101
|
Eshghi F, Bakhshimoghaddam F, Rasmi Y, Alizadeh M. Effects of Resistant Starch Supplementation on Glucose Metabolism, Lipid Profile, Lipid Peroxidation Marker, and Oxidative Stress in Overweight and Obese Adults: Randomized, Double-Blind, Crossover Trial. Clin Nutr Res 2019; 8:318-328. [PMID: 31720257 PMCID: PMC6826060 DOI: 10.7762/cnr.2019.8.4.318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 02/04/2023] Open
Abstract
Obesity is a substantial public health challenge across the globe. The use of resistant starch has been proposed as a probable management strategy for complications of obesity. We investigated the effects of resistant starch intake on lipid profiles, glucose metabolism, antioxidant status, lipid peroxidation marker, blood pressure, and anthropometric variables in subjects with overweight or obesity. In this 12-week, randomized, double-blind, placebo-controlled, 2 × 2 crossover trial, 21 Participants (mean age, 35 ± 7.0 years; body mass index, 32.4 ± 3.5 kg/m2) were given 13.5 g Hi-Maize 260 or placebo daily for 4 weeks, separated by a 4-week washout period. Changes in total antioxidant status (p = 0.04) and serum concentrations of insulin in 52.4% participants with insulin levels above 16 µIU/mL at the baseline (p = 0.04) were significantly different in the three phases. In addition, the mean of serum high-density lipoprotein cholesterol after the intervention was significantly higher than after baseline value (p = 0.04). We found no significant differences in serum concentrations of total cholesterol, triacylglycerol, low-density lipoprotein cholesterol, fasting blood sugar, insulin, homeostatic model assessment of insulin resistance, quantitative insulin sensitivity check index, superoxide dismutase activity, malondialdehyde, blood pressure, and anthropometric variables in the three phases of baseline, after intervention with resistant starch and after placebo. Resistant starch consumption improved serum insulin concentrations, lipid profiles, and antioxidant status in subjects with overweight or obesity.
Collapse
Affiliation(s)
- Fereshteh Eshghi
- Student Research Committee, Department of Nutrition, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Farnush Bakhshimoghaddam
- Student Research Committee, Department of Nutrition, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Cellular and Molecular Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Alizadeh
- Department of Nutrition, Food and Beverages Safety Research Center, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
102
|
Gong B, Cheng L, Gilbert RG, Li C. Distribution of short to medium amylose chains are major controllers of in vitro digestion of retrograded rice starch. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.06.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
103
|
|
104
|
Meng Y, Bai H, Yu Q, Yan J, Zhao L, Wang S, Li Z, Wang Q, Chen L. High–Resistant Starch, Low-Protein Flour Intervention on Patients With Early Type 2 Diabetic Nephropathy: A Randomized Trial. J Ren Nutr 2019; 29:386-393. [DOI: 10.1053/j.jrn.2018.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/02/2018] [Accepted: 12/12/2018] [Indexed: 11/11/2022] Open
|
105
|
Snelson M, Jong J, Manolas D, Kok S, Louise A, Stern R, Kellow NJ. Metabolic Effects of Resistant Starch Type 2: A Systematic Literature Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2019; 11:nu11081833. [PMID: 31398841 PMCID: PMC6723691 DOI: 10.3390/nu11081833] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022] Open
Abstract
Published evidence exploring the effects of dietary resistant starch (RS) on human cardiometabolic health is inconsistent. This review aimed to investigate the effect of dietary RS type 2 (RS2) supplementation on body weight, satiety ratings, fasting plasma glucose, glycated hemoglobin (HbA1c), insulin resistance and lipid levels in healthy individuals and those with overweight/obesity, the metabolic syndrome (MetS), prediabetes or type 2 diabetes mellitus (T2DM). Five electronic databases were searched for randomized controlled trials (RCTs) published in English between 1982 and 2018, with trials eligible for inclusion if they reported RCTs involving humans where at least one group consumed ≥ 8 g of RS2 per day and measured body weight, satiety, glucose and/or lipid metabolic outcomes. Twenty-two RCTs involving 670 participants were included. Meta-analyses indicated that RS2 supplementation significantly reduced serum triacylglycerol concentrations (mean difference (MD) = -0.10 mmol/L; 95% CI -0.19, -0.01, P = 0.03) in healthy individuals (n = 269) and reduced body weight (MD = -1.29 kg; 95% CI -2.40, -0.17, P = 0.02) in people with T2DM (n = 90). However, these outcomes were heavily influenced by positive results from a small number of individual studies which contradicted the conclusions of the majority of trials. RS2 had no effects on any other metabolic outcomes. All studies ranged from 1-12 weeks in duration and contained small sample sizes (10-60 participants), and most had an unclear risk of bias. Short-term RS2 supplementation in humans is of limited cardiometabolic benefit.
Collapse
Affiliation(s)
- Matthew Snelson
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Jessica Jong
- Department of Nutrition, Dietetics & Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia
| | - Deanna Manolas
- Department of Nutrition, Dietetics & Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia
| | - Smonda Kok
- Department of Nutrition, Dietetics & Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia
| | - Audrey Louise
- Department of Nutrition, Dietetics & Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia
| | - Romi Stern
- Department of Nutrition, Dietetics & Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia
| | - Nicole J Kellow
- Department of Nutrition, Dietetics & Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia.
| |
Collapse
|
106
|
Escobar A, Rocha-Gomes A, Reis CGMD, Herrera KNS, Guedes TDJ, Silva AAD, Lessa MR, Dessimoni-Pinto NAV, Riul TR. Unripe banana flour (Musa cavendishii) promotes decrease in weight gain and elimination of fecal cholesterol in Wistar rats. ACTA ACUST UNITED AC 2019. [DOI: 10.1108/nfs-12-2018-0337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PurposeThe purpose of this study is to evaluate the chemical composition of unripe banana flour from Southeast Brazil and verify its nutritional, physiological and biochemical properties in adult Wistar rats.Design/methodology/approachAnalysis of soluble solids, titratable acidity, pH, moisture, ash, lipids, proteins, carbohydrate, resistant and total starch and energy was obtained. In all, 18 male Wistar rats were given different concentrations of unripe banana flour (0, 10 and 20 per cent) and these assessments were performed: feed, caloric and water intake; weight gain; coefficient of food efficiency; weight of organs; body, tibia and femur length; total mineral of bones; and biochemistry of blood, hepatic fluids and feces.FindingsUnripe banana flour showed a potential for weight control as well as increased fecal cholesterol excretion. These results showed the potential of unripe banana flour for obesity treatment and lipid excretion. Nevertheless, plasma triacylglycerol levels increased in the animals that received the largest amount of banana flour (20 per cent w/w), possibly because of the large amount of resistant starch in the flour, indicating the need for additional studies to confirm the mechanisms responsible for this increase.Originality/valueUnripe banana flour may promote beneficial health effects (such as weight control and increased elimination of cholesterol in feces); however, the large amount of resistant starch present may be responsible for an increase in blood triacyglycerol.
Collapse
|
107
|
Roman L, Martinez MM. Structural Basis of Resistant Starch (RS) in Bread: Natural and Commercial Alternatives. Foods 2019; 8:E267. [PMID: 31331021 PMCID: PMC6678428 DOI: 10.3390/foods8070267] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/18/2022] Open
Abstract
Bread is categorized as having a high amount of rapidly digested starch that may result in a rapid increase in postprandial blood glucose and, therefore, poor health outcomes. This is mostly the result of the complete gelatinization that starch undergoes during baking. The inclusion of resistant starch (RS) ingredients in bread formulas is gaining prominence, especially with the current positive health outcomes attributed to RS and the apparition of novel RS ingredients in the market. However, many RS ingredients contain RS structures that do not resist baking and, therefore, are not suitable to result in a meaningful RS increase in the final product. In this review, the structural factors for the resistance to digestion and hydrothermal processing of RS ingredients are reviewed, and the definition of each RS subtype is expanded to account for novel non-digestible structures recently reported. Moreover, the current in vitro digestion methods used to measure RS content are critically discussed with a view of highlighting the importance of having a harmonized method to determine the optimum RS type and inclusion levels for bread-making.
Collapse
Affiliation(s)
- Laura Roman
- School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Mario M Martinez
- School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
108
|
Fujiwara Y, Eguchi S, Murayama H, Takahashi Y, Toda M, Imai K, Tsuda K. Relationship between diet/exercise and pharmacotherapy to enhance the GLP-1 levels in type 2 diabetes. Endocrinol Diabetes Metab 2019; 2:e00068. [PMID: 31294084 PMCID: PMC6613229 DOI: 10.1002/edm2.68] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/15/2019] [Accepted: 03/28/2019] [Indexed: 12/15/2022] Open
Abstract
The rapid rise in the prevalence of type 2 diabetes mellitus (T2DM) poses a huge healthcare burden across the world. Although there are several antihyperglycaemic agents (AHAs) available including addition of new drug classes to the treatment algorithm, more than 50% of patients with T2DM do not achieve glycaemic targets, suggesting an urgent need for treatment strategies focusing on prevention and progression of T2DM and its long-term complications. Lifestyle changes including implementation of healthy diet and physical activity are cornerstones for the management of T2DM. The positive effects of diet and exercise on incretin hormones such as glucagon-like peptide-1 (GLP-1) have been reported. We hypothesize an IDEP concept (Interaction between Diet/Exercise and Pharmacotherapy) aimed at modifying the diet and lifestyle, along with pharmacotherapy to enhance the GLP-1 levels, would result in good glycaemic control in patients with T2DM. Consuming protein-rich food, avoiding saturated fatty acids and making small changes in eating habits such as eating slowly with longer mastication time can have a positive impact on the GLP-1 secretion and insulin levels. Further the type of physical activity (aerobic/resistance training), intensity of exercise, duration, time and frequency of exercise have shown to improve GLP-1 levels. Apart from AHAs, a few antihypertensive drugs and lipid-lowering drugs have also shown to increase endogenous GLP-1 levels, however, due to quick degradation of GLP-1 by dipeptidyl peptidase-4 (DPP-4) enzyme, treatment with DPP-4 inhibitors would protect GLP-1 from degradation and prolong its activity. Thus, IDEP concept can be a promising treatment strategy, which positively influences the GLP-1 levels and provide additive benefits in terms of improving metabolic parameters in patients with T2DM and slowing the progression of T2DM and its associated complications.
Collapse
Affiliation(s)
- Yuki Fujiwara
- Medical Division, Cardio‐Metabolic Medical Franchise DepartmentNovartis Pharma K.KTokyoJapan
| | - Shunsuke Eguchi
- Medical Division, Cardio‐Metabolic Medical Franchise DepartmentNovartis Pharma K.KTokyoJapan
| | - Hiroki Murayama
- Medical Division, Cardio‐Metabolic Medical Franchise DepartmentNovartis Pharma K.KTokyoJapan
| | - Yuri Takahashi
- Medical Division, Cardio‐Metabolic Medical Franchise DepartmentNovartis Pharma K.KTokyoJapan
| | - Mitsutoshi Toda
- Medical Division, Cardio‐Metabolic Medical Franchise DepartmentNovartis Pharma K.KTokyoJapan
| | - Kota Imai
- Medical Division, Cardio‐Metabolic Medical Franchise DepartmentNovartis Pharma K.KTokyoJapan
| | - Kinsuke Tsuda
- Faculty of Human SciencesTezukayama Gakuin UniversityOsakaJapan
| |
Collapse
|
109
|
Resistant starch formation through intrahelical V-complexes between polymeric proanthocyanidins and amylose. Food Chem 2019; 285:326-333. [DOI: 10.1016/j.foodchem.2019.01.173] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/31/2018] [Accepted: 01/31/2019] [Indexed: 12/27/2022]
|
110
|
Corrêa Leite ML. Compositional data analysis as an alternative paradigm for nutritional studies. Clin Nutr ESPEN 2019; 33:207-212. [PMID: 31451263 DOI: 10.1016/j.clnesp.2019.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 03/25/2019] [Accepted: 05/21/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND & AIM Although the compositional nature of dietary data is well recognized, little attention has been given to the methods specifically developed for the statistical analysis of compositional data. The use of standard statistical procedures that ignore the relative nature of compositional elements can lead to spurious results when applied to crude data. This note proposes using a compositional data approach for the statistical analysis of nutritional data. METHODS The analyses of data from an Italian population study of 673 non-diabetic women aged 40-74 years were based on isometric log-ratio (ilr) transformation applied to three dietary compositions: seven-part macronutrients, nine-part vitamins and six-part minerals. The ilr transformation produces new variables that represent specific contrasts (balances) between the compositional parts. Different sequential binary partitions have been described and used as a means of flexibly defining balances on the basis of a researcher's interest, and the new variables (that are suitable for undergoing standard statistical procedures) have been included as covariates in linear regression models in order to examine the isocaloric associations between specific dietary balances and waist circumference (WC). RESULTS Regardless of the dietary compositions, total energy was positively and fibre intake was negatively associated with WC. Net of these effects and keeping constant the proportional relationships between the other dietary components, WC was negatively associated with the relative increase in starches, and positively associated with the relative niacin content. Vitamin C was negatively associated with WC, whereas folate content was positively related. DISCUSSION The proposed approach allows a clear interpretation of the relative roles of different dietary components within a holistic overview of a diet. The analyses involving WC provide some useful insights.
Collapse
|
111
|
Fang W, Xue H, Chen X, Chen K, Ling W. Supplementation with Sodium Butyrate Modulates the Composition of the Gut Microbiota and Ameliorates High-Fat Diet-Induced Obesity in Mice. J Nutr 2019; 149:747-754. [PMID: 31004166 DOI: 10.1093/jn/nxy324] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/20/2018] [Accepted: 12/26/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Short-chain fatty acids (SCFAs) have been reported to ameliorate obesity. However, the underlying mechanisms require further investigation. OBJECTIVE The aim of this study was to determine the role of butyrate, an SCFA, in the regulation of obesity, low-grade chronic inflammation, and alterations of microbiota composition in mice. METHODS Male C57BL/6J mice, 4-5 wk of age, were divided into 3 groups (n = 8 mice/group): low-fat diet (LFD; 10% energy from fat), high-fat diet (HFD; 45% energy from fat), or high-fat diet plus sodium butyrate (HSB). HSB mice received sodium butyrate at a concentration of 0.1 M in drinking water for 12 wk. Measures of inflammation, obesity, and intestinal integrity were assessed. Serum lipopolysaccharide (LPS) concentrations were measured in the 3 groups. Fecal samples were collected for gut microbiota analysis. RESULTS In HFD mice, body weight gain and hepatic triglyceride (TG), serum interleukin-6 (IL-6), and serum tumor necrosis factor (TNF)-α levels were 1-4 times higher than those in LFD mice (P < 0.05); they were 34-42% lower in HSB mice compared with HFD mice (P < 0.05). The HFD group had 28%-48% lower mRNA expression of both Tjp1 and Ocln in the ileum and colon compared with levels in LFD or HSB mice (P < 0.05), whereas there was no difference in expression levels between LFD and HSB mice. Furthermore, in HSB mice, serum LPS concentration was 53% lower compared with that in HFD mice but still 23% higher than that in LFD mice (P < 0.05). Results from principal component analysis showed that HSB and LFD mice had a similar gut microbiota structure, which was significantly different from that in HFD mice (P < 0.05). CONCLUSIONS Sodium butyrate administration beneficially changed HFD-induced gut microbiota composition and improved intestinal barrier, leading to lower serum LPS concentrations. These changes may correspond with improvements in obesity-related lipid accumulation and low-grade chronic inflammation.
Collapse
Affiliation(s)
- Wanjun Fang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China.,Department of Clinical Nutrition, Ningbo Women and Children's Hospital, Ningbo, China
| | - Hongliang Xue
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Xu Chen
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Ke Chen
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| |
Collapse
|
112
|
Esgalhado M, Kemp JA, Azevedo R, Paiva BR, Stockler-Pinto MB, Dolenga CJ, Borges NA, Nakao LS, Mafra D. Could resistant starch supplementation improve inflammatory and oxidative stress biomarkers and uremic toxins levels in hemodialysis patients? A pilot randomized controlled trial. Food Funct 2019; 9:6508-6516. [PMID: 30468238 DOI: 10.1039/c8fo01876f] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An imbalance of gut microbiota is considered a new cardiovascular risk factor for chronic kidney disease (CKD) patients, since it is directly associated with increased uremic toxin production, inflammation and oxidative stress. Strategies such as prebiotic supplementation have been suggested to mitigate these complications. We hypothesized that prebiotic-resistant starch could ameliorate uremic toxins levels, oxidative stress, and inflammatory states in hemodialysis (HD) patients. This pilot study evaluated 31 HD patients assigned to either resistant starch (16 g of resistant starch Hi-Maize® 260) or placebo (manioc flour) supplementation, which they received for 4 weeks on alternate days through cookies on dialysis days and powder in a sachet on non-dialysis days. Levels of interleukin (IL)-6, high-sensitive C-reactive protein, thiobarbituric acid reactive substances plasma (TBARS), protein carbonylation, indoxyl sulfate (IS) and p-cresyl sulfate were measured. Anthropometric and biochemical parameters, as well as, food intake were also evaluated. As expected, resistant starch group increased fiber intake (p > 0.01), in addition the prebiotic supplementation reduced IL-6 (p = 0.01), TBARS (p > 0.01), and IS (p > 0.01) plasma levels. No significant differences were evident in the placebo group. Prebiotic-resistant starch supplementation seems to be a promising nutritional strategy to improve inflammation, oxidative stress and to reduce IS plasma levels in CKD patients on HD.
Collapse
Affiliation(s)
- Marta Esgalhado
- Post-Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Reactive mechanism and the applications of bioactive prebiotics for human health: Review. J Microbiol Methods 2019; 159:128-137. [DOI: 10.1016/j.mimet.2019.02.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/21/2022]
|
114
|
Koay YC, Wali JA, Luk AWS, Macia L, Cogger VC, Pulpitel TJ, Wahl D, Solon-Biet SM, Holmes A, Simpson SJ, O'Sullivan JF. Ingestion of resistant starch by mice markedly increases microbiome-derived metabolites. FASEB J 2019; 33:8033-8042. [PMID: 30925066 DOI: 10.1096/fj.201900177r] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent research has shown significant health benefits deriving from high-dietary fiber or microbiome-accessible carbohydrate consumption. Compared with native starch (NS), dietary resistant starch (RS) is a high microbiome-accessible carbohydrate that significantly alters the gut microbiome. The aim of this study was to determine the systemic metabolic effects of high microbiome-accessible carbohydrate. Male C57BL/6 mice were divided into 2 groups and fed either NS or RS for 18 wk (n = 20/group). Metabolomic analyses revealed that plasma levels of numerous metabolites were significantly different between the RS-fed and NS-fed mice, many of which are microbiome-derived. Most strikingly, we observed a 22-fold increase in gut microbiome-derived tryptophan metabolite indole-3-propionate (IPA), which was positively correlated with several gut microbiota, including Allobaculum, Bifidobacterium, and Lachnospiraceae, with Allobaculum having the most consistently increased abundance of all the IPA-associated taxa across all RS-fed mice. In addition, major changes were observed for metabolites solely or primarily metabolized in the gut (e.g., trimethylamine-N-oxide), metabolites that have a significant entero-hepatic circulation (i.e., bile acids), lipid metabolites (e.g., cholesterol sulfate), metabolites indicating increased energy turnover (e.g., tricarboxylic acid cycle intermediates and ketone bodies), and increased antioxidants such as reduced glutathione. Our findings reveal potentially novel mediators of high microbiome-accessible carbohydrate-derived health benefits.-Koay,Y. C., Wali. J. A., Luk, A. W. S., Macia, L., Cogger, V. C., Pulpitel, T. J., Wahl, D., Solon-Biet, S. M., Holmes, A., Simpson, S. J., O'Sullivan, J. F. Ingestion of resistant starch by mice markedly increases microbiome-derived metabolites.
Collapse
Affiliation(s)
- Yen Chin Koay
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Jibran A Wali
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Alison W S Luk
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Laurence Macia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Victoria C Cogger
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.,Ageing and Alzheimer's Institute and Centre for Education and Research on Ageing, Concord Hospital, Concord, New South Wales, Australia
| | - Tamara J Pulpitel
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Devin Wahl
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Samantha M Solon-Biet
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Andrew Holmes
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - John F O'Sullivan
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.,Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| |
Collapse
|
115
|
de Albuquerque TMR, Sampaio KB, de Souza EL. Sweet potato roots: Unrevealing an old food as a source of health promoting bioactive compounds – A review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.11.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
116
|
Wu W, Qiu J, Wang A, Li Z. Impact of whole cereals and processing on type 2 diabetes mellitus: a review. Crit Rev Food Sci Nutr 2019; 60:1447-1474. [DOI: 10.1080/10408398.2019.1574708] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Weijing Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Haidian, Beijing, China
- Laboratory of nutrition and food safety, Xiamen Medical College, Xiamen, Fujian, China
| | - Ju Qiu
- Ministry of Agriculture, Institute of Food and Nutrition Development, Haidian, Beijing, China
| | - Aili Wang
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, Virginia, USA
| | - Zaigui Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Haidian, Beijing, China
| |
Collapse
|
117
|
Mirghani SJ, Peeri M, Yaghoobpour Yekani O, Zamani M, Feizolahi F, Nikbin S, Derakhshideh A, Mousavi N, Khojasteh Z, Nasrollahi Z, Khorasani E, Ghodousi Johari E, Afshar T, Azarbayjani MA. Role or Synergistic Interaction of Adenosine and Vitamin D3 Alongside High-Intensity Interval Training and Isocaloric Moderate Intensity Training on Metabolic Parameters: Protocol for an Experimental Study. JMIR Res Protoc 2019; 8:e10753. [PMID: 30698527 PMCID: PMC6372933 DOI: 10.2196/10753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/08/2018] [Accepted: 09/10/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Obesity is known as one of the major causes of epidemiologic diseases worldwide; therefore, the introduction of treatment strategies by medical professionals, such as the use of various medicines and exercise programs to reduce fat or prevent obesity, is on the rise. Recently, researchers have shown special interest in assessing the effect of lipolytic adenosine and vitamin D deficiency, as well as the effect of exercise, on decreasing body fat percentage. OBJECTIVE This study has been designed to examine the effect of adenosine and vitamin D3 injections, in conjunction with high-intensity interval training and isocaloric moderate-intensity training, on the metabolic parameters of obesity induced by a high-fat diet. METHODS This is an experimental study using 92 Wistar rats. At 6 weeks of age, the rats' weights will be recorded, after which they will have 1 week to adapt to their new environment before being divided into 12 groups. The rats will participate in a 2-stage experimental intervention, including a 13-week fattening diet phase followed by a 12-week exercise training phase consisting of an exercise program and the injection of adenosine and vitamin D3. Groups 1 and 2 will have a normal diet, and the other groups will have a diet of 40% fat, with free access to food and water up to the second half of the second stage of the study (end of the sixth week of training). After termination of the interventions, tissue collection and molecular assessments (blood for biochemical, tissues for gene expression analyses, and anthropometrical indexes) will be performed. RESULTS The project was initiated in April 2017 and completed in December 2017. Data analysis is under way, and the first results are expected to be submitted for publication in November 2018. CONCLUSIONS We hypothesize that weight loss-induced molecular changes and upregulation will be observed in line with an increase in lipolysis and beta oxidation in muscle and fat tissue as a result of performing isocaloric training in drug-receiving rats and groups on a high-fat diet. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) RR1-10.2196/10753.
Collapse
Affiliation(s)
- Seyed Javad Mirghani
- Department of Exercise Physiology, Faculty of Physical Education and Sports Science, Islamic Azad University, Central Tehran Branch, Tehran, Islamic Republic of Iran
| | - Maghsoud Peeri
- Department of Exercise Physiology, Faculty of Physical Education and Sports Science, Islamic Azad University, Central Tehran Branch, Tehran, Islamic Republic of Iran
| | - Omid Yaghoobpour Yekani
- Department of Exercise Physiology, Islamic Azad University, Science and Research Branch, Tehran, Islamic Republic of Iran
| | - Masoud Zamani
- Department of Exercise Physiology, Faculty of Physical Education and Sports Science, Islamic Azad University, Central Tehran Branch, Tehran, Islamic Republic of Iran
| | - Foad Feizolahi
- Department of Physical Education and Sport Science, Islamic Azad University, Karaj Branch, Karaj, Islamic Republic of Iran
| | - Sina Nikbin
- Department of Exercise Physiology, Faculty of Physical Education and Sports Science, Islamic Azad University, Central Tehran Branch, Tehran, Islamic Republic of Iran
| | - Armin Derakhshideh
- Department of Exercise Physiology, Faculty of Physical Education and Sports Science, Islamic Azad University, Central Tehran Branch, Tehran, Islamic Republic of Iran
| | - Niloufar Mousavi
- Department of Exercise Physiology, Faculty of Physical Education and Sports Science, Islamic Azad University, Central Tehran Branch, Tehran, Islamic Republic of Iran
| | - Zohreh Khojasteh
- Department of Exercise Physiology, Faculty of Physical Education and Sports Science, Islamic Azad University, Central Tehran Branch, Tehran, Islamic Republic of Iran
| | - Zeynab Nasrollahi
- Department of Exercise Physiology, Faculty of Physical Education and Sports Science, Islamic Azad University, Central Tehran Branch, Tehran, Islamic Republic of Iran
| | - Elya Khorasani
- Department of Exercise Physiology, Faculty of Physical Education and Sports Science, Islamic Azad University, Central Tehran Branch, Tehran, Islamic Republic of Iran
| | - Elham Ghodousi Johari
- Department of Exercise Physiology, Faculty of Physical Education and Sports Science, Islamic Azad University, Central Tehran Branch, Tehran, Islamic Republic of Iran
| | - Tayebeh Afshar
- Department of Exercise Physiology, Faculty of Physical Education and Sports Science, Islamic Azad University, Central Tehran Branch, Tehran, Islamic Republic of Iran
| | - Mohammad Ali Azarbayjani
- Department of Exercise Physiology, Faculty of Physical Education and Sports Science, Islamic Azad University, Central Tehran Branch, Tehran, Islamic Republic of Iran
| |
Collapse
|
118
|
Luo K, Wang X, Zhang G. Starch and β-glucan in a whole-grain-like structural form improve hepatic insulin sensitivity in diet-induced obese mice. Food Funct 2019; 10:5091-5101. [DOI: 10.1039/c9fo00798a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
WGLSF improves hepatic insulin resistance and glucose homeostasis in diet-induced obese mice.
Collapse
Affiliation(s)
- Kaiyun Luo
- Key Laboratory of Food Science and Technology School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Xufeng Wang
- Institute of Biotechnology
- College of Biological Science and Engineering
- Fuzhou University
- Fuzhou
- China
| | - Genyi Zhang
- Key Laboratory of Food Science and Technology School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| |
Collapse
|
119
|
A mix of dietary fermentable fibers improves lipids handling by the liver of overfed minipigs. J Nutr Biochem 2018; 65:72-82. [PMID: 30654277 DOI: 10.1016/j.jnutbio.2018.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/17/2018] [Accepted: 12/05/2018] [Indexed: 02/06/2023]
Abstract
Obesity induced by overfeeding ultimately can lead to nonalcoholic fatty liver disease, whereas dietary fiber consumption is known to have a beneficial effect. We aimed to determine if a supplementation of a mix of fibers (inulin, resistant starch and pectin) could limit or alleviate overfeeding-induced metabolic perturbations. Twenty female minipigs were fed with a control diet (C) or an enriched fat/sucrose diet supplemented (O + F) or not (O) with fibers. Between 0 and 56 days of overfeeding, insulin (+88%), HOMA (+102%), cholesterol (+45%) and lactate (+63%) were increased, without any beneficial effect of fibers supplementation. However, fibers supplementation limited body weight gain (vs. O, -15% at D56) and the accumulation of hepatic lipids droplets induced by overfeeding. This could be explained by a decreased lipids transport potential (-50% FABP1 mRNA, O + F vs. O) inducing a down-regulation of regulatory elements of lipids metabolism / lipogenesis (-36% SREBP1c mRNA, O + F vs. O) but not to an increased oxidation (O + F not different from O and C for proteins and mRNA measured). Glucose metabolism was also differentially regulated by fibers supplementation, with an increased net hepatic release of glucose in the fasted state (diet × time effect, P<.05 at D56) that can be explained partially by a possible increased glycogen synthesis in the fed state (+82% GYS2 protein, O + F vs. O, P=.09). The direct role of short chain fatty acids on gluconeogenesis stimulation is questioned, with probably a short-term impact (D14) but no effect on a long-term (D56) basis.
Collapse
|
120
|
A Paleolithic diet lowers resistant starch intake but does not affect serum trimethylamine-N-oxide concentrations in healthy women. Br J Nutr 2018; 121:322-329. [PMID: 30419974 PMCID: PMC6390390 DOI: 10.1017/s000711451800329x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Paleolithic diet excludes two major sources of fibre, grains and legumes. However, it is not known whether this results in changes to resistant starch (RS) consumption. Serum trimethylamine-N-oxide (TMAO) is produced mainly from colonic fermentation and hepatic conversion of animal protein and is implicated in CVD, but changes in RS intake may alter concentrations. We aimed to determine whether intake of RS and serum concentrations of TMAO varied in response to either the Paleolithic or the Australian Guide to Healthy Eating (AGHE) diets and whether this was related to changes in food group consumption. A total of thirty-nine women (mean age 47 (sd 13) years, BMI 27 (sd 4) kg/m2) were randomised to AGHE (n 17) or Paleolithic diets (n 22) for 4 weeks. Serum TMAO concentrations were measured using liquid chromatography–MS; food groups, fibre and RS intake were estimated from weighed food records. The change in TMAO concentrations between groups (Paleolithic 3·39 μmv. AGHE 1·19 μm, P = 0·654) did not reach significance despite greater red meat and egg consumption in the Paleolithic group (0·65 serves/d; 95 % CI 0·2, 1·1; P <0·01, and 0·22 serves/d; 95 % CI 0·1, 0·4, P <0·05, respectively). RS intake was significantly lower on the Paleolithic diet (P <0·01) and was not associated with TMAO concentrations. However, the limited data for RS and the small sample size may have influenced these findings. While there were no significant changes in TMAO concentrations, increased meat consumption and reduced RS intake warrant further research to examine the markers of gastrointestinal health of Paleolithic diet followers and to update Australian food databases to include additional fibre components.
Collapse
|
121
|
von Borries-Medrano E, Jaime-Fonseca MR, Aguilar-Méndez MA, García-Cruz HI. Addition of galactomannans and citric acid in corn starch processed by extrusion: Retrogradation and resistant starch studies. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.03.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
122
|
Peterson CM, Beyl RA, Marlatt KL, Martin CK, Aryana KJ, Marco ML, Martin RJ, Keenan MJ, Ravussin E. Effect of 12 wk of resistant starch supplementation on cardiometabolic risk factors in adults with prediabetes: a randomized controlled trial. Am J Clin Nutr 2018; 108:492-501. [PMID: 30010698 PMCID: PMC6134290 DOI: 10.1093/ajcn/nqy121] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/10/2018] [Indexed: 12/13/2022] Open
Abstract
Background Type 2 resistant starch (RS2) has been shown to improve glycemic control and some cardiovascular endpoints in rodent and human studies. Objective The aim of this study was to perform one of the first randomized clinical trials in adults with prediabetes and one of the longest trials to test whether RS2 can improve cardiometabolic health. Design 68 overweight [body mass index (BMI) ≥27 kg/m2] adults aged 35-75 y with prediabetes were randomized to consume 45 g/d of high-amylose maize (RS2) or an isocaloric amount of the rapidly digestible starch amylopectin (control) for 12 wk. At baseline and postintervention, ectopic fat depots (visceral adipose tissue, intrahepatic lipids, and intramyocellular lipids) were measured by magnetic resonance imaging/spectroscopy, energy metabolism by respiratory chamber, and carbohydrate metabolism by glycated hemoglobin (HbA1c), an intravenous glucose tolerance test, and a meal tolerance test. Cardiovascular risk factors-serum lipids, blood pressure, heart rate, and inflammatory markers (high-sensitivity C-reactive protein [hs-CRP], interleukin-6, and tumor necrosis factor [TNF]-α)-were also measured. The primary endpoints were insulin sensitivity, insulin secretion, ectopic fat, and markers of inflammation. Data were primarily analyzed as treatment effects via a linear mixed model both with and without the addition of covariates. Results Relative to the control group, RS2 lowered HbA1c by a clinically insignificant 0.1 ± 0.2% (Δ = -1 ± 2 mmol/mol; P = 0.05) but did not affect insulin secretion, insulin sensitivity, the disposition index, or glucose or insulin areas under the curve relative to baseline (P ≥ 0.23). RS2 decreased heart rate by 5 ± 9 beats/min (P = 0.02) and TNF-α concentrations by 2.1 ± 2.7 pg/mL (P = 0.004), relative to the control group. Ectopic fat, energy expenditure, substrate oxidation, and all other cardiovascular risk factors were unaffected (P ≥ 0.06). Conclusions 12 wk of supplementation with resistant starch reduced the inflammatory marker TNF-α and heart rate, but it did not significantly improve glycemic control and other cardiovascular disease risk factors, in adults with prediabetes. This trial was registered at clinicaltrials.gov as NCT01708694.
Collapse
Affiliation(s)
- Courtney M Peterson
- Division of Clinical Science, Pennington Biomedical Research Center, Baton Rouge, LA,Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Robbie A Beyl
- Biostatistics, Pennington Biomedical Research Center, Baton Rouge, LA
| | - Kara L Marlatt
- Division of Clinical Science, Pennington Biomedical Research Center, Baton Rouge, LA
| | - Corby K Martin
- Division of Clinical Science, Pennington Biomedical Research Center, Baton Rouge, LA
| | - Kayanush J Aryana
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA
| | - Maria L Marco
- Food Science and Technology, University of California-Davis, Davis, CA
| | - Roy J Martin
- Division of Clinical Science, Pennington Biomedical Research Center, Baton Rouge, LA,School of Nutrition and Food Sciences, Louisiana State University, Baton Rouge, LA
| | - Michael J Keenan
- School of Nutrition and Food Sciences, Louisiana State University, Baton Rouge, LA
| | - Eric Ravussin
- Division of Clinical Science, Pennington Biomedical Research Center, Baton Rouge, LA,Address correspondence to ER (e-mail: )
| |
Collapse
|
123
|
|
124
|
Meenu M, Xu B. A critical review on anti-diabetic and anti-obesity effects of dietary resistant starch. Crit Rev Food Sci Nutr 2018; 59:3019-3031. [DOI: 10.1080/10408398.2018.1481360] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Maninder Meenu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China
| |
Collapse
|
125
|
|
126
|
Cao Y, Chen X, Sun Y, Shi J, Xu X, Shi YC. Hypoglycemic Effects of Pyrodextrins with Different Molecular Weights and Digestibilities in Mice with Diet-Induced Obesity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2988-2995. [PMID: 29446938 DOI: 10.1021/acs.jafc.8b00404] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Pyrodextrin shares some properties of resistant starch, which is metabolically beneficial, and has potential applications as a functional food. In this study, we report that the oral administration of pyrodextrin (50 mg/kg/d for 7 weeks) decreased blood glucose (from 9.18 ± 1.47 to 7.67 ± 0.42 mmol/L), serum HbA1c, triglycerides, adipocyte size, and body weight (from 24.4 ± 1.2 to 22.5 ± 1.2 g) in mice with high-fat-diet-induced obesity. Western-blotting analysis suggested that pyrodextrins decreased intestinal SGLT-1 and GLUT-2 expression to ∼70 and ∼60% of the obese control, respectively, which slowed down glucose transportation from the gut into the blood and tentatively improved hepatic metabolism. Moreover, the pyrodextrin with a lower molecular weight of 44 kDa, a more branched structure, and increased nondigestible starch of 46.2 ± 0.3% showed stronger hypoglycemic activity. This work provides important information for developing pyrodextrins as a functional food and dietary supplement for the management of obesity and diabetes.
Collapse
Affiliation(s)
- Yan Cao
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Xiaoli Chen
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
- College of Food Science and Technology, Modern Biochemistry Experimental Center , Guangdong Ocean University , Zhanjiang 524088 , China
| | - Ying Sun
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Jialiang Shi
- Department of Grain Science and Industry , Kansas State University , Manhattan , Kansas 66506 , United States
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Yong-Cheng Shi
- Department of Grain Science and Industry , Kansas State University , Manhattan , Kansas 66506 , United States
| |
Collapse
|
127
|
Effect of sourdough fermentation and baking process severity on bioactive fiber compounds in immature and ripe wheat flour bread. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.10.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
128
|
Lee ES, Lee BH, Shin DU, Lim MY, Chung WH, Park CS, Baik MY, Nam YD, Seo DH. Amelioration of obesity in high-fat diet-fed mice by chestnut starch modified by amylosucrase from Deinococcus geothermalis. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.09.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
129
|
Alfa MJ, Strang D, Tappia PS, Olson N, DeGagne P, Bray D, Murray BL, Hiebert B. A Randomized Placebo Controlled Clinical Trial to Determine the Impact of Digestion Resistant Starch MSPrebiotic® on Glucose, Insulin, and Insulin Resistance in Elderly and Mid-Age Adults. Front Med (Lausanne) 2018; 4:260. [PMID: 29410955 PMCID: PMC5787146 DOI: 10.3389/fmed.2017.00260] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/26/2017] [Indexed: 12/11/2022] Open
Abstract
Introduction Type 2 diabetes (T2D) has reached epidemic proportions in North America. Recent evidence suggests that prebiotics can modulate the gut microbiome, which then plays an important role in regulating lipid metabolism, blood glucose, and insulin sensitivity. As such, prebiotics are appealing potential therapeutic strategies for prediabetes and T2D. The key objectives of this study were to determine the tolerability as well as the glucose and insulin modulating ability of MSPrebiotic® digestion resistant starch (DRS) in healthy mid-age (MID) and elderly (ELD) adults. Materials and methods This was a prospective, blinded, placebo-controlled study. Prediabetes and diabetes were among the exclusion factors. ELD (>70 years) and MID (30–50 years) Canadian adults were recruited and, after 2 weeks of consuming placebo, they were randomized to consume 30 g of either MSPrebiotic® or placebo per day for 12 weeks. In total, 42 ELD and 42 MID participants completed the study. Blood samples were collected over the 14-week study and analyzed for glucose, lipid profile, and CRP, lipid particles, TNF-α, IL-10, insulin, and insulin resistance (IR). Results At baseline, the ELD population had a significantly higher percentage (p < 0.01) with elevated glucose and significantly higher TNF-α (p < 0.01) compared to MID adults. MSPrebiotic® DRS was well tolerated in both MID and ELD adults. There was a significant difference over time in blood glucose (p = 0.0301) and insulin levels (p = 0.009), as well as IR (HOMA-IR; p = 0.009) in ELD adults who consumed MSPrebiotic® compared to placebo. No significant changes were found in MID adults. Conclusion Our results suggest that dietary supplementation with prebiotics such as MSPrebiotic® may be part of an effective strategy to reduce IR, a major risk factor for developing T2D, in the ELD. Clinical Trial Registration NCT01977183 listed on NIH website: ClinicalTrials.gov, The metadata generated in this study have been submitted to the NCBI Sequence Read Archive (http://www.ncbi.nlm.nih.gov/bioproject/381931).
Collapse
Affiliation(s)
- Michelle J Alfa
- St. Boniface Research Centre, Winnipeg, MB, Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | | | | | - Nancy Olson
- St. Boniface Research Centre, Winnipeg, MB, Canada
| | - Pat DeGagne
- St. Boniface Research Centre, Winnipeg, MB, Canada
| | - David Bray
- St. Boniface Research Centre, Winnipeg, MB, Canada
| | | | - Brett Hiebert
- Cardiac Sciences Program, I.H. Asper Clinical Research Institute, Winnipeg, MB, Canada
| |
Collapse
|
130
|
Liu H, Wang J, He T, Becker S, Zhang G, Li D, Ma X. Butyrate: A Double-Edged Sword for Health? Adv Nutr 2018; 9:21-29. [PMID: 29438462 PMCID: PMC6333934 DOI: 10.1093/advances/nmx009] [Citation(s) in RCA: 659] [Impact Index Per Article: 94.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 11/11/2017] [Indexed: 02/06/2023] Open
Abstract
Butyrate, a four-carbon short-chain fatty acid, is produced through microbial fermentation of dietary fibers in the lower intestinal tract. Endogenous butyrate production, delivery, and absorption by colonocytes have been well documented. Butyrate exerts its functions by acting as a histone deacetylase (HDAC) inhibitor or signaling through several G protein-coupled receptors (GPCRs). Recently, butyrate has received particular attention for its beneficial effects on intestinal homeostasis and energy metabolism. With anti-inflammatory properties, butyrate enhances intestinal barrier function and mucosal immunity. However, the role of butyrate in obesity remains controversial. Growing evidence has highlighted the impact of butyrate on the gut-brain axis. In this review, we summarize the present knowledge on the properties of butyrate, especially its potential effects and mechanisms involved in intestinal health and obesity.
Collapse
Affiliation(s)
- Hu Liu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Ji Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Ting He
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Sage Becker
- Department of Animal Science, Oklahoma State University, Stillwater, OK; Departments of Internal Medicine and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Guolong Zhang
- Department of Animal Science, Oklahoma State University, Stillwater, OK; Departments of Internal Medicine and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Defa Li
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China,Internal Medicine and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX,Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX,Address correspondence to XM (e-mail: )
| |
Collapse
|
131
|
Firdaus J, Sulistyani E, Subagio A. Resistant Starch Modified Cassava Flour (MOCAF) Improves Insulin Resistance. ACTA ACUST UNITED AC 2017. [DOI: 10.3923/ajcn.2018.32.36] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
132
|
Nugraheni M, Hamidah S, Auliana R. A Potential of Coleus Tuberosus Crackers Rich in Resistant Starch Type 3 Improves Glucose and Lipid Profile of Alloxan –Induced Diabetic Mice. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE JOURNAL 2017. [DOI: 10.12944/crnfsj.5.3.16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This study aims to determine the consumption effect of Coleus tuberosus flour and crackers rich in resistant starch type 3 to glucose and lipids profiles in diabetic mice. The study was conducted with four treatments (normal mice with AIN 93 diet, diabetic mice with AIN 93 diet, diabetic mice with Coleus tuberosus flour diet, diabetic mice with coleus tuberosus crackers rich in resistant starch type 3). The analysis of blood glucose levels and lipids profile were determined using an enzymatic colorimetric method with a commercial kit. The results showed that the consumption of Coleus tuberosus flour and crackers rich in resistant starch type 3 can improve glucose and lipids profile (total cholesterol, triglycerides, low-density lipoprotein, high-density lipoprotein) in alloxan-induced diabetic mice. The atherogenic index was smaller on the diet treatment of Coleus tuberosus flour rich in resistant starch type 3 and Coleus tuberosus crackers rich in resistant starch type 3 compared to the AIN 93 feed.This study shows that the raw material (Coleus tuberosus flour rich in resistant starch type 3) and Coleus tuberosus crackers that are rich in resistant starch type 3 can potentially be consumed as a functional food to improve glucose and lipid profiles in diabetes mellitus condition.
Collapse
Affiliation(s)
- Mutiara Nugraheni
- Department of Cullinary Art Vocational Education, Yogyakarta State University, Indonesia
| | - Siti Hamidah
- Department of Cullinary Art Vocational Education, Yogyakarta State University, Indonesia
| | - Rizqie Auliana
- Department of Cullinary Art Vocational Education, Yogyakarta State University, Indonesia
| |
Collapse
|
133
|
McNabney SM, Henagan TM. Short Chain Fatty Acids in the Colon and Peripheral Tissues: A Focus on Butyrate, Colon Cancer, Obesity and Insulin Resistance. Nutrients 2017; 9:E1348. [PMID: 29231905 PMCID: PMC5748798 DOI: 10.3390/nu9121348] [Citation(s) in RCA: 331] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/30/2017] [Accepted: 12/05/2017] [Indexed: 12/12/2022] Open
Abstract
Increased dietary fiber consumption has been associated with many beneficial effects, including amelioration of obesity and insulin resistance. These effects may be due to the increased production of short chain fatty acids, including propionate, acetate and butyrate, during fermentation of the dietary fiber in the colon. Indeed, oral and dietary supplementation of butyrate alone has been shown to prevent high fat-diet induced obesity and insulin resistance. This review focuses on sources of short chain fatty acids, with emphasis on sources of butyrate, mechanisms of fiber and butyrate metabolism in the gut and its protective effects on colon cancer and the peripheral effects of butyrate supplementation in peripheral tissues in the prevention and reversal of obesity and insulin resistance.
Collapse
Affiliation(s)
- Sean M McNabney
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA.
| | - Tara M Henagan
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
134
|
Thompson SV, Hannon BA, An R, Holscher HD. Effects of isolated soluble fiber supplementation on body weight, glycemia, and insulinemia in adults with overweight and obesity: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr 2017; 106:1514-1528. [PMID: 29092878 DOI: 10.3945/ajcn.117.163246] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/02/2017] [Indexed: 11/14/2022] Open
Abstract
Background: There is strong epidemiologic evidence that dietary fiber intake is protective against overweight and obesity; however, results of intervention studies have been mixed. Soluble fiber beneficially affects metabolism, and fiber supplementation may be a feasible approach to improve body composition and glycemia in adults with overweight and obesity.Objective: We evaluated randomized controlled trials (RCTs) of isolated soluble fiber supplementation in overweight and obese adults on outcomes related to weight management [body mass index (BMI; in kg/m2), body weight, percentage of body fat, and waist circumference] and glucose and insulin metabolism (homeostasis model assessment of insulin resistance and fasting insulin) through a systematic review and meta-analysis.Design: We searched PubMed, Web of Science, Cumulative Index to Nursing and Allied Health Literature and Cochrane Library databases. Eligible studies were RCTs that compared isolated soluble fiber with placebo treatments without energy-restriction protocols. Random-effects models were used to estimate pooled effect sizes and 95% CIs. Meta-regressions were performed to assess outcomes in relation to the intervention duration, fiber dose, and fiber type. Publication bias was assessed via Begg's and Egger's tests and funnel plot inspection.Results: Findings from 12 RCTs (n = 609 participants) from 2 to 17 wk of duration are summarized in this review. Soluble fiber supplementation reduced BMI by 0.84 (95% CI: -1.35, -0.32; P = 0.001), body weight by 2.52 kg (95% CI: -4.25, -0.79 kg; P = 0.004), body fat by 0.41% (95% CI: -0.58%, -0.24%; P < 0.001), fasting glucose by 0.17 mmol/L (95% CI: -0.28, -0.06 mmol/L; P = 0.002), and fasting insulin by 15.88 pmol/L (95% CI: -29.05, -2.71 pmol/L; P = 0.02) compared with the effects of placebo treatments. No publication bias was identified. Considerable between-study heterogeneity was observed for most outcomes.Conclusions: Isolated soluble fiber supplementation improves anthropometric and metabolic outcomes in overweight and obese adults, thereby indicating that supplementation may improve fiber intake and health in these individuals. However, the interpretation of these findings warrants caution because of the considerable between-study heterogeneity. This trial was registered at clinicaltrials.gov as NCT03003897.
Collapse
Affiliation(s)
| | | | - Ruopeng An
- Division of Nutritional Sciences, and.,Departments of Kinesiology and Community Health and
| | - Hannah D Holscher
- Division of Nutritional Sciences, and .,Departments of Kinesiology and Community Health and.,Food Science and Human Nutrition, University of Illinois, Urbana, IL
| |
Collapse
|
135
|
Dietary Fiber Intake among Normal-Weight and Overweight Female Health Care Workers: An Exploratory Nested Case-Control Study within FINALE-Health. J Nutr Metab 2017; 2017:1096015. [PMID: 29259826 PMCID: PMC5702918 DOI: 10.1155/2017/1096015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/02/2017] [Accepted: 10/10/2017] [Indexed: 01/30/2023] Open
Abstract
Socioeconomic factors affect choice of diet, that is, dietary fiber intake. Underreporting of food consumption in diet surveys has been reported higher in low-income, low-education groups compared to high-income, high-education groups. This paper examines in a socioeconomic homogenous low-income low-education group of females the relation between dietary fiber intake and overweight and scrutinizes if the level of underreporting is equally large in normal-weight and overweight groups. Thirty-four female health care workers classified as either normal-weight (N = 18) or obese (N = 16) based on BMI, fat percentage, and waist circumference participated. A detailed food-diary was used to record their dietary intake in 9 days. Average dietary fiber intake in the normal-weight group was 2.73 +/− 0.65 g/MJ, while it was 2.15 +/− 0.64 g/MJ for the women in the obese group. In both groups, the overall food intake was underreported. In spite of a significantly lower dietary fiber intake in the obese group, the present population of women working within health care all showed an overall low dietary fiber intake and a general underreporting of food intake. These results indicate a clear need for dietary advice especially on fiber intake to increase general health and decrease weight.
Collapse
|
136
|
Chen MH, Bergman CJ, McClung AM, Everette JD, Tabien RE. Resistant starch: Variation among high amylose rice varieties and its relationship with apparent amylose content, pasting properties and cooking methods. Food Chem 2017; 234:180-189. [DOI: 10.1016/j.foodchem.2017.04.170] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 04/26/2017] [Accepted: 04/26/2017] [Indexed: 12/01/2022]
|
137
|
Barouei J, Bendiks Z, Martinic A, Mishchuk D, Heeney D, Hsieh YH, Kieffer D, Zaragoza J, Martin R, Slupsky C, Marco ML. Microbiota, metabolome, and immune alterations in obese mice fed a high-fat diet containing type 2 resistant starch. Mol Nutr Food Res 2017; 61. [PMID: 28736992 DOI: 10.1002/mnfr.201700184] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/22/2017] [Accepted: 07/10/2017] [Indexed: 01/03/2023]
Abstract
SCOPE We examined the intestinal and systemic responses to incorporating a type 2 resistant starch (RS) into a high fat diet fed to obese mice. METHODS AND RESULTS Diet-induced obese, C57BL/6J male mice were fed an HF diet without or with 20% (by weight) high-amylose maize resistant starch (HF-RS) for 6 weeks. Serum adiponectin levels were higher with RS consumption, but there were no differences in weight gain and adiposity. With HF-RS, the expression levels of ileal TLR2 and Reg3g and cecal occludin, TLR2, TLR4, NOD1 and NOD2 were induced; whereas colonic concentrations of the inflammatory cytokine IL-17A declined. The intestinal, serum, liver, and urinary metabolomes were also altered. HF-RS resulted in lower amino acid concentrations, including lower serum branched chain amino acids, and increased quantities of urinary di/trimethylamine, 3-indoxylsulfate, and phenylacetylglycine. Corresponding to these changes were enrichments in Bacteroidetes (S24-7 family) and certain Firmicutes taxa (Lactobacillales and Erysipelotrichaceae) with the HF-RS diet. Parabacteroides and S24-7 positively associated with cecal maltose concentrations. These taxa and Erysipelotrichaceae, Allobaculum, and Bifidobacterium were directly correlated with uremic metabolites. CONCLUSION Consumption of RS modified the intestinal microbiota, stimulated intestinal immunity and endocrine-responses, and modified systemic metabolomes in obese mice consuming an otherwise obesogenic diet.
Collapse
Affiliation(s)
- Javad Barouei
- Department of Food Science & Technology, University of California, Davis, CA, USA
| | - Zach Bendiks
- Department of Food Science & Technology, University of California, Davis, CA, USA
| | - Alice Martinic
- Department of Nutrition, University of California, Davis, CA, USA
| | - Darya Mishchuk
- Department of Food Science & Technology, University of California, Davis, CA, USA
| | - Dustin Heeney
- Department of Food Science & Technology, University of California, Davis, CA, USA
| | - Yu-Hsin Hsieh
- Department of Food Science & Technology, University of California, Davis, CA, USA
| | - Dorothy Kieffer
- Department of Nutrition, University of California, Davis, CA, USA
| | - Jose Zaragoza
- Department of Food Science & Technology, University of California, Davis, CA, USA
| | - Roy Martin
- Department of Nutrition, University of California, Davis, CA, USA.,Western Human Nutrition Research Center, USDA, Davis, CA, USA
| | - Carolyn Slupsky
- Department of Food Science & Technology, University of California, Davis, CA, USA.,Department of Nutrition, University of California, Davis, CA, USA
| | - Maria L Marco
- Department of Food Science & Technology, University of California, Davis, CA, USA
| |
Collapse
|
138
|
Magallanes-Cruz PA, Flores-Silva PC, Bello-Perez LA. Starch Structure Influences Its Digestibility: A Review. J Food Sci 2017; 82:2016-2023. [PMID: 28753728 DOI: 10.1111/1750-3841.13809] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/24/2017] [Accepted: 06/14/2017] [Indexed: 12/21/2022]
Abstract
Twenty-five years ago, it was found that a significant fraction of the starch present in foods is not digested in the small intestine and continues to the large intestine, where it is fermented by the microbiota; this fraction was named resistant starch (RS). It was also reported that there is a fraction of starch that is slowly digested, sustaining a release of glucose in the small intestine. Later, health benefits were found to be associated with the consumption of this fraction, called slowly digestible starch (SDS). The authors declare both fractions to be "nutraceutical starch." An overview of the structure of both fractions (RS and SDS), as well as their nutraceutical characteristics, is presented with the objective of suggesting methods and processes that will increase both fractions in starchy foods and prevent diseases that are associated with the consumption of glycemic carbohydrates.
Collapse
Affiliation(s)
- Perla A Magallanes-Cruz
- Inst. Politécnico Nacional, CEPROBI. Km. 6.6 Carr. Yautepec-Jojutla Col. San Isidro, 62731, Yautepec, Morelos, México
| | - Pamela C Flores-Silva
- Inst. Politécnico Nacional, CEPROBI. Km. 6.6 Carr. Yautepec-Jojutla Col. San Isidro, 62731, Yautepec, Morelos, México
| | - Luis A Bello-Perez
- Inst. Politécnico Nacional, CEPROBI. Km. 6.6 Carr. Yautepec-Jojutla Col. San Isidro, 62731, Yautepec, Morelos, México
| |
Collapse
|
139
|
Inan Eroglu E, Buyuktuncer Z. The effect of various cooking methods on resistant starch content of foods. ACTA ACUST UNITED AC 2017. [DOI: 10.1108/nfs-10-2016-0154] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
Resistant starch, defined as all starch and starch-degradation products not absorbed by small intestine of healthy individuals, is included in the diet of individuals due to its prebiotic characteristics and protective effects against diseases like colon cancer, type II diabetes, obesity and cardiovascular diseases. Some cooking methods are known as effective on resistant starch content of foods. The purpose of this paper is to explore the effect of various cooking methods on resistant starch content of foods.
Design/methodology/approach
Potential health benefits and functional features of the resistant starch have been emphasized in the recent years. This review includes up-to-date scientific findings in different studies on the effect of various cooking methods on resistant starch content of foods. Advantages and nutritional quality of resistant starch are included to topic.
Findings
Cooking methods including baking, steaming and autoclave cooking increased the amount of the resistant starch of foods, but cooking method such as pressure cooking decreased the amount of the resistant starch of foods. Boiling, frying, microwave cooking and extrusion cooking have the potential of increasing the amount of resistant starch, which depends on the source of starch and the process conditions. Although frying method has a high potential to increase the resistant starch content of foods, it is inconvenient to recommend frying to modify resistant starch content of foods due to detrimental effects of frying and products on health.
Originality/value
This paper focuses on the effects of various cooking methods on resistant starch content of foods, which offers a promising future for the inartificial development of the prebiotic content of diet. Due to its potential health benefits, appropriate cooking methods should be preferred to increase resistant starch content of foods.
Collapse
|
140
|
Esgalhado M, Stenvinkel P, Mafra D. Nonpharmacologic Strategies to Modulate Nuclear Factor Erythroid 2–related Factor 2 Pathway in Chronic Kidney Disease. J Ren Nutr 2017; 27:282-291. [DOI: 10.1053/j.jrn.2017.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/03/2016] [Accepted: 01/06/2017] [Indexed: 01/25/2023] Open
|
141
|
Eid HM, Wright ML, Anil Kumar NV, Qawasmeh A, Hassan STS, Mocan A, Nabavi SM, Rastrelli L, Atanasov AG, Haddad PS. Significance of Microbiota in Obesity and Metabolic Diseases and the Modulatory Potential by Medicinal Plant and Food Ingredients. Front Pharmacol 2017; 8:387. [PMID: 28713266 PMCID: PMC5493053 DOI: 10.3389/fphar.2017.00387] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/02/2017] [Indexed: 01/11/2023] Open
Abstract
Metabolic syndrome is a cluster of three or more metabolic disorders including insulin resistance, obesity, and hyperlipidemia. Obesity has become the epidemic of the twenty-first century with more than 1.6 billion overweight adults. Due to the strong connection between obesity and type 2 diabetes, obesity has received wide attention with subsequent coining of the term "diabesity." Recent studies have identified unique contributions of the immensely diverse gut microbiota in the pathogenesis of obesity and diabetes. Several mechanisms have been proposed including altered glucose and fatty acid metabolism, hepatic fatty acid storage, and modulation of glucagon-like peptide (GLP)-1. Importantly, the relationship between unhealthy diet and a modified gut microbiota composition observed in diabetic or obese subjects has been recognized. Similarly, the role of diet rich in polyphenols and plant polysaccharides in modulating gut bacteria and its impact on diabetes and obesity have been the subject of investigation by several research groups. Gut microbiota are also responsible for the extensive metabolism of polyphenols thus modulating their biological activities. The aim of this review is to shed light on the composition of gut microbes, their health importance and how they can contribute to diseases as well as their modulation by polyphenols and polysaccharides to control obesity and diabetes. In addition, the role of microbiota in improving the oral bioavailability of polyphenols and hence in shaping their antidiabetic and antiobesity activities will be discussed.
Collapse
Affiliation(s)
- Hoda M. Eid
- Natural Health Products and Metabolic Diseases Laboratory, Department of Pharmacology and Physiology, Université de MontréalMontréal, QC, Canada
- Canadian Institutes of Health Research Team in Aboriginal Antidiabetic MedicinesMontréal, QC, Canada
- Department of Pharmacognosy, University of Beni-SuefBeni-Suef, Egypt
| | - Michelle L. Wright
- Nell Hodgson Woodruff School of Nursing, Emory UniversityAtlanta, GA, United States
| | - N. V. Anil Kumar
- Department of Chemistry, Manipal Institute of Technology, Manipal UniversityManipal, India
| | | | - Sherif T. S. Hassan
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences BrnoBrno, Czechia
| | - Andrei Mocan
- Department of Pharmaceutical Botany, Iuliu Hatieganu University of Medicine and PharmacyCluj-Napoca, Romania
- ICHAT and Institute for Life Sciences, University of Agricultural Sciences and Veterinary MedicineCluj-Napoca, Romania
| | - Seyed M. Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical SciencesTehran, Iran
| | - Luca Rastrelli
- Dipartimento di Farmacia, University of SalernoFisciano, Italy
| | - Atanas G. Atanasov
- Institute of Genetics and Animal Breeding, Polish Academy of SciencesJastrzebiec, Poland
- Department of Pharmacognosy, University of ViennaVienna, Austria
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of ViennaVienna, Austria
| | - Pierre S. Haddad
- Natural Health Products and Metabolic Diseases Laboratory, Department of Pharmacology and Physiology, Université de MontréalMontréal, QC, Canada
- Canadian Institutes of Health Research Team in Aboriginal Antidiabetic MedicinesMontréal, QC, Canada
| |
Collapse
|
142
|
Wang H, Pang G. Effect of resistant and digestible rice starches on human cytokine and lactate metabolic networks in serum. Cytokine 2017; 93:57-65. [PMID: 28511942 DOI: 10.1016/j.cyto.2017.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 02/27/2017] [Accepted: 05/09/2017] [Indexed: 11/18/2022]
Abstract
Resistant starch generated after treating ordinary starch is of great significance to human health in the countries with overnutrition. However, its functional evaluation in the human body has been rarely reported. By determining the lactate metabolic flux, 12 serum enzymes expression level and 38 serum cytokines in healthy volunteers, the variation in cytokine network and lactate metabolic network in serum were investigated to compare the mechanism of the physiological effects between the two starches. The results indicated that compared with digestible starch, resistant starch had anti-inflammatory effects, increased anabolism, and decreased catabolism. Further, the intercellular communication networks including cytokine and lactate metabolic networks were mapped out. The relationship suggested that resistant starch might affect and control the secretion of cytokines to regulate lactate metabolic network in the body, promoting the development of immunometabolism.
Collapse
Affiliation(s)
- Huisong Wang
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Guangchang Pang
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China.
| |
Collapse
|
143
|
Keenan MJ, Martin RJ, Robertson MD, Aryana KJ, Witwer R, Warshaw H. Misleading conclusions on effects of resistant starch due to inappropriate formulation of controls, inadequate statistical power, and anomalies in the in vitro methods. Am J Clin Nutr 2017; 105:1248-1249. [PMID: 28461512 DOI: 10.3945/ajcn.116.147991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Michael J Keenan
- From the School of Nutrition and Food Science, Louisiana State University AgCenter, Baton Rouge, LA (RJM and KJA; MJK, e-mail: ); Health and Medical Sciences, University of Surrey, Guildford, United Kingdom (MDR); International Agriculture Group, Mooresville, NC (RW); and Hope Warshaw Associates, LLC, Alexandria, VA (HW)
| | - Roy J Martin
- From the School of Nutrition and Food Science, Louisiana State University AgCenter, Baton Rouge, LA (RJM and KJA; MJK, e-mail: ); Health and Medical Sciences, University of Surrey, Guildford, United Kingdom (MDR); International Agriculture Group, Mooresville, NC (RW); and Hope Warshaw Associates, LLC, Alexandria, VA (HW)
| | - M D Robertson
- From the School of Nutrition and Food Science, Louisiana State University AgCenter, Baton Rouge, LA (RJM and KJA; MJK, e-mail: ); Health and Medical Sciences, University of Surrey, Guildford, United Kingdom (MDR); International Agriculture Group, Mooresville, NC (RW); and Hope Warshaw Associates, LLC, Alexandria, VA (HW)
| | - Kayanush J Aryana
- From the School of Nutrition and Food Science, Louisiana State University AgCenter, Baton Rouge, LA (RJM and KJA; MJK, e-mail: ); Health and Medical Sciences, University of Surrey, Guildford, United Kingdom (MDR); International Agriculture Group, Mooresville, NC (RW); and Hope Warshaw Associates, LLC, Alexandria, VA (HW)
| | - Rhonda Witwer
- From the School of Nutrition and Food Science, Louisiana State University AgCenter, Baton Rouge, LA (RJM and KJA; MJK, e-mail: ); Health and Medical Sciences, University of Surrey, Guildford, United Kingdom (MDR); International Agriculture Group, Mooresville, NC (RW); and Hope Warshaw Associates, LLC, Alexandria, VA (HW)
| | - Hope Warshaw
- From the School of Nutrition and Food Science, Louisiana State University AgCenter, Baton Rouge, LA (RJM and KJA; MJK, e-mail: ); Health and Medical Sciences, University of Surrey, Guildford, United Kingdom (MDR); International Agriculture Group, Mooresville, NC (RW); and Hope Warshaw Associates, LLC, Alexandria, VA (HW)
| |
Collapse
|
144
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disorder in the world, yet the pathogenesis of the disease is not well elucidated. Due to the close anatomic and functional association between the intestinal lumen and the liver through the portal system, it is speculated that the gut microbiome may play a pivotal role in the pathogenesis of NAFLD. Furthermore, diet, which can modulate the gut microbiome and several metabolic pathways involved in NAFLD development, shows a potential tripartite relation between the gut, diet, and the liver. In this review, we summarize the current evidence that supports the association between NAFLD, the gut microbiome, and the role of diet.
Collapse
Affiliation(s)
- Zeinab Mokhtari
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Deanna L Gibson
- Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, British Columbia, Canada; and
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran;
- Department of Gastroenterology, Hepatology, and Nutrition, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
145
|
Maziarz MP, Preisendanz S, Juma S, Imrhan V, Prasad C, Vijayagopal P. Resistant starch lowers postprandial glucose and leptin in overweight adults consuming a moderate-to-high-fat diet: a randomized-controlled trial. Nutr J 2017; 16:14. [PMID: 28222742 PMCID: PMC5320660 DOI: 10.1186/s12937-017-0235-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/13/2017] [Indexed: 01/03/2023] Open
Abstract
Background High-amylose maize resistant starch type 2 (HAM-RS2) stimulates gut-derived satiety peptides and reduces adiposity in animals. Human studies have not supported these findings despite improvements in glucose homeostasis and insulin sensitivity after HAM-RS2 intake which can lower adiposity-related disease risk. The primary objective of this study was to evaluate the impact of HAM-RS2 consumption on blood glucose homeostasis in overweight, healthy adults. We also examined changes in biomarkers of satiety (glucagon-like peptide-1 [GLP-1], peptide YY [PYY], and leptin) and body composition determined by anthropometrics and dual-energy x-ray absorptiometry, dietary intake, and subjective satiety measured by a visual analogue scale following HAM-RS2 consumption. Methods Using a randomized-controlled, parallel-arm, double-blind design, 18 overweight, healthy adults consumed either muffins enriched with 30 g HAM-RS2 (n = 11) or 0 g HAM-RS2 (control; n = 7) daily for 6 weeks. The HAM-RS2 and control muffins were similar in total calories and available carbohydrate. Results At baseline, total PYY concentrations were significantly higher 120 min following the consumption of study muffins in the HAM-RS2 group than control group (P = 0.043). Within the HAM-RS2 group, the area under the curve (AUC) glucose (P = 0.028), AUC leptin (P = 0.022), and postprandial 120-min leptin (P = 0.028) decreased independent of changes in body composition or overall energy intake at the end of 6 weeks. Fasting total PYY increased (P = 0.033) in the HAM-RS2 group, but changes in insulin or total GLP-1 were not observed. Mean overall change in subjective satiety score did not correlate with mean AUC biomarker changes suggesting the satiety peptides did not elicit a satiation response or change in overall total caloric intake. The metabolic response from HAM-RS2 occurred despite the habitual intake of a moderate-to-high-fat diet (mean range 34.5% to 39.4% of total calories). Conclusion Consuming 30 g HAM-RS2 daily for 6 weeks can improve glucose homeostasis, lower leptin concentrations, and increase fasting PYY in healthy overweight adults without impacting body composition and may aid in the prevention of chronic disease. However, between-group differences in biomarkers were not observed and future research is warranted before specific recommendations can be made. Trial registration None.
Collapse
Affiliation(s)
- Mindy Patterson Maziarz
- Department of Nutrition and Food Sciences, Institute of Health Sciences, Texas Woman's University, 6700 Fannin Street, Houston, TX, 77030, USA
| | - Sara Preisendanz
- Department of Nutrition and Food Sciences, Texas Woman's University, P.O Box 425888, Denton, TX, 76204, USA
| | - Shanil Juma
- Department of Nutrition and Food Sciences, Texas Woman's University, P.O Box 425888, Denton, TX, 76204, USA
| | - Victorine Imrhan
- Department of Nutrition and Food Sciences, Texas Woman's University, P.O Box 425888, Denton, TX, 76204, USA
| | - Chandan Prasad
- Department of Nutrition and Food Sciences, Texas Woman's University, P.O Box 425888, Denton, TX, 76204, USA.,Department of Medicine (Endocrinology), Louisiana State University Health Science Center, New Orleans, LA, 70112, USA
| | - Parakat Vijayagopal
- Department of Nutrition and Food Sciences, Texas Woman's University, P.O Box 425888, Denton, TX, 76204, USA.
| |
Collapse
|
146
|
Bindels LB, Segura Munoz RR, Gomes-Neto JC, Mutemberezi V, Martínez I, Salazar N, Cody EA, Quintero-Villegas MI, Kittana H, de Los Reyes-Gavilán CG, Schmaltz RJ, Muccioli GG, Walter J, Ramer-Tait AE. Resistant starch can improve insulin sensitivity independently of the gut microbiota. MICROBIOME 2017; 5:12. [PMID: 28166818 PMCID: PMC5294823 DOI: 10.1186/s40168-017-0230-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 01/09/2017] [Indexed: 05/13/2023]
Abstract
BACKGROUND Obesity-related diseases, including type 2 diabetes and cardiovascular disease, have reached epidemic proportions in industrialized nations, and dietary interventions for their prevention are therefore important. Resistant starches (RS) improve insulin sensitivity in clinical trials, but the mechanisms underlying this health benefit remain poorly understood. Because RS fermentation by the gut microbiota results in the formation of physiologically active metabolites, we chose to specifically determine the role of the gut microbiota in mediating the metabolic benefits of RS. To achieve this goal, we determined the effects of RS when added to a Western diet on host metabolism in mice with and without a microbiota. RESULTS RS feeding of conventionalized mice improved insulin sensitivity and redressed some of the Western diet-induced changes in microbiome composition. However, parallel experiments in germ-free littermates revealed that RS-mediated improvements in insulin levels also occurred in the absence of a microbiota. RS reduced gene expression of adipose tissue macrophage markers and altered cecal concentrations of several bile acids in both germ-free and conventionalized mice; these effects were strongly correlated with the metabolic benefits, providing a potential microbiota-independent mechanism to explain the physiological effects of RS. CONCLUSIONS This study demonstrated that some metabolic benefits exerted by dietary RS, especially improvements in insulin levels, occur independently of the microbiota and could involve alterations in the bile acid cycle and adipose tissue immune modulation. This work also sets a precedent for future mechanistic studies aimed at establishing the causative role of the gut microbiota in mediating the benefits of bioactive compounds and functional foods.
Collapse
Affiliation(s)
- Laure B Bindels
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Rafael R Segura Munoz
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - João Carlos Gomes-Neto
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Valentin Mutemberezi
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Inés Martínez
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Nuria Salazar
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Asturias, Spain
| | - Elizabeth A Cody
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Hatem Kittana
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Clara G de Los Reyes-Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Asturias, Spain
| | - Robert J Schmaltz
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Jens Walter
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Amanda E Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
147
|
Enhanced anti-obesity effects of complex of resistant starch and chitosan in high fat diet fed rats. Carbohydr Polym 2017; 157:834-841. [DOI: 10.1016/j.carbpol.2016.10.042] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/14/2016] [Indexed: 12/21/2022]
|
148
|
|
149
|
Dai FJ, Chau CF. Classification and regulatory perspectives of dietary fiber. J Food Drug Anal 2017; 25:37-42. [PMID: 28911542 PMCID: PMC9333437 DOI: 10.1016/j.jfda.2016.09.006] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 08/30/2016] [Accepted: 09/08/2016] [Indexed: 02/07/2023] Open
Abstract
This review discusses the history and evolution of the state of dietary fiber (DF) with account of refinements in extraction methods and legal definitions subsequent to the launch of DF hypothesis. For a long time, defining and regulating DFs relied heavily on their chemical compositions and analytical methods. Although chemical compositions and analytical methods still play an important role in the definition of DF, physiological activity has also been taken into consideration. The precise definition of DF is still evolving, particularly whether oligosaccharides degrees of polymerization (DP) 3–9 should be considered as DF or not. Decades of scientific research have initiated the expansion of the term DF to include indigestible oligosaccharides with their DP between 3 and 9; hence responding to the positive health benefits of DF as well as fulfilling the needs in food labeling regulations.
Collapse
|
150
|
Short Chain Fatty Acids Prevent High-fat-diet-induced Obesity in Mice by Regulating G Protein-coupled Receptors and Gut Microbiota. Sci Rep 2016; 6:37589. [PMID: 27892486 PMCID: PMC5124860 DOI: 10.1038/srep37589] [Citation(s) in RCA: 434] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/31/2016] [Indexed: 02/07/2023] Open
Abstract
Elucidating the mechanisms by which short chain fatty acids (SCFA) reduce body weight may assist in the development of an effective weight control strategy. Dietary supplementation of acetate, propionate, butyrate or their admixture was shown to significantly inhibit the body weight gain induced by high-fat diet feeding. Supplementation of SCFAs caused significant changes in the expressions of G-protein coupled receptor 43 (GPR43) and GPR41 characterized by increases in the adipose tissue and reductions in the colon. Additionally, they influenced the bacterial community structure in feces, with a reduction in the proportion of Firmicutes and an increase in the proportion of Bacteroidetes. The effects of dietary SCFAs on the GPR expression and gut microbiota composition may further result in body weight reduction by enhancing triglyceride hydrolysis and FFA oxidation in the adipose tissue, promoting beige adipogenesis and mitochondrial biogenesis, and inhibiting chronic inflammation.
Collapse
|