101
|
Matias I, Morgado J, Gomes FCA. Astrocyte Heterogeneity: Impact to Brain Aging and Disease. Front Aging Neurosci 2019; 11:59. [PMID: 30941031 PMCID: PMC6433753 DOI: 10.3389/fnagi.2019.00059] [Citation(s) in RCA: 247] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/01/2019] [Indexed: 12/13/2022] Open
Abstract
Astrocytes, one of the largest glial cell population in the central nervous system (CNS), play a key function in several events of brain development and function, such as synapse formation and function, control of neurotransmitters release and uptake, production of trophic factors and control of neuronal survival. Initially described as a homogenous population, several evidences have pointed that astrocytes are highly heterogeneous, both morphologically and functionally, within the same region, and across different brain regions. Recent findings suggest that the heterogeneity in the expression profile of proteins involved in astrocyte function may predict the selective vulnerability of brain regions to specific diseases, as well as to the age-related cognitive decline. However, the molecular mechanisms underlying these changes, either in aging as well as in brain disease are scarce. Neuroinflammation, a hallmark of several neurodegenerative diseases and aging, is reported to have a dubious impact on glial activation, as these cells release pro- and anti-inflammatory cytokines and chemokines, anti-oxidants, free radicals, and neurotrophic factors. Despite the emerging evidences supporting that reactive astrocytes have a duality in their phenotype, neurotoxic or neuroprotective properties, depending on the age and stimuli, the underlying mechanisms of their activation, cellular interplays and the impact of regional astrocyte heterogeneity are still a matter of discussion. In this review article, we will summarize recent findings on astrocyte heterogeneity and phenotypes, as well as their likely impact for the brain function during aging and neural diseases. We will focus on the molecules and mechanisms triggered by astrocyte to control synapse formation in different brain regions. Finally, we will discuss new evidences on how the modulation of astrocyte phenotype and function could impact the synaptic deficits and glial dysfunction present in aging and pathological states.
Collapse
Affiliation(s)
- Isadora Matias
- Laboratory of Cellular Neurobiology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Morgado
- Laboratory of Cellular Neurobiology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flávia Carvalho Alcantara Gomes
- Laboratory of Cellular Neurobiology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
102
|
Choubey P, Kwatra M, Pandey SN, Kumar D, Dwivedi DK, Rajput P, Mishra A, Lahkar M, Jangra A. Ameliorative effect of fisetin against lipopolysaccharide and restraint stress-induced behavioral deficits via modulation of NF-κB and IDO-1. Psychopharmacology (Berl) 2019; 236:741-752. [PMID: 30426184 DOI: 10.1007/s00213-018-5105-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/02/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Fisetin, a plant active polyphenol, is well known for its antioxidant and free radical scavenging activities. The present study was designed to explore the detailed molecular mechanism underlying its neuroprotective effects. METHODS The young male mice were either administered a single dose of lipopolysaccharide (0.83 mg/kg) or subjected to restraint stress (6 h per day for 28 days) to induce behavioral deficits in different groups. Fisetin (15 mg/kg) was orally administered for the last 14 days of the study. RESULTS Lipopolysaccharide (LPS) as well as restraint stress (RS) exposure caused behavioral alterations (anxiety and depressive-like behavior). Gene expression analysis showed upregulation of nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB) and indoleamine 2,3-dioxygenase (IDO)-1 gene expression along with downregulation of Nrf-2 (nuclear factor erythroid 2-related factor 2), HO-1 (heme oxygenase-1), and ChAT (choline acetyltransferase) gene expression level in RS and RS+LPS groups. Fisetin administration significantly ameliorated behavioral and neurochemical deficits in LPS, RS, and RS+LPS groups. CONCLUSION These findings clearly indicated that fisetin administration improved behavioral functions and suppressed the NF-κB and IDO-1 (indoleamine 2,3-dioxygenase) activation along with their antioxidant effect, suggesting fisetin as an intriguing nutraceutical for the management of inflammation-associated neurological disorders.
Collapse
Affiliation(s)
- Priyansha Choubey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Mohit Kwatra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Surya Narayan Pandey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Dinesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Durgesh Kumar Dwivedi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Prabha Rajput
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Abhishek Mishra
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Mangala Lahkar
- Department of Pharmacology, Gauhati Medical College, Guwahati, Assam, India
| | - Ashok Jangra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India.
- Department of Pharmacology, KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
103
|
Tan Q, Peng L, Huang Y, Huang W, Bai W, Shi L, Li X, Chen T. Structure-Activity Relationship Analysis on Antioxidant and Anticancer Actions of Theaflavins on Human Colon Cancer Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:159-170. [PMID: 30474978 DOI: 10.1021/acs.jafc.8b05369] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The roles of natural products as effective cancer prevention and therapeutic agents have been documented by various studies in recent years, but the action mechanisms and structure-activity relationship need more elucidation. The present study showed that theaflavins (theaflavin and its derivatives, TFs) from black tea caused an inhibitory effect on the proliferation of human colon adenocarcinoma cancer SW480 cells and human colon cancer SW620 cells [half maximal inhibitory concentration (IC50) < 32.0 μM] by the induction of cell cycle arrest but exerted lower toxicity against normal cells with a high safety index (1.89-6.26). Moreover, TFs triggered a decrease in reactive oxygen species in SW480 cells as a result of their excellent radical-scavenging ability (e.g., the IC50 value of TF4 to ABTS• + was 1.91 ± 0.21 μM). More importantly, the structure-activity relationship analysis of TFs exhibited that the galloyl group was an important factor to affect these activities. Taken together, we revealed that the TFs could act as substitutes for natural antioxidants and promising anticancer agents with beneficial influence on human health and then anticipated that this study may provide useful information on the development of therapeutic natural products.
Collapse
Affiliation(s)
| | - Lijiao Peng
- Affiliated Hospital of Guangdong Medical University , Zhanjiang , Guangdong 524000 , People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
104
|
Monteiro AFM, Viana JDO, Nayarisseri A, Zondegoumba EN, Mendonça Junior FJB, Scotti MT, Scotti L. Computational Studies Applied to Flavonoids against Alzheimer's and Parkinson's Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7912765. [PMID: 30693065 PMCID: PMC6332933 DOI: 10.1155/2018/7912765] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 12/31/2022]
Abstract
Neurodegenerative diseases, such as Parkinson's and Alzheimer's, are understood as occurring through genetic, cellular, and multifactor pathophysiological mechanisms. Several natural products such as flavonoids have been reported in the literature for having the capacity to cross the blood-brain barrier and slow the progression of such diseases. The present article reports on in silico enzymatic target studies and natural products as inhibitors for the treatment of Parkinson's and Alzheimer's diseases. In this study we evaluated 39 flavonoids using prediction of molecular properties and in silico docking studies, while comparing against 7 standard reference compounds: 4 for Parkinson's and 3 for Alzheimer's. Osiris analysis revealed that most of the flavonoids presented no toxicity and good absorption parameters. The Parkinson's docking results using selected flavonoids as compared to the standards with four proteins revealed similar binding energies, indicating that the compounds 8-prenylnaringenin, europinidin, epicatechin gallate, homoeriodictyol, capensinidin, and rosinidin are potential leads with the necessary pharmacological and structural properties to be drug candidates. The Alzheimer's docking results suggested that seven of the 39 flavonoids studied, being those with the best molecular docking results, presenting no toxicity risks, and having good absorption rates (8-prenylnaringenin, europinidin, epicatechin gallate, homoeriodictyol, aspalathin, butin, and norartocarpetin) for the targets analyzed, are the flavonoids which possess the most adequate pharmacological profiles.
Collapse
Affiliation(s)
- Alex France M. Monteiro
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Jéssika De O. Viana
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Anuraj Nayarisseri
- In Silico Research Laboratory, Eminent Bioscience, Inodre - 452010, Madhya Pradesh, India
- Bioinformatics Research Laboratory, LeGene Biosciences, Indore - 452010, Madhya Pradesh, India
| | - Ernestine N. Zondegoumba
- Department of Organic Chemistry, Faculty of Science, University of Yaounde I, PO Box 812, Yaoundé, Cameroon
| | | | - Marcus Tullius Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Luciana Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil
- Teaching and Research Management-University Hospital, Federal University of Paraíba, João Pessoa, PB, Brazil
| |
Collapse
|
105
|
Martin TD, Malagodi AJ, Chi EY, Evans DG. Computational Study of the Driving Forces and Dynamics of Curcumin Binding to Amyloid-β Protofibrils. J Phys Chem B 2018; 123:551-560. [DOI: 10.1021/acs.jpcb.8b09185] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tye D. Martin
- Biomedical Engineering Graduate Program, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Angelina J. Malagodi
- Department of Chemistry, Macalester College, Saint Paul, Minnesota 55105, United States
| | - Eva Y. Chi
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Deborah G. Evans
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
106
|
Kotormán M, Varga A, Kasi PB, Nemcsók J. Inhibition of the formation of amyloid-like fibrils with spices, especially cloves. ACTA BIOLOGICA HUNGARICA 2018; 69:385-394. [PMID: 30587021 DOI: 10.1556/018.69.2018.4.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During the study of inhibition of amyloid fibril formation, α-chymotrypsin protein was developed in 55% ethanol at pH 7.0. We investigated the inhibitory effect of different spices on amyloid fibril formation using turbidity measurements and Congo red binding assays. We found that all spices except the black pepper and caraway seed prevented fibril formation. The highest inhibition was measured with the clove, which reduced the amount of aggregates by 90%. We studied the inhibitory effect of the cloves at different concentrations on aggregation, it was found that the inhibitory activity of clove is dependent on concentration. We have measured the total phenolic content of the spice extracts too. Based on all these findings we have come to the following conclusion: Our results indicate that spices can contain other compounds too - not only phenolic compounds - which influence the formation of amyloid fibrils, and the effectiveness of various phenolic compounds are different.
Collapse
Affiliation(s)
- Márta Kotormán
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Középfasor 52, H-6726 Szeged, Hungary
| | - Alexandra Varga
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Középfasor 52, H-6726 Szeged, Hungary
| | - Phanindra Babu Kasi
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Középfasor 52, H-6726 Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - János Nemcsók
- Department of Biology, Pedagogical Faculty, Selye János University, Bratislavská cesta 3322, SK-94501 Komarno, Slovak Republic
| |
Collapse
|
107
|
Nigro A, Pellegrino M, Greco M, Comandè A, Sisci D, Pasqua L, Leggio A, Morelli C. Dealing with Skin and Blood-Brain Barriers: The Unconventional Challenges of Mesoporous Silica Nanoparticles. Pharmaceutics 2018; 10:E250. [PMID: 30513731 PMCID: PMC6320758 DOI: 10.3390/pharmaceutics10040250] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 12/16/2022] Open
Abstract
Advances in nanotechnology for drug delivery are fostering significant progress in medicine and diagnostics. The multidisciplinary nature of the nanotechnology field encouraged the development of innovative strategies and materials to treat a wide range of diseases in a highly specific way, which allows reducing the drug dosage and, consequently, improving the patient's compliance. Due to their good biocompatibility, easy synthesis, and high versatility, inorganic frameworks represent a valid tool to achieve this aim. In this context, Mesoporous Silica Nanoparticles (MSNs) are emerging in the biomedical field. For their ordered porosity and high functionalizable surface, achievable with an inexpensive synthesis process and being non-hazardous to biological tissues, MSNs offer ideal solutions to host, protect, and transport drugs to specific target sites. Extensive literature exists on the use of MSNs as targeted vehicles for systemic (chemo) therapy and for imaging/diagnostic purposes. However, the aim of this review is to give an overview of the last updates on the potential applications of the MSNs for Topical Drug Delivery (TDD) and as drug delivery systems into the brain, discussing their performances and advantages in dealing with these intriguing biological barriers.
Collapse
Affiliation(s)
- Alessandra Nigro
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
| | - Michele Pellegrino
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
| | - Marianna Greco
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
| | - Alessandra Comandè
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
| | - Diego Sisci
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
| | - Luigi Pasqua
- Department of Environmental and Chemical Engineering, University of Calabria, 87036 Rende, Italy.
| | - Antonella Leggio
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
| | - Catia Morelli
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
| |
Collapse
|
108
|
Siddique YH, Jyoti S, Naz F. Protective effect of luteolin on the transgenic Drosophila model of Parkinson’s disease. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902018000317760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
109
|
Ghumatkar PJ, Patil SP, Peshattiwar V, Vijaykumar T, Dighe V, Vanage G, Sathaye S. The modulatory role of phloretin in Aβ 25-35 induced sporadic Alzheimer's disease in rat model. Naunyn Schmiedebergs Arch Pharmacol 2018; 392:327-339. [PMID: 30488341 DOI: 10.1007/s00210-018-1588-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/15/2018] [Indexed: 01/22/2023]
Abstract
Alzheimer's disease (AD) is the leading neurodegenerative disorder with extracellular senile plaques and neurofibrillary tangles as the major hallmarks. The objective was to evaluate the effect of phloretin in a chronic model of sporadic AD by injecting aggregated form of Aβ25-35 peptide sequence intracerebroventricularly (icv) in Wistar rats. To achieve this, male Wistar rats were injected with aggregated Aβ25-35 peptide icv, followed by 21 days phloretin (2.5 mg/kg, 5 mg/kg) administration after recovery period. Barnes maze and elevated plus maze along with the biochemical estimation of antioxidant enzymes activities were conducted. The hippocampus region of the rat brains were stained with Congo red and Nissl stain. TNF-α was estimated in the brain homogenates using the ELISA assay. In this study, phloretin improved the spatial memory formation and retention in Barnes maze test. Additionally, phloretin alleviated the antioxidant defense biomarkers and thereby reduced oxidative stress, decreased TNF-α-mediated neuroinflammation. Furthermore, phloretin treatment showed decreased amyloid beta accumulation in the CA1 region and less number of pyknotic nuclei in the dentate gyrus of the Aβ25-35-injected rat brains. The above experimental findings evinced the promising role of phloretin in Aβ25-35-injected rats and which further envisage its potential to be explored in the treatment of AD.
Collapse
Affiliation(s)
- Priya J Ghumatkar
- Pharmacology Research Laboratory-II, Department of Pharmaceutical Science & Technology, Institute of Chemical Technology (University under Section 3 of UGC Act- 1956, Elite Status & Centre of Excellence-Govt. of Maharashtra, TEQIP Phase II Funded), Matunga (E), Mumbai, Maharashtra, 400019, India
| | - Sachin P Patil
- Pharmacology Research Laboratory-II, Department of Pharmaceutical Science & Technology, Institute of Chemical Technology (University under Section 3 of UGC Act- 1956, Elite Status & Centre of Excellence-Govt. of Maharashtra, TEQIP Phase II Funded), Matunga (E), Mumbai, Maharashtra, 400019, India
| | - Vaibhavi Peshattiwar
- Pharmacology Research Laboratory-II, Department of Pharmaceutical Science & Technology, Institute of Chemical Technology (University under Section 3 of UGC Act- 1956, Elite Status & Centre of Excellence-Govt. of Maharashtra, TEQIP Phase II Funded), Matunga (E), Mumbai, Maharashtra, 400019, India
| | - Tushara Vijaykumar
- National Centre for Preclinical Reproductive and Genetic Toxicology, National Institute for Research in Reproductive Health (NIRRH), Parel, Mumbai, India
| | - Vikas Dighe
- National Centre for Preclinical Reproductive and Genetic Toxicology, National Institute for Research in Reproductive Health (NIRRH), Parel, Mumbai, India
| | - Geeta Vanage
- National Centre for Preclinical Reproductive and Genetic Toxicology, National Institute for Research in Reproductive Health (NIRRH), Parel, Mumbai, India
| | - Sadhana Sathaye
- Pharmacology Research Laboratory-II, Department of Pharmaceutical Science & Technology, Institute of Chemical Technology (University under Section 3 of UGC Act- 1956, Elite Status & Centre of Excellence-Govt. of Maharashtra, TEQIP Phase II Funded), Matunga (E), Mumbai, Maharashtra, 400019, India.
| |
Collapse
|
110
|
Enhancing TFEB-Mediated Cellular Degradation Pathways by the mTORC1 Inhibitor Quercetin. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5073420. [PMID: 30510622 PMCID: PMC6230393 DOI: 10.1155/2018/5073420] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/16/2018] [Accepted: 08/09/2018] [Indexed: 12/17/2022]
Abstract
Signaling pathways mediated by the mechanistic target of rapamycin (mTOR) play key roles in aging and age-related diseases. As a downstream protein of mTOR, transcription factor EB (TFEB) controls lysosome biogenesis and cellular trafficking, processes that are essential for the functions of phagocytic cells like the retinal pigment epithelium (RPE). In the current study, we show that a naturally occurring polyphenolic compound, quercetin, promoted TFEB nuclear translocation and enhanced its transcriptional activity in cultured RPE cells. Activated TFEB facilitated degradation of phagocytosed photoreceptor outer segments. Quercetin is a direct inhibitor of mTOR but did not influence the activity of Akt at the tested concentration range. Our data suggest that the dietary compound quercetin can have beneficial roles in neuronal tissues by improving the functions of the TFEB-lysosome axis and enhancing the capacities of cellular degradation and self-renewal.
Collapse
|
111
|
Marques C, Fernandes I, Meireles M, Faria A, Spencer JPE, Mateus N, Calhau C. Gut microbiota modulation accounts for the neuroprotective properties of anthocyanins. Sci Rep 2018; 8:11341. [PMID: 30054537 PMCID: PMC6063953 DOI: 10.1038/s41598-018-29744-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/12/2018] [Indexed: 01/10/2023] Open
Abstract
High-fat (HF) diets are thought to disrupt the profile of the gut microbiota in a manner that may contribute to the neuroinflammation and neurobehavioral changes observed in obesity. Accordingly, we hypothesize that by preventing HF-diet induced dysbiosis it is possible to prevent neuroinflammation and the consequent neurological disorders. Anthocyanins are flavonoids found in berries that exhibit anti-neuroinflammatory properties in the context of obesity. Here, we demonstrate that the blackberry anthocyanin-rich extract (BE) can modulate gut microbiota composition and counteract some of the features of HF-diet induced dysbiosis. In addition, we show that the modifications in gut microbial environment are partially linked with the anti-neuroinflammatory properties of BE. Through fecal metabolome analysis, we unravel the mechanism by which BE participates in the bilateral communication between the gut and the brain. BE alters host tryptophan metabolism, increasing the production of the neuroprotective metabolite kynurenic acid. These findings strongly suggest that dietary manipulation of the gut microbiota with anthocyanins can attenuate the neurologic complications of obesity, thus expanding the classification of psychobiotics to anthocyanins.
Collapse
Affiliation(s)
- Cláudia Marques
- CINTESIS - Centre for Research in Health Technologies and Information Systems, Porto, Portugal.,Nutrition & Metabolism, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Iva Fernandes
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Manuela Meireles
- CINTESIS - Centre for Research in Health Technologies and Information Systems, Porto, Portugal.,ESSUAlg - School of Health, University of Algarve, Faro, Portugal
| | - Ana Faria
- CINTESIS - Centre for Research in Health Technologies and Information Systems, Porto, Portugal.,Nutrition & Metabolism, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal.,Comprehensive Health Research Centre, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Jeremy P E Spencer
- Hugh Sinclair Unit for Human Nutrition, School of Chemistry, Food and Pharmacy, University of Reading, Reading, UK
| | - Nuno Mateus
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Conceição Calhau
- CINTESIS - Centre for Research in Health Technologies and Information Systems, Porto, Portugal. .,Nutrition & Metabolism, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal.
| |
Collapse
|
112
|
Neuroprotective Effects of Taraxacum officinale Wigg. Extract on Glutamate-Induced Oxidative Stress in HT22 Cells via HO-1/Nrf2 Pathways. Nutrients 2018; 10:nu10070926. [PMID: 30029533 PMCID: PMC6073547 DOI: 10.3390/nu10070926] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 07/07/2018] [Accepted: 07/16/2018] [Indexed: 01/24/2023] Open
Abstract
Oxidative stress-mediated neuron damage is considered an important contributor to the pathogenesis and development of neurodegenerative diseases. Taraxacum officinale has been reported to possess antioxidant activities. However, whether it can protect neurons against oxidative damage and the underlying molecular mechanisms have not been fully determined. In the present study, we examined the neuroprotective effects of ethanol extracts of this plant (ETOW) on glutamate-induced oxidative stress in HT22 cells. Both cell viability and reactive oxygen species (ROS) assays showed that ETOW effectively attenuated glutamate-induced cytotoxicity and ROS generation. Furthermore, our results revealed that ETOW increased the expression of heme oxygenase-1 (HO-1) and promoted the nuclear translocation of nuclear factor erythroid 2-related factor-2 (Nrf2). The inhibitory effects of ETOW on glutamate-stimulated cell toxicity and ROS production were partially reversed by tin protoporphyrin (SnPP), an HO activity inhibitor. Taken together, these results demonstrate that ETOW can protect HT22 cells against glutamate-induced oxidative damage by inducing the Nrf2/HO-1 pathways. Our study supports the idea that Taraxacum officinale Wigg. is a promising agent for preventing neurodegenerative diseases.
Collapse
|
113
|
Li HQ, Tan L, Yang HP, Pang W, Xu T, Jiang YG. Changes of hippocampus proteomic profiles after blueberry extracts supplementation in APP/PS1 transgenic mice. Nutr Neurosci 2018; 23:75-84. [PMID: 29781405 DOI: 10.1080/1028415x.2018.1471251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objective: To examine protein changes in the hippocampus of APP/PS1 transgenic mice after blueberry extracts (BB) intervention.Methods: Eight APP/PS1 transgenic mice were randomly assigned to Alzheimer's disease (AD)+BB group (n=4) and AD+control group (n=4). After a 16-week treatment, 2-DE and MALDI-TOF-MS were used to compare the proteomic profiles of the hippocampus in the two groups and Western blot was used to confirm the important differentially expressed proteins.Results: Twelve proteins were differentially expressed between the two groups. Nine of them were identified. Cytochrome b-c1 complex subunit 6, beta-actin, dynamin 1, and heat shock cognate 71 were up-regulated in AD+BB group, while a-enolase, stress-induced-phosphoprotein 1, malate dehydrogenase (MDH), MDH 1, and T-complex protein 1 subunit beta were down-regulated, respectively. Importantly, some of the identified proteins (e.g. dynamin 1) are known to be involved in cognitive impairment. Western blot analysis of hippocampus dynamin 1 expression confirmed the proteomic findings.Conclusions: The consumption of BB modulates the expression of proteins that are linked to the improvements of cognitive dysfunction in hippocampus of APP/PS1 transgenic mice.
Collapse
Affiliation(s)
- Hai-Qiang Li
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine, Tianjin, People's Republic of China.,Yantai Economic and Technological Development Area Hospital, Yantai, People's Republic of China
| | - Long Tan
- Department of Nutrition and Food Security, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Hong-Peng Yang
- Tianjin Agricultural College, Tianjin, People's Republic of China
| | - Wei Pang
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine, Tianjin, People's Republic of China
| | - Tong Xu
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine, Tianjin, People's Republic of China
| | - Yu-Gang Jiang
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine, Tianjin, People's Republic of China
| |
Collapse
|
114
|
A review on flavonoid-based scaffolds as multi-target-directed ligands (MTDLs) for Alzheimer's disease. Eur J Med Chem 2018; 152:570-589. [PMID: 29763806 DOI: 10.1016/j.ejmech.2018.05.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease (AD), the most common form of dementia, is a multifactorial neurodegenerative disease. The target enzymes inhibition including cholinesterase, beta-secretase, monoamine oxidase and inhibition of amyloid-β aggregation as well as oxidative stress and metal chelation play an important role in the pathogenesis of AD. Chroman-4-one scaffold with benzo-γ-pyrone network is a privileged structure in organic synthesis and drug design. A large number of research has been carried out on modified naturally occurring chromanone scaffolds and/or synthesized new analogues, to obtain effective drugs for AD management. The present review summarizes aspects related to the multi-target-directed ligands (MTDLs) strategy in enzyme targets modulation performed with natural and synthesized chroman-4-one-based structures to look at their potential in the management of multifactorial Alzheimer's disease.
Collapse
|
115
|
Kefi S, Essid R, Mkadmini K, Kefi A, Mahjoub Haddada F, Tabbene O, Limam F. Phytochemical investigation and biological activities of Echium arenarium (Guss) extracts. Microb Pathog 2018; 118:202-210. [DOI: 10.1016/j.micpath.2018.02.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/26/2018] [Accepted: 02/23/2018] [Indexed: 12/15/2022]
|
116
|
Epigallocatechin-3-Gallate Protects and Prevents Paraquat-Induced Oxidative Stress and Neurodegeneration in Knockdown dj-1-β Drosophila melanogaster. Neurotox Res 2018; 34:401-416. [PMID: 29667128 DOI: 10.1007/s12640-018-9899-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 04/02/2018] [Accepted: 04/05/2018] [Indexed: 12/28/2022]
Abstract
Epigallocatechin-3-gallate (EGCG) is a polyhydroxyphenol constituent of green tea (e.g., Camellia sinensis) with known antioxidant properties. Due to these properties, others have proposed it as a potential therapeutic agent for the treatment of Parkinson's disease (PD). Previously, we demonstrated that EGCG prolonged the lifespan and locomotor activity in wild-type Canton-S flies exposed to the neurotoxicant paraquat (PQ), suggesting neuroprotective properties. Both gene mutations and environmental neurotoxicants (e.g., PQ) are factors involved in the development of PD. Thus, the first aim of this study was to create a suitable animal model of PD, which encompasses both of these factors. To create the model, we knocked down dj-1-β function specifically in the dopaminergic neurons to generate TH > dj-1-β-RNAi/+ Drosophila melanogaster flies. Next, we induced neurotoxicity in the transgenic flies with PQ. The second aim of this study was to validate the model by comparing the effects of vehicle, EGCG, and chemicals with known antioxidant and neuroprotective properties in vivo (e.g., propyl gallate and minocycline) on life-span, locomotor activity, lipid peroxidation, and neurodegeneration. The EGCG treatment provided protection and prevention from the PQ-induced reduction in the life-span and locomotor activity and from the PQ-induced increase in lipid peroxidation and neurodegeneration. These effects were augmented in the EGCG-treated flies when compared to the flies treated with either PG or MC. Altogether, these results suggest that the transgenic TH > dj-1-β-RNAi/+ flies treated with PQ serve as a suitable PD model for screening of potential therapeutic agents.
Collapse
|
117
|
Hussain G, Zhang L, Rasul A, Anwar H, Sohail MU, Razzaq A, Aziz N, Shabbir A, Ali M, Sun T. Role of Plant-Derived Flavonoids and Their Mechanism in Attenuation of Alzheimer's and Parkinson's Diseases: An Update of Recent Data. Molecules 2018; 23:E814. [PMID: 29614843 PMCID: PMC6017497 DOI: 10.3390/molecules23040814] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/25/2018] [Accepted: 03/27/2018] [Indexed: 12/13/2022] Open
Abstract
Neurodegeneration is a progressive loss of neuronal cells in certain regions of the brain. Most of the neurodegenerative disorders (NDDs) share the communal characteristic such as damage or reduction of various cell types typically including astrocytes and microglial activity. Several compounds are being trialed to treat NDDs but they possess solitary symptomatic advantages along with copious side effects. The finding of more enthralling and captivating compounds to suspend and standstill the pathology of NDDs will be considered as a hallmark of present times. Phytochemicals possess the potential to alternate the synthetic line of therapy against NDDs. The present review explores the potential efficacy of plant-derived flavonoids against most common NDDs including Alzheimer's disease (AD) and Parkinson's disease (PD). Flavonoids are biologically active phytochemicals which possess potential pharmacological effects, including antiviral, anti-allergic, antiplatelet, anti-inflammatory, anti-tumor, anti-apoptotic and anti-oxidant effects and are able to attenuate the pathology of various NDDs through down-regulating the nitric oxide (NO) production, by reducing the tumor necrosis factor-α (TNF-α), by reducing the excitotoxicity of superoxide as well as acting as tyrosine kinase (TK) and monoamine oxidase (MAO) inhibiting enzyme.
Collapse
Affiliation(s)
- Ghulam Hussain
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Longbin Zhang
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China.
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Haseeb Anwar
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Muhammad Umar Sohail
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Aroona Razzaq
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Nimra Aziz
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Asghar Shabbir
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad 44000, Pakistan.
| | - Muhammad Ali
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China.
| |
Collapse
|
118
|
Ganesan P, Ramalingam P, Karthivashan G, Ko YT, Choi DK. Recent developments in solid lipid nanoparticle and surface-modified solid lipid nanoparticle delivery systems for oral delivery of phyto-bioactive compounds in various chronic diseases. Int J Nanomedicine 2018; 13:1569-1583. [PMID: 29588585 PMCID: PMC5858819 DOI: 10.2147/ijn.s155593] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Solid lipid nanoparticle (SLN) delivery systems have a wide applicability in the delivery of phyto-bioactive compounds to treat various chronic diseases, including diabetes, cancer, obesity and neurodegenerative diseases. The multiple benefits of SLN delivery include improved stability, smaller particle size, leaching prevention and enhanced lymphatic uptake of the bioactive compounds through oral delivery. However, the burst release makes the SLN delivery systems inadequate for the oral delivery of various phyto-bioactive compounds that can treat such chronic diseases. Recently, the surface-modified SLN (SMSLN) was observed to overcome this limitation for oral delivery of phyto-bioactive compounds, and there is growing evidence of an enhanced uptake of curcumin delivered orally via SMSLNs in the brain. This review focuses on different SLN and SMSLN systems that are useful for oral delivery of phyto-bioactive compounds to treat various chronic diseases.
Collapse
Affiliation(s)
- Palanivel Ganesan
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
- Nanotechnology Research Center and Department of Applied Life Science, Konkuk University, Chungju, Republic of Korea
| | - Prakash Ramalingam
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Govindarajan Karthivashan
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| | - Young Tag Ko
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Dong-Kug Choi
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
- Nanotechnology Research Center and Department of Applied Life Science, Konkuk University, Chungju, Republic of Korea
| |
Collapse
|
119
|
Abstract
The heart failure accounts for the highest mortality rate all over the world. The development of preventive therapeutic approaches is still in their infancy. Owing to the extremely high energy demand of the heart, the bioenergetics pathways need to respond efficiently based on substrate availability. The metabolic regulation of such heart bioenergetics is mediated by various rate limiting enzymes involved in energy metabolism. Although all the pertinent mechanisms are not clearly understood, the progressive decline in the activity of metabolic enzymes leading to diminished ATP production is known to cause progression of the heart failure. Therefore, metabolic therapy that can maintain the appropriate activities of metabolic enzymes can be a promising approach for the prevention and treatment of the heart failure. The flavonoids that constitute various human dietary ingredients also effectively offer a variety of health benefits. The flavonoids target a variety of metabolic enzymes and facilitate effective management of the equilibrium between production and utilization of energy in the heart. This review discusses the broad impact of metabolic enzymes in the heart functions and explains how the dysregulated enzyme activity causes the heart failure. In addition, the prospects of targeting dysregulated metabolic enzymes by developing flavonoid-based metabolic approaches are discussed.
Collapse
|
120
|
Sadhukhan P, Saha S, Dutta S, Mahalanobish S, Sil PC. Nutraceuticals: An emerging therapeutic approach against the pathogenesis of Alzheimer's disease. Pharmacol Res 2018; 129:100-114. [PMID: 29183770 DOI: 10.1016/j.phrs.2017.11.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/22/2017] [Accepted: 11/22/2017] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is regarded as a progressive and devastating neurodegenerative disorder. In aged individuals, it is the most prevalent cause of dementia and is characterized by gradual loss of cognitive functions. In the last decade, numerous research works were undertaken to investigate the pathogenesis of AD. Although the etiology of AD is still not clear, several histopathological studies confirm prominent changes in the AD affected brains. The major changes include the formation of senile plaques and neurofibrillary tangles primarily owing to the deposition of amyloid β plaques (Aβ) and hyper-phosphorylation of tau protein. Disruption of the redox homeostasis in the brain is a major triggering factor for the development of such pathophysiological conditions. Chemical formulations usually act by inhibiting activities of the enzymes responsible for the development of AD. But with time, these pharmacotherapies develop many side effects including toxicity in different organs. Recent researches are henceforth focused on the identification of novel therapeutic molecules from the nature's basket. This review aims to emphasize the therapeutic effects and regulation of molecular targets of different natural products such as curcumin, resveratrol, genistein and others. These prophylactic multipotent natural compounds have the potency to interfere with the formation as well as deposition of the Aβ peptides. These natural compounds have also been found in modulating different intracellular signalling molecules and enzymes including β-secretase and γ-secretase. This review article is expected to be helpful in understanding the recent progress in natural product research as a therapeutic approach in amelioration and/or delaying the detrimental effects of AD.
Collapse
Affiliation(s)
- Pritam Sadhukhan
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII-M, Kolkata, 700054, India
| | - Sukanya Saha
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII-M, Kolkata, 700054, India
| | - Sayanta Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII-M, Kolkata, 700054, India
| | - Sushweta Mahalanobish
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII-M, Kolkata, 700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII-M, Kolkata, 700054, India.
| |
Collapse
|
121
|
Maher P. Protective effects of fisetin and other berry flavonoids in Parkinson's disease. Food Funct 2018; 8:3033-3042. [PMID: 28714503 DOI: 10.1039/c7fo00809k] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is an age-associated degenerative disease of the midbrain that results from the loss of dopaminergic neurons in the substantia nigra. It initially presents as a movement disorder with cognitive and other behavioral problems appearing later in the progression of the disease. Current therapies for PD only delay the onset or reduce the motor symptoms. There are no treatments to stop the nerve cell death or to cure the disease. It is becoming increasingly clear that neurological diseases such as PD are multi-factorial involving disruptions in multiple cellular systems. Thus, it is unlikely that modulating only a single factor will be effective at either preventing disease development or slowing disease progression. A better approach is to identify small molecules that have multiple biological activities relevant to the maintenance of brain function. Flavonoids are polyphenolic compounds that are widely distributed in fruits and vegetables and therefore regularly consumed in the human diet. While flavonoids were historically characterized on the basis of their antioxidant and free radical scavenging effects, more recent studies have shown that flavonoids have a wide range of activities that could make them particularly effective as agents for the treatment of PD. In this article, the multiple physiological benefits of flavonoids in the context of PD are first reviewed. Then, the evidence for the beneficial effects of the flavonol fisetin in models of PD are discussed. These results, coupled with the known actions of fisetin, suggest that it could reduce the impact of PD on brain function.
Collapse
Affiliation(s)
- Pamela Maher
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
122
|
Naringenin ameliorates kainic acid-induced morphological alterations in the dentate gyrus in a mouse model of temporal lobe epilepsy. Neuroreport 2018; 27:1182-9. [PMID: 27584687 DOI: 10.1097/wnr.0000000000000678] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Granule cell dispersion (GCD) in the dentate gyrus (DG) of the hippocampus is a morphological alteration characteristic of temporal lobe epilepsy. Recently, we reported that treatment with naringin, a flavonoid found in grapefruit and citrus fruits, reduced spontaneous recurrent seizures by inhibiting kainic acid (KA)-induced GCD and neuronal cell death in mouse hippocampus, suggesting that naringin might have beneficial effects for preventing epileptic events in the adult brain. However, it is still unclear whether the beneficial effects of naringin treatment are mediated by the metabolism of naringin into naringenin in the KA-treated hippocampus. To investigate this possibility, we evaluated whether intraperitoneal injections of naringenin could mimic naringin-induced effects against GCD caused by intrahippocampal KA injections in mice. Our results showed that treatment with naringenin delayed the onset of KA-induced seizures and attenuated KA-induced GCD by inhibiting activation of the mammalian target of rapamycin complex 1 in both neurons and reactive astrocytes in the DG. In addition, its administration attenuated the production of proinflammatory cytokines such as tumor necrosis tumor necrosis factor-α (TNFα) and interleukin-1β (IL-1β) from microglial activation in the DG following KA treatment. These results suggest that naringenin may be an active metabolite of naringin and help prevent the progression of epileptic insults in the hippocampus in vivo; therefore, naringenin may be a beneficial metabolite of naringin for the treatment of epilepsy.
Collapse
|
123
|
Reddy PH, Manczak M, Yin X, Grady MC, Mitchell A, Tonk S, Kuruva CS, Bhatti JS, Kandimalla R, Vijayan M, Kumar S, Wang R, Adi Pradeepkiran J, Ogunmokun G, Thamarai K, Quesada K, Boles A, Reddy AP. Protective Effects of Indian Spice Curcumin Against Amyloid-β in Alzheimer's Disease. J Alzheimers Dis 2018; 61:843-866. [PMID: 29332042 PMCID: PMC5796761 DOI: 10.3233/jad-170512] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The purpose of our article is to assess the current understanding of Indian spice, curcumin, against amyloid-β (Aβ)-induced toxicity in Alzheimer's disease (AD) pathogenesis. Natural products, such as ginger, curcumin, and gingko biloba have been used as diets and dietary supplements to treat human diseases, including cancer, cardiovascular, respiratory, infectious, diabetes, obesity, metabolic syndromes, and neurological disorders. Products derived from plants are known to have protective effects, including anti-inflammatory, antioxidant, anti-arthritis, pro-healing, and boosting memory cognitive functions. In the last decade, several groups have designed and synthesized curcumin and its derivatives and extensively tested using cell and mouse models of AD. Recent research on Aβ and curcumin has revealed that curcumin prevents Aβ aggregation and crosses the blood-brain barrier, reach brain cells, and protect neurons from various toxic insults of aging and Aβ in humans. Recent research has also reported that curcumin ameliorates cognitive decline and improves synaptic functions in mouse models of AD. Further, recent groups have initiated studies on elderly individuals and patients with AD and the outcome of these studies is currently being assessed. This article highlights the beneficial effects of curcumin on AD. This article also critically assesses the current limitations of curcumin's bioavailability and urgent need for new formulations to increase its brain levels to treat patients with AD.
Collapse
Affiliation(s)
- P. Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4 Street, MS 9424, Lubbock, Texas 79430
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, 3601 4 Street, MS 9424, Lubbock, Texas 79430
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4 Street, MS 9424, Lubbock, Texas 79430
- Department of Neurology, Texas Tech University Health Sciences Center, 3601 4 Street, MS 9424, Lubbock, Texas 79430
- Speech, Language and Hearing Sciences, Texas Tech University Health Sciences Center, 3601 4 Street, MS 9424, Lubbock, Texas 79430
- Department of Public Health, Graduate School of Biomedical Studies, Texas Tech University Health Sciences Center, 3601 4 Street, MS 9424, Lubbock, Texas 79430
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 6630 S. Quaker Ste. E, MS 7495, Lubbock, Texas 79413
| | - Maria Manczak
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4 Street, MS 9424, Lubbock, Texas 79430
| | - Xiangling Yin
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4 Street, MS 9424, Lubbock, Texas 79430
| | - Mary Catherine Grady
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4 Street, MS 9424, Lubbock, Texas 79430
| | - Andrew Mitchell
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4 Street, MS 9424, Lubbock, Texas 79430
| | - Sahil Tonk
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4 Street, MS 9424, Lubbock, Texas 79430
| | - Chandra Sekhar Kuruva
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4 Street, MS 9424, Lubbock, Texas 79430
| | - Jasvinder Singh Bhatti
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4 Street, MS 9424, Lubbock, Texas 79430
- Department of Biotechnology and Bioinformatics, Sri Guru Gobind Singh College, Sector 26 Chandigarh, India 160019
| | - Ramesh Kandimalla
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4 Street, MS 9424, Lubbock, Texas 79430
- Department of Neurology, Texas Tech University Health Sciences Center, 3601 4 Street, MS 9424, Lubbock, Texas 79430
| | - Murali Vijayan
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4 Street, MS 9424, Lubbock, Texas 79430
| | - Subodh Kumar
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4 Street, MS 9424, Lubbock, Texas 79430
| | - Rui Wang
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4 Street, MS 9424, Lubbock, Texas 79430
| | - Jangampalli Adi Pradeepkiran
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4 Street, MS 9424, Lubbock, Texas 79430
| | - Gilbert Ogunmokun
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4 Street, MS 9424, Lubbock, Texas 79430
- Department of Internal Medicine, Texas Tech University Health Sciences Center, 3601 4 Street, MS 9424, Lubbock, Texas 79430
| | - Kavya Thamarai
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4 Street, MS 9424, Lubbock, Texas 79430
| | - Kandi Quesada
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4 Street, MS 9424, Lubbock, Texas 79430
| | - Annette Boles
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 6630 S. Quaker Ste. E, MS 7495, Lubbock, Texas 79413
| | - Arubala P Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, 3601 4 Street, MS 9424, Lubbock, Texas 79430
| |
Collapse
|
124
|
Flavonoid-rich ethanol extract from the leaves of Diospyros kaki attenuates cognitive deficits, amyloid-beta production, oxidative stress, and neuroinflammation in APP/PS1 transgenic mice. Brain Res 2018; 1678:85-93. [DOI: 10.1016/j.brainres.2017.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 08/25/2017] [Accepted: 10/01/2017] [Indexed: 01/07/2023]
|
125
|
Singh M, Kaur M, Singh N, Silakari O. Exploration of multi-target potential of chromen-4-one based compounds in Alzheimer’s disease: Design, synthesis and biological evaluations. Bioorg Med Chem 2017; 25:6273-6285. [DOI: 10.1016/j.bmc.2017.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/01/2017] [Accepted: 09/09/2017] [Indexed: 10/18/2022]
|
126
|
Mechanisms of dietary flavonoid action in neuronal function and neuroinflammation. Mol Aspects Med 2017; 61:50-62. [PMID: 29117513 DOI: 10.1016/j.mam.2017.11.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 12/15/2022]
Abstract
Flavonoids are a class of plant-derived dietary polyphenols that have attracted attention for their pro-cognitive and anti-inflammatory effects. The diversity of flavonoids and their extensive in vivo metabolism suggest that a variety of cellular targets in the brain are likely to be impacted by flavonoid consumption. Initially characterized as antioxidants, flavonoids are now believed to act directly on neurons and glia via the interaction with major signal transduction cascades, as well as indirectly via interaction with the blood-brain barrier and cerebral vasculature. This review discusses potential mechanisms of flavonoid action in the brain, with a focus on two critical transcription factors: cAMP response element-binding protein (CREB) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). To advance beyond current understanding of cellular targets, critical bioavailability studies need to be performed to verify the identity and concentration of flavonoid metabolites reaching the brain after ingestion and to validate that these metabolites are produced not just in rodent models but also in humans. Recent advances in human induced pluripotent stem cell (iPSC) differentiation protocols to generate human neuronal and glial cell types could also provide a unique tool for clinically relevant in vitro investigation of the mechanisms of action of bioavailable flavonoid metabolites in humans.
Collapse
|
127
|
Zhou T, Ahmad TK, Gozda K, Truong J, Kong J, Namaka M. Implications of white matter damage in amyotrophic lateral sclerosis (Review). Mol Med Rep 2017; 16:4379-4392. [PMID: 28791401 PMCID: PMC5646997 DOI: 10.3892/mmr.2017.7186] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 06/09/2017] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, which involves the progressive degeneration of motor neurons. ALS has long been considered a disease of the grey matter; however, pathological alterations of the white matter (WM), including axonal loss, axonal demyelination and oligodendrocyte death, have been reported in patients with ALS. The present review examined motor neuron death as the primary cause of ALS and evaluated the associated WM damage that is guided by neuronal‑glial interactions. Previous studies have suggested that WM damage may occur prior to the death of motor neurons, and thus may be considered an early indicator for the diagnosis and prognosis of ALS. However, the exact molecular mechanisms underlying early‑onset WM damage in ALS have yet to be elucidated. The present review explored the detailed anatomy of WM and identified several pathological mechanisms that may be implicated in WM damage in ALS. In addition, it associated the pathophysiological alterations of WM, which may contribute to motor neuron death in ALS, with similar mechanisms of WM damage that are involved in multiple sclerosis (MS). Furthermore, the early detection of WM damage in ALS, using neuroimaging techniques, may lead to earlier therapeutic intervention, using immunomodulatory treatment strategies similar to those used in relapsing‑remitting MS, aimed at delaying WM damage in ALS. Early therapeutic approaches may have the potential to delay motor neuron damage and thus prolong the survival of patients with ALS. The therapeutic interventions that are currently available for ALS are only marginally effective. However, early intervention with immunomodulatory drugs may slow the progression of WM damage in the early stages of ALS, thus delaying motor neuron death and increasing the life expectancy of patients with ALS.
Collapse
Affiliation(s)
- Ting Zhou
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Department of Human Anatomy and Cell Science, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Tina Khorshid Ahmad
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Kiana Gozda
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Jessica Truong
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Michael Namaka
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Department of Human Anatomy and Cell Science, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- College of Pharmacy, Third Military Medical University, Chongqing 400038, P.R. China
- Department of Medical Rehabilitation, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
- Department of Internal Medicine, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 1R9, Canada
| |
Collapse
|
128
|
Spagnuolo C, Moccia S, Russo GL. Anti-inflammatory effects of flavonoids in neurodegenerative disorders. Eur J Med Chem 2017; 153:105-115. [PMID: 28923363 DOI: 10.1016/j.ejmech.2017.09.001] [Citation(s) in RCA: 288] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/25/2017] [Accepted: 09/01/2017] [Indexed: 10/18/2022]
Abstract
Neuroinflammation is one of the main mechanisms involved in the progression of several neurodegenerative diseases, such as Parkinson, Alzheimer, multiple sclerosis, amyotrophic lateral sclerosis and others. The activation of microglia is the main feature of neuroinflammation, promoting the release of pro-inflammatory cytokines and resulting in the progressive neuronal cell death. Natural compounds, such as flavonoids, possess neuroprotective potential probably related to their ability to modulate the inflammatory responses involved in neurodegenerative diseases. In fact, pure flavonoids (e.g., quercetin, genistein, hesperetin, epigallocatechin-3-gallate) or enriched-extracts, can reduce the expression of pro-inflammatory cytokines (IL-6, TNF-α, IL-1β and COX-2), down-regulate inflammatory markers and prevent neural damage. This anti-inflammatory activity is primarily related to the regulation of microglial cells, mediated by their effects on MAPKs and NF-κB signalling pathways, as demonstrated by in vivo and in vitro data. The present work reviews the role of inflammation in neurodegenerative diseases, highlighting the potential therapeutic effects of flavonoids as a promising approach to develop innovative neuroprotective strategy.
Collapse
Affiliation(s)
- Carmela Spagnuolo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy.
| | - Stefania Moccia
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Gian Luigi Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| |
Collapse
|
129
|
Siddique YH, Jyoti S. Alteration in biochemical parameters in the brain of transgenic Drosophila melanogaster model of Parkinson's disease exposed to apigenin. Integr Med Res 2017; 6:245-253. [PMID: 28951838 PMCID: PMC5605376 DOI: 10.1016/j.imr.2017.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/18/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Oxidative stress is one of the key components of the pathology of various neurodegenerative disorders. Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons owing to the aggregation of alpha-synuclein (αS) in the brain. A number of polyphenols have been reported to inhibit the αS aggregation resulting in the possible prevention of PD. The involvement of free radicals in mediating the neuronal death in PD has also been implicated. METHODS In the present study, the transgenic flies expressing human αS in the brain were exposed to 10 μM, 20 μM, 40 μM, and 80 μM of apigenin established in diet for 24 days. RESULTS The flies showed an increase in life span, glutathione, and dopamine content. The exposure of PD flies to various doses of apigenin also results in the reduction of glutathione-S-transferase activity, lipid peroxidation, monoamine oxidase, caspase-3, and caspase-9 activity in a dose-dependent manner. CONCLUSION The results of the present study reveal that apigenin is potent in increasing the life span, dopamine content, reduced the oxidative stress as well as apoptosis in transgenic Drosophila model of PD.
Collapse
Affiliation(s)
- Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | | |
Collapse
|
130
|
Elufioye TO, Berida TI, Habtemariam S. Plants-Derived Neuroprotective Agents: Cutting the Cycle of Cell Death through Multiple Mechanisms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:3574012. [PMID: 28904554 PMCID: PMC5585568 DOI: 10.1155/2017/3574012] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 12/11/2022]
Abstract
Neuroprotection is the preservation of the structure and function of neurons from insults arising from cellular injuries induced by a variety of agents or neurodegenerative diseases (NDs). The various NDs including Alzheimer's, Parkinson's, and Huntington's diseases as well as amyotropic lateral sclerosis affect millions of people around the world with the main risk factor being advancing age. Each of these diseases affects specific neurons and/or regions in the brain and involves characteristic pathological and molecular features. Hence, several in vitro and in vivo study models specific to each disease have been employed to study NDs with the aim of understanding their underlying mechanisms and identifying new therapeutic strategies. Of the most prevalent drug development efforts employed in the past few decades, mechanisms implicated in the accumulation of protein-based deposits, oxidative stress, neuroinflammation, and certain neurotransmitter deficits such as acetylcholine and dopamine have been scrutinized in great detail. In this review, we presented classical examples of plant-derived neuroprotective agents by highlighting their structural class and specific mechanisms of action. Many of these natural products that have shown therapeutic efficacies appear to be working through the above-mentioned key multiple mechanisms of action.
Collapse
Affiliation(s)
| | - Tomayo Ireti Berida
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services, University of Greenwich, Chatham-Maritime, Kent ME4 4TB, UK
| |
Collapse
|
131
|
Coe S, Axelsson E, Murphy V, Santos M, Collett J, Clegg M, Izadi H, Harrison JM, Buckingham E, Dawes H. Flavonoid rich dark cocoa may improve fatigue in people with multiple sclerosis, yet has no effect on glycaemic response: An exploratory trial. Clin Nutr ESPEN 2017; 21:20-25. [PMID: 30014865 DOI: 10.1016/j.clnesp.2017.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 06/18/2017] [Accepted: 07/11/2017] [Indexed: 01/15/2023]
Abstract
CONTEXT Current research suggests that dark cocoa may reduce fatigue; however, the effect on fatigue in people with MS (pwMS) has never been established. The objective of this feasibility study was to explore the acute effect of high flavonoid cocoa on measures of fatigue and glycaemic response. METHODS This was a randomised crossover participant blind exploratory study in 12 participants (2 male and 10 female) with MS-related fatigue (>4 on the Fatigue Severity Scale; FSS). After fasting overnight, participants consumed the high flavonoid cocoa drink (350 mg gallic acid equivalents {GAE}/g) or a low flavonoid cocoa control (120 mg GAE/g), consuming the alternative drink on the next visit. Fatigue was self-reported on a 100 mm visual analogue scale at 30-min time intervals for 2 h post cocoa consumption and every 2 h for the rest of the day. Fatigability was monitored using a 6 min walk test (6MWT) at the end of the visit (2 h), and activity monitors worn for 24 h commencing at 12 noon on the day of testing. The feasibility of performing the trial including outcome measures was documented. RESULTS A moderate effect was found in self-reported fatigue throughout the day in favour of the high flavonoid group (Cohen's d 0.32, 95% non-central t CI -0.57 to 1.20). Fatigability measures did not change. Participants consumed and enjoyed the cocoa, all participants completed the study and outcome measures were accepted. CONCLUSION The results of this study support further trials to investigate the feasibility and efficacy of pure cocoa as a dietary supplement for fatigue in pwMS.
Collapse
Affiliation(s)
- S Coe
- Movement Science Group and Functional Food Centre, Oxford Brookes University, Oxford OX30BP, United Kingdom.
| | - E Axelsson
- Movement Science Group and Functional Food Centre, Oxford Brookes University, Oxford OX30BP, United Kingdom
| | - V Murphy
- Movement Science Group and Functional Food Centre, Oxford Brookes University, Oxford OX30BP, United Kingdom
| | - M Santos
- Movement Science Group and Functional Food Centre, Oxford Brookes University, Oxford OX30BP, United Kingdom
| | - J Collett
- Movement Science Group and Functional Food Centre, Oxford Brookes University, Oxford OX30BP, United Kingdom
| | - M Clegg
- Movement Science Group and Functional Food Centre, Oxford Brookes University, Oxford OX30BP, United Kingdom
| | - H Izadi
- Movement Science Group and Functional Food Centre, Oxford Brookes University, Oxford OX30BP, United Kingdom
| | - J M Harrison
- Movement Science Group and Functional Food Centre, Oxford Brookes University, Oxford OX30BP, United Kingdom
| | - E Buckingham
- Movement Science Group and Functional Food Centre, Oxford Brookes University, Oxford OX30BP, United Kingdom
| | - H Dawes
- Movement Science Group and Functional Food Centre, Oxford Brookes University, Oxford OX30BP, United Kingdom
| |
Collapse
|
132
|
Patel S. Phytochemicals for taming agitated immune-endocrine-neural axis. Biomed Pharmacother 2017; 91:767-775. [DOI: 10.1016/j.biopha.2017.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 04/30/2017] [Accepted: 05/02/2017] [Indexed: 02/07/2023] Open
|
133
|
Bernardo J, Ferreres F, Gil-Izquierdo Á, Valentão P, Andrade PB. Medicinal species as MTDLs: Turnera diffusa Willd. Ex Schult inhibits CNS enzymes and delays glutamate excitotoxicity in SH-SY5Y cells via oxidative damage. Food Chem Toxicol 2017; 106:466-476. [PMID: 28606766 DOI: 10.1016/j.fct.2017.06.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/30/2017] [Accepted: 06/07/2017] [Indexed: 01/09/2023]
Abstract
One of the most promising approaches to confront the complexity of central nervous system disorders are new multi-target directed ligands (MTDLs). Five medicinal species (Cereus grandiflorus (L.) Mill., Hyssopus officinalis L., Acorus calamus L., Silybum marianum L. Gaertn. and Turnera diffusa Willd. Ex Schult), selected for their ethnopharmacological relevance, were object for in vitro screening. The aqueous extract of T. diffusa revealed the strongest neuroactive potential, inhibiting monoamine oxidase-A (IC50 = 129.80 ± 11.97 μg/mL), and acetyl- and butyrylcholinesterase (IC25 = 0.352 ± 0.011 and 0.370 ± 0.036 mg/mL, respectively). Its phenolic profile was established for the first time by HPLC-DAD-ESI/MSn. Twenty-six out of thirty-seven compounds were newly identified in this species. The pre-treatment with this flavonoid-rich extract promoted a rightward shift of the glutamate concentration neuronal cell (SH-SY5Y) death response curve. Furthermore, it significantly reduced the early phase formation of intracellular reactive species after glutamate and t-BHP exposure, suggesting that neuroprotection in SH-SY5Y cells was, in part, mediated by antioxidant mechanisms.
Collapse
Affiliation(s)
- João Bernardo
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal
| | - Federico Ferreres
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100, Campus University Espinardo, Murcia, Spain.
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100, Campus University Espinardo, Murcia, Spain
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal.
| |
Collapse
|
134
|
Zhao X, Liu F, Jin H, Li R, Wang Y, Zhang W, Wang H, Chen W. Involvement of PKCα and ERK1/2 signaling pathways in EGCG's protection against stress-induced neural injuries in Wistar rats. Neuroscience 2017; 346:226-237. [PMID: 28131624 DOI: 10.1016/j.neuroscience.2017.01.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/12/2017] [Accepted: 01/14/2017] [Indexed: 02/08/2023]
Abstract
Stress-induced neural injuries are closely linked to the pathogenesis of various neuropsychiatric disorders and psychosomatic diseases. We and others have previously demonstrated certain protective effects of epigallocatechin-3-gallate (EGCG) in stress-induced cerebral impairments, but the underlying protective mechanisms still remain poorly elucidated. Here we provide evidence to support the possible involvement of PKCα and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathways in EGCG-mediated protection against restraint stress-induced neural injuries in rats. In both open-field and step-through behavioral tests, the restraint stress-induced neuronal impairments were significantly ameliorated by administration of EGCG or green tea polyphenols (GTPs), which was associated with a partial restoration of normal plasma glucocorticoid, dopamine and serotonin levels. Furthermore, the stress-induced decrease of PKCα and ERK1/2 expression and phosphorylation was significantly attenuated by EGCG and to a less extent by GTP administration. Additionally, EGCG supplementation restored the production of adenosine triphosphate (ATP) and the expression of a key regulator of cellular energy metabolism, the peroxisome proliferators-activated receptor-γ coactivator-1α (PGC-1α), in stressed animals. In conclusion, PKCα and ERK1/2 signaling pathways as well as PGC-1α-mediated ATP production might be involved in EGCG-mediated protection against stress-induced neural injuries.
Collapse
Affiliation(s)
- Xiaoling Zhao
- Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Fengqin Liu
- Weifang People's Hospital, Weifang, Shandong Province, China
| | - Haimin Jin
- Tianjin Institute of Health and Environmental Medicine, Tianjin, China; Tianjin Medical University, Tianjin, China
| | - Renjia Li
- Tianjin Institute of Health and Environmental Medicine, Tianjin, China; Tianjin Medical University, Tianjin, China
| | - Yonghui Wang
- Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | | | - Haichao Wang
- The Feinstein Institute for Medical Research, Manhasset, NY, USA; Department of Emergency Medicine, North Shore University Hospital, Manhasset, NY, USA.
| | - Weiqiang Chen
- Tianjin Institute of Health and Environmental Medicine, Tianjin, China; The Feinstein Institute for Medical Research, Manhasset, NY, USA.
| |
Collapse
|
135
|
Theoharides TC, Tsilioni I. Autism Spectrum Disorders. NEUROIMMUNE PHARMACOLOGY 2017:643-659. [DOI: 10.1007/978-3-319-44022-4_40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
136
|
Xue Z, Li D, Yu W, Zhang Q, Hou X, He Y, Kou X. Mechanisms and therapeutic prospects of polyphenols as modulators of the aryl hydrocarbon receptor. Food Funct 2017; 8:1414-1437. [DOI: 10.1039/c6fo01810f] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polyphenolic AhR modulators displayed concentration-, XRE-, gene-, species- and cell-specific agonistic/antagonistic activity.
Collapse
Affiliation(s)
- Zhaohui Xue
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Dan Li
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Wancong Yu
- Medical Plant Laboratory
- Tianjin Research Center of Agricultural Biotechnology
- Tianjin 3000381
- China
| | - Qian Zhang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xiaonan Hou
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Yulong He
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
137
|
Lai CS, Wu JC, Ho CT, Pan MH. Chemoprevention of obesity by dietary natural compounds targeting mitochondrial regulation. Mol Nutr Food Res 2016; 61. [DOI: 10.1002/mnfr.201600721] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/02/2016] [Accepted: 11/07/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Ching-Shu Lai
- Department of Seafood Science; National Kaohsiung Marine University; Kaohsiung Taiwan
| | - Jia-Ching Wu
- Institute of Food Science and Technology; National Taiwan University; Taipei Taiwan
| | - Chi-Tang Ho
- Department of Food Science; Rutgers University; New Brunswick NJ USA
| | - Min-Hsiung Pan
- Institute of Food Science and Technology; National Taiwan University; Taipei Taiwan
- Department of Medical Research, China Medical University Hospital; China Medical University; Taichung Taiwan
- Department of Health and Nutrition Biotechnology; Asia University; Taichung Taiwan
| |
Collapse
|
138
|
Fernández-Moriano C, González-Burgos E, Divakar PK, Crespo A, Gómez-Serranillos MP. Evaluation of the Antioxidant Capacities and Cytotoxic Effects of Ten Parmeliaceae Lichen Species. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2016; 2016:3169751. [PMID: 28074101 PMCID: PMC5203883 DOI: 10.1155/2016/3169751] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/28/2016] [Accepted: 11/08/2016] [Indexed: 01/15/2023]
Abstract
Parmeliaceae represents the largest and widespread family of lichens and includes species that attract much interest regarding pharmacological activities, due to their production of unique secondary metabolites. The current work aimed to investigate the in vitro antioxidant and cytotoxic activities of the methanol extracts of ten Parmeliaceae species, collected in different continents. Methanol extraction afforded high phenolic content in the extracts. The antioxidant activity displayed by lichens was evaluated through chemical assays, such as the ORAC (Oxygen Radical Absorbance Capacity) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activities and the ferric reducing antioxidant power (FRAP). A moderately positive correlation was found between the phenolic content and the antioxidant properties for all the species: R: 0.7430 versus ORAC values, R: 0.7457 versus DPPH scavenging capacity, and R: 0.7056 versus FRAP reducing power. The methanol extract of Flavoparmelia euplecta exhibited the highest ORAC value, the extract of Myelochroa irrugans showed the maximum DPPH scavenging capacity, and Hypotrachyna cirrhata methanol extract demonstrated the highest reducing power. Further, the cytotoxic activity of the ten species was investigated on the human cancer cell lines HepG2 and MCF-7; Myelochroa irrugans exhibited the highest anticancer potential. The pharmacological activities shown here could be attributed to their phytochemical constituents.
Collapse
Affiliation(s)
- C. Fernández-Moriano
- Department of Pharmacology, Faculty of Pharmacy, University Complutense of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - E. González-Burgos
- Department of Pharmacology, Faculty of Pharmacy, University Complutense of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - P. K. Divakar
- Department of Plant Biology II, Faculty of Pharmacy, University Complutense of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - A. Crespo
- Department of Plant Biology II, Faculty of Pharmacy, University Complutense of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - M. P. Gómez-Serranillos
- Department of Pharmacology, Faculty of Pharmacy, University Complutense of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| |
Collapse
|
139
|
Carradori S, Gidaro MC, Petzer A, Costa G, Guglielmi P, Chimenti P, Alcaro S, Petzer JP. Inhibition of Human Monoamine Oxidase: Biological and Molecular Modeling Studies on Selected Natural Flavonoids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:9004-9011. [PMID: 27933876 DOI: 10.1021/acs.jafc.6b03529] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Naturally occurring flavonoids display a plethora of different biological activities, but emerging evidence suggests that this class of compounds may also act as antidepressant agents endowed with multiple mechanisms of action in the central nervous system, increasing central neurotransmission, limiting the reabsorption of bioamines by synaptosomes, and modulating the neuroendocrine and GABAA systems. Due to their presence in foods, food-derived products, and nutraceuticals, we established their role and structure-activity relationships as reversible and competitive human monoamine oxidase (MAO) inhibitors. In addition, molecular modeling studies, which evaluated their modes of MAO inhibition, are presented. These findings could provide pivotal implications in the quest of novel drug-like compounds and for the establishment of harmful drug-dietary supplement interactions commonly reported in the therapy with antidepressant agents.
Collapse
Affiliation(s)
- Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara , Via dei Vestini 31, 66100 Chieti, Italy
| | - Maria Concetta Gidaro
- Dipartimento di Scienze della Salute, "Magna Graecia" University of Catanzaro , Campus Universitario "S. Venuta", Viale Europa Loc. Germaneto, 88100 Catanzaro, Italy
| | - Anél Petzer
- Centre of Excellence for Pharmaceutical Sciences, North-West University , Potchefstroom 2531, South Africa
| | - Giosuè Costa
- Dipartimento di Scienze della Salute, "Magna Graecia" University of Catanzaro , Campus Universitario "S. Venuta", Viale Europa Loc. Germaneto, 88100 Catanzaro, Italy
| | - Paolo Guglielmi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome , P.le A. Moro 5, 00185 Rome, Italy
| | - Paola Chimenti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome , P.le A. Moro 5, 00185 Rome, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, "Magna Graecia" University of Catanzaro , Campus Universitario "S. Venuta", Viale Europa Loc. Germaneto, 88100 Catanzaro, Italy
| | - Jacobus P Petzer
- Centre of Excellence for Pharmaceutical Sciences, North-West University , Potchefstroom 2531, South Africa
| |
Collapse
|
140
|
Neurobehavioral and Antioxidant Effects of Ethanolic Extract of Yellow Propolis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2906953. [PMID: 27822336 PMCID: PMC5086397 DOI: 10.1155/2016/2906953] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/08/2016] [Accepted: 09/19/2016] [Indexed: 01/24/2023]
Abstract
Propolis is a resin produced by bees from raw material collected from plants, salivary secretions, and beeswax. New therapeutic properties for the Central Nervous System have emerged. We explored the neurobehavioral and antioxidant effects of an ethanolic extract of yellow propolis (EEYP) rich in triterpenoids, primarily lupeol and β-amyrin. Male Wistar rats, 3 months old, were intraperitoneally treated with Tween 5% (control), EEYP (1, 3, 10, and 30 mg/kg), or diazepam, fluoxetine, and caffeine (positive controls) 30 min before the assays. Animals were submitted to open field, elevated plus maze, forced swimming, and inhibitory avoidance tests. After behavioral tasks, blood samples were collected through intracardiac pathway, to evaluate the oxidative balance. The results obtained in the open field and in the elevated plus maze assay showed spontaneous locomotion preserved and anxiolytic-like activity. In the forced swimming test, EEYP demonstrated antidepressant-like activity. In the inhibitory avoidance test, EEYP showed mnemonic activity at 30 mg/kg. In the evaluation of oxidative biochemistry, the extract reduced the production of nitric oxide and malondialdehyde without changing level of total antioxidant, catalase, and superoxide dismutase, induced by behavioral stress. Our results highlight that EEYP emerges as a promising anxiolytic, antidepressant, mnemonic, and antioxidant natural product.
Collapse
|
141
|
Anderson JJB, Nieman DC. Diet Quality-The Greeks Had It Right! Nutrients 2016; 8:E636. [PMID: 27754409 PMCID: PMC5084023 DOI: 10.3390/nu8100636] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 09/30/2016] [Accepted: 09/30/2016] [Indexed: 12/12/2022] Open
Abstract
The Mediterranean diet is upheld in the 2015-2020 Dietary Guidelines as an example of an eating pattern that promotes good health, a healthy body weight, and disease prevention throughout the lifespan. The Mediterranean eating pattern is based on a variety of unprocessed plant foods including fruits, vegetables, whole grains, legumes, nuts, and seeds that are high in polyphenols. The majority of polyphenols arrive in the colon where bacteria degrade them into smaller phenolics that can be translocated via the portal vein to the liver. In the liver, the phenolics undergo additional biotransformation prior to release into the circulation and transport to specific tissues where bioactive effects take place before removal in the urine. Recent epidemiologic studies using improved assessment techniques support that high versus low dietary polyphenol intake predicts reduced risk for neurodegenerative diseases, diabetes, cardiovascular disease, hypertension, obesity, and early death from all causes. Emerging science reveals that many of these health-related benefits can be traced to the biotransformed, gut-derived phenolics. In conclusion, the high consumption of unprocessed plant foods by inhabitants of countries bordering the Mediterranean Sea has been linked to multiple health and disease prevention benefits that are in large part due to a varied intake of polyphenols.
Collapse
Affiliation(s)
- John J B Anderson
- Department of Nutrition, Schools of Public Health and Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - David C Nieman
- Human Performance Laboratory, Appalachian State University, North Carolina Research Campus, Kannapolis, NC 28081, USA.
| |
Collapse
|
142
|
Chalcone Isomerase from Eubacterium ramulus Catalyzes the Ring Contraction of Flavanonols. J Bacteriol 2016; 198:2965-2974. [PMID: 27551015 DOI: 10.1128/jb.00490-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/05/2016] [Indexed: 01/07/2023] Open
Abstract
The enzyme catalyzing the ring-contracting conversion of the flavanonol taxifolin to the auronol alphitonin in the course of flavonoid degradation by the human intestinal anaerobe Eubacterium ramulus was purified and characterized. It stereospecifically catalyzed the isomerization of (+)-taxifolin but not that of (-)-taxifolin. The Km for (+)-taxifolin was 6.4 ± 0.8 μM, and the Vmax was 108 ± 4 μmol min-1 (mg protein)-1 The enzyme also isomerized (+)-dihydrokaempferol, another flavanonol, to maesopsin. Inspection of the encoding gene revealed its complete identity to that of the gene encoding chalcone isomerase (CHI) from E. ramulus Based on the reported X-ray crystal structure of CHI (M. Gall et al., Angew Chem Int Ed 53:1439-1442, 2014, http://dx.doi.org/10.1002/anie.201306952), docking experiments suggest the substrate binding mode of flavanonols and their stereospecific conversion. Mutation of the active-site histidine (His33) to alanine led to a complete loss of flavanonol isomerization by CHI, which indicates that His33 is also essential for this activity. His33 is proposed to mediate the stereospecific abstraction of a proton from the hydroxymethylene carbon of the flavanonol C-ring followed by ring opening and recyclization. A flavanonol-isomerizing enzyme was also identified in the flavonoid-converting bacterium Flavonifractor plautii based on its 50% sequence identity to the CHI from E. ramulus IMPORTANCE: Chalcone isomerase was known to be involved in flavone/flavanone conversion by the human intestinal bacterium E. ramulus Here we demonstrate that this enzyme moreover catalyzes a key step in the breakdown of flavonols/flavanonols. Thus, a single isomerase plays a dual role in the bacterial conversion of dietary bioactive flavonoids. The identification of a corresponding enzyme in the human intestinal bacterium F. plautii suggests a more widespread occurrence of this isomerase in flavonoid-degrading bacteria.
Collapse
|
143
|
Neurodegenerative Diseases: Might Citrus Flavonoids Play a Protective Role? Molecules 2016; 21:molecules21101312. [PMID: 27706034 PMCID: PMC6274333 DOI: 10.3390/molecules21101312] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/07/2016] [Accepted: 09/14/2016] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases (ND) result from the gradual and progressive degeneration of the structure and function of the central nervous system or the peripheral nervous system or both. They are characterized by deterioration of neurons and/or myelin sheath, disruption of sensory information transmission and loss of movement control. There is no effective treatment for ND, and the drugs currently marketed are symptom-oriented, albeit with several side effects. Within the past decades, several natural remedies have gained attention as potential neuroprotective drugs. Moreover, an increasing number of studies have suggested that dietary intake of vegetables and fruits can prevent or delay the onset of ND. These properties are mainly due to the presence of polyphenols, an important group of phytochemicals that are abundantly present in fruits, vegetables, cereals and beverages. The main class of polyphenols is flavonoids, abundant in Citrus fruits. Our review is an overview on the scientific literature concerning the neuroprotective effects of the Citrus flavonoids in the prevention or treatment of ND. This review may be used as scientific basis for the development of nutraceuticals, food supplements or complementary and alternative drugs to maintain and improve the neurophysiological status.
Collapse
|
144
|
Lungare S, Hallam K, Badhan RKS. Phytochemical-loaded mesoporous silica nanoparticles for nose-to-brain olfactory drug delivery. Int J Pharm 2016; 513:280-293. [PMID: 27633279 DOI: 10.1016/j.ijpharm.2016.09.042] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/08/2016] [Accepted: 09/11/2016] [Indexed: 12/31/2022]
Abstract
Central nervous system (CNS) drug delivery is often hampered due to the insidious nature of the blood-brain barrier (BBB). Nose-to-brain delivery via olfactory pathways have become a target of attention for drug delivery due to bypassing of the BBB. The antioxidant properties of phytochemicals make them promising as CNS active agents but possess poor water solubility and limited BBB penetration. The primary aim of this study was the development of mesoporous silica nanoparticles (MSNs) loaded with the poorly water-soluble phytochemicals curcumin and chrysin which could be utilised for nose-to-brain delivery. We formulated spherical MSNP using a templating approach resulting in ∼220nm particles with a high surface porosity. Curcumin and chrysin were successfully loaded into MSNP and confirmed through Fourier transformation infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and HPLC approaches with a loading of 11-14% for curcumin and chrysin. Release was pH dependant with curcumin demonstrating increased chemical stability at a lower pH (5.5) with a release of 53.2%±2.2% over 24h and 9.4±0.6% for chrysin. MSNP were demonstrated to be non-toxic to olfactory neuroblastoma cells OBGF400, with chrysin (100μM) demonstrating a decrease in cell viability to 58.2±8.5% and curcumin an IC50 of 33±0.18μM. Furthermore confocal microscopy demonstrated nanoparticles of <500nm were able to accumulate within cells with FITC-loaded MSNP showing membrane localised and cytoplasmic accumulation following a 2h incubation. MSNP are useful carriers for poorly soluble phytochemicals and provide a novel vehicle to target and deliver drugs into the CNS and bypass the BBB through olfactory drug delivery.
Collapse
Affiliation(s)
- Shital Lungare
- Aston Pharmacy School, Life and Health Sciences, Aston University, Birmingham B4 7ET, United Kingdom
| | - Keith Hallam
- Interface Analysis Centre, School of Physics, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Raj K S Badhan
- Aston Pharmacy School, Life and Health Sciences, Aston University, Birmingham B4 7ET, United Kingdom.
| |
Collapse
|
145
|
Reddy PH, Manczak M, Yin X, Grady MC, Mitchell A, Kandimalla R, Kuruva CS. Protective effects of a natural product, curcumin, against amyloid β induced mitochondrial and synaptic toxicities in Alzheimer's disease. J Investig Med 2016; 64:1220-1234. [PMID: 27521081 PMCID: PMC5256118 DOI: 10.1136/jim-2016-000240] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2016] [Indexed: 01/06/2023]
Abstract
The purpose of our study was to investigate the protective effects of a natural product—‘curcumin’— in Alzheimer's disease (AD)-like neurons. Although much research has been done in AD, very little has been reported on the effects of curcumin on mitochondrial biogenesis, dynamics, function and synaptic activities. Therefore, the present study investigated the protective effects against amyloid β (Aβ) induced mitochondrial and synaptic toxicities. Using human neuroblastoma (SHSY5Y) cells, curcumin and Aβ, we studied the protective effects of curcumin against Aβ. Further, we also studied preventive (curcumin+Aβ) and intervention (Aβ+curcumin) effects of curcumin against Aβ in SHSY5Y cells. Using real time RT-PCR, immunoblotting and immunofluorescence analysis, we measured mRNA and protein levels of mitochondrial dynamics, mitochondrial biogenesis and synaptic genes. We also assessed mitochondrial function by measuring hydrogen peroxide, lipid peroxidation, cytochrome oxidase activity and mitochondrial ATP. Cell viability was studied using the MTT assay. Aβ was found to impair mitochondrial dynamics, reduce mitochondrial biogenesis and decrease synaptic activity and mitochondrial function. In contrast, curcumin enhanced mitochondrial fusion activity and reduced fission machinery, and increased biogenesis and synaptic proteins. Mitochondrial function and cell viability were elevated in curcumin treated cells. Interestingly, curcumin pre- and post-treated cells incubated with Aβ showed reduced mitochondrial dysfunction, and maintained cell viability and mitochondrial dynamics, mitochondrial biogenesis and synaptic activity. Further, the protective effects of curcumin were stronger in pretreated SHSY5Y cells than in post-treated cells, indicating that curcumin works better in prevention than treatment in AD-like neurons. Our findings suggest that curcumin is a promising drug molecule to treat AD patients.
Collapse
Affiliation(s)
- P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.,Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.,Department of Neuroscience and Pharmacology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.,Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.,Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Maria Manczak
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Xiangling Yin
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Mary Catharine Grady
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Andrew Mitchell
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Ramesh Kandimalla
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Chandra Sekhar Kuruva
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| |
Collapse
|
146
|
Mendiola-Precoma J, Berumen LC, Padilla K, Garcia-Alcocer G. Therapies for Prevention and Treatment of Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2589276. [PMID: 27547756 PMCID: PMC4980501 DOI: 10.1155/2016/2589276] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/31/2016] [Accepted: 06/05/2016] [Indexed: 01/11/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia associated with a progressive neurodegenerative disorder, with a prevalence of 44 million people throughout the world in 2015, and this figure is estimated to double by 2050. This disease is characterized by blood-brain barrier disruption, oxidative stress, mitochondrial impairment, neuroinflammation, and hypometabolism; it is related to amyloid-β peptide accumulation and tau hyperphosphorylation as well as a decrease in acetylcholine levels and a reduction of cerebral blood flow. Obesity is a major risk factor for AD, because it induces adipokine dysregulation, which consists of the release of the proinflammatory adipokines and decreased anti-inflammatory adipokines, among other processes. The pharmacological treatments for AD can be divided into two categories: symptomatic treatments such as acetylcholinesterase inhibitors and N-methyl-D-aspartate (NMDA) receptor antagonists and etiology-based treatments such as secretase inhibitors, amyloid binders, and tau therapies. Strategies for prevention of AD through nonpharmacological treatments are associated with lifestyle interventions such as exercise, mental challenges, and socialization as well as caloric restriction and a healthy diet. AD is an important health issue on which all people should be informed so that prevention strategies that minimize the risk of its development may be implemented.
Collapse
Affiliation(s)
- J. Mendiola-Precoma
- Laboratorio de Investigación Genética, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Centro Universitario, 76010 Santiago de Querétaro, QRO, Mexico
| | - L. C. Berumen
- Laboratorio de Investigación Genética, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Centro Universitario, 76010 Santiago de Querétaro, QRO, Mexico
| | - K. Padilla
- Laboratorio de Investigación Genética, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Centro Universitario, 76010 Santiago de Querétaro, QRO, Mexico
| | - G. Garcia-Alcocer
- Laboratorio de Investigación Genética, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Centro Universitario, 76010 Santiago de Querétaro, QRO, Mexico
| |
Collapse
|
147
|
Kim SR. Control of Granule Cell Dispersion by Natural Materials Such as Eugenol and Naringin: A Potential Therapeutic Strategy Against Temporal Lobe Epilepsy. J Med Food 2016; 19:730-6. [PMID: 27404051 DOI: 10.1089/jmf.2016.3712] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The hippocampus is an important brain area where abnormal morphological characteristics are often observed in patients with temporal lobe epilepsy (TLE), typically showing the loss of the principal neurons in the CA1 and CA3 areas of the hippocampus. TLE is frequently associated with widening of the granule cell layer of the dentate gyrus (DG), termed granule cell dispersion (GCD), in the hippocampus, suggesting that the control of GCD with protection of hippocampal neurons may be useful for preventing and inhibiting epileptic seizures. We previously reported that eugenol (EUG), which is an essential component of medicinal herbs and has anticonvulsant activity, is beneficial for treating epilepsy through its ability to inhibit GCD via suppression of mammalian target of rapamycin complex 1 (mTORC1) activation in the hippocampal DG in a kainic acid (KA)-treated mouse model of epilepsy in vivo. In addition, we reported that naringin, a bioflavonoid in citrus fruits, could exert beneficial effects, such as antiautophagic stress and antineuroinflammation, in the KA mouse model of epilepsy, even though it was unclear whether naringin might also attenuate the seizure-induced morphological changes of GCD in the DG. Similar to the effects of EUG, we recently observed that naringin treatment significantly reduced KA-induced GCD and mTORC1 activation, which are both involved in epileptic seizures, in the hippocampus of mouse brain. Therefore, these observations suggest that the utilization of natural materials, which have beneficial properties such as inhibition of GCD formation and protection of hippocampal neurons, may be useful in developing a novel therapeutic agent against TLE.
Collapse
Affiliation(s)
- Sang Ryong Kim
- 1 School of Life Sciences, Kyungpook National University , Daegu, Korea.,2 BK21 plus KNU Creative BioResearch Group, Kyungpook National University , Daegu, Korea.,3 Brain Science and Engineering Institute, Kyungpook National University , Daegu, Korea
| |
Collapse
|
148
|
Lin TY, Lu CW, Wang SJ. Luteolin protects the hippocampus against neuron impairments induced by kainic acid in rats. Neurotoxicology 2016; 55:48-57. [DOI: 10.1016/j.neuro.2016.05.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/27/2016] [Accepted: 05/13/2016] [Indexed: 10/21/2022]
|
149
|
A Flavonoid Compound Promotes Neuronal Differentiation of Embryonic Stem Cells via PPAR-β Modulating Mitochondrial Energy Metabolism. PLoS One 2016; 11:e0157747. [PMID: 27315062 PMCID: PMC4912105 DOI: 10.1371/journal.pone.0157747] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 06/04/2016] [Indexed: 12/20/2022] Open
Abstract
Relatively little is known regarding mitochondrial metabolism in neuronal differentiation of embryonic stem (ES) cells. By using a small molecule, present research has investigated the pattern of cellular energy metabolism in neural progenitor cells derived from mouse ES cells. Flavonoid compound 4a faithfully facilitated ES cells to differentiate into neurons morphologically and functionally. The expression and localization of peroxisome proliferator-activated receptors (PPARs) were examined in neural progenitor cells. PPAR-β expression showed robust upregulation compared to solvent control. Treatment with PPAR-β agonist L165041 alone or together with compound 4a significantly promoted neuronal differentiation, while antagonist GSK0660 blocked the neurogenesis-promoting effect of compound 4a. Consistently, knockdown of PPAR-β in ES cells abolished compound 4a-induced neuronal differentiation. Interestingly, we found that mitochondrial fusion protein Mfn2 was also abolished by sh-PPAR-β, resulting in abnormal mitochondrial Ca2+ ([Ca2+]M) transients as well as impaired mitochondrial bioenergetics. In conclusion, we demonstrated that by modulating mitochondrial energy metabolism through Mfn2 and mitochondrial Ca2+, PPAR-β took an important role in neuronal differentiation induced by flavonoid compound 4a.
Collapse
|
150
|
Singh NA, Mandal AKA, Khan ZA. Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG). Nutr J 2016; 15:60. [PMID: 27268025 PMCID: PMC4897892 DOI: 10.1186/s12937-016-0179-4] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/02/2016] [Indexed: 12/17/2022] Open
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD) enforce an overwhelming social and economic burden on society. They are primarily characterized through the accumulation of modified proteins, which further trigger biological responses such as inflammation, oxidative stress, excitotoxicity and modulation of signalling pathways. In a hope for cure, these diseases have been studied extensively over the last decade to successfully develop symptom-oriented therapies. However, so far no definite cure has been found. Therefore, there is a need to identify a class of drug capable of reversing neural damage and preventing further neural death. This review therefore assesses the reliability of the neuroprotective benefits of epigallocatechin-gallate (EGCG) by shedding light on their biological, pharmacological, antioxidant and metal chelation properties, with emphasis on their ability to invoke a range of cellular mechanisms in the brain. It also discusses the possible use of nanotechnology to enhance the neuroprotective benefits of EGCG.
Collapse
Affiliation(s)
- Neha Atulkumar Singh
- Department of Integrative Biology, School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Abul Kalam Azad Mandal
- Department of Biotechnology, School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Zaved Ahmed Khan
- Centre for Interdisciplinary Biomedical Research, Adesh University, Bathinda, Punjab, India.
| |
Collapse
|