101
|
Wang J, Zou W, Ma J, Liu J. Biomaterials and Gene Manipulation in Stem Cell-Based Therapies for Spinal Cord Injury. Stem Cells Dev 2019; 28:239-257. [PMID: 30489226 DOI: 10.1089/scd.2018.0169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Spinal cord injury (SCI), a prominent health issue, represents a substantial portion of the global health care burden. Stem cell-based therapies provide novel solutions for SCI treatment, yet obstacles remain in the form of low survival rate, uncontrolled differentiation, and functional recovery. The application of engineered biomaterials in stem cell therapy provides a physicochemical microenvironment that mimics the stem cell niche, facilitating self-renewal, stem cell differentiation, and tissue reorganization. Nonetheless, external microenvironment support is inadequate, and some obstacles persist, for example, limited sources, gradual aging, and immunogenicity of stem cells. Targeted stem cell gene manipulation could eliminate many of these drawbacks, allowing safer, more effective use under regulation of intrinsic mechanisms. Additionally, through genetic labeling of stem cells, their role in tissue engineering may be elucidated. Therefore, combining stem cell therapy, materials science, and genetic modification technologies may shed light on SCI treatment. Herein, recent advances and advantages of biomaterials and gene manipulation, especially with respect to stem cell-based therapies, are highlighted, and their joint performance in SCI is evaluated. Current technological limitations and perspectives on future directions are then discussed. Although this combination is still in the early stages of development, it is highly likely to substantially contribute to stem cell-based therapies in the foreseeable future.
Collapse
Affiliation(s)
- Jiayi Wang
- 1 Regenerative Medicine Center, the First Affiliated Hospital of Dalian Medical University, Dalian, China.,2 Stem Cell Clinical Research Center, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wei Zou
- 3 College of Life Sciences, Liaoning Normal University, Dalian, China.,4 Liaoning Key Laboratories of Biotechnology and Molecular Drug Research & Development, Dalian, China
| | - Jingyun Ma
- 1 Regenerative Medicine Center, the First Affiliated Hospital of Dalian Medical University, Dalian, China.,2 Stem Cell Clinical Research Center, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jing Liu
- 1 Regenerative Medicine Center, the First Affiliated Hospital of Dalian Medical University, Dalian, China.,2 Stem Cell Clinical Research Center, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
102
|
Shaw KA, Parada SA, Gloystein DM, Devine JG. The Science and Clinical Applications of Placental Tissues in Spine Surgery. Global Spine J 2018; 8:629-637. [PMID: 30202718 PMCID: PMC6125928 DOI: 10.1177/2192568217747573] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
STUDY DESIGN Narrative literature review. OBJECTIVES Placental tissue, amniotic/chorionic membrane, and umbilical cord have seen a recent expansion in their clinical application in various fields of surgery. It is important for practicing surgeons to know the underlying science, especially as it relates to spine surgery, to understand the rationale and clinical indication, if any, for their usage. METHODS A literature search was performed using PubMed and MEDLINE databases to identify studies reporting the application of placental tissues as it relates to the practicing spine surgeon. Four areas of interest were identified and a comprehensive review was performed of available literature. RESULTS Clinical application of placental tissue holds promise with regard to treatment of intervertebral disc pathology, preventing epidural fibrosis, spinal dysraphism closure, and spinal cord injury; however, there is an overall paucity of high-quality evidence. As such, evidence-based guidelines for its clinical application are currently unavailable. CONCLUSIONS There is no high-level clinical evidence to support the application of placental tissue for spinal surgery, although it does hold promise for several areas of interest for the practicing spine surgeon. High-quality research is needed to define the clinical effectiveness and indications of placental tissue as it relates to spine surgery.
Collapse
Affiliation(s)
- K. Aaron Shaw
- Dwight D. Eisenhower Army Medical Center, Fort Gordon, GA, USA,K. Aaron Shaw, Department of Orthopaedic Surgery, Dwight D. Eisenhower Army Medical Center, 300 East Hospital Road, Fort Gordon, GA 30905, USA.
| | | | | | - John G. Devine
- Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
103
|
Li X, Li J, Xiao Z, Dai J. [The role of glial scar on axonal regeneration after spinal cord injury]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2018; 32:973-978. [PMID: 30238720 DOI: 10.7507/1002-1892.201806093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The 'glial scar' has been widely studied in the regeneration of spinal cord injury (SCI). For decades, mainstream scientific concept considers glial scar as a 'physical barrier' to impede axonal regeneration after SCI. Moreover, some extracellular molecules produced by glial scar are also regarded as axonal growth inhibitors. With the development of technology and the progress of research, multiple lines of new evidence challenge the pre-existing traditional notions in SCI repair, including the role of glial scar. This review briefly reviewed the history, advance, and controversy of glial scar research in SCI repair since 1930s, hoping to recognize the roles of glial scar and crack the international problem of SCI regeneration.
Collapse
Affiliation(s)
- Xing Li
- Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, 100101, P.R.China
| | - Jiayin Li
- Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, 100101, P.R.China
| | - Zhifeng Xiao
- Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, 100101, P.R.China
| | - Jianwu Dai
- Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, 100101,
| |
Collapse
|
104
|
Chen X, Zhao Y, Li X, Xiao Z, Yao Y, Chu Y, Farkas B, Romano I, Brandi F, Dai J. Functional Multichannel Poly(Propylene Fumarate)-Collagen Scaffold with Collagen-Binding Neurotrophic Factor 3 Promotes Neural Regeneration After Transected Spinal Cord Injury. Adv Healthc Mater 2018; 7:e1800315. [PMID: 29920990 DOI: 10.1002/adhm.201800315] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/11/2018] [Indexed: 01/12/2023]
Abstract
Many factors contribute to the poor axonal regrowth and ineffective functional recovery after spinal cord injury (SCI). Biomaterials have been used for SCI repair by promoting bridge formation and reconnecting the neural tissue at the lesion site. The mechanical properties of biomaterials are critical for successful design to ensure the stable support as soon as possible when compressed by the surrounding spine and musculature. Poly(propylene fumarate) (PPF) scaffolds with high mechanical strength have been shown to provide firm spatial maintenance and to promote repair of tissue defects. A multichannel PPF scaffold is combined with collagen biomaterial to build a novel biocompatible delivery system coated with neurotrophin-3 containing an engineered collagen-binding domain (CBD-NT3). The parallel-aligned multichannel structure of PPF scaffolds guide the direction of neural tissue regeneration across the lesion site and promote reestablishment of bridge connectivity. The combinatorial treatment consisting of PPF and collagen loaded with CBD-NT3 improves the inhibitory microenvironment, facilitates axonal and neuronal regeneration, survival of various types of functional neurons and remyelination and synapse formation of regenerated axons following SCI. This novel treatment strategy for SCI repair effectively promotes neural tissue regeneration after transected spinal injury by providing a regrowth-supportive microenvironment and eventually induces functional improvement.
Collapse
Affiliation(s)
- Xi Chen
- Institute of Combined Injury; State Key Laboratory of Trauma; Burns and Combined Injury; Chongqing Engineering Research Center for Nanomedicine; Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine; College of Preventive Medicine; Army Medical University (Third Military Medical University); 30th Gaotanyan street Chongqing 400038 China
| | - Yannan Zhao
- State Key Laboratory of Molecular; Developmental Biology; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing 100101 China
| | - Xing Li
- State Key Laboratory of Molecular; Developmental Biology; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing 100101 China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular; Developmental Biology; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing 100101 China
| | - Yuanjiang Yao
- Department of Neurobiology; Chongqing Key Laboratory of Neurobiology; Army Medical University (Third Military Medical University); 30th Gaotanyan street Chongqing 400038 China
| | - Yun Chu
- Division of Nanobiomedicine; Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou 215123 China
| | - Balázs Farkas
- Istituto Italiano di Tecnologia; Via Morego 30 Genova 16163 Italy
| | - Ilaria Romano
- Istituto Italiano di Tecnologia; Via Morego 30 Genova 16163 Italy
| | - Fernando Brandi
- Istituto Italiano di Tecnologia; Via Morego 30 Genova 16163 Italy
- Istituto Nazionale di Ottica; Consiglio Nazionale delle Ricerche; Via Moruzzi 1 Pisa 56124 Italy
| | - Jianwu Dai
- Institute of Combined Injury; State Key Laboratory of Trauma; Burns and Combined Injury; Chongqing Engineering Research Center for Nanomedicine; Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine; College of Preventive Medicine; Army Medical University (Third Military Medical University); 30th Gaotanyan street Chongqing 400038 China
- State Key Laboratory of Molecular; Developmental Biology; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing 100101 China
- Department of Neurobiology; Chongqing Key Laboratory of Neurobiology; Army Medical University (Third Military Medical University); 30th Gaotanyan street Chongqing 400038 China
| |
Collapse
|
105
|
Orr MB, Gensel JC. Spinal Cord Injury Scarring and Inflammation: Therapies Targeting Glial and Inflammatory Responses. Neurotherapeutics 2018; 15:541-553. [PMID: 29717413 PMCID: PMC6095779 DOI: 10.1007/s13311-018-0631-6] [Citation(s) in RCA: 383] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Deficits in neuronal function are a hallmark of spinal cord injury (SCI) and therapeutic efforts are often focused on central nervous system (CNS) axon regeneration. However, secondary injury responses by astrocytes, microglia, pericytes, endothelial cells, Schwann cells, fibroblasts, meningeal cells, and other glia not only potentiate SCI damage but also facilitate endogenous repair. Due to their profound impact on the progression of SCI, glial cells and modification of the glial scar are focuses of SCI therapeutic research. Within and around the glial scar, cells deposit extracellular matrix (ECM) proteins that affect axon growth such as chondroitin sulfate proteoglycans (CSPGs), laminin, collagen, and fibronectin. This dense deposition of material, i.e., the fibrotic scar, is another barrier to endogenous repair and is a target of SCI therapies. Infiltrating neutrophils and monocytes are recruited to the injury site through glial chemokine and cytokine release and subsequent upregulation of chemotactic cellular adhesion molecules and selectins on endothelial cells. These peripheral immune cells, along with endogenous microglia, drive a robust inflammatory response to injury with heterogeneous reparative and pathological properties and are targeted for therapeutic modification. Here, we review the role of glial and inflammatory cells after SCI and the therapeutic strategies that aim to replace, dampen, or alter their activity to modulate SCI scarring and inflammation and improve injury outcomes.
Collapse
Affiliation(s)
- Michael B Orr
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky College of Medicine, 741 S. Limestone, B463 BBSRB, Lexington, Kentucky, 40536, USA
| | - John C Gensel
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky College of Medicine, 741 S. Limestone, B463 BBSRB, Lexington, Kentucky, 40536, USA.
| |
Collapse
|
106
|
Li J, Li X, Xiao Z, Dai J. [Review of the regeneration mechanism of complete spinal cord injury]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2018; 32:641-649. [PMID: 29905039 DOI: 10.7507/1002-1892.201805069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Spinal cord injury (SCI), especially the complete SCI, usually results in complete paralysis below the level of the injury and seriously affects the patient's quality of life. SCI repair is still a worldwide medical problem. In the last twenty years, Professor DAI Jianwu and his team pioneered complete SCI model by removing spinal tissue with varied lengths in rodents, canine, and non-human primates to verify therapeutic effect of different repair strategies. Moreover, they also started the first clinical study of functional collagen scaffold on patients with acute complete SCI on January 16th, 2015. This review mainly focusses on the possible mechanisms responsible for complete SCI. In common, recovery of some sensory and motor functions post complete SCI include the following three contributing reasons. ① Regeneration of long ascending and descending axons throughout the lesion site to re-connect the original targets; ② New neural circuits formed in the lesion site by newly generated neurons post injury, which effectively re-connect the transected stumps; ③ The combined effect of ① and ②. The numerous studies have confirmed that neural circuits rebuilt across the injury site by newborn neurons might be the main mechanisms for functional recovery of animals from rodents to dogs. In many SCI model, especially the complete spinal cord transection model, many studies have convincingly demonstrated that the quantity and length of regenerated long descending axons, particularly like CST fibers, are too few to across the lesion site that is millimeters in length to realize motor functional recovery. Hence, it is more feasible in guiding neuronal relays formation by bio-scaffolds implantation than directing long motor axons regeneration in improving motor function of animals with complete spinal cord transection. However, some other issues such as promoting more neuronal relays formation, debugging wrong connections, and maintaining adequate neural circuits for functional recovery are urgent problems to be addressed.
Collapse
Affiliation(s)
- Jiayin Li
- Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, 100101,P.R.China
| | - Xing Li
- Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, 100101,P.R.China
| | - Zhifeng Xiao
- Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, 100101,P.R.China
| | - Jianwu Dai
- Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, 100101,
| |
Collapse
|
107
|
Xiao Z, Tang F, Zhao Y, Han G, Yin N, Li X, Chen B, Han S, Jiang X, Yun C, Zhao C, Cheng S, Zhang S, Dai J. Significant Improvement of Acute Complete Spinal Cord Injury Patients Diagnosed by a Combined Criteria Implanted with NeuroRegen Scaffolds and Mesenchymal Stem Cells. Cell Transplant 2018; 27:907-915. [PMID: 29871514 PMCID: PMC6050906 DOI: 10.1177/0963689718766279] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Stem cells and biomaterials transplantation hold a promising treatment for functional
recovery in spinal cord injury (SCI) animal models. However, the functional recovery of
complete SCI patients was still a huge challenge in clinic. Additionally, there is no
clinical standard procedure available to diagnose precisely an acute patient as complete
SCI. Here, two acute SCI patients, with injury at thoracic 11 (T11) and cervical 4 (C4)
level respectively, were judged as complete injury by a stricter method combined with
American Spinal Injury Association (ASIA) Impairment Scale, magnetic resonance imaging
(MRI) and nerve electrophysiology. Collagen scaffolds, named NeuroRegen scaffolds, with
human umbilical cord mesenchymal stem cells (MSCs) were transplanted into the injury site.
During 1 year follow up, no obvious adverse symptoms related to the functional scaffolds
implantation were found after treatment. The recovery of the sensory and motor functions
was observed in the two patients. The sensory level expanded below the injury level, and
the patients regained the sense function in bowel and bladder. The thoracic SCI patient
could walk voluntary with the hip under the help of brace. The cervical SCI patient could
raise his lower legs against the gravity in the wheelchair and shake his toes under
control. The injury status of the two patients was improved from ASIA A complete injury to
ASIA C incomplete injury. Furthermore, the improvement of sensory and motor functions was
accompanied with the recovery of the interrupted neural conduction. These results showed
that the supraspinal control of movements below the injury was regained by functional
scaffolds implantation in the two patients who were judged as the complete injury with
combined criteria, it suggested that functional scaffolds transplantation could serve as
an effective treatment for acute complete SCI patients.
Collapse
Affiliation(s)
- Zhifeng Xiao
- 1 State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Fengwu Tang
- 2 The Neurosurgery & Neurology Hospital of the Affiliated Hospital of Logistics University of Chinese Armed Police Forces (CAPF), Tianjin, China
| | - Yannan Zhao
- 1 State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Guang Han
- 2 The Neurosurgery & Neurology Hospital of the Affiliated Hospital of Logistics University of Chinese Armed Police Forces (CAPF), Tianjin, China
| | - Na Yin
- 2 The Neurosurgery & Neurology Hospital of the Affiliated Hospital of Logistics University of Chinese Armed Police Forces (CAPF), Tianjin, China
| | - Xing Li
- 1 State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Bing Chen
- 1 State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Sufang Han
- 1 State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xianfeng Jiang
- 2 The Neurosurgery & Neurology Hospital of the Affiliated Hospital of Logistics University of Chinese Armed Police Forces (CAPF), Tianjin, China
| | - Chen Yun
- 2 The Neurosurgery & Neurology Hospital of the Affiliated Hospital of Logistics University of Chinese Armed Police Forces (CAPF), Tianjin, China
| | - Changyu Zhao
- 2 The Neurosurgery & Neurology Hospital of the Affiliated Hospital of Logistics University of Chinese Armed Police Forces (CAPF), Tianjin, China
| | - Shixiang Cheng
- 2 The Neurosurgery & Neurology Hospital of the Affiliated Hospital of Logistics University of Chinese Armed Police Forces (CAPF), Tianjin, China
| | - Sai Zhang
- 2 The Neurosurgery & Neurology Hospital of the Affiliated Hospital of Logistics University of Chinese Armed Police Forces (CAPF), Tianjin, China.,Sai Zhang and Jianwu Dai contributed as co-corresponding authors
| | - Jianwu Dai
- 1 State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Sai Zhang and Jianwu Dai contributed as co-corresponding authors
| |
Collapse
|
108
|
Mukhamedshina YO, Akhmetzyanova ER, Kostennikov AA, Zakirova EY, Galieva LR, Garanina EE, Rogozin AA, Kiassov AP, Rizvanov AA. Adipose-Derived Mesenchymal Stem Cell Application Combined With Fibrin Matrix Promotes Structural and Functional Recovery Following Spinal Cord Injury in Rats. Front Pharmacol 2018; 9:343. [PMID: 29692732 PMCID: PMC5902567 DOI: 10.3389/fphar.2018.00343] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/26/2018] [Indexed: 01/05/2023] Open
Abstract
The use of stem and progenitor cells to restore damaged organs and tissues, in particular, the central nervous system, is currently considered a most promising therapy in regenerative medicine. At the same time, another approach aimed at stimulating regeneration with the use of stem cells encapsulated into a biopolymer matrix and capable of creating a specific microenvironment for the implanted cells similar to the natural extracellular matrix is under active development. Here, we study effects of the application of adipose-derived mesenchymal stem cells (AD-MSCs) combined with a fibrin matrix on post-traumatic reactions in the spinal cord in rats. The AD-MSC application is found to exert a positive impact on the functional and structural recovery after spinal cord injury (SCI) that has been confirmed by the results of behavioral/electrophysiological and morphometric studies demonstrating reduced area of abnormal cavities and enhanced tissue retention in the site of injury. Immunohistochemical and real-time PCR analyses provide evidence that AD-MSC application decreases the GFAP expression in the area of SCI that might indicate the reduction of astroglial activation. Our results also demonstrate that AD-MSC application contributes to marked upregulation of PDGFβR and HSPA1b mRNA expression and decrease of Iba1 expression at the site of the central canal. Thus, the application of AD-MSCs combined with fibrin matrix at the site of SCI during the subacute period can stimulate important mechanisms of nervous tissue regeneration and should be further developed for clinical applications.
Collapse
Affiliation(s)
- Yana O Mukhamedshina
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan, Russia
| | - Elvira R Akhmetzyanova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Alexander A Kostennikov
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Elena Y Zakirova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Luisa R Galieva
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Ekaterina E Garanina
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Alexander A Rogozin
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Department of Neurology and Manual Therapy, Kazan State Medical Academy, Kazan, Russia
| | - Andrey P Kiassov
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Albert A Rizvanov
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
109
|
Sun G, Li G, Li D, Huang W, Zhang R, Zhang H, Duan Y, Wang B. hucMSC derived exosomes promote functional recovery in spinal cord injury mice via attenuating inflammation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 89:194-204. [PMID: 29752089 DOI: 10.1016/j.msec.2018.04.006] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/23/2018] [Accepted: 04/09/2018] [Indexed: 12/16/2022]
Abstract
The exploration of effective spinal cord injury (SCI) healing still remain a great challenge due to the high morbidity, complex pathology and unclear targets. Human umbilical cord mesenchymal stem cells (hucMSC) play an important role in tissue regeneration. However, transplanting stem cells has a potential risk of teratogenicity. Recent studies have suggested that exosomes secreted by stem cells may contribute to tissue injury repair. We hypothesized that the application of hucMSC derived exosomes may be a potential way for SCI treatment. Our studies showed the hucMSC derived exosomes with a mean particle size of 70 nm could effectively trigger the bone marrow derived macrophage (BMDM) polarization from M1 to a M2 phenotype. In vivo studies demonstrated that the hucMSC derived exosomes could improve the functional recovery after SCI through down-regulation of the inflammatory cytokines, such as TNF-α, MIP-1α, IL-6 and IFN-γ. Collectively, our findings indicated that hucMSC derived exosomes could facilitate spinal cord injury healing via attenuating the inflammation of the injury region. Our results provided a new perspective and therapeutic strategy for the use of hucMSC derived exosomes in soft tissue repair.
Collapse
Affiliation(s)
- Guodong Sun
- The First Affiliated Hospital, Biomedical Translational Research Institute and Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, PR China
| | - Guangqiang Li
- The First Affiliated Hospital, Biomedical Translational Research Institute and Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, PR China
| | - Dehai Li
- The First Affiliated Hospital, Biomedical Translational Research Institute and Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, PR China
| | - Wanjun Huang
- The First Affiliated Hospital, Biomedical Translational Research Institute and Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, PR China
| | - Renwen Zhang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China
| | - Hua Zhang
- The First Affiliated Hospital, Biomedical Translational Research Institute and Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, PR China
| | - Yuanyuan Duan
- The First Affiliated Hospital, Biomedical Translational Research Institute and Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, PR China.
| | - Baocheng Wang
- The First Affiliated Hospital, Biomedical Translational Research Institute and Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
110
|
Future biomaterials for enhanced cell-substrate communication in spinal cord injury intervention. Future Sci OA 2018; 4:FSO268. [PMID: 29379642 PMCID: PMC5778382 DOI: 10.4155/fsoa-2017-0130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 10/25/2017] [Indexed: 02/05/2023] Open
|
111
|
Zaviskova K, Tukmachev D, Dubisova J, Vackova I, Hejcl A, Bystronova J, Pravda M, Scigalkova I, Sulakova R, Velebny V, Wolfova L, Kubinova S. Injectable hydroxyphenyl derivative of hyaluronic acid hydrogel modified with RGD as scaffold for spinal cord injury repair. J Biomed Mater Res A 2018; 106:1129-1140. [PMID: 29266693 DOI: 10.1002/jbm.a.36311] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/09/2017] [Accepted: 12/15/2017] [Indexed: 12/24/2022]
Abstract
Hydrogel scaffolds which bridge the lesion, together with stem cell therapy represent a promising approach for spinal cord injury (SCI) repair. In this study, a hydroxyphenyl derivative of hyaluronic acid (HA-PH) was modified with the integrin-binding peptide arginine-glycine-aspartic acid (RGD), and enzymatically crosslinked to obtain a soft injectable hydrogel. Moreover, addition of fibrinogen was used to enhance proliferation of human Wharton's jelly-derived mesenchymal stem cells (hWJ-MSCs) on HA-PH-RGD hydrogel. The neuroregenerative potential of HA-PH-RGD hydrogel was evaluated in vivo in acute and subacute models of SCI. Both HA-PH-RGD hydrogel injection and implantation into the acute spinal cord hemisection cavity resulted in the same axonal and blood vessel density in the lesion area after 2 and 8 weeks. HA-PH-RGD hydrogel alone or combined with fibrinogen (HA-PH-RGD/F) and seeded with hWJ-MSCs was then injected into subacute SCI and evaluated after 8 weeks using behavioural, histological and gene expression analysis. A subacute injection of both HA-PH-RGD and HA-PH-RGD/F hydrogels similarly promoted axonal ingrowth into the lesion and this effect was further enhanced when the HA-PH-RGD/F was combined with hWJ-MSCs. On the other hand, no effect was found on locomotor recovery or the blood vessel ingrowth and density of glial scar around the lesion. In conclusion, we have developed and characterized injectable HA-PH-RGD based hydrogel, which represents a suitable material for further combinatorial therapies in neural tissue engineering. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1129-1140, 2018.
Collapse
Affiliation(s)
- Kristyna Zaviskova
- Department of Biomaterials and Biophysical Methods, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.,2nd Medical Faculty, Charles University, Prague, Czech Republic
| | - Dmitry Tukmachev
- Department of Biomaterials and Biophysical Methods, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.,2nd Medical Faculty, Charles University, Prague, Czech Republic
| | - Jana Dubisova
- Department of Biomaterials and Biophysical Methods, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.,2nd Medical Faculty, Charles University, Prague, Czech Republic
| | - Irena Vackova
- Department of Biomaterials and Biophysical Methods, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ales Hejcl
- Department of Biomaterials and Biophysical Methods, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Julie Bystronova
- Department of Tissue Engineering, Contipro a.s., Dolni Dobrouc, Czech Republic
| | - Martin Pravda
- Department of Tissue Engineering, Contipro a.s., Dolni Dobrouc, Czech Republic
| | - Ivana Scigalkova
- Department of Tissue Engineering, Contipro a.s., Dolni Dobrouc, Czech Republic
| | - Romana Sulakova
- Department of Tissue Engineering, Contipro a.s., Dolni Dobrouc, Czech Republic
| | - Vladimir Velebny
- Department of Tissue Engineering, Contipro a.s., Dolni Dobrouc, Czech Republic
| | - Lucie Wolfova
- Department of Biomaterials and Biophysical Methods, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.,Department of Tissue Engineering, Contipro a.s., Dolni Dobrouc, Czech Republic
| | - Sarka Kubinova
- Department of Biomaterials and Biophysical Methods, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
112
|
Ma YH, Zeng X, Qiu XC, Wei QS, Che MT, Ding Y, Liu Z, Wu GH, Sun JH, Pang M, Rong LM, Liu B, Aljuboori Z, Han I, Ling EA, Zeng YS. Perineurium-like sheath derived from long-term surviving mesenchymal stem cells confers nerve protection to the injured spinal cord. Biomaterials 2018; 160:37-55. [PMID: 29353106 DOI: 10.1016/j.biomaterials.2018.01.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 01/01/2023]
Abstract
The functional multipotency enables mesenchymal stem cells (MSCs) promising translational potentials in treating spinal cord injury (SCI). Yet the fate of MSCs grafted into the injured spinal cord has not been fully elucidated even in preclinical studies, rendering concerns of their safety and genuine efficacy. Here we used a rat spinal cord transection model to evaluate the cell fate of allograft bone marrow derived MSCs. With the application of immunosuppressant, donor cells, delivered by biocompatible scaffold, survived up to 8 weeks post-grafting. Discernible tubes formed by MSCs were observed beginning 2 weeks after transplantation and they dominated the morphological features of implanted MSCs at 8 weeks post-grafting. The results of immunocytochemistry and transmission electron microscopy displayed the formation of perineurium-like sheath by donor cells, which, in a manner comparable to the perineurium in peripheral nerve, enwrapped host myelins and axons. The MSC-derived perineurium-like sheath secreted a group of trophic factors and permissive extracellular matrix, and served as a physical and chemical barrier to insulate the inner nerve fibers from ambient oxidative insults by the secretion of soluble antioxidant, superoxide dismutase-3 (SOD3). As a result, many intact regenerating axons were preserved in the injury/graft site following the forming of perineurium-like sheath. A parallel study utilizing a good manufacturing practice (GMP) grade human umbilical cord-derived MSCs or allogenic MSCs in an acute contusive/compressive SCI model exhibited a similar perineurium-like sheath formed by surviving donor cells in rat spinal cord at 3 weeks post-grafting. The present study for the first time provides an unambiguous morphological evidence of perineurium-like sheath formed by transplanted MSCs and a novel therapeutic mechanism of MSCs in treating SCI.
Collapse
Affiliation(s)
- Yuan-Huan Ma
- Guangdong Key Laboratory of Age-Related Cardiocerebral Diseases, Institute of Neurology, Guangdong Medical University, Zhanjiang, Guangdong Province, 524023, China; Department of Histology and Embryology, Guangdong Medical University, Zhanjiang, Guangdong Province, 524023, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, 510080, China
| | - Xiang Zeng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, 510080, China.
| | - Xue-Cheng Qiu
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, 510080, China
| | - Qing-Shuai Wei
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, 510080, China
| | - Ming-Tian Che
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, 510080, China
| | - Ying Ding
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| | - Zhou Liu
- Guangdong Key Laboratory of Age-Related Cardiocerebral Diseases, Institute of Neurology, Guangdong Medical University, Zhanjiang, Guangdong Province, 524023, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| | - Guo-Hui Wu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| | - Jia-Hui Sun
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, 510080, China
| | - Mao Pang
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| | - Li-Min Rong
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| | - Bin Liu
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| | - Zaid Aljuboori
- Department of Neurosurgery, University of Louisville, Louisville, KY 40292, USA
| | - Inbo Han
- Department of Neurosurgery, CHA University, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Yuan-Shan Zeng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, 510080, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
113
|
Huang H, Sharma HS, Chen L, Otom A, Al Zoubi ZM, Saberi H, Muresanu DF, He X. Review of clinical neurorestorative strategies for spinal cord injury: Exploring history and latest progresses. JOURNAL OF NEURORESTORATOLOGY 2018. [DOI: 10.26599/jnr.2018.9040013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Clinical neurorestorative therapies recently made great progress for patients with spinal cord injury (SCI). This paper systemically reviews historical perspectives, recent advancements and achievements in SCI through key neurorestorative strategies. In this study, a search was performed in the PubMed, Scopus, and Scholar Google search engines using the keywords “neurorestorative strategies”, “spinal cord injury”, “cell therapy”, “neuromodulation”, and “nerve bridges”. Clinical studies published in the English language were included. It is paramount for academic community involved in this field to take the initiative of a multicenter randomized, double-blind, and placebo-control clinical study with high level of evidence-based treatments for most SCI neurorestorative strategies in patient management. It is of utmost need to establish standard therapeutic methods for patients with SCI as early as possible.
Collapse
|
114
|
Huang H, Skaper S, Mao G, Saberi H, Feng S, Jeon SR, Chen L, Dimitrijevic M. 2017 Yearbook of Neurorestoratology. JOURNAL OF NEURORESTORATOLOGY 2018. [DOI: 10.26599/jnr.2018.9040001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In 2016 we published the first Yearbook of Neurorestoratology, which summarized pathogenesis in nervous system disease and damage, as well as neurorestorative mechanisms and neurorestorative therapeutic results. Given the progress and achievements occurring in 2017, we have put together those major progresses as the “2017 Yearbook of Neurorestoratology”, which can help readers to easily follow the latest developments in Neurorestoratology.
Collapse
|
115
|
Walsh P, Truong V, Hill C, Stoflet ND, Baden J, Low WC, Keirstead SA, Dutton JR, Parr AM. Defined Culture Conditions Accelerate Small-molecule-assisted Neural Induction for the Production of Neural Progenitors from Human-induced Pluripotent Stem Cells. Cell Transplant 2017; 26:1890-1902. [PMID: 29390875 PMCID: PMC5802631 DOI: 10.1177/0963689717737074] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 09/20/2017] [Accepted: 09/25/2017] [Indexed: 12/13/2022] Open
Abstract
The use of defined conditions for derivation, maintenance, and differentiation of human-induced pluripotent stem cells (hiPSCs) provides a superior experimental platform to discover culture responses to differentiation cues and elucidate the basic requirements for cell differentiation and fate restriction. Adoption of defined systems for reprogramming, undifferentiated growth, and differentiation of hiPSCs was found to significantly influence early stage differentiation signaling requirements and temporal kinetics for the production of primitive neuroectoderm. The bone morphogenic protein receptor agonist LDN-193189 was found to be necessary and sufficient for neural induction in a monolayer system with landmark antigens paired box 6 and sex-determining region Y-box 1 appearing within 72 h. Preliminary evidence suggests this neuroepithelium was further differentiated to generate ventral spinal neural progenitors that produced electrophysiologically active neurons in vitro, maintaining viability posttransplantation in an immunocompromised host. Our findings support current developments in the field, demonstrating that adoption of defined reagents for the culture and manipulation of pluripotent stem cells is advantages in terms of simplification and acceleration of differentiation protocols, which will be critical for future clinical translation.
Collapse
Affiliation(s)
- Patrick Walsh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Vincent Truong
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Caitlin Hill
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Nicolas D. Stoflet
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
| | - Jessica Baden
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Walter C. Low
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Susan A. Keirstead
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - James R. Dutton
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Ann M. Parr
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
116
|
Libro R, Bramanti P, Mazzon E. The combined strategy of mesenchymal stem cells and tissue-engineered scaffolds for spinal cord injury regeneration. Exp Ther Med 2017; 14:3355-3368. [PMID: 29042919 PMCID: PMC5639409 DOI: 10.3892/etm.2017.4939] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/03/2017] [Indexed: 01/02/2023] Open
Abstract
Spinal cord injury (SCI) is a traumatic lesion that can result in the loss of motor or sensory neurons. Stem cell (SC)-based therapies have been demonstrated to promote neuronal regeneration following SCI, by releasing a range of trophic factors that support endogenous repair or by differentiating into neurons, or glial cells in order to replace the damaged cells. However, numerous limitations remain for therapies based on SC transplantion alone, including a low rate of survival/engraftment. Nevertheless, scaffolds are 3-dimentional substrates that have revealed to support cell survival, proliferation and differentiation in vivo, by mimicking a more favorable endogenous microenvironment. A multidisciplinary approach, which combines engineered scaffolds with SCs has been proposed as a promising strategy for encouraging spinal cord regeneration. The present review has focused on the regenerative potential of mesenchymal SCs isolated from different sources and combined with various scaffold types, in preclinical and clinical SCI studies.
Collapse
Affiliation(s)
- Rosaliana Libro
- Department of Experimental Neurology, IRCCS Centro Neurolesi ‘Bonino-Pulejo’, I-98124 Messina, Italy
| | - Placido Bramanti
- Department of Experimental Neurology, IRCCS Centro Neurolesi ‘Bonino-Pulejo’, I-98124 Messina, Italy
| | - Emanuela Mazzon
- Department of Experimental Neurology, IRCCS Centro Neurolesi ‘Bonino-Pulejo’, I-98124 Messina, Italy
| |
Collapse
|
117
|
Can A, Celikkan FT, Cinar O. Umbilical cord mesenchymal stromal cell transplantations: A systemic analysis of clinical trials. Cytotherapy 2017; 19:1351-1382. [PMID: 28964742 DOI: 10.1016/j.jcyt.2017.08.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 02/07/2023]
Abstract
The advances and success of umbilical cord-derived mesenchymal stromal cells (UC-MSCs) in experimental disease animal models have fueled the development of targeted therapies in humans. The therapeutic potential of allogeneic transplantation of UC-MSCs has been under examination since 2009. The purpose of this systematic analysis was to review the published results, limitations and obstacles for UC-MSC transplantation. An extensive search strategy was applied to the published literature, 93 peer-reviewed full-text articles and abstracts were found published by early August 2017 that investigated the safety, efficacy and feasibility of UC-MSCs in 2001 patients with 53 distinct pathologies including many systemic/local, acute/chronic conditions. Few data were extracted from the abstracts and/or Chinese-written articles (n = 7, 8%). Importantly, no long-term adverse effects, tumor formation or cell rejection were reported. All studies noted certain degrees of therapeutic benefit as evidenced by clinical symptoms and/or laboratory findings. Thirty-seven percent (n = 34) of studies were found published as a single case (n = 10; 11%) or 2-10 case reports (n = 24; 26%) with no control group. Due to the nature of many stem cell-based studies, the majority of patients also received conventional therapy regimens, which obscured the pure efficacy of the cells transplanted. Randomized, blind, phase 1/2 trials with control groups (placebo-controlled) showed more plausible results. Given that most UC-MSC trials are early phase, the internationally recognized cell isolation and preparation standards should be extended to future phase 2/3 trials to reach more convincing conclusions regarding the safety and efficacy of UC-MSC therapies.
Collapse
Affiliation(s)
- Alp Can
- Ankara University School of Medicine, Department of Histology and Embryology, Laboratory for Stem Cells and Reproductive Cell Biology, Sihhiye, Ankara, Turkey.
| | - Ferda Topal Celikkan
- Ankara University School of Medicine, Department of Histology and Embryology, Laboratory for Stem Cells and Reproductive Cell Biology, Sihhiye, Ankara, Turkey
| | - Ozgur Cinar
- Ankara University School of Medicine, Department of Histology and Embryology, Laboratory for Stem Cells and Reproductive Cell Biology, Sihhiye, Ankara, Turkey
| |
Collapse
|
118
|
Complete canine spinal cord transection model: a large animal model for the translational research of spinal cord regeneration. SCIENCE CHINA-LIFE SCIENCES 2017; 61:115-117. [DOI: 10.1007/s11427-017-9049-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/07/2017] [Indexed: 02/04/2023]
|
119
|
Chen B, Xiao Z, Zhao Y, Dai J. Functional biomaterial-based regenerative microenvironment for spinal cord injury repair. Natl Sci Rev 2017. [DOI: 10.1093/nsr/nwx057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
120
|
Cetuximab modified collagen scaffold directs neurogenesis of injury-activated endogenous neural stem cells for acute spinal cord injury repair. Biomaterials 2017; 137:73-86. [PMID: 28544974 DOI: 10.1016/j.biomaterials.2017.05.027] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/09/2017] [Accepted: 05/17/2017] [Indexed: 12/25/2022]
Abstract
Studies have shown that endogenous neural stem cells (NSCs) activated by spinal cord injury (SCI) primarily generate astrocytes to form glial scar. The NSCs do not differentiate into neurons because of the adverse microenvironment. In this study, we defined the activation timeline of endogenous NSCs in rats with severe SCI. These injury-activated NSCs then migrated into the lesion site. Cetuximab, an EGFR signaling antagonist, significantly increased neurogenesis in the lesion site. Meanwhile, implanting cetuximab modified linear ordered collagen scaffolds (LOCS) into SCI lesion sites in dogs resulted in neuronal regeneration, including neuronal differentiation, maturation, myelination, and synapse formation. The neuronal regeneration eventually led to a significant locomotion recovery. Furthermore, LOCS implantation could also greatly decrease chondroitin sulfate proteoglycan (CSPG) deposition at the lesion site. These findings suggest that endogenous neurogenesis following acute complete SCI is achievable in species ranging from rodents to large animals via functional scaffold implantation. LOCS-based Cetuximab delivery system has a promising therapeutic effect on activating endogenous neurogenesis, reducing CSPGs deposition and improving motor function recovery.
Collapse
|