular disease associated with high disability and mortality rates worldwide. In spite of the continuous development of new diagnostic and prognostic methods, early detection and outcome prediction are often very difficult. The neurovascular unit (NVU) is a complex multicellular entity linking the interactions between neurons, glial cells, and brain vessels. Novel research has revealed that exosome-mediated transfer of microRNAs plays an important role in cell-to-cell communication and, thus, is integral in the multicellular crosstalk within the NVU. After a stroke, NVU homeostasis is altered, which induces the release of several potential biomarkers into the blood vessels. The addition of biological data representing all constituents of the NVU to clinical and neuroradiological findings can significantly advance stroke evaluation and prognosis. In this review, we present the current literature regarding the possible beneficial roles of exosomes derived from the components of the NVU and multipotent mesenchymal stem cells in preclinical studies of ischemic stroke. We also discuss the most relevant clinical trials on the diagnostic and prognostic roles of exosomes in stroke patients.
Collapse
|
130
|
Gurunathan S, Kang MH, Qasim M, Khan K, Kim JH. Biogenesis, Membrane Trafficking, Functions, and Next Generation Nanotherapeutics Medicine of Extracellular Vesicles. Int J Nanomedicine 2021; 16:3357-3383. [PMID: 34040369 PMCID: PMC8140893 DOI: 10.2147/ijn.s310357] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/25/2021] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of membrane-limited vesicles and multi-signal messengers loaded with biomolecules. Exosomes and ectosomes are two different types of EVs generated by all cell types. Their formation depends on local microdomains assembled in endocytic membranes for exosomes and in the plasma membrane for ectosomes. Further, EV release is a fundamental process required for intercellular communication in both normal physiology and pathological conditions to transmit/exchange bioactive molecules to recipient cells and the extracellular environment. The unique structure and composition of EVs enable them to serve as natural nanocarriers, and their physicochemical properties and biological functions can be used to develop next-generation nano and precision medicine. Knowledge of the cellular processes that govern EVs biology and membrane trafficking is essential for their clinical applications. However, in this rapidly expanding field, much remains unknown regarding EV origin, biogenesis, cargo sorting, and secretion, as well as EV-based theranostic platform generation. Hence, we present a comprehensive overview of the recent advances in biogenesis, membrane trafficking, and functions of EVs, highlighting the impact of nanoparticles and oxidative stress on EVs biogenesis and release and finally emphasizing the role of EVs as nanotherapeutic agents.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Min-Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Muhammad Qasim
- Center of Bioengineering and Nanomedicine, Department of Food Science, University of Otago, Dunedin, 9054, New Zealand
| | - Khalid Khan
- Science and Technology KPK, Peshawar, Pakistan
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| |
Collapse
|
131
|
Beatriz M, Vilaça R, Lopes C. Exosomes: Innocent Bystanders or Critical Culprits in Neurodegenerative Diseases. Front Cell Dev Biol 2021; 9:635104. [PMID: 34055771 PMCID: PMC8155522 DOI: 10.3389/fcell.2021.635104] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/06/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are nano-sized membrane-enclosed particles released by cells that participate in intercellular communication through the transfer of biologic material. EVs include exosomes that are small vesicles that were initially associated with the disposal of cellular garbage; however, recent findings point toward a function as natural carriers of a wide variety of genetic material and proteins. Indeed, exosomes are vesicle mediators of intercellular communication and maintenance of cellular homeostasis. The role of exosomes in health and age-associated diseases is far from being understood, but recent evidence implicates exosomes as causative players in the spread of neurodegenerative diseases. Cells from the central nervous system (CNS) use exosomes as a strategy not only to eliminate membranes, toxic proteins, and RNA species but also to mediate short and long cell-to-cell communication as carriers of important messengers and signals. The accumulation of protein aggregates is a common pathological hallmark in many neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and prion diseases. Protein aggregates can be removed and delivered to degradation by the endo-lysosomal pathway or can be incorporated in multivesicular bodies (MVBs) that are further released to the extracellular space as exosomes. Because exosome transport damaged cellular material, this eventually contributes to the spread of pathological misfolded proteins within the brain, thus promoting the neurodegeneration process. In this review, we focus on the role of exosomes in CNS homeostasis, their possible contribution to the development of neurodegenerative diseases, the usefulness of exosome cargo as biomarkers of disease, and the potential benefits of plasma circulating CNS-derived exosomes.
Collapse
Affiliation(s)
- Margarida Beatriz
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Rita Vilaça
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Carla Lopes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
132
|
Srinivasan A, Sundar IK. Recent updates on the role of extracellular vesicles in the pathogenesis of allergic asthma. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2021; 2:127-147. [PMID: 34414402 PMCID: PMC8372030 DOI: 10.20517/evcna.2021.03] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Asthma is a chronic inflammatory disease of the airway diagnosed with different endotypes and phenotypes, characterized by airway obstruction in response to allergens, bacterial/viral infections, or pollutants. Several cell types such as the airway epithelial cells, mesenchymal stem cells and different immune cells including dendritic cells (DCs), T and B cells and mast cells play an essential role during the pathobiology of asthma. Extracellular vesicles (EVs) are membranous nanovesicles produced by every cell type that facilitates intercellular communications. EVs contain heterogeneous cargos that primarily depend on the composition or cell type of origin and they can alter the physiological state of the target cells. EVs encompass a wide variety of proteins including Tetraspanins, MHC classes I and II, co-stimulatory molecules, nucleic acids such as RNA, miRNA, piRNA, circRNA, and lipids like ceramides and sphingolipids. Recent literature indicates that EVs play a pivotal role in the pathophysiology of allergic asthma and may potentially be used as a novel biomarker to determine endotypes and phenotypes in severe asthmatics. Based on the prior reports, we speculate that regulation of EVs biogenesis and release might be under the control of circadian rhythms. Thus, circadian rhythms may influence the composition of the EVs, which alter the microenvironment that results in the induction of an immune-inflammatory response to various environmental insults or allergens such as air pollutants, ozone, diesel exhaust particles, pollens, outdoor molds, environmental tobacco smoke, etc. In this mini-review, we summarize the recent updates on the novel role of EVs in the pathogenesis of asthma, and highlight the link between circadian rhythms and EVs that may be important to identify molecular mechanisms to target during the pathogenesis of chronic inflammatory lung disease such as asthma.
Collapse
Affiliation(s)
- Ashokkumar Srinivasan
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Lawrence, KS 66160, USA
| | - Isaac Kirubakaran Sundar
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Lawrence, KS 66160, USA
| |
Collapse
|
133
|
Sorop A, Constantinescu D, Cojocaru F, Dinischiotu A, Cucu D, Dima SO. Exosomal microRNAs as Biomarkers and Therapeutic Targets for Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22094997. [PMID: 34066780 PMCID: PMC8125948 DOI: 10.3390/ijms22094997] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and the second most common cause of cancer-related death globally. This type of liver cancer is frequently detected at a late stage by current biomarkers because of the high clinical and biological heterogeneity of HCC tumours. From a plethora of molecules and cellular compounds, small nanoparticles with an endosomal origin are valuable cancer biomarkers or cargos for novel treatments. Despite their small sizes, in the range of 40–150 nm, these particles are delimited by a lipid bilayer membrane with a specific lipid composition and carry functional information—RNA, proteins, miRNAs, long non-coding RNAs (lncRNAs), or DNA fragments. This review summarizes the role of exosomal microRNA (miRNA) species as biomarkers in HCC therapy. After we briefly introduce the exosome biogenesis and the methods of isolation and characterization, we discuss miRNA’s correlation with the diagnosis and prognosis of HCC, either as single miRNA species, or as specific panels with greater clinical impact. We also review the role of exosomal miRNAs in the tumourigenic process and in the cell communication pathways through the delivery of cargos, including proteins or specific drugs.
Collapse
Affiliation(s)
- Andrei Sorop
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania; (A.S.); (D.C.); (S.O.D.)
- Department DAFAB, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (F.C.); (A.D.)
| | - Diana Constantinescu
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania; (A.S.); (D.C.); (S.O.D.)
| | - Florentina Cojocaru
- Department DAFAB, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (F.C.); (A.D.)
| | - Anca Dinischiotu
- Department DAFAB, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (F.C.); (A.D.)
| | - Dana Cucu
- Department DAFAB, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (F.C.); (A.D.)
- Correspondence: ; Tel.: +40-728-257-607
| | - Simona Olimpia Dima
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania; (A.S.); (D.C.); (S.O.D.)
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, 022238 Bucharest, Romania
| |
Collapse
|
134
|
Liang Y, Lehrich BM, Zheng S, Lu M. Emerging methods in biomarker identification for extracellular vesicle-based liquid biopsy. J Extracell Vesicles 2021; 10:e12090. [PMID: 34012517 PMCID: PMC8114032 DOI: 10.1002/jev2.12090] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/17/2021] [Accepted: 04/13/2021] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are released by many cell types and distributed within various biofluids. EVs have a lipid membrane-confined structure that allows for carrying unique molecular information originating from their parent cells. The species and quantity of EV cargo molecules, including nucleic acids, proteins, lipids, and metabolites, may vary largely owing to their parent cell types and the pathophysiologic status. Such heterogeneity in EV populations provides immense challenges to researchers, yet allows for the possibility to prognosticate the pathogenesis of a particular tissue from unique molecular signatures of dispersing EVs within biofluids. However, the inherent nature of EV's small size requires advanced methods for EV purification and evaluation from the complex biofluid. Recently, the interdisciplinary significance of EV research has attracted growing interests, and the EV analytical platforms for their diagnostic prospect have markedly progressed. This review summarizes the recent advances in these EV detection techniques and methods with the intention of translating an EV-based liquid biopsy into clinical practice. This article aims to present an overview of current EV assessment techniques, with a focus on their progress and limitations, as well as an outlook on the clinical translation of an EV-based liquid biopsy that may augment current paradigms for the diagnosis, prognosis, and monitoring the response to therapy in a variety of disease settings.
Collapse
Affiliation(s)
- Yaxuan Liang
- Center for Biological Science and Technology, Advanced Institute of Natural SciencesBeijing Normal University at ZhuhaiZhuhaiChina
| | - Brandon M. Lehrich
- Medical Scientist Training ProgramUniversity of Pittsburgh School of Medicine and Carnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | - Siyang Zheng
- Department Biomedical EngineeringCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
- Department of Electrical and Computer EngineeringCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | - Mengrou Lu
- Department Biomedical EngineeringCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| |
Collapse
|
135
|
Extracellular Vesicles from Human Adipose-Derived Mesenchymal Stem Cells: A Review of Common Cargos. Stem Cell Rev Rep 2021; 18:854-901. [PMID: 33904115 PMCID: PMC8942954 DOI: 10.1007/s12015-021-10155-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2021] [Indexed: 12/14/2022]
Abstract
In recent years, the interest in adipose tissue mesenchymal cell–derived extracellular vesicles (AT-MSC-EVs) has increasingly grown. Numerous articles support the potential of human AT-MSC-EVs as a new therapeutic option for treatment of diverse diseases in the musculoskeletal and cardiovascular systems, kidney, skin, and immune system, among others. This approach makes use of the molecules transported inside of EVs, which play an important role in cell communication and in transmission of macromolecules. However, to our knowledge, there is no database where essential information about AT-MSC-EVs cargo molecules is gathered for easy reference. The aim of this study is to describe the different molecules reported so far in AT-MSC- EVs, their main molecular functions, and biological processes in which they are involved. Recently, the presence of 591 proteins and 604 microRNAs (miRNAs) has been described in human AT-MSC-EVs. The main molecular function enabled by both proteins and miRNAs present in human AT-MSC-EVs is the binding function. Signal transduction and gene silencing are the biological processes in which a greater number of proteins and miRNAs from human AT-MSC-EVs are involved, respectively. In this review we highlight the therapeutics effects of AT-MSC-EVs related with their participation in relevant biological processes including inflammation, angiogenesis, cell proliferation, apoptosis and migration, among others.
Collapse
|
136
|
Srivatsav AT, Kapoor S. The Emerging World of Membrane Vesicles: Functional Relevance, Theranostic Avenues and Tools for Investigating Membrane Function. Front Mol Biosci 2021; 8:640355. [PMID: 33968983 PMCID: PMC8101706 DOI: 10.3389/fmolb.2021.640355] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Lipids are essential components of cell membranes and govern various membrane functions. Lipid organization within membrane plane dictates recruitment of specific proteins and lipids into distinct nanoclusters that initiate cellular signaling while modulating protein and lipid functions. In addition, one of the most versatile function of lipids is the formation of diverse lipid membrane vesicles for regulating various cellular processes including intracellular trafficking of molecular cargo. In this review, we focus on the various kinds of membrane vesicles in eukaryotes and bacteria, their biogenesis, and their multifaceted functional roles in cellular communication, host-pathogen interactions and biotechnological applications. We elaborate on how their distinct lipid composition of membrane vesicles compared to parent cells enables early and non-invasive diagnosis of cancer and tuberculosis, while inspiring vaccine development and drug delivery platforms. Finally, we discuss the use of membrane vesicles as excellent tools for investigating membrane lateral organization and protein sorting, which is otherwise challenging but extremely crucial for normal cellular functioning. We present current limitations in this field and how the same could be addressed to propel a fundamental and technology-oriented future for extracellular membrane vesicles.
Collapse
Affiliation(s)
- Aswin T. Srivatsav
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
- Wadhwani Research Center of Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
137
|
Role of Microbiota-Derived Extracellular Vesicles in Gut-Brain Communication. Int J Mol Sci 2021; 22:ijms22084235. [PMID: 33921831 PMCID: PMC8073592 DOI: 10.3390/ijms22084235] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/11/2022] Open
Abstract
Human intestinal microbiota comprise of a dynamic population of bacterial species and other microorganisms with the capacity to interact with the rest of the organism and strongly influence the host during homeostasis and disease. Commensal and pathogenic bacteria coexist in homeostasis with the intestinal epithelium and the gastrointestinal tract’s immune system, or GALT (gut-associated lymphoid tissue), of the host. However, a disruption to this homeostasis or dysbiosis by different factors (e.g., stress, diet, use of antibiotics, age, inflammatory processes) can cause brain dysfunction given the communication between the gut and brain. Recently, extracellular vesicles (EVs) derived from bacteria have emerged as possible carriers in gut-brain communication through the interaction of their vesicle components with immune receptors, which lead to neuroinflammatory immune response activation. This review discusses the critical role of bacterial EVs from the gut in the neuropathology of brain dysfunctions by modulating the immune response. These vesicles, which contain harmful bacterial EV contents such as lipopolysaccharide (LPS), peptidoglycans, toxins and nucleic acids, are capable of crossing tissue barriers including the blood-brain barrier and interacting with the immune receptors of glial cells (e.g., Toll-like receptors) to lead to the production of cytokines and inflammatory mediators, which can cause brain impairment and behavioral dysfunctions.
Collapse
|
138
|
Parreira VDSC, Santos LGC, Rodrigues ML, Passetti F. ExVe: The knowledge base of orthologous proteins identified in fungal extracellular vesicles. Comput Struct Biotechnol J 2021; 19:2286-2296. [PMID: 33995920 PMCID: PMC8102145 DOI: 10.1016/j.csbj.2021.04.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are double-membrane particles associated with intercellular communication. Since the discovery of EV production in the fungus Cryptococcus neoformans, the importance of EV release in its physiology and pathogenicity has been investigated. To date, few studies have investigated the proteomic content of EVs from multiple fungal species. Our main objective was to use an orthology approach to compare proteins identified by EV shotgun proteomics in 8 pathogenic and 1 nonpathogenic species. Using protein information from the UniProt and FungiDB databases, we integrated data for 11,433 hits in fungal EVs with an orthology perspective, resulting in 3,834 different orthologous groups. OG6_100083 (Hsp70 Pfam domain) was the unique orthologous group that was identified for all fungal species. Proteins with this protein domain are associated with the stress response, survival and morphological changes in different fungal species. Although no pathogenic orthologous group was found, we identified 5 orthologous groups exclusive to S. cerevisiae. Using the criteria of at least 7 pathogenic fungi to define a cluster, we detected the 4 unique pathogenic orthologous groups. Taken together, our data suggest that Hsp70-related proteins might play a key role in fungal EVs, regardless of the pathogenic status. Using an orthology approach, we identified at least 4 protein domains that could be novel therapeutic targets against pathogenic fungi. Our results were compiled in the herein described ExVe database, which is publicly available at http://exve.icc.fiocruz.br.
Collapse
Affiliation(s)
| | | | - Marcio L Rodrigues
- Instituto Carlos Chagas, FIOCRUZ, Rua Prof. Algacyr Munhoz Mader, 3775, CEP 81350-010, Curitiba/PR, Brazil.,Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Brazil
| | - Fabio Passetti
- Instituto Carlos Chagas, FIOCRUZ, Rua Prof. Algacyr Munhoz Mader, 3775, CEP 81350-010, Curitiba/PR, Brazil
| |
Collapse
|
139
|
Soares Martins T, Marçalo R, Ferreira M, Vaz M, Silva RM, Martins Rosa I, Vogelgsang J, Wiltfang J, da Cruz e Silva OAB, Henriques AG. Exosomal Aβ-Binding Proteins Identified by "In Silico" Analysis Represent Putative Blood-Derived Biomarker Candidates for Alzheimer´s Disease. Int J Mol Sci 2021; 22:ijms22083933. [PMID: 33920336 PMCID: PMC8070602 DOI: 10.3390/ijms22083933] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/07/2021] [Indexed: 12/17/2022] Open
Abstract
The potential of exosomes as biomarker resources for diagnostics and even for therapeutics has intensified research in the field, including in the context of Alzheimer´s disease (AD). The search for disease biomarkers in peripheral biofluids is advancing mainly due to the easy access it offers. In the study presented here, emphasis was given to the bioinformatic identification of putative exosomal candidates for AD. The exosomal proteomes of cerebrospinal fluid (CSF), serum and plasma, were obtained from three databases (ExoCarta, EVpedia and Vesiclepedia), and complemented with additional exosomal proteins already associated with AD but not found in the databases. The final biofluids’ proteomes were submitted to gene ontology (GO) enrichment analysis and the exosomal Aβ-binding proteins that can constitute putative candidates were identified. Among these candidates, gelsolin, a protein known to be involved in inhibiting Abeta fibril formation, was identified, and it was tested in human samples. The levels of this Aβ-binding protein, with anti-amyloidogenic properties, were assessed in serum-derived exosomes isolated from controls and individuals with dementia, including AD cases, and revealed altered expression patterns. Identification of potential peripheral biomarker candidates for AD may be useful, not only for early disease diagnosis but also in drug trials and to monitor disease progression, allowing for a timely therapeutic intervention, which will positively impact the patient’s quality of life.
Collapse
Affiliation(s)
- Tânia Soares Martins
- Neurosciences and Signalling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro (UA), 3810-193 Aveiro, Portugal; (T.S.M.); (R.M.); (M.F.); (M.V.); (I.M.R.); (J.W.); (O.C.S.)
| | - Rui Marçalo
- Neurosciences and Signalling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro (UA), 3810-193 Aveiro, Portugal; (T.S.M.); (R.M.); (M.F.); (M.V.); (I.M.R.); (J.W.); (O.C.S.)
| | - Maria Ferreira
- Neurosciences and Signalling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro (UA), 3810-193 Aveiro, Portugal; (T.S.M.); (R.M.); (M.F.); (M.V.); (I.M.R.); (J.W.); (O.C.S.)
| | - Margarida Vaz
- Neurosciences and Signalling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro (UA), 3810-193 Aveiro, Portugal; (T.S.M.); (R.M.); (M.F.); (M.V.); (I.M.R.); (J.W.); (O.C.S.)
| | - Raquel M. Silva
- Center for Interdisciplinary Research in Health (CIIS), Faculdade de Medicina Dentária, Universidade Católica Portuguesa, Estrada da Circunvalação, 3504-505 Viseu, Portugal;
| | - Ilka Martins Rosa
- Neurosciences and Signalling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro (UA), 3810-193 Aveiro, Portugal; (T.S.M.); (R.M.); (M.F.); (M.V.); (I.M.R.); (J.W.); (O.C.S.)
| | - Jonathan Vogelgsang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Georg-August University, Von-Siebold-Str. 5, 37075 Goettingen, Germany;
- Translational Neuroscience Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| | - Jens Wiltfang
- Neurosciences and Signalling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro (UA), 3810-193 Aveiro, Portugal; (T.S.M.); (R.M.); (M.F.); (M.V.); (I.M.R.); (J.W.); (O.C.S.)
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Georg-August University, Von-Siebold-Str. 5, 37075 Goettingen, Germany;
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Goettingen, Germany
| | - Odete A. B. da Cruz e Silva
- Neurosciences and Signalling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro (UA), 3810-193 Aveiro, Portugal; (T.S.M.); (R.M.); (M.F.); (M.V.); (I.M.R.); (J.W.); (O.C.S.)
| | - Ana Gabriela Henriques
- Neurosciences and Signalling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro (UA), 3810-193 Aveiro, Portugal; (T.S.M.); (R.M.); (M.F.); (M.V.); (I.M.R.); (J.W.); (O.C.S.)
- Correspondence:
| |
Collapse
|
140
|
Qi X, Chen S, He H, Wen W, Wang H. The role and potential application of extracellular vesicles in liver cancer. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1281-1294. [PMID: 33847910 DOI: 10.1007/s11427-020-1905-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022]
Abstract
Liver cancer is one of the most common causes of cancer-related death worldwide and mainly includes hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA). Extracellular vesicles (EVs) are membrane-derived nanometer-sized vesicles that can be released by different cell types under normal and pathological conditions and thus play important roles in the transmission of biological information between cells. Increasing evidence suggests that liver cancer cell-derived EVs may help establish a favorable microenvironment to support the proliferation, invasion and metastasis of cancer cells. In this review, we summarized the role of EVs in the tumor microenvironment (TME) during the development and progression of liver cancer. As messenger carriers, EVs are loaded by various biomolecules, such as proteins, RNA, DNA, lipids and metabolites, making them potential liquid biopsy biomarkers for the diagnosis and prognosis of liver cancer. We also highlighted the progress of EVs as antigen carriers and EV-based therapeutics in preclinical studies of liver cancer.
Collapse
Affiliation(s)
- Xuewei Qi
- Cancer Research Center, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Shuzhen Chen
- National Center for Liver Cancer, Second Military Medical University, Shanghai, 200438, China
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Huisi He
- National Center for Liver Cancer, Second Military Medical University, Shanghai, 200438, China
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Wen Wen
- National Center for Liver Cancer, Second Military Medical University, Shanghai, 200438, China.
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China.
| | - Hongyang Wang
- Cancer Research Center, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- National Center for Liver Cancer, Second Military Medical University, Shanghai, 200438, China.
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China.
| |
Collapse
|
141
|
Sahoo S, Adamiak M, Mathiyalagan P, Kenneweg F, Kafert-Kasting S, Thum T. Therapeutic and Diagnostic Translation of Extracellular Vesicles in Cardiovascular Diseases: Roadmap to the Clinic. Circulation 2021; 143:1426-1449. [PMID: 33819075 PMCID: PMC8021236 DOI: 10.1161/circulationaha.120.049254] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Exosomes are small membrane-bound vesicles of endocytic origin that are actively secreted. The potential of exosomes as effective communicators of biological signaling in myocardial function has previously been investigated, and a recent explosion in exosome research not only underscores their significance in cardiac physiology and pathology, but also draws attention to methodological limitations of studying these extracellular vesicles. In this review, we discuss recent advances and challenges in exosome research with an emphasis on scientific innovations in isolation, identification, and characterization methodologies, and we provide a comprehensive summary of web-based resources available in the field. Importantly, we focus on the biology and function of exosomes, highlighting their fundamental role in cardiovascular pathophysiology to further support potential applications of exosomes as biomarkers and therapeutics for cardiovascular diseases.
Collapse
Affiliation(s)
- Susmita Sahoo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York (S.S., M.A., P.M.)
| | - Marta Adamiak
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York (S.S., M.A., P.M.)
| | - Prabhu Mathiyalagan
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York (S.S., M.A., P.M.)
| | - Franziska Kenneweg
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS) (F.K., S.K-K., T.T.), Hannover Medical School, Germany
| | - Sabine Kafert-Kasting
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS) (F.K., S.K-K., T.T.), Hannover Medical School, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (S.K-K., T.T.)
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS) (F.K., S.K-K., T.T.), Hannover Medical School, Germany
- REBIRTH Center for Translational Regenerative Medicine (T.T.), Hannover Medical School, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (S.K-K., T.T.)
| |
Collapse
|
142
|
Plant-Derived Nano and Microvesicles for Human Health and Therapeutic Potential in Nanomedicine. Pharmaceutics 2021; 13:pharmaceutics13040498. [PMID: 33917448 PMCID: PMC8067521 DOI: 10.3390/pharmaceutics13040498] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Plants produce different types of nano and micro-sized vesicles. Observed for the first time in the 60s, plant nano and microvesicles (PDVs) and their biological role have been inexplicably under investigated for a long time. Proteomic and metabolomic approaches revealed that PDVs carry numerous proteins with antifungal and antimicrobial activity, as well as bioactive metabolites with high pharmaceutical interest. PDVs have also been shown to be also involved in the intercellular transfer of small non-coding RNAs such as microRNAs, suggesting fascinating mechanisms of long-distance gene regulation and horizontal transfer of regulatory RNAs and inter-kingdom communications. High loading capacity, intrinsic biological activities, biocompatibility, and easy permeabilization in cell compartments make plant-derived vesicles excellent natural or bioengineered nanotools for biomedical applications. Growing evidence indicates that PDVs may exert anti-inflammatory, anti-oxidant, and anticancer activities in different in vitro and in vivo models. In addition, clinical trials are currently in progress to test the effectiveness of plant EVs in reducing insulin resistance and in preventing side effects of chemotherapy treatments. In this review, we concisely introduce PDVs, discuss shortly their most important biological and physiological roles in plants and provide clues on the use and the bioengineering of plant nano and microvesicles to develop innovative therapeutic tools in nanomedicine, able to encompass the current drawbacks in the delivery systems in nutraceutical and pharmaceutical technology. Finally, we predict that the advent of intense research efforts on PDVs may disclose new frontiers in plant biotechnology applied to nanomedicine.
Collapse
|
143
|
Zivko C, Fuhrmann G, Luciani P. Liver-derived extracellular vesicles: A cell by cell overview to isolation and characterization practices. Biochim Biophys Acta Gen Subj 2021; 1865:129559. [DOI: 10.1016/j.bbagen.2020.129559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/16/2020] [Accepted: 02/11/2020] [Indexed: 02/08/2023]
|
144
|
Piombino C, Mastrolia I, Omarini C, Candini O, Dominici M, Piacentini F, Toss A. The Role of Exosomes in Breast Cancer Diagnosis. Biomedicines 2021; 9:biomedicines9030312. [PMID: 33803776 PMCID: PMC8003248 DOI: 10.3390/biomedicines9030312] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 12/15/2022] Open
Abstract
The importance of molecular re-characterization of metastatic disease with the purpose of monitoring tumor evolution has been acknowledged in numerous clinical guidelines for the management of advanced malignancies. In this context, an attractive alternative to overcome the limitations of repeated tissue sampling is represented by the analysis of peripheral blood samples as a 'liquid biopsy'. In recent years, liquid biopsies have been studied for the early diagnosis of cancer, the monitoring of tumor burden, tumor heterogeneity and the emergence of molecular resistance, along with the detection of minimal residual disease. Interestingly, liquid biopsy consents the analysis of circulating tumor cells, circulating tumor DNA and extracellular vesicles (EVs). In particular, EVs play a crucial role in cell communication, carrying transmembrane and nonmembrane proteins, as well as metabolites, lipids and nucleic acids. Of all EVs, exosomes mirror the biological fingerprints of the parental cells from which they originate, and therefore, are considered one of the most promising predictors of early cancer diagnosis and treatment response. The present review discusses current knowledge on the possible applications of exosomes in breast cancer (BC) diagnosis, with a focus on patients at higher risk.
Collapse
Affiliation(s)
- Claudia Piombino
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria di Modena, 41124 Modena, Italy; (C.P.); (C.O.); (M.D.); (F.P.)
| | - Ilenia Mastrolia
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
- Correspondence: (I.M.); (A.T.)
| | - Claudia Omarini
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria di Modena, 41124 Modena, Italy; (C.P.); (C.O.); (M.D.); (F.P.)
| | | | - Massimo Dominici
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria di Modena, 41124 Modena, Italy; (C.P.); (C.O.); (M.D.); (F.P.)
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
- Rigenerand srl, Medolla, 41036 Modena, Italy;
- Division of Oncology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Federico Piacentini
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria di Modena, 41124 Modena, Italy; (C.P.); (C.O.); (M.D.); (F.P.)
- Division of Oncology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Angela Toss
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria di Modena, 41124 Modena, Italy; (C.P.); (C.O.); (M.D.); (F.P.)
- Division of Oncology, Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
- Correspondence: (I.M.); (A.T.)
| |
Collapse
|
145
|
Circulating Extracellular Vesicles As Biomarkers and Drug Delivery Vehicles in Cardiovascular Diseases. Biomolecules 2021; 11:biom11030388. [PMID: 33808038 PMCID: PMC8001426 DOI: 10.3390/biom11030388] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are composed of a lipid bilayer containing transmembrane and soluble proteins. Subtypes of EVs include ectosomes (microparticles/microvesicles), exosomes, and apoptotic bodies that can be released by various tissues into biological fluids. EV cargo can modulate physiological and pathological processes in recipient cells through near- and long-distance intercellular communication. Recent studies have shown that origin, amount, and internal cargos (nucleic acids, proteins, and lipids) of EVs are variable under different pathological conditions, including cardiovascular diseases (CVD). The early detection and management of CVD reduce premature morbidity and mortality. Circulating EVs have attracted great interest as a potential biomarker for diagnostics and follow-up of CVD. This review highlights the role of circulating EVs as biomarkers for diagnosis, prognosis, and therapeutic follow-up of CVD, and also for drug delivery. Despite the great potential of EVs as a tool to study the pathophysiology of CVD, further studies are needed to increase the spectrum of EV-associated applications.
Collapse
|
146
|
Zhang L, Graf I, Kuang Y, Zheng X, Haupt M, Majid A, Kilic E, Hermann DM, Psychogios MN, Weber MS, Ochs J, Bähr M, Doeppner TR. Neural Progenitor Cell-Derived Extracellular Vesicles Enhance Blood-Brain Barrier Integrity by NF-κB (Nuclear Factor-κB)-Dependent Regulation of ABCB1 (ATP-Binding Cassette Transporter B1) in Stroke Mice. Arterioscler Thromb Vasc Biol 2021; 41:1127-1145. [PMID: 33327747 PMCID: PMC7901534 DOI: 10.1161/atvbaha.120.315031] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 12/07/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Extracellular vesicles (EVs) derived from neural progenitor cells enhance poststroke neurological recovery, albeit the underlying mechanisms remain elusive. Since previous research described an enhanced poststroke integrity of the blood-brain barrier (BBB) upon systemic transplantation of neural progenitor cells, we examined if neural progenitor cell-derived EVs affect BBB integrity and which cellular mechanisms are involved in the process. Approach and Results: Using in vitro models of primary brain endothelial cell (EC) cultures as well as co-cultures of brain ECs (ECs) and astrocytes exposed to oxygen glucose deprivation, we examined the effects of EVs or vehicle on microvascular integrity. In vitro data were confirmed using a mouse transient middle cerebral artery occlusion model. Cultured ECs displayed increased ABCB1 (ATP-binding cassette transporter B1) levels when exposed to oxygen glucose deprivation, which was reversed by treatment with EVs. The latter was due to an EV-induced inhibition of the NF-κB (nuclear factor-κB) pathway. Using a BBB co-culture model of ECs and astrocytes exposed to oxygen glucose deprivation, EVs stabilized the BBB and ABCB1 levels without affecting the transcellular electrical resistance of ECs. Likewise, EVs yielded reduced Evans blue extravasation, decreased ABCB1 expression as well as an inhibition of the NF-κB pathway, and downstream matrix metalloproteinase 9 (MMP-9) activity in stroke mice. The EV-induced inhibition of the NF-κB pathway resulted in a poststroke modulation of immune responses. CONCLUSIONS Our findings suggest that EVs enhance poststroke BBB integrity via ABCB1 and MMP-9 regulation, attenuating inflammatory cell recruitment by inhibition of the NF-κB pathway. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Neurology (L.Z., I.G., Y.K., X.Z., M.H., M.S.W., M.B., T.R.D.), University Medical Center Göttingen, Germany
| | - Irina Graf
- Department of Neurology (L.Z., I.G., Y.K., X.Z., M.H., M.S.W., M.B., T.R.D.), University Medical Center Göttingen, Germany
| | - Yaoyun Kuang
- Department of Neurology (L.Z., I.G., Y.K., X.Z., M.H., M.S.W., M.B., T.R.D.), University Medical Center Göttingen, Germany
| | - Xuan Zheng
- Department of Neurology (L.Z., I.G., Y.K., X.Z., M.H., M.S.W., M.B., T.R.D.), University Medical Center Göttingen, Germany
| | - Matteo Haupt
- Department of Neurology (L.Z., I.G., Y.K., X.Z., M.H., M.S.W., M.B., T.R.D.), University Medical Center Göttingen, Germany
| | - Arshad Majid
- Sheffield Institute for Translational Neuroscience, University of Sheffield, United Kingdom (A.M.)
| | - Ertugrul Kilic
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Turkey (E.K., T.R.D.)
| | - Dirk M. Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Germany (D.M.H.)
| | | | - Martin S. Weber
- Department of Neurology (L.Z., I.G., Y.K., X.Z., M.H., M.S.W., M.B., T.R.D.), University Medical Center Göttingen, Germany
- Department of Neuropathology (M.S.W., J.O.), University Medical Center Göttingen, Germany
| | - Jasmin Ochs
- Department of Neuropathology (M.S.W., J.O.), University Medical Center Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology (L.Z., I.G., Y.K., X.Z., M.H., M.S.W., M.B., T.R.D.), University Medical Center Göttingen, Germany
| | - Thorsten R. Doeppner
- Department of Neurology (L.Z., I.G., Y.K., X.Z., M.H., M.S.W., M.B., T.R.D.), University Medical Center Göttingen, Germany
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Turkey (E.K., T.R.D.)
| |
Collapse
|
147
|
Diaz-Garrido N, Cordero C, Olivo-Martinez Y, Badia J, Baldomà L. Cell-to-Cell Communication by Host-Released Extracellular Vesicles in the Gut: Implications in Health and Disease. Int J Mol Sci 2021; 22:ijms22042213. [PMID: 33672304 PMCID: PMC7927122 DOI: 10.3390/ijms22042213] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Communication between cells is crucial to preserve body homeostasis and health. Tightly controlled intercellular dialog is particularly relevant in the gut, where cells of the intestinal mucosa are constantly exposed to millions of microbes that have great impact on intestinal homeostasis by controlling barrier and immune functions. Recent knowledge involves extracellular vesicles (EVs) as mediators of such communication by transferring messenger bioactive molecules including proteins, lipids, and miRNAs between cells and tissues. The specific functions of EVs principally depend on the internal cargo, which upon delivery to target cells trigger signal events that modulate cellular functions. The vesicular cargo is greatly influenced by genetic, pathological, and environmental factors. This finding provides the basis for investigating potential clinical applications of EVs as therapeutic targets or diagnostic biomarkers. Here, we review current knowledge on the biogenesis and cargo composition of EVs in general terms. We then focus the attention to EVs released by cells of the intestinal mucosa and their impact on intestinal homeostasis in health and disease. We specifically highlight their role on epithelial barrier integrity, wound healing of epithelial cells, immunity, and microbiota shaping. Microbiota-derived EVs are not reviewed here.
Collapse
Affiliation(s)
- Natalia Diaz-Garrido
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (N.D.-G.); (C.C.); (Y.O.-M.); (J.B.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - Cecilia Cordero
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (N.D.-G.); (C.C.); (Y.O.-M.); (J.B.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - Yenifer Olivo-Martinez
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (N.D.-G.); (C.C.); (Y.O.-M.); (J.B.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - Josefa Badia
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (N.D.-G.); (C.C.); (Y.O.-M.); (J.B.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - Laura Baldomà
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (N.D.-G.); (C.C.); (Y.O.-M.); (J.B.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-403-44-96
| |
Collapse
|
148
|
Gassama Y, Favereaux A. Emerging Roles of Extracellular Vesicles in the Central Nervous System: Physiology, Pathology, and Therapeutic Perspectives. Front Cell Neurosci 2021; 15:626043. [PMID: 33708073 PMCID: PMC7940515 DOI: 10.3389/fncel.2021.626043] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles or EVs are secreted by most, if not all, eukaryote cell types and recaptured by neighboring or distant cells. Their cargo, composed of a vast diversity of proteins, lipids, and nucleic acids, supports the EVs' inter-cellular communication. The role of EVs in many cellular processes is now well documented both in physiological and pathological conditions. In this review, we focus on the role of EVs in the central nervous system (CNS) in physiological as well as pathological conditions such as neurodegenerative diseases or brain cancers. We also discuss the future of EVs in clinical research, in particular, their value as biomarkers as well as innovative therapeutic agents. While an increasing number of studies reveal EV research as a promising field, progress in the standardization of protocols and innovation in analysis as well as in research tools is needed to make a breakthrough in our understanding of their impact in the pathophysiology of the brain.
Collapse
Affiliation(s)
- Yadaly Gassama
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Alexandre Favereaux
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| |
Collapse
|
149
|
Exosomes Secreted from Amniotic Membrane Contribute to Its Anti-Fibrotic Activity. Int J Mol Sci 2021; 22:ijms22042055. [PMID: 33669673 PMCID: PMC7922650 DOI: 10.3390/ijms22042055] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/16/2022] Open
Abstract
Amniotic membranes (AM) have anti-fibrotic activity. Exosomes (nano-sized vesicles) function as conduits for intercellular transfer and contain all the necessary components to induce the resolution of fibrosis. In this study, we tested the hypothesis that the anti-fibrotic activity of AM is mediated by exosomes. AM-derived exosomes or amniotic stromal cell-derived exosomes were isolated and characterized. Anti-fibrotic activity of exosomes was evaluated using human hepatic stellate cells (LX-2), an in vitro model of fibrosis. Exosomes isolated from AM tissue-conditioned media had an average size of 75 nm. Exosomes significantly inhibited the proliferation of TGFβ1-activated LX-2 but had no effect on the proliferation of non-activated LX-2 cells. Exosomes also reduced the migration of LX-2 in a scratch wound assay. Furthermore, exosomes reduced the gene expression of pro-fibrotic markers such as COL1A1, ACTA, and TGFβ1 in LX-2 cells. Interestingly, exosomes isolated from AM tissue under hypoxic conditions seemed to show a stronger anti-fibrotic activity than exosomes isolated from tissue under normoxic conditions. Exosomes released by in vitro cultured AM stromal cells were smaller in size compared with tissue exosomes and also showed anti-fibrotic activity on LX-2 cells. In conclusion, AM-tissue-released exosomes contribute to the anti-fibrotic activity of AM. This is the first report of isolation, characterization, and functional evaluation of exosomes derived from amniotic tissues with the direct comparison between tissue-derived exosomes and cultured cell-derived exosomes.
Collapse
|
150
|
Therapeutic potential of stem cells for preterm infant brain damage: Can we move from the heterogeneity of preclinical and clinical studies to established therapeutics? Biochem Pharmacol 2021; 186:114461. [PMID: 33571501 DOI: 10.1016/j.bcp.2021.114461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 12/17/2022]
Abstract
Acquired perinatal brain injuries are a set of conditions that remains a key challenge for neonatologists and that have significant social, emotional and financial implications for our communities. In our perspective article, we will introduce perinatal brain injury focusing specifically on the events leading to brain damage in preterm born infants and outcomes for these infants. Then we will summarize and discuss the preclinical and clinical studies testing the efficacy of stem cells as neuroprotectants in the last ten years in perinatal brain injury. There are no therapies to treat brain damage in preterm born infants and a primary finding from this review is that there is a scarcity of stem cell trials focused on overcoming brain injuries in these infants. Overall, across all forms of perinatal brain injury there is a remarkable heterogeneity in previous and on-going preclinical and clinical studies in terms of the stem cell type, animal models/patient selection, route and time of administration. Despite the quality of many of the studies this variation makes it difficult to reach a valid consensus for future developments. However, it is clear that stem cells (and stem cell derived exosomes) can reduce perinatal brain injury and our field needs to work collectively to refine an effective protocol for each type of injury. The use of standardized stem cell products and testing these products across multiple models of injury will provide a stronger framework for clinical trials development.
Collapse
|