101
|
Yao T, Zha D, Gao P, Wu X. Silencing circ-USP1 protects the renal tubular from kidney injury induced by hypoxia via modulating miR-194-5p/DNMT3A axis in acute renal allografts. J Cell Mol Med 2021; 25:5940-5948. [PMID: 33484504 PMCID: PMC8256350 DOI: 10.1111/jcmm.16286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022] Open
Abstract
Recent studies indicate that circular RNAs are involved in dysregulation of kidney injury. Nevertheless, the underlying mechanisms remain largely unclear. Therefore, this study sought to investigate the role of circ-USP1 in the pathogenesis of early renal allografts. Thirty-two male C57BL/6J mice aged between 6 and 8 weeks were divided into the sham and allograft groups. Thereafter, the association between miR-194-5p, circ-USP1 and DNMT3A was confirmed using a combination of bioinformatics and the luciferase reporter gene assay. Additionally, the expression of circ-USP1, miR-194-5p and DNMT3A mRNA was detected through qPCR. Afterwards, the Western blot assay was performed to examine the expression of DNMT3A protein. Finally, the TUNEL assay was conducted to determine the rate of apoptosis in DNMT3A cells. The expression of circ-USP1 increased, while that of miR-194-5p decreased in renal allografts. Additionally, silencing circ-USP1 reduced kidney injuries caused by renal allografts in mice. Moreover, miR-194-5p was a target for circ-USP1, and DNMT3A was a target of miR-194-5p. Finally, it was shown that silencing circ-USP1 reduced DNMT3A expression in the kidney of mice that received renal allografts. Circ-USP1 functions as a competing endogenous RNA for miR-194-5p. This occurs in order to regulate DNMT3A expression in kidney injury induced by hypoxia in acute renal allografts.
Collapse
Affiliation(s)
- Tao Yao
- Department of NephrologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Dongqing Zha
- Department of NephrologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Ping Gao
- Department of NephrologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Xiaoyan Wu
- Department of NephrologyZhongnan Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
102
|
miR-133a-3p attenuates cardiomyocyte hypertrophy through inhibiting pyroptosis activation by targeting IKKε. Acta Histochem 2021; 123:151653. [PMID: 33246224 DOI: 10.1016/j.acthis.2020.151653] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Cardiac hypertrophy is an adaptive response to physiological and pathological stimuli, the latter of which frequently progresses to valvulopathy, heart failure and sudden death. Recent reports revealed that pyroptosis is involved in regulating multiple cardiovascular diseases progression, including cardiac hypertrophy. However, the underlying mechanisms remain poorly understood. This study aims to extensively investigate the regulation of miR-133a-3p on pyroptosis in angiotensin II (Ang II)-induced cardiac hypertrophyin vitro. METHODS The in vitro model of cardiac hypertrophy was induced by Ang II, which was validated by qPCR combined with measurement of cell surface area by immunofluorescence assay. CCK-8 assay and Hochest33342/PI staining was performed to assess pyroptosis. Dual luciferase reporter system was used to verify the direct interaction between miR-133a-3p and IKKε. The effects of miR-133a-3p/IKKε on pyroptosis activation and cardiac hypertrophy markers (Caspase-1, NLRP3, IL-1β, IL-18, GSDMD, ASC, ANP, BNP and β-MHC) were evaluated by western blot, ELISA and qPCR. RESULTS Ang II treatment could induce cardiomyocyte hypertrophy and pyroptosis. The expression of miR-133a-3p was repressed in Ang II-treated HCM cells, and its overexpression could attenuate both pyroptosis and cardiac hypertrophyin vitro. Additionally, IKKε expression was significantly up-regulated in Ang II-induced HCM cells. Dual luciferase reporter system and qPCR validated that miR-133a-3p directly targeted the 3'-UTR of IKKε and suppressed its expression. Moreover, IKKε overexpression impaired the protective function of miR-133a-3p in cardiomyocyte hypertrophy. CONCLUSION Collectively, miR-133a-3p attenuates Ang II induced cardiomyocyte hypertrophy via inhibition of pyroptosis by targeting IKKε. Therefore, miR-133a-3p up-regulation may be a promising strategy for cardiac hypertrophy treatment.
Collapse
|
103
|
Yan Z, Huang C, Huang G, Wu Y, Wang J, Yi J, Mao W, Wang W. The effect of Jiedu Huoxue decoction on rat model of experimental nonbacterial prostatitis via regulation of miRNAs. PHARMACEUTICAL BIOLOGY 2020; 58:745-759. [PMID: 32758035 PMCID: PMC7470117 DOI: 10.1080/13880209.2020.1797124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
CONTEXT The underlying mechanisms of Jiedu Huoxue decoction (JDHXD) in treating chronic prostatitis have not been fully explored. OBJECTIVE This study investigates the miRNAs as potential biomarkers and the effect of JDHXD on the rat model of experimental nonbacterial prostatitis. MATERIALS AND METHODS Fifty-four Sprague-Dawley male rats were randomly divided into normal control, model, JDHXD low dose (0.5 g/kg/day), medium dose (1 g/kg/day), high dose (2 g/kg/day) and western medicine (cernilton 0.094 g/kg/day) groups, and intragastrically administered once daily for 30 days. The control and model (upon successful establishment) groups received distilled water. Differential expression of miRNAs was analysed with high-throughput miRNA sequencing and validated with qRT-PCR and Northern blot. Prediction of specific target genes and functional enrichment analysis were performed with bioinformatics. RESULTS LD50 test showed no sign of toxicity with maximum feasible dose 4 g/kg JDHXD. Compared with control, 495 miRNAs showed expression changes in CAP/CPPS rats, of which 211 were significantly different and 37 were prostatic-related. There were 181 differentially expressed miRNAs between the model and high dose JDHXD groups, of which 23 were identical with the control and model groups. Compared with control, miR-146a, miR-423 and miR-205 expression increased significantly in the model group, decreased dose-dependently in the JDHXD groups (p < 0.05), and vice-versa for miR-96 (p < 0.05). The effect of low dose JDHXD was comparable to cernilton (p > 0.05). DISCUSSION AND CONCLUSIONS Future studies may explore the contributions of the active components in JDHXD. The study design is generalisable. The effect can be repeatedly verified in clinical trials.
Collapse
Affiliation(s)
- Zhangren Yan
- Department of TCM Surgery, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, P.R. China
| | - Chunhua Huang
- Department of Neurology, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, P.R. China
| | - Gang Huang
- Department of TCM Surgery, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, P.R. China
| | - Yunbo Wu
- Department of TCM Surgery, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, P.R. China
| | - Jiangang Wang
- Department of TCM Surgery, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, P.R. China
| | - Jun Yi
- Department of TCM Surgery, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, P.R. China
| | - Wenli Mao
- Department of TCM Surgery, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, P.R. China
| | - Wanchun Wang
- Department of TCM Surgery, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, P.R. China
- CONTACT Wanchun Wang Department of TCM Surgery, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, No. 445 Bayi Avenue, Nanchang, 330006, P.R. China
| |
Collapse
|
104
|
Yu L, Li H, Liu W, Zhang L, Tian Q, Li H, Li M. MiR-485-3p serves as a biomarker and therapeutic target of Alzheimer's disease via regulating neuronal cell viability and neuroinflammation by targeting AKT3. Mol Genet Genomic Med 2020; 9:e1548. [PMID: 33220166 PMCID: PMC7963426 DOI: 10.1002/mgg3.1548] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Numerous microRNAs (miRNAs) have been identified as functional molecules in Alzheimer's disease (AD) pathogenesis. This study aimed to investigate the diagnostic value of microRNA-485-3p (miR-485-3p) in AD patients, evaluate the effect of miR-485-3p on neuronal viability and neuroinflammation, as well as the underlying molecular mechanisms. METHODS Quantitative Real-Time PCR was used to estimate expression of miR-485-3p and AKT3. A ROC analysis was used to evaluate the diagnostic value of miR-485-3p. The correlation of miR-485-3p with patients' MMSE score and inflammatory response was analyzed. Using Aβ-treated SH-SY5Y and BV2 cells models, the effects of miR-485-3p on neuronal proliferation, apoptosis, and neuroinflammation were explored. A luciferase reporter assay was used to confirm the target gene of miR-485-3p in both SH-SY5Y and BV2 cells. RESULTS Serum miR-485-3p expression was significantly upregulated in AD patients and cell models, which had a high diagnostic accuracy and correlated with MMSE score and inflammatory response in AD patients. The knockdown of miR-485-3p in SH-SY5Y and BV2 cells was found to significantly reverse the effect of Aβ treatment on neuronal viability and neuroinflammation. AKT3 was determined as a target of miR-485-3p, which might mediate the biological function of miR-485-3p in AD pathogenesis. CONCLUSION All the data indicated that increased serum miR-485-3p serves as a diagnostic biomarker in AD patients, and knockdown of miR-485-3p exerts a neuroprotective role by improving neuronal viability and weakening neuroinflammation, which may be mediated by AKT3. This study may provide a novel biomarker and therapeutic target for AD therapy.
Collapse
Affiliation(s)
- Ling Yu
- Department of Neurology, Shengli Oilfield Central Hospital, Dongying, China
| | - Haiting Li
- Department of Neurology, Shengli Oilfield Central Hospital, Dongying, China
| | - Wenhu Liu
- Department of Neurology, Shengli Oilfield Central Hospital, Dongying, China
| | - Ligong Zhang
- Department of Neurology, Shengli Oilfield Central Hospital, Dongying, China
| | - Qun Tian
- Department of Neurology, Shengli Oilfield Central Hospital, Dongying, China
| | - Hairong Li
- Department of Neurology, Shengli Oilfield Central Hospital, Dongying, China
| | - Min Li
- Department of Neurology, Shengli Oilfield Central Hospital, Dongying, China
| |
Collapse
|
105
|
Li B, Wang Z, Yang F, Huang J, Hu X, Deng S, Tian M, Si X. miR‑449a‑5p suppresses CDK6 expression to inhibit cardiomyocyte proliferation. Mol Med Rep 2020; 23:14. [PMID: 33179102 PMCID: PMC7673318 DOI: 10.3892/mmr.2020.11652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/02/2020] [Indexed: 12/27/2022] Open
Abstract
Induction of cardiomyocyte (CM) proliferation is a promising approach for cardiac regeneration following myocardial injury. MicroRNAs (miRs) have been reported to regulate CM proliferation. In particular, miR‑449a‑5p has been identified to be associated with CM proliferation in previous high throughput functional screening data. However, whether miR‑449a‑5p regulates CM proliferation has not been thoroughly investigated. This study aimed to explore whether miR‑449a‑5p modulates CM proliferation and to identify the molecular mechanism via which miR‑449a‑5p regulates CM proliferation. The current study demonstrated that miR‑449a‑5p expression levels were significantly increased during heart development. Furthermore, the results suggested that miR‑449a‑5p mimic inhibited CM proliferation <em>in vitro</em> as determined via immunofluorescence for ki67 and histone H3 phosphorylated at serine 10 (pH3), as well as the numbers of CMs. However, miR‑449a‑5p knockdown promoted CM proliferation. CDK6 was identified as a direct target gene of miR‑449a‑5p, and CDK6 mRNA and protein expression was suppressed by miR‑449a‑5p. Moreover, CDK6 gain‑of‑function increased CM proliferation. Overexpression of CDK6 also blocked the inhibitory effect of miR‑449a‑5p on CM proliferation, indicating that CDK6 was a functional target of miR‑449a‑5p in CM proliferation. In conclusion, miR‑449a‑5p inhibited CM proliferation by targeting CDK6, which provides a potential molecular target for preventing myocardial injury.
Collapse
Affiliation(s)
- Bing Li
- School of Medicine, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Zhi Wang
- Department of Emergency Medicine, Qingdao Municipal Hospital (Group), Qingdao, Shandong 266011, P.R. China
| | - Fan Yang
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Jing Huang
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Xingwei Hu
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Shiyan Deng
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Maobo Tian
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Xiaoyun Si
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
106
|
Gerloff D, Sunderkötter C, Wohlrab J. Importance of microRNAs in Skin Oncogenesis and Their Suitability as Agents and Targets for Topical Therapy. Skin Pharmacol Physiol 2020; 33:270-279. [PMID: 33080592 DOI: 10.1159/000509879] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 06/10/2020] [Indexed: 12/15/2022]
Abstract
Skin cancer is the most common cancer worldwide, with rapidly increasing incidence and consistent mortality. Skin cancer encompasses melanoma and non-melanoma skin cancer, which in turn is mainly divided into cutaneous squamous cell carcinoma and basal cell carcinoma. Small noncoding micro-RNAs (miRNAs) regulate protein expression after transcription and play a role in the development and progression of skin cancer. Deregulated expression of miRNAs in skin cancer is associated with cell proliferation, angiogenesis, metastasis, apoptosis, immune response, and drug resistance. Specific patterns of miRNAs in specific skin cancer types can be used as diagnostic markers. For therapeutic purposes, both miRNA and chemically modified variants thereof as well as miRNA antagonists (antagomiRs) or RNA inhibitors may be applied topically. Due to their specific physicochemical properties, physical or chemical diffusion promoters are used with varying degrees of success. There is no question by now that such preparations have a high potential for the treatment of epithelial skin tumors in particular.
Collapse
Affiliation(s)
- Dennis Gerloff
- Department of Dermatology and Venereology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany,
| | - Cord Sunderkötter
- Department of Dermatology and Venereology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Johannes Wohlrab
- Department of Dermatology and Venereology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,Institute of Applied Dermatopharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
107
|
Lv XB, Niu QH, Zhang M, Feng L, Feng J. Critical functions of microRNA-30a-5p-E2F3 in cardiomyocyte apoptosis induced by hypoxia/reoxygenation. Kaohsiung J Med Sci 2020; 37:92-100. [PMID: 33058540 DOI: 10.1002/kjm2.12309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 08/26/2020] [Accepted: 09/13/2020] [Indexed: 01/01/2023] Open
Abstract
The high-mortality rate of cardiovascular diseases (CVDs) is associated with the myocardial ischemia and reperfusion (I/R). Recent investigations have revealed that microRNAs (miRNAs) exert vital functions in the apoptosis of cardiomyocyte cell. Nevertheless, the potential role of miR-30a-5p in the regulation of cardiomyocyte cell apoptosis needs to be illuminated. In the current study, we observed that hypoxia/reoxygenation (H/R) remarkably raised the level of miR-30a-5p but reduced the expression of E2F transcription factor 3 (E2F3) in H9c2 cardiomyocytes. In vivo, miR-30a-5p was found to be significantly upregulated in the hearts of rats following I/R. Downregulation of miR-30a-5p using anti-miR-30a-5p decreased H9c2 cardiomyocytes apoptosis caused by H/R and promoted the proliferation of H9c2 inhibited by H/R. Moreover, E2F3 was a possible target gene of miR-30a-5p and upregulation of miR-30a-5p reduced the expression level of E2F3 in H9c2 cardiomyocytes. We further identified that E2F3 silencing reversed the effect of anti-miR-30a-5p on the proliferation and apoptosis in H/R treated H9c2 cells. These studies suggested that downregulation of miR-30a-5p attenuated the impact of H/R on H9c2 cardiomyocytes through targeting E2F3.
Collapse
Affiliation(s)
- Xiao-Bing Lv
- Department of Cardiology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qing-Hui Niu
- Liver Disease Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Min Zhang
- Department of Geriatrics, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Li Feng
- Department of Cardiology, the Central Hospital of Lijin County, Dongying, China
| | - Jia Feng
- Department of Pediatrics, the Central Hospital of Shengli Oil Field, Dongying, China
| |
Collapse
|
108
|
Kiel C, Strunz T, Grassmann F, Weber BHF. Pleiotropic Locus 15q24.1 Reveals a Gender-Specific Association with Neovascular but Not Atrophic Age-Related Macular Degeneration (AMD). Cells 2020; 9:E2257. [PMID: 33050031 PMCID: PMC7650707 DOI: 10.3390/cells9102257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 12/18/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified an abundance of genetic loci associated with complex traits and diseases. In contrast, in-depth characterization of an individual genetic signal is rarely available. Here, we focus on the genetic variant rs2168518 in 15q24.1 previously associated with age-related macular degeneration (AMD), but only with suggestive evidence. In a two-step procedure, we initially conducted a series of association analyses to further delineate the association of rs2168518 with AMD but also with other complex phenotypes by using large independent datasets from the International AMD Genomics Consortium (IAMDGC) and the UK Biobank. We then performed a functional annotation with reference to gene expression regulation based on data from the Genotype-Tissue Expression (GTEx) project and RegulomeDB. Association analysis revealed a gender-specific association with male AMD patients and an association predominantly with choroidal neovascularization. Further, the AMD association colocalizes with an association signal of several blood pressure-related phenotypes and with the gene expression regulation of CYP1A1, a member of the cytochrome P450 superfamily of monooxygenases. Functional annotation revealed altered transcription factor (TF) binding sites for gender-specific TFs, including SOX9 and SRY. In conclusion, the pleiotropic 15q24.1 association signal suggests a shared mechanism between blood pressure regulation and choroidal neovascularization with a potential involvement of CYP1A1.
Collapse
Affiliation(s)
- Christina Kiel
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany; (C.K.); (T.S.); (F.G.)
| | - Tobias Strunz
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany; (C.K.); (T.S.); (F.G.)
| | | | - Felix Grassmann
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany; (C.K.); (T.S.); (F.G.)
- Institute of Medical Sciences, University of Aberdeen, King’s College, Aberdeen AB24 3FX, UK
| | - Bernhard H. F. Weber
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany; (C.K.); (T.S.); (F.G.)
- Institute of Clinical Human Genetics, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
109
|
Liu W, Ma C, Li HY, Chen L, Yuan SS, Li KJ. MicroRNA-146a downregulates the production of hyaluronic acid and collagen I in Graves' ophthalmopathy orbital fibroblasts. Exp Ther Med 2020; 20:38. [PMID: 32952629 PMCID: PMC7480141 DOI: 10.3892/etm.2020.9165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
The present study aimed to investigate the effect of microRNA (miR)-146a on the secretion of hyaluronic acid (HA) and collagen I in Graves' ophthalmopathy (GO) orbital fibroblasts, and identify potential novel targets for the clinical treatment of GO. Orbital fibroblasts were extracted from orbital connective tissue, and primary cells were identified via immunohistochemistry. The levels of HA and collagen I in orbital fibroblasts of non-GO controls and patients with GO were examined via reverse transcription-quantitative PCR (RT-qPCR). miR-146a was overexpressed or inhibited in primary orbital fibroblasts via lentiviral infection, and the levels of HA and collagen I following miR-146a overexpression or inhibition were detected via ELISA and RT-qPCR. The results indicated that the mRNA expression of HA and collagen I was higher in orbital fibroblasts from patients with GO compared with the non-GO cohort. Overexpression of miR-146a reduced, and inhibition of miR-146a increased the production of HA and collagen I in GO orbital fibroblasts. In conclusion, it was demonstrated that miR-146a downregulated the secretion of HA and collagen I in GO orbital fibroblasts in vitro, which may affect glycosaminoglycan aggregation and collagen deposition in GO.
Collapse
Affiliation(s)
- Wei Liu
- Department of Ophthalmology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Chao Ma
- Department of Ophthalmology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Hao-Yu Li
- Department of Ophthalmology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Lan Chen
- Department of Ophthalmology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shan-Si Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Kai-Jun Li
- Department of Ophthalmology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
110
|
Huang G, Garikipati VNS, Zhou Y, Benedict C, Houser SR, Koch WJ, Kishore R. Identification and Comparison of Hyperglycemia-Induced Extracellular Vesicle Transcriptome in Different Mouse Stem Cells. Cells 2020; 9:cells9092098. [PMID: 32942572 PMCID: PMC7564160 DOI: 10.3390/cells9092098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/04/2020] [Accepted: 09/11/2020] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles (EVs) derived from stem /progenitor cells harbor immense potential to promote cardiomyocyte survival and neovascularization, and to mitigate ischemic injury. However, EVs’ parental stem/progenitor cells showed modest benefits in clinical trials, suggesting autologous stem cell/EV quality might have been altered by stimuli associated with the co-morbidities such as hyperglycemia associated with diabetes. Hyperglycemia is a characteristic of diabetes and a major driving factor in cardiovascular disease. The functional role of stem/progenitor cell-derived EVs and the molecular signature of their secreted EV cargo under hyperglycemic conditions remain elusive. Therefore, we hypothesized that hyperglycemic stress causes transcriptome changes in stem/progenitor cell-derived EVs that may compromise their reparative function. In this study, we performed an unbiased analysis of EV transcriptome signatures from 3 different stem/progenitor cell types by RNA sequencing. The analysis revealed differential expression of a variety of RNA species in EVs. Specifically, we identified 241 common-dysregulated mRNAs, 21 ncRNAs, and 16 miRNAs in three stem cell-derived EVs. Gene Ontology revealed that potential function of common mRNAs mostly involved in metabolism and transcriptional regulation. This study provides potential candidates for preventing the adverse effects of hyperglycemia-induced stem/progenitor cell-derived EV dysfunction, and reference data for future biological studies and application of stem/progenitor cell-derived EVs.
Collapse
Affiliation(s)
- Grace Huang
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (G.H.); (C.B.); (W.J.K.)
| | - Venkata Naga Srikanth Garikipati
- Department of Emergency Medicine, Dorothy M Davis Heart and Lung Research Institute, Wexner Medical School, The Ohio State University, Columbus, OH 43210, USA;
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox-Chase Cancer Center, Temple Health, Philadelphia, PA 19140, USA;
| | - Cynthia Benedict
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (G.H.); (C.B.); (W.J.K.)
| | - Steven R. Houser
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Walter J. Koch
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (G.H.); (C.B.); (W.J.K.)
- Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Raj Kishore
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (G.H.); (C.B.); (W.J.K.)
- Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Correspondence: ; Tel.: +1-215-707-2523
| |
Collapse
|
111
|
Shi D, Zhang K, Li G, Zhao Y. MiR-1471 protects the aggravation of non-small-cell lung carcinoma by targeting FOXL1. Biofactors 2020; 46:734-742. [PMID: 33045131 DOI: 10.1002/biof.1661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022]
Abstract
This study detected the expression pattern of miR-1471 in non-small-cell lung cancer (NSCLC) tissues, and analyzed the prognostic significance of miR-1471 in NSCLC. Subsequently, potential targets of miR-1471 were screened for assessing the potential molecular mechanism in NSCLC. A total of 47 primary NSCLC cases treated by radical resection and systematic lymphadenectomy in the department of thoracic surgery were collected, as well as their clinical data. MiR-1471 levels in NSCLC tissues were detected by quantitative real-time polymerase chain reaction. The prognostic potential of miR-1471 in NSCLC was assessed by Kaplan-Meier method, followed by log-rank test. Potential target genes of miR-1471 and the binding sites were predicted by bioinformatics analysis, and screened for the optimal one. The binding relationship between miR-1471 and the target FOXL1 was examined by dual-luciferase reporter assay. Subsequently, biological functions of miR-1471 and FOXL1 in NSCLC cell functions were explored by cell counting kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU) assay and flow cytometry. MiR-1471 was downregulated in NSCLC tissues and its level was correlated to TNM staging in NSCLC patients. Overall survival was poor in NSCLC patients expressing low level of miR-1471. Overexpression of miR-1471 attenuated proliferative ability and arrested cell cycle progression in G1/S phase. FOXL1 was confirmed to be the target gene binding miR-1471. Its expression pattern and biological functions in NSCLC cells were contrary to those of miR-1471. MiR-1471 is downregulated in NSCLC samples, which is related to TNM staging and prognosis in NSCLC patients. Therefore, miR-1471 suppresses the malignant aggravation of NSCLC via inhibiting the translation of FOXL1 mRNA. In addition, it could be used as an effective biomarker for predicting the prognosis in NSCLC.
Collapse
Affiliation(s)
- Donglei Shi
- Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Kun Zhang
- Department of Research Center, The Second Hospital of Jilin University, Changchun, China
| | - Guangquan Li
- Department of Research Center, The Second Hospital of Jilin University, Changchun, China
| | - Yinghao Zhao
- Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
112
|
Wang Z, Jiang Z, Zhou J, Liu Z. circRNA RNF111 regulates the growth, migration and invasion of gastric cancer cells by binding to miR‑27b‑3p. Int J Mol Med 2020; 46:1873-1885. [PMID: 33000178 PMCID: PMC7521560 DOI: 10.3892/ijmm.2020.4709] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/30/2020] [Indexed: 12/22/2022] Open
Abstract
hsa_circ_0001982 [circRNA ring finger protein 111 (RNF111)] has been found to promote cancer growth; however, its role in gastric cancer (GC) remains unclear. The present study examined the effects of circR-RNF111 on the growth, migration and invasion of GC cells and aimed to elucidate the underlying molecular mechanisms. The expression levels of circR-RNF111 and miR-27b-3p in GC tissues and GC cell lines were detected by reverse transcription-quantitative PCR (RT-qPCR). StarBase v2.0 and dual-luciferase assay were used to predict and analyze the association between circR-RNF111 and miR-27b-3p. The effects of circR-RNF111 and miR-27b-3p on cell growth, apoptosis, migration and invasion were detected by cell counting kit-8 (CCK-8) assay, colony formation assay, flow cytometry, wound-healing assay and Transwell assay, respectively. In addition, western blot analysis was performed to determine the expression levels of genes related to cell apoptosis and epithelial-mesenchymal transition (EMT). The results revealed that circR-RNF111 and miR-27b-3p were closely related to the clinicopathological characteristics of GC, and that circR-RNF111 and miR-27b-3p negatively correlated and were abnormally expressed in GC. circR-RNF111 acted as a sponge of miR-27b-3p. The silencing of circR-RNF111 significantly inhibited GC cell viability, colony formation, migration and invasion, and exerted a pro-apoptotic effect. miR-27b-3p inhibitor promoted the proliferation, migration and invasion of GC cells, and inhibited cell apoptosis. In addition, circR-RNF111 silencing significantly decreased the expression levels of Bcl2, Vimentin and N-cadherin, and increased those of cleaved caspase-3 and E-cadherin. Furthermore, miR-27b-3p inhibition reversed the regulatory effects of circR-RNF111 silencing on the GC cells. On the whole, the findings of the present study demonstrate that circR-RNF111 is involved in the regulation of growth, migration and invasion of GC cells by binding to miR-27b-3p.
Collapse
Affiliation(s)
- Zhibing Wang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Zongdan Jiang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Jin Zhou
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Zheng Liu
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| |
Collapse
|
113
|
Huang C, Xing X, Xiang X, Fan X, Men R, Ye T, Yang L. MicroRNAs in autoimmune liver diseases: from diagnosis to potential therapeutic targets. Biomed Pharmacother 2020; 130:110558. [PMID: 32781357 DOI: 10.1016/j.biopha.2020.110558] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/21/2020] [Accepted: 07/26/2020] [Indexed: 02/08/2023] Open
Abstract
Autoimmune liver diseases (AILDs) are a group of liver disorders composed of autoimmune hepatitis (AIH), primary biliary cholangitis (PBC), and primary sclerosing cholangitis (PSC) characterized by chronic hepatic and biliary inflammation. Although several genetic factors, such as HLA alleles, TNFA, and CTLA-4, have been reported in the pathogenesis of AILDs, many details remain unknown. In recent years, microRNAs (miRNAs) have emerged as crucial components in the diagnosis and therapeutic applications of various autoimmune diseases, including systemic lupus erythematosus (SLE), glomerulonephritis, and AILDs. MiRNAs comprise a class of small, noncoding molecules of 19--25 nucleotides that modulate multiple genes by suppressing or degrading target mRNAs. Altered miRNA profiles have been identified in serum, immune cells, and live tissues from AILD patients. Elevated serum miR-21 and miR-122 levels in AIH patients as well as decreased miR-200c levels in PSC patients indicate their diagnostic utility. Highly expressed miR-122 and miR-378f as well as downregulated miR-4311 and miR-4714-3p in serum samples from refractory PBC patients suggest their potential to evaluate treatment efficacy. Moreover, miRNAs have been reported to participate in AILD development. Increased miR-506 levels may impair bile secretion in PBC by inhibiting Cl-/HCO3-anion exchanger 2 (AE2) and type III inositol 1,4,5-trisphosphate receptor-3 (InsP3R3). Additionally, different miRNA mimics or antagonists, such as atagomiR-155 and miR-223 mimics, have been widely applied in experimental AILD murine models with great efficacy. Here, we provide an overview of miRNAs in AILDs, aiming to summarize their potential roles in diagnosis and therapeutic interventions, and we discuss the challenges and future applications of miRNAs in clinical practice.
Collapse
Affiliation(s)
- Chen Huang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Xian Xing
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyu Xiang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoli Fan
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Ruoting Men
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Tinghong Ye
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - Li Yang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
114
|
Sekar D. miRNA 21: a novel biomarker in the treatment of bladder cancer. Biomark Med 2020; 14:1065-1067. [PMID: 32969249 DOI: 10.2217/bmm-2020-0319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/20/2020] [Indexed: 11/21/2022] Open
Affiliation(s)
- Durairaj Sekar
- Dental Research Cell (DRC-BRULAC), Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Science (SIMATS), Saveetha University, Chennai 600077, India
| |
Collapse
|
115
|
Paul S, Bravo Vázquez LA, Pérez Uribe S, Roxana Reyes-Pérez P, Sharma A. Current Status of microRNA-Based Therapeutic Approaches in Neurodegenerative Disorders. Cells 2020; 9:cells9071698. [PMID: 32679881 PMCID: PMC7407981 DOI: 10.3390/cells9071698] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a key gene regulator and play essential roles in several biological and pathological mechanisms in the human system. In recent years, plenty of miRNAs have been identified to be involved in the development of neurodegenerative disorders (NDDs), thus making them an attractive option for therapeutic approaches. Hence, in this review, we provide an overview of the current research of miRNA-based therapeutics for a selected set of NDDs, either for their high prevalence or lethality, such as Alzheimer's, Parkinson's, Huntington's, Amyotrophic Lateral Sclerosis, Friedreich's Ataxia, Spinal Muscular Atrophy, and Frontotemporal Dementia. We also discuss the relevant delivery techniques, pertinent outcomes, their limitations, and their potential to become a new generation of human therapeutic drugs in the near future.
Collapse
|
116
|
Zhou J, Qie S, Fang H, Xi J. MiR-487a-3p suppresses the malignant development of pancreatic cancer by targeting SMAD7. Exp Mol Pathol 2020; 116:104489. [PMID: 32622014 DOI: 10.1016/j.yexmp.2020.104489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/23/2020] [Accepted: 06/27/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To uncover the role of microRNA-487a-3p (miR-487a-3p) in influencing the malignant development of pancreatic cancer and the involvement of its downstream target SMAD7. METHODS MiR-487a-3p level in 40 pancreatic cancer and paracancerous tissues was detected by quantitative real-time polymerase chain reaction (qRT-PCR). The relationship between miR-487a-3p level and clinical indicators in pancreatic cancer patients was analyzed. Regulatory effects of miR-487a-3p on biological phenotypes of pancreatic cancer cells were assessed. At last, the involvement of miR-487a-3p and its downstream target SMAD7 in pancreatic cancer was determined. RESULTS MiR-487a-3p was lowly expressed in pancreatic cancer tissues. Pancreatic cancer patients expressing a low level of miR-487a-3p suffered high metastasis rate and poor prognosis. Overexpression of miR-487a-3p markedly attenuated proliferative and migratory capacities in pancreatic cancer cells. SMAD7 was the downstream target of miR-487a-3p, which was highly expressed in pancreatic cancer samples. Overexpression of SMAD7 reversed the regulatory effects of miR-487a-3p on pancreatic cancer cell phenotypes. CONCLUSIONS MiR-487a-3p is downregulated in pancreatic cancer samples, which is linked to metastasis and prognosis in pancreatic cancer. It inhibits the malignant development of pancreatic cancer by negatively regulating SMAD7.
Collapse
Affiliation(s)
- Jing Zhou
- Medical Care Clinic, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Shuyan Qie
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Hongjuan Fang
- Department of Endocrinology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianing Xi
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
117
|
Bai T, Liang R, Zhu R, Wang W, Zhou L, Sun Y. MicroRNA-214-3p enhances erastin-induced ferroptosis by targeting ATF4 in hepatoma cells. J Cell Physiol 2020; 235:5637-5648. [PMID: 31960438 DOI: 10.1002/jcp.29496] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 01/08/2020] [Indexed: 12/29/2022]
Abstract
Primary liver cancer is the second most frequent cause of cancer-related deaths. Ferroptosis, a recognized form of regulated cell death, recently gains attention. MicroRNA-214-3p (miR-214) plays a regulatory role in hepatocarcinogenesis. However, the role of miR-214 in cellular ferroptosis is unclear. This study aimed at elucidating whether miR-214 could regulate ferroptosis of liver cancer. In vitro, HepG2 and Hep3B cancer cells were treated with erastin, a ferroptosis inducer, and then erastin was demonstrated to suppress the cell viability. Moreover, pre-miR-214 overexpression caused that HepG2 and Hep3B cells were more susceptible to erastin, whereas anti-miR-214 sponge showed the opposite effect. Additionally, pre-miR-214 overexpression increased the malondialdehyde and reactive oxygen species levels, upregulated Fe2+ concentration, and decreased glutathione levels in cancer cells exposed to erastin. Further, erastin enhanced the activation of transcription factor 4 (ATF4) in HepG2 and Hep3B cells, and pre-miR-214 overexpression inhibited ATF4 expression. The luciferase reporter data validated ATF4 as a direct target of miR-214. Cancer cells transfected with ATF4 overexpression plasmid rendered lower susceptible to miR-214-induced ferroptotic death. In vivo, erastin significantly reduced the size and weight of xenografted tumors, and miR-214 elevated the ferroptosis-promoting effects of erastin and decreased ATF4 expression. In summary, our study demonstrates that the ferroptosis-promoting effects of miR-214 in hepatoma cells are attributed at least to its inhibitory effects on ATF4, which may provide a new target for therapy of hepatoma regarding ferroptosis.
Collapse
Affiliation(s)
- Tao Bai
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ruopeng Liang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, Henan, China
| | - Rongtao Zhu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Hepatopancreatobiliary Diseases of Zhengzhou University, Zhengzhou, Henan, China
| | - Weijie Wang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Hepatopancreatobiliary Diseases of Zhengzhou University, Zhengzhou, Henan, China
| | - Lin Zhou
- Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, Henan, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuling Sun
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, Henan, China
- Institute of Hepatopancreatobiliary Diseases of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
118
|
Ala U. Competing Endogenous RNAs, Non-Coding RNAs and Diseases: An Intertwined Story. Cells 2020; 9:E1574. [PMID: 32605220 PMCID: PMC7407898 DOI: 10.3390/cells9071574] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 01/17/2023] Open
Abstract
MicroRNAs (miRNAs), a class of small non-coding RNA molecules, are responsible for RNA silencing and post-transcriptional regulation of gene expression. They can mediate a fine-tuned crosstalk among coding and non-coding RNA molecules sharing miRNA response elements (MREs). In a suitable environment, both coding and non-coding RNA molecules can be targeted by the same miRNAs and can indirectly regulate each other by competing for them. These RNAs, otherwise known as competing endogenous RNAs (ceRNAs), lead to an additional post-transcriptional regulatory layer, where non-coding RNAs can find new significance. The miRNA-mediated interplay among different types of RNA molecules has been observed in many different contexts. The analyses of ceRNA networks in cancer and other pathologies, as well as in other physiological conditions, provide new opportunities for interpreting omics data for the field of personalized medicine. The development of novel computational tools, providing putative predictions of ceRNA interactions, is a rapidly growing field of interest. In this review, I discuss and present the current knowledge of the ceRNA mechanism and its implications in a broad spectrum of different pathologies, such as cardiovascular or autoimmune diseases, cancers and neurodegenerative disorders.
Collapse
Affiliation(s)
- Ugo Ala
- Department of Veterinary Sciences, University of Turin, 10124 Turin, Italy
| |
Collapse
|
119
|
Shi Z, Wang R, Huang L, Chen X, Xu M, Zha D, Ma Y. Integrative analysis of miRNAs-mRNAs reveals that miR-182 up-regulation contributes to proliferation and invasion of nasopharyngeal carcinoma by targeting PTEN. Aging (Albany NY) 2020; 12:11568-11578. [PMID: 32541092 PMCID: PMC7343470 DOI: 10.18632/aging.103316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/28/2020] [Indexed: 12/28/2022]
Abstract
Objective: Several miRNAs have been found to be abnormally expressed during nasopharyngeal carcinoma development. Nevertheless, the interaction between miRNAs and downstream genes remains unexploited. In this study, we aim to investigate miRNAs-mRNAs interaction and the mechanism of miR-182 in NPC. Results: Integrative analysis identified several hub-miRNAs that drive NPC pathogenesis. The expression of miR-182 was notably increased in 32 NPC tissues and cell lines (CNE1 and 5-8F). Up-regulation of miR-182 was strongly correlated with poor prognosis of NPC patients. Moreover, the proliferation and invasion of NPC cells were notably increased in miR-182 mimics condition and decreased in miR-182 inhibitor condition. Furthermore, PTEN was verified to be a target of miR-182 and overexpression of PTEN could abrogate the promotion effect of miR-182 mimics on NPC invasion. Conclusions: We identified several hub-miRNAs that may drive NPC pathogenesis. MiR-182 could promote proliferation and invasion of NPC cells via targeting PTEN, which provides a new insight into the clinical therapy of NPC. Materials and Methods: Genome-wide miRNAs of NPC tissues was analyzed using high-throughput sequencing and bioinformatics tools. QRT-PCR experiment was conducted to measure relative expression level. Dual-luciferase reporter assay was used to verify target relationship. The proliferation and invasion of transfected cells were measured by CCK-8 and transwell assay.
Collapse
Affiliation(s)
- Zhaohui Shi
- Department of Otorhinolaryngology Head and Neck Surgery, Air Force Medical University, XiJing Hospital, Xian, Shanxi, China
| | - Rushi Wang
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ligui Huang
- Department of Otorhinolaryngology Head and Neck Surgery, The 908th Hospital of Chinese People's Liberation Army Joint Logistic Support Force, Nanchang, Jiangxi, China
| | - Xiaodong Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Air Force Medical University, XiJing Hospital, Xian, Shanxi, China
| | - Min Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Air Force Medical University, XiJing Hospital, Xian, Shanxi, China
| | - Dingjun Zha
- Department of Otorhinolaryngology Head and Neck Surgery, Air Force Medical University, XiJing Hospital, Xian, Shanxi, China
| | - Yanhong Ma
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
120
|
López E, Marinaro F, de Pedro MDLÁ, Sánchez-Margallo FM, Gómez-Serrano M, Ponath V, Pogge von Strandmann E, Jorge I, Vázquez J, Fernández-Pereira LM, Crisóstomo V, Álvarez V, Casado JG. The Immunomodulatory Signature of Extracellular Vesicles From Cardiosphere-Derived Cells: A Proteomic and miRNA Profiling. Front Cell Dev Biol 2020; 8:321. [PMID: 32582685 PMCID: PMC7295954 DOI: 10.3389/fcell.2020.00321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Experimental data demonstrated that the regenerative potential and immunomodulatory capacity of cardiosphere-derived cells (CDCs) is mediated by paracrine mechanisms. In this process, extracellular vesicles derived from CDCs (EV-CDCs) are key mediators of their therapeutic effect. Considering the future applicability of these vesicles in human diseases, an accurate preclinical-to-clinical translation is needed, as well as an exhaustive molecular characterization of animal-derived therapeutic products. Based on that, the main goal of this study was to perform a comprehensive characterization of proteins and miRNAs in extracellular vesicles from porcine CDCs as a clinically relevant animal model. The analysis was performed by identification and quantification of proteins and miRNA expression profiles. Our results revealed the presence of clusters of immune-related and cardiac-related molecular biomarkers in EV-CDCs. Additionally, considering that priming stem cells with inflammatory stimuli may increase the therapeutic potential of released vesicles, here we studied the dynamic changes that occur in the extracellular vesicles from IFNγ-primed CDCs. These analyses detected statistically significant changes in several miRNAs and proteins. Notably, the increase in interleukin 6 (IL6) protein, as well as the increase in mir-125b (that targets IL6 receptor) was especially relevant. These results suggest a potential involvement of EV-CDCs in the regulation of the IL6/IL6R axis, with implications in inflammatory-mediated diseases.
Collapse
Affiliation(s)
- Esther López
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Federica Marinaro
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | | | - Francisco Miguel Sánchez-Margallo
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - María Gómez-Serrano
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology (ZTI), Philipps University, Marburg, Germany
| | - Viviane Ponath
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology (ZTI), Philipps University, Marburg, Germany.,Clinic for Hematology, Oncology, and Immunology, Philipps University, Marburg, Germany
| | - Elke Pogge von Strandmann
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology (ZTI), Philipps University, Marburg, Germany.,Clinic for Hematology, Oncology, and Immunology, Philipps University, Marburg, Germany
| | - Inmaculada Jorge
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jesús Vázquez
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Verónica Crisóstomo
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Verónica Álvarez
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Javier G Casado
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
121
|
Xu X, Yang Y, Wang G, Yin Y, Han S, Zheng D, Zhou S, Zhao Y, Chen Y, Jin Y. Low shear stress regulates vascular endothelial cell pyroptosis through miR-181b-5p/STAT-3 axis. J Cell Physiol 2020; 236:318-327. [PMID: 32510626 DOI: 10.1002/jcp.29844] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/03/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022]
Abstract
Low shear stress and pyroptosis both play an important role in the onset and development of atherosclerosis (AS). MicroRNAs (miRNAs) are a kind of short (18-22) nucleotide sequences that can bind to the 3'-untranslated region (3'-UTR) of messenger RNA, thereby regulating programmed cell death including pyroptosis. However, the function of miRNAs in cells subjected to shear stress conditions is unknown. Therefore, we conducted the current study to demonstrate the effect of low shear stress on pyroptosis and the underlying mechanism. Human umbilical vein endothelial cells (HUVECs) stimulated by undisturbed shear stress (5 dynes/cm2 ) were the experimental group while HUVECs without shear stress treatment were the control group in our experiments. We observed that shear stress can suppress mechanosensitive miR-181b-5p expression, accompanying the elevated expression of NLRP3 inflammasome-dependent pyroptosis. Introduction of miR-181b-5p could alleviate NLRP3 inflammasome-dependent pyroptosis. Luciferase assay showed specific binding of miR-181b-5p to the 3'-UTR of signal transduction and transcriptional activation factor 3 (STAT-3) gene. Inhibition of STAT-3 gene expression at the posttranscriptional level results in the alleviation of NLRP3 inflammasome-dependent pyroptosis. Besides, the silencing of STAT-3 reduced anti-miR-181b-5p-mediated HUVEC pyroptosis via regulating NLRP3 inflammasome activation. Given the role of mechanosensitive miR-181b-5p and STAT-3 in the shear stress-induced pyroptosis, regulation of their expression levels may be a promising strategy to control AS.
Collapse
Affiliation(s)
- Xiangshan Xu
- Department of Cardiology, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yang Yang
- Department of Cardiology, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Guofeng Wang
- Department of Cardiology, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yu Yin
- Department of Cardiology, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shuo Han
- Department of Cardiology, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Donghan Zheng
- Department of Cardiology, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shaobo Zhou
- Department of Cardiology, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Zhao
- Department of Cardiology, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yong Chen
- Department of Cardiology, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yuanzhe Jin
- Department of Cardiology, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
122
|
miR-331-3p Inhibits Inflammatory Response after Intracerebral Hemorrhage by Directly Targeting NLRP6. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6182464. [PMID: 32596340 PMCID: PMC7298275 DOI: 10.1155/2020/6182464] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/18/2020] [Indexed: 01/02/2023]
Abstract
Background The mechanism of inflammatory reaction after intracerebral hemorrhage remains unclear, which to some extent restrains the therapeutic development of hemorrhagic stroke. The present study attempts to verify whether NLRP6 plays an important role in inflammatory reaction after intracerebral hemorrhage and identify the critical microRNA during the process. Methods Suitable simulated cerebral hemorrhage environments were established in vitro and in vivo. BV2 cells were treated with hemin to induce cell damage. Collagenase was used to establish a model of mouse cerebral hemorrhage. The relationship among NLRP6, miR-331-3p, and the corresponding inflammatory expression was closely observed during this process. Techniques, such as western blot, real-time quantitative PCR, immunofluorescence, and immunocytochemistry, were used to detect the expression of relative genes and molecules in the in vitro and in vivo models. Results Downregulated miR-331-3p increased the expression of NLRP6 and alleviated the expression of TNF-α and IL-6. The neurological function recovery of mice was promoted after intracerebral hemorrhage. Conclusion miR-331-3p regulated the inflammatory response after cerebral hemorrhage by negatively regulating the expression of NLRP6.
Collapse
|
123
|
Jiang ZF, Zhang L, Shen J. MicroRNA: Potential biomarker and target of therapy in acute lung injury. Hum Exp Toxicol 2020; 39:1429-1442. [PMID: 32495695 DOI: 10.1177/0960327120926254] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs stretching over 18-22 nucleotides and considered to be modifiers of many respiratory diseases. They are highly evolutionary conserved and have been implicated in several biological processes, including cell proliferation, apoptosis, differentiation, among others. Acute lung injury (ALI) is a fatal disease commonly caused by direct or indirect injury factors and has a high mortality rate in intensive care unit. Changes in expression of several types of miRNAs have been reported in patients with ALI. Some miRNAs suppress cellular injury and accelerate the recovery of ALI by targeting specific molecules and decreasing excessive immune response. For this reason, miRNAs are proposed as potential biomarkers for ALI and as therapeutic targets for this disease. This review summarizes current evidence supporting the role of miRNAs in ALI.
Collapse
Affiliation(s)
- Z-F Jiang
- Center of Emergency & Intensive Care Unit, Medical Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - L Zhang
- Center of Emergency & Intensive Care Unit, Medical Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - J Shen
- Center of Emergency & Intensive Care Unit, Medical Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
124
|
Li J, Zhang H, Liu M, Xiang Y, Li H, Huang F, Li H, Dai Z, Gu CJ, Liao X, Zhang T. miR‐133a‐3p/FOXP3 axis regulates cell proliferation and autophagy in gastric cancer. J Cell Biochem 2020; 121:3392-3405. [DOI: 10.1002/jcb.29613] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 12/11/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Jia‐Peng Li
- College of Life and Health Sciences, Institute of Biology and MedicineWuhan University of Science and Technology Wuhan Hubei China
| | - Hui‐Min Zhang
- College of Life and Health Sciences, Institute of Biology and MedicineWuhan University of Science and Technology Wuhan Hubei China
| | - Mei‐Jun Liu
- College of Life and Health Sciences, Institute of Biology and MedicineWuhan University of Science and Technology Wuhan Hubei China
| | - Yuan Xiang
- College of Life and Health Sciences, Institute of Biology and MedicineWuhan University of Science and Technology Wuhan Hubei China
| | - Hui Li
- College of Life and Health Sciences, Institute of Biology and MedicineWuhan University of Science and Technology Wuhan Hubei China
| | - Feng Huang
- College of Life and Health Sciences, Institute of Biology and MedicineWuhan University of Science and Technology Wuhan Hubei China
| | - Han‐Han Li
- College of Life and Health Sciences, Institute of Biology and MedicineWuhan University of Science and Technology Wuhan Hubei China
| | - Zhou‐Tong Dai
- College of Life and Health Sciences, Institute of Biology and MedicineWuhan University of Science and Technology Wuhan Hubei China
| | - Chao Jiang Gu
- College of Life and Health Sciences, Institute of Biology and MedicineWuhan University of Science and Technology Wuhan Hubei China
| | - Xing‐Hua Liao
- College of Life and Health Sciences, Institute of Biology and MedicineWuhan University of Science and Technology Wuhan Hubei China
| | - Tong‐Cun Zhang
- College of Life and Health Sciences, Institute of Biology and MedicineWuhan University of Science and Technology Wuhan Hubei China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, College of BiotechnologyTianjin University of Science and Technology Tianjin China
| |
Collapse
|
125
|
Dergilev KV, Vasilets ID, Tsokolaeva ZI, Zubkova ES, Parfenova EV. [Perspectives of cell therapy for myocardial infarction and heart failure based on cardiosphere cells]. TERAPEVT ARKH 2020; 92:111-120. [PMID: 32598708 DOI: 10.26442/00403660.2020.04.000634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Indexed: 12/13/2022]
Abstract
Cardiovascular diseases are the leading cause of morbidity and mortality worldwide. In recent years, researchers are attracted to the use of cell therapy based on stem cell and progenitor cells, which has been a promising strategy for cardiac repair after injury. However, conducted research using intracoronary or intramyocardial transplantation of various types of stem/progenitor cells as a cell suspension showed modest efficiency. This is due to the low degree of integration and cell survival after transplantation. To overcome these limitations, the concept of the use of multicellular spheroids modeling the natural microenvironment of cells has been proposed, which allows maintaining their viability and therapeutic properties. It is of great interest to use so-called cardial spheroids (cardiospheres) spontaneously forming three-dimensional structures under low-adhesive conditions, consisting of a heterogeneous population of myocardial progenitor cells and extracellular matrix proteins. This review presents data on methods for creating cardiospheres, directed regulation of their properties and reparative potential, as well as the results of preclinical and clinical studies on their use for the treatment of heart diseases.
Collapse
Affiliation(s)
| | | | - Z I Tsokolaeva
- National Medical Research Center for Cardiology.,Negovsky Scientific Research Institute of General Reanimatology of the Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
| | - E S Zubkova
- National Medical Research Center for Cardiology
| | - E V Parfenova
- National Medical Research Center for Cardiology.,Lomonosov Moscow State University
| |
Collapse
|
126
|
Abstract
To advance mechanistic understanding of membrane-associated peptide folding and insertion, we have studied the kinetics of three single tryptophan pHLIP (pH-Low Insertion Peptide) variants, where tryptophan residues are located near the N terminus, near the middle, and near the inserting C-terminal end of the pHLIP transmembrane helix. Single-tryptophan pHLIP variants allowed us to probe different parts of the peptide in the pathways of peptide insertion into the lipid bilayer (triggered by a pH drop) and peptide exit from the bilayer (triggered by a rise in pH). By using pH jumps of different magnitudes, we slowed down the processes and established the intermediates that helped us to understand the principles of insertion and exit. The obtained results should also aid the applications in medicine that are now entering the clinic.
Collapse
|
127
|
Liu Y, Li J, Wang S, Song H, Yu T. STAT4-mediated down-regulation of miR-3619-5p facilitates stomach adenocarcinoma by modulating TBC1D10B. Cancer Biol Ther 2020; 21:656-664. [PMID: 32397798 DOI: 10.1080/15384047.2020.1754690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) as the subtype of non-coding RNAs are revealed to be crucial players in cellular activities. It has been reported that miR-3619-5p functions as a tumor inhibitor in several cancers. However, the connection between miR-3619-5p and stomach adenocarcinoma (STAD) remains to be discovered. AIM OF THE STUDY The purpose of the study is to figure out the role and molecular regulation mechanism of miR-3619-5p in STAD. METHODS The expression of miR-3619-5p was evaluated via qRT-PCR analysis. Gain-of-function experiments demonstrated the effects of miR-3619-5p on cellular functions. The upper-stream transcription factor STAT4 and downstream target gene TBC1D10B of miR-3619-5p were identified by bioinformatic analysis. The binding and interaction between the indicated molecules were verified by RNA pull-down and luciferase reporter assays. RESULTS The expression of miR-3619-5p was prominently down-regulated in STAD cells and tissues. MiR-3619-5p suppresses cell proliferation, migration, invasion and tumor growth in STAD. Further, STAT4 bound with miR-3619-5p promoter and inhibited its transcription. MiR-3619-5p was also recognized to modulate STAD progression through the regulation of downstream target gene TBC1D10B. CONCLUSION STAT4-mediated miR-3619-5p controls STAD carcinogenesis and progression through modulating TBC1D10B expression, which may provide a novel insight for researching the STAD-related molecular mechanism.
Collapse
Affiliation(s)
- Yinhua Liu
- Department of Pathology, Wannan Medical College First Affiliated Hospital, Yijishan Hospital , Wuhu, Anhui Province, China
| | - Jiaping Li
- Department of Cardiothoracic Surgery, Wannan Medical College First Affiliated Hospital, Yijishan Hospital , Wuhu, Anhui Province, China
| | - Sufeng Wang
- Department of Pathology, Wannan Medical College First Affiliated Hospital, Yijishan Hospital , Wuhu, Anhui Province, China
| | - Hong Song
- Department of Pathology, Wannan Medical College First Affiliated Hospital, Yijishan Hospital , Wuhu, Anhui Province, China
| | - Tao Yu
- Department of Neurosurgical Intensive Care Unit, Wannan Medical College First Affiliated Hospital, Yijishan Hospital , Wuhu, Anhui Province, China.,Research Center for Functional Maintenance and Reconstruction of Viscera, Wannan Medical College First Affiliated Hospital, Yijishan Hospital , Wuhu, Anhui Province, China
| |
Collapse
|
128
|
Qin Y, Mi W, Huang C, Li J, Zhang Y, Fu Y. Downregulation of miR-575 Inhibits the Tumorigenesis of Gallbladder Cancer via Targeting p27 Kip1. Onco Targets Ther 2020; 13:3667-3676. [PMID: 32431517 PMCID: PMC7200254 DOI: 10.2147/ott.s229614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 02/18/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Gallbladder cancer (GBC) is the most common biliary tract malignant cancer worldwide. It has been reported that microRNA-575 (miR-575) was involved in the tumorigenesis of many cancers. However, the role of miR-575 during the progression of GBC remains largely unknown. METHODS The expression of miR-575 in GBC cells was detected by quantitative real-time polymerase chain reaction. The proliferation of GBC cells was examined by CCK-8 assay and Ki-67 staining. Apoptosis of GBC cells was measured by flow cytometry, and cell invasion was tested by transwell assay. Moreover, protein expressions in GBC cells were evaluated using Western blot. The target gene of miR-575 was predicted using Targetscan and miRDB. Finally, xenograft tumor model was established to verify the function of miR-575 in GBC in vivo. RESULTS Our findings indicated that miR-575 antagonist decreased the proliferation and invasion of GBC cells. In addition, miR-575 antagonist significantly induced apoptosis of GBC cells via inducing G1 arrest. Meanwhile, p27 Kip1 was found to be a direct target of miR-575 with luciferase reporter assay. Moreover, miR-575 antagonist significantly decreased the expressions of CDK1 and cyclin E1 and upregulated the levels of cleaved caspase3 and p27 Kip1 in GBC cells. Finally, miR-575 antagonist notably suppressed GBC tumor growth in vivo. CONCLUSION Downregulation of miR-575 significantly inhibited the tumorigenesis of GBC via targeting p27 Kip1. Thus, miR-575 might be a potential novel target for the treatment of GBC.
Collapse
Affiliation(s)
- Yiyu Qin
- Clinical Medical College, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu224005, People’s Republic of China
| | - Wunan Mi
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan450052, People’s Republic of China
| | - Cheng Huang
- Clinical Medical College, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu224005, People’s Republic of China
| | - Jian Li
- Clinical Medical College, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu224005, People’s Republic of China
| | - Yizheng Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan450052, People’s Republic of China
| | - Yang Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan450052, People’s Republic of China
| |
Collapse
|
129
|
Dexmedetomidine had neuroprotective effects on hippocampal neuronal cells via targeting lncRNA SHNG16 mediated microRNA-10b-5p/BDNF axis. Mol Cell Biochem 2020; 469:41-51. [PMID: 32323054 PMCID: PMC7244615 DOI: 10.1007/s11010-020-03726-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/23/2020] [Indexed: 02/07/2023]
Abstract
Dexmedetomidine (DEX), a highly selective alpha2 adrenergic receptor agonist, is a commonly used anesthetic drug in surgical procedures. Previous studies have indicated that DEX exerts neuroprotective effects while the detailed mechanism has not been fully elucidated. Here, we aim to study the role of lncRNA SHNG16 in DEX-induced brain protection and its underlying molecular mechanism. The rats underwent middle cerebral artery occlusion (MCAO) surgery and oxygen-glucose deprivation (OGD)-treated HT22 hippocampal neurons were treated with DEX, respectively. CCK8 was used to evaluate cell viability. sh-SHNG16 as well as miR-10b-5p mimics were transfected into hippocampal neurons to further explore the bio-function of SNHG16 and miR-10b-5p in vitro. Furthermore, the interactions between SHNG16 and miR-10b-5p, miR-10b-5p and BDNF gene were confirmed by dual-luciferase report assay. Our data revealed that DEX attenuated neurological damage of the MCAO rats and also increased the cell viability of the neurons significantly. Besides, expression of SHNG16 and BDNF were both downregulated while miR-10b-5p was upregulated in MCAO brain tissues or OGD treated neurons. DEX inhibited miR-10b-5p expression but increased SHNG16 and BDNF levels with a dosage effect. After transfection with sh-SHNG16 or miR-10b-5p mimics, the expression of BDNF protein was downregulated, accompanied with decreased neuron viability. Dual-luciferase assay showed that SHNG16 targeted on miR-10b-5p, which also could bind directly to the 3'-UTR sites of BDNF and negatively regulate its expression. In conclusion, DEX exerts neuroprotective in ischemic stroke via improving neuron damage, the underlying mechanism may be upregulating SHNG16 and BDNF via sponging miR-10b-5p.
Collapse
|
130
|
Xie M, Hu C, Li D, Li S. MicroRNA-377 Alleviates Myocardial Injury Induced by Hypoxia/Reoxygenation via Downregulating LILRB2 Expression. Dose Response 2020; 18:1559325820936124. [PMID: 32647500 PMCID: PMC7328223 DOI: 10.1177/1559325820936124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 05/10/2020] [Accepted: 05/27/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND miR-377 is closely related to myocardial regeneration. miR-377-adjusted mesenchymal stem cells abducted ischemic cardiac angiogenesis. Nevertheless, there were rarely reports about the impact of miR-377 on myocardial ischemia injury. The purpose of this work is that whether miR-377 can protect against myocardial injury caused by hypoxia/reoxygenation (H/R). METHODS Gene expression omnibus database (http://www.ncbi.nlm.nih.gov/geo/; no. GSE53211) was utilized to study the differential expression of miR-377 in patients with an acute ST-segment elevation myocardial infarction and healthy controls. The luciferase activity was determined utilizing the dual-luciferase reporter system. Quantitative real-time polymerase chain reaction and Western blotting were used to measure the messenger RNA and protein level. RESULTS Low expression of miR-377 and high expression of leukocyte immunoglobulin-like receptor B2 (LILRB2) were identified in patients with myocardial infarction from analyzing the Gene Expression Omnibus data set. Besides, miR-377 expression was downregulated in cardiomyocyte exposed to H/R. Additionally, overexpression of miR-377 could visibly improve cardiomyocyte injury by regulating cell activity and apoptosis. CONCLUSIONS In short, our findings suggested that miR-377/LILRB2 might regard as a hopeful therapeutic target for myocardial ischemic.
Collapse
Affiliation(s)
- Mengwei Xie
- Department of Cardiology, Guihang Guiyang Hospital, Guizhou,
China
| | - Chunlan Hu
- Department of Cardiology, Guihang Guiyang Hospital, Guizhou,
China
| | - Delin Li
- Department of Cardiology, Guihang Guiyang Hospital, Guizhou,
China
| | - Shifeng Li
- Department of Cardiology, Guihang Guiyang Hospital, Guizhou,
China
| |
Collapse
|
131
|
Zhang Q, Liu A, Abouelfetouh MM, Ma N, Li M, Chen S, Ding M, Ding Y. Let-7b-5p promotes electroacupuncture tolerance by downregulating Penk1 gene in CFA-induced inflammatory nociception rats. Gene 2020; 742:144583. [PMID: 32184167 DOI: 10.1016/j.gene.2020.144583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Studies showed that increased let-7b-5p microRNA during repeated electroacupuncture (EA) treatment was associated the formation of EA tolerance, which manifested as gradually decreased nociceptive threshold. Proenkephalin (PENK) is the precursor of enkephalin which is a pivot neuropeptide responsible for the decreased nociceptive threshold in EA. The aim of this study was to evaluate the relationship between let-7b-5p and PENK in EA tolerance. METHODS The target gene of let-7b-5p microRNA was determined through the dual-luciferase reporter assay in cortical neurons. Seventy-two Sprague Dawley rats received a combination of EA and intracerebroventricular injection of microRNA (let-7b-5p agomir, antagomir or their controls). The nociceptive thresholds were assessed with radiant heat tail-flick method. PENK and let-7b-5p were measured with Western Blot and qPCR, respectively, after administration of let-7b-5p agomir, antagomir, and their controls at day 1, 4 and 7. RESULTS Let-7b-5p targeted the 3' untranslated region of Penk1. The nociceptive thresholds in Let-7b-5p agomir + EA group were decreased (p < 0.05) compared with those in Let-7b-5p antagomir + EA group at day 1 to 7. Compared with Let-7b-5p agomir + EA group, the expression level of PENK in Let-7b-5p antagomir + EA group was increased at days 1, 4, and 7 (p < 0.05) CONCLUSION: Let-7b-5p may be a new potential target for decreasing the EA tolerance effect and facilitating the application of EA in treating chronic nociception of patients.
Collapse
Affiliation(s)
- Qiulin Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, Hubei 430070, PR China.
| | - Ai Liu
- College of Veterinary Medicine, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, Hubei 430070, PR China.
| | - Mahmoud M Abouelfetouh
- College of Veterinary Medicine, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, Hubei 430070, PR China.
| | - Ning Ma
- College of Veterinary Medicine, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, Hubei 430070, PR China
| | - Meng Li
- College of Veterinary Medicine, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, Hubei 430070, PR China
| | - Shuhuai Chen
- College of Veterinary Medicine, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, Hubei 430070, PR China
| | - Mingxing Ding
- College of Veterinary Medicine, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, Hubei 430070, PR China.
| | - Yi Ding
- College of Veterinary Medicine, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
132
|
Zhou YH, Cui YH, Wang T, Luo Y. Long non-coding RNA HOTAIR in cervical cancer: Molecular marker, mechanistic insight, and therapeutic target. Adv Clin Chem 2020; 97:117-140. [PMID: 32448431 DOI: 10.1016/bs.acc.2019.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cervical cancer is a common gynecologic malignant tumor with high mortality. HOX transcript antisense RNA (HOTAIR), a trans-acting long non-coding RNA (lncRNA) containing six exons in humans, is transcribed from the antisense strand of homeobox gene C cluster. This lncRNA serves as a modular scaffold for gene silencing and protein ubiquitination. In patients with cervical cancer, elevated HOTAIR levels are significantly associated with poor prognosis. HOTAIR plays an oncogenic role in cervical cancer by promoting cell proliferation, migration, invasion and autophagy, inhibiting cell apoptosis, stimulating angiogenesis, accelerating cell cycle progression, and inducing epithelial-mesenchymal transition. Moreover, blockade of HOTAIR by artesunate or propofol shows promise for further development of this lncRNA as a potential therapeutic target in cervical cancer. In this review, we summarized the latest advances regarding the role of HOTAIR in cervical cancer with an emphasis on its diagnostic and prognostic values.
Collapse
Affiliation(s)
- Yan-Hui Zhou
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Yan-Hui Cui
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Ting Wang
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Yang Luo
- Xiangya Nursing School, Central South University, Changsha, Hunan, China.
| |
Collapse
|
133
|
Abstract
Cardiovascular diseases are one of the most common causes of death in both developing and developed countries worldwide. Even though there have been improvements in primary prevention, the prevalence of cardiovascular diseases continues to increase in recent years. Hence, it is crucial to both investigate the molecular pathophysiology of cardiovascular diseases in-depth and find novel biomarkers regarding the early and proper prevention and diagnosis of these diseases. MicroRNAs, or miRNAs, are endogenous, conserved, single-stranded non-coding RNAs of 21-25 nucleotides in length. miRNAs have important roles in various cellular events such as embryogenesis, proliferation, vasculogenesis, apoptosis, cell growth, differentiation, and tumorigenesis. They also have potential roles in the cardiovascular system, including angiogenesis, cardiac cell contractility, control of lipid metabolism, plaque formation, the arrangement of cardiac rhythm, and cardiac cell growth. Circulating miRNAs are promising novel biomarkers for purposes of the diagnosis and prognosis of cardiovascular diseases. Cell or tissue specificity, stability in serum or plasma, resistance to degradative factors such as freeze-thaw cycles or enzymes in the blood, and fast-release kinetics, provide the potential for miRNAs to be surrogate markers for the early and accurate diagnosis of disease and for predicting middle- or long-term prognosis. Moreover, it may be a logical approach to combine miRNAs with traditional biomarkers to improve risk stratification and long-term prognosis. In addition to their efficacy in both diagnosis and prognosis, miRNA-based therapeutics may be beneficial for treating cardiovascular diseases using novel platforms and computational tools and in combination with traditional methods of analysis. microRNAs are promising, novel therapeutic agents, which can affect multiple genes using different signaling pathways. miRNAs therapeutic modulation techniques have been used in the settings of atherosclerosis, acute myocardial infarction, restenosis, vascular remodeling, arrhythmias, hypertrophy and fibrosis, angiogenesis and cardiogenesis, aortic aneurysm, pulmonary hypertension, and ischemic injury. This review presents detailed information about miRNAs regarding structure and biogenesis, stages of synthesis and functions, expression profiles in serum/plasma of living organisms, diagnostic and prognostic potential as novel biomarkers, and therapeutic applications in various diseases.
Collapse
Affiliation(s)
| | - Mehmet Demir
- Department of Cardiology, University of Health Sciences, Bursa Yüksek İhtisas Research and Training Hospital, Bursa, Turkey
| |
Collapse
|
134
|
Navarro E, Mallén A, Cruzado JM, Torras J, Hueso M. Unveiling ncRNA regulatory axes in atherosclerosis progression. Clin Transl Med 2020; 9:5. [PMID: 32009226 PMCID: PMC6995802 DOI: 10.1186/s40169-020-0256-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/05/2020] [Indexed: 02/06/2023] Open
Abstract
Completion of the human genome sequencing project highlighted the richness of the cellular RNA world, and opened the door to the discovery of a plethora of short and long non-coding RNAs (the dark transcriptome) with regulatory or structural potential, which shifted the balance of pathological gene alterations from coding to non-coding RNAs. Thus, disease risk assessment currently has to also evaluate the expression of new RNAs such as small micro RNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), competing endogenous RNAs (ceRNAs), retrogressed elements, 3'UTRs of mRNAs, etc. We are interested in the pathogenic mechanisms of atherosclerosis (ATH) progression in patients suffering Chronic Kidney Disease, and in this review, we will focus in the role of the dark transcriptome (non-coding RNAs) in ATH progression. We will focus in miRNAs and in the formation of regulatory axes or networks with their mRNA targets and with the lncRNAs that function as miRNA sponges or competitive inhibitors of miRNA activity. In this sense, we will pay special attention to retrogressed genomic elements, such as processed pseudogenes and Alu repeated elements, that have been recently seen to also function as miRNA sponges, as well as to the use or miRNA derivatives in gene silencing, anti-ATH therapies. Along the review, we will discuss technical developments associated to research in lncRNAs, from sequencing technologies to databases, repositories and algorithms to predict miRNA targets, as well as new approaches to miRNA function, such as integrative or enrichment analysis and their potential to unveil RNA regulatory networks.
Collapse
Affiliation(s)
- Estanislao Navarro
- Independent Researcher, Barcelona, Spain. .,Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), C/Feixa Llarga, s/n; L'Hospitalet de Llobregat, 08907, Barcelona, Spain.
| | - Adrian Mallén
- Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), C/Feixa Llarga, s/n; L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Josep M Cruzado
- Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), C/Feixa Llarga, s/n; L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Joan Torras
- Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), C/Feixa Llarga, s/n; L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Miguel Hueso
- Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), C/Feixa Llarga, s/n; L'Hospitalet de Llobregat, 08907, Barcelona, Spain.
| |
Collapse
|
135
|
Liu X, Wang S, Zhao G. Retracted
: Baicalin relieves lipopolysaccharide‐evoked inflammatory injury through regulation of miR‐21 in H9c2 cells. Phytother Res 2020; 34:1134-1141. [PMID: 31984561 DOI: 10.1002/ptr.6583] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/17/2019] [Accepted: 11/19/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Xiangyu Liu
- Department of Cardiovascular MedicineJiaozuo People's Hospital Jiaozuo Henan China
| | - Shengli Wang
- Department of Cardiovascular MedicineWenxian County Second People's Hospital Jiaozuo Henan China
| | - Guoan Zhao
- Department of CardiologyThe First Affiliated Hospital of Xinxiang Medical University Xinxiang Henan China
| |
Collapse
|
136
|
Moraes FC, Antunes JC, Forero Ramirez LM, Aprile P, Franck G, Chauvierre C, Chaubet F, Letourneur D. Synthesis of cationic quaternized pullulan derivatives for miRNA delivery. Int J Pharm 2020; 577:119041. [PMID: 31978463 DOI: 10.1016/j.ijpharm.2020.119041] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/05/2020] [Accepted: 01/11/2020] [Indexed: 12/31/2022]
Abstract
Pullulan is a natural polysaccharide of potential interest for biomedical applications due to its non-toxic, non-immunogenic and biodegradable properties. The aim of this work was to synthesize cationic pullulan derivatives able to form complexes with microRNAs (miRNAs) driven by electrostatic interaction (polyplexes). Quaternized ammonium groups were linked to pullulan backbone by adding the reactive glycidyltrimethylammonium chloride (GTMAC). The presence of these cationic groups within the pullulan was confirmed by elemental analysis, Fourier-transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H NMR). The alkylated pullulan was able to interact with miRNA and form stable polyplexes that were characterized regarding size, zeta potential and morphology. The presence of miRNA was confirmed by agarose gel electrophoresis and UV spectrophotometry. In vitro tests on human umbilical vein endothelial cells did not show any cytotoxicity after 1 day of incubation with nanosized polyplexes up to 200 µg/mL. QA-pullulan was able to promote miRNA delivery inside cells as demonstrated by fluorescence microscopy images of labelled miRNA. In conclusion, the formation of polyplexes using cationic derivatives of pullulan with miRNA provided an easy and versatile method for polysaccharide nanoparticle production in aqueous media and could be a new promising platform for gene delivery.
Collapse
Affiliation(s)
- Fernanda C Moraes
- INSERM, U1148, Laboratory for Vascular Translational Science, X. Bichat Hospital, 46 rue Henri Huchard, 75018, Paris, France; Université de Paris, Université Sorbonne Paris Nord, Paris, France.
| | - Joana C Antunes
- Universidade do Minho, 2C2T, Campus de Azurém, 4800-058 Guimarães, Portugal.
| | - Laura Marcela Forero Ramirez
- INSERM, U1148, Laboratory for Vascular Translational Science, X. Bichat Hospital, 46 rue Henri Huchard, 75018, Paris, France; Université de Paris, Université Sorbonne Paris Nord, Paris, France.
| | - Paola Aprile
- INSERM, U1148, Laboratory for Vascular Translational Science, X. Bichat Hospital, 46 rue Henri Huchard, 75018, Paris, France; Université de Paris, Université Sorbonne Paris Nord, Paris, France.
| | - Gregory Franck
- INSERM, U1148, Laboratory for Vascular Translational Science, X. Bichat Hospital, 46 rue Henri Huchard, 75018, Paris, France; Université de Paris, Université Sorbonne Paris Nord, Paris, France.
| | - Cédric Chauvierre
- INSERM, U1148, Laboratory for Vascular Translational Science, X. Bichat Hospital, 46 rue Henri Huchard, 75018, Paris, France; Université de Paris, Université Sorbonne Paris Nord, Paris, France.
| | - Frédéric Chaubet
- INSERM, U1148, Laboratory for Vascular Translational Science, X. Bichat Hospital, 46 rue Henri Huchard, 75018, Paris, France; Université de Paris, Université Sorbonne Paris Nord, Paris, France.
| | - Didier Letourneur
- INSERM, U1148, Laboratory for Vascular Translational Science, X. Bichat Hospital, 46 rue Henri Huchard, 75018, Paris, France.
| |
Collapse
|
137
|
Xiaoling G, Shuaibin L, Kailu L. MicroRNA-19b-3p promotes cell proliferation and osteogenic differentiation of BMSCs by interacting with lncRNA H19. BMC MEDICAL GENETICS 2020; 21:11. [PMID: 31918667 PMCID: PMC6953218 DOI: 10.1186/s12881-020-0948-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/31/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND To investigated the role of miR-19b-3p in regulating bone marrow mesenchymal stem cell (BMSC) proliferation and osteoblast differentiation. METHODS The expression of miR-19b-3p and lncRNA H19 were measured in postmenopausal osteoporosis patients and BMP-22 induced BMSCs using qRT-PCR. MiR-19b-3p mimic or inhibitor was transfected into BMP-2 induced BMSCs. Cell proliferation was measured by BrdU method. Protein expression of RUNX2 and COL1A1 were measured by western blot. PcDNA3.1-lncRNA H19 with or without miR-19b-3p mimic was transfected into BMP-2 induced BMSCs. RESULTS The expression of miR-19b-3p was significantly up-regulated in postmenopausal osteoporosis patients and BMP-2 induced BMSCs. MiR-19b-3p overexpression dramatically elevated, while miR-19b-3p inhibition decreased cell proliferation of BMSCs. Additionally, protein expression levels of RUNX2 and COL1A1, as well as ALP activity were significantly promoted by miR-19b-3p mimic transfection and inhibited by miR-19b-3p inhibitor transfection. LncRNA H19 was obviously down-regulated in postmenopausal osteoporosis patients. H19 overexpression significantly decreased cell proliferation and differentiation by down-regulating miR-19b-3p. Moreover, the expression of miR-19b-3p was inhibited, while H19 elvated in 17β-estradiol (E2) treated BMSCs in a dose-dependent manner. CONCLUSION These data were the first to reveal the critical role of H19/miR-19b-3p in postmenopausal osteoporosis, and provided a new therapeutic target for OP.
Collapse
Affiliation(s)
- Gan Xiaoling
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Liu Shuaibin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Liang Kailu
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
138
|
Liu B, Zhao L, Wei Y, Chen S, Bian L, Guo D, Gao M, Nian H. MicroRNA expression profile of Lacrimal Glands in rabbit autoimmune dacryoadenitis model. Int J Med Sci 2020; 17:2879-2887. [PMID: 33162816 PMCID: PMC7645348 DOI: 10.7150/ijms.50248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/14/2020] [Indexed: 01/04/2023] Open
Abstract
Purpose: To identify the differential expression of microRNAs (miRs) and the related gene networks and signal pathways in lacrimal glands (LGs) of rabbit autoimmune dacryoadenitis. Methods: Autoimmune dacryoadenitis in rabbits was induced by transferring activated peripheral blood lymphocytes (PBLs). The LGs of normal and model group rabbits were collected for small RNA sequencing. The most differentially expressed miRs were validated by quantitative real time-polymerase chain reaction (qRT-PCR). Further, bioinformatics analysis including target gene prediction, Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed. Results: A total of 15 miRs were differentially expressed in the LGs of rabbit autoimmune dacryoadenitis relative to normal controls. GO and KEGG analysis revealed that most target genes of these dysregulated miRs were implicated in MAPK signaling pathway. Conclusion: Our results showed for the first time the differentially expressed miRs and the related pathways involved in the pathogenesis of rabbit autoimmune dacryoadenitis. These results may contribute to elucidating molecular pathogenesis of Sjögren's syndrome (SS) dry eye.
Collapse
Affiliation(s)
- Bo Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Lu Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases; Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science; Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Yankai Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases; Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science; Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Sisi Chen
- Tianjin Key Laboratory of Retinal Functions and Diseases; Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science; Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Lingzhai Bian
- Tianjin Key Laboratory of Retinal Functions and Diseases; Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science; Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Di Guo
- Tianjin Key Laboratory of Retinal Functions and Diseases; Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science; Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Min Gao
- Tianjin Key Laboratory of Retinal Functions and Diseases; Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science; Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Hong Nian
- Tianjin Key Laboratory of Retinal Functions and Diseases; Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science; Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| |
Collapse
|
139
|
Wang T, Zhai M, Xu S, Ponnusamy M, Huang Y, Liu CY, Wang M, Shan C, Shan PP, Gao XQ, Wang K, Chen XZ, Liu J, Xie JY, Zhang DY, Zhou LY, Wang K. NFATc3-dependent expression of miR-153-3p promotes mitochondrial fragmentation in cardiac hypertrophy by impairing mitofusin-1 expression. Am J Cancer Res 2020; 10:553-566. [PMID: 31903137 PMCID: PMC6929994 DOI: 10.7150/thno.37181] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/29/2019] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial dysfunction is involved in the pathogenesis of various cardiovascular disorders. Although mitochondrial dynamics, including changes in mitochondrial fission and fusion, have been implicated in the development of cardiac hypertrophy, the underlying molecular mechanisms remain mostly unknown. Here, we show that NFATc3, miR-153-3p, and mitofusion-1 (Mfn1) constitute a signaling axis that mediates mitochondrial fragmentation and cardiomyocyte hypertrophy. Methods: Isoprenaline (ISO) was used to stimulate the hypertrophic response and mitochondrial fragmentation in cultured cardiomyocytes and in vivo. We performed immunoblotting, immunofluorescence, and quantitative real-time PCR to validate the function of Mfn1 in cardiomyocyte hypertrophy. Bioinformatic analyses, a luciferase reporter assay, and gain- and loss-of-function studies were used to demonstrate the biological function of miR-153-3p, which regulates mitochondrial fragmentation and hypertrophy by targeting Mfn1. Moreover, ChIP-qPCR and a luciferase reporter assay were performed to identify transcription factor NFATc3 as an upstream regulator to control the expression of miR-153-3p. Results: Our results show that ISO promoted mitochondrial fission and enhanced the expression of miR-153-3p in cardiomyocytes. Knockdown of miR-153-3p attenuated ISO-induced mitochondrial fission and hypertrophy in cultured primary cardiomyocytes. miR-153-3p suppression inhibited mitochondrial fragmentation in ISO-induced cardiac hypertrophy in a mouse model. We identified direct targeting of Mfn1, a key protein of the mitochondrial fusion process, by miR-153-3p. Also, miR-153-3p promoted ISO-induced mitochondrial fission by suppressing the translation of Mfn1. We further found that NFATc3 activated miR-153-3p expression. Knockdown of NFATc3 inhibited miR-153-3p expression and blocked mitochondrial fission and hypertrophic response in cardiomyocytes. Conclusions: Our data revealed a novel signaling pathway, involving NFATc3, miR-153-3p, and Mfn1, which could be a therapeutic target for the prevention and treatment of cardiac hypertrophy.
Collapse
|
140
|
Jiang YH, Li X, Niu W, Wang D, Wu B, Yang CH. β-Sitosterol regulated microRNAs in endothelial cells against an oxidized low-density lipoprotein. Food Funct 2020; 11:1881-1890. [PMID: 32068754 DOI: 10.1039/c9fo01976f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
β-sitosterol is shown to demonstrate endothelial protective effects, which inhibited apoptosis, increased cell migration, and improved mitochondrial function of human aortic endothelial cells.
Collapse
Affiliation(s)
- Yue-Hua Jiang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine
- Jinan 250014
- China
- First Clinical Medical College
- Shandong University of Traditional Chinese Medicine
| | - Xiao Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine
- Jinan 250014
- China
| | - Weipin Niu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine
- Jinan 250014
- China
| | - DongLi Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine
- Jinan 250014
- China
| | - Bo Wu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine
- Jinan 250014
- China
| | - Chuan-Hua Yang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine
- Jinan 250014
- China
| |
Collapse
|
141
|
Chen Z, Wu H, Zhang Z, Li G, Liu B. LINC00511 accelerated the process of gastric cancer by targeting miR-625-5p/NFIX axis. Cancer Cell Int 2019; 19:351. [PMID: 31889903 PMCID: PMC6933746 DOI: 10.1186/s12935-019-1070-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/12/2019] [Indexed: 01/26/2023] Open
Abstract
Background Gastric cancer (GC) is a common-sighted cancer which is hard to cure over the world. Substantial researches revealed that long non-coding RNAs (lncRNAs) were fundamental regulators in the process of cancers. Nevertheless, the biological function of LINC00511 and how LINC00511 was involved in the regulatory system in GC remained unclear. Methods RIP assays and luciferase reporter assays were performed to illustrate combination between LINC00511 and miR-625-5p. Loss-of-function assays were applied for identifying LINC00511 function in GC. Results In our study, LINC00511 was discovered significantly high in expression in GC tissues and cell lines. Moreover, LINC00511 showed a strong expression in I/II and III/IV stage. Knockdown of LINC00511 could inhibit the cell proliferation while enhanced cell apoptosis rate in GC. We used nuclear–cytoplasmic fractionation to judge the subcellular localization of LINC00511. Furthermore, miR-625-5p was found to have binding sites for LINC00511 and negatively regulated by LINC00511. Overexpression of miR-625-5p repressed the course of GC. And knockdown of miR-625-5p could recover the effects of LINC00511 silence. Besides, NFIX was discovered as a downstream target of miR-625-5p and overexpression of NFIX could offset the influence of LINC00511 silence. The results of vivo studies manifested that down-regulation of LINC00511 could reduce the Ki67 expression and NFIX while lifted the expression of miR-625-5p. Conclusion Overall, the results from our study demonstrated that LINC00511 could function as a tumor promoter by targeting miR-625-5p NFIX axis, suggesting LINC00511 could be considered as a target for GC treatment.
Collapse
Affiliation(s)
- Zhaosheng Chen
- Department of Gastroenterology, The Second Hospital of Shandong University, No. 247, Beiyuan Street, Ji Nan, 250033 Shandong China
| | - Honglei Wu
- Department of Gastroenterology, The Second Hospital of Shandong University, No. 247, Beiyuan Street, Ji Nan, 250033 Shandong China
| | - Zhen Zhang
- Department of Gastroenterology, The Second Hospital of Shandong University, No. 247, Beiyuan Street, Ji Nan, 250033 Shandong China
| | - Guangchun Li
- Department of Gastroenterology, The Second Hospital of Shandong University, No. 247, Beiyuan Street, Ji Nan, 250033 Shandong China
| | - Bin Liu
- Department of Gastroenterology, The Second Hospital of Shandong University, No. 247, Beiyuan Street, Ji Nan, 250033 Shandong China
| |
Collapse
|
142
|
Zhen LX, Gu YY, Zhao Q, Zhu HF, Lv JH, Li SJ, Xu Z, Li L, Yu ZR. MiR-301a promotes embryonic stem cell differentiation to cardiomyocytes. World J Stem Cells 2019; 11:1130-1141. [PMID: 31875873 PMCID: PMC6904867 DOI: 10.4252/wjsc.v11.i12.1130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/23/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cardiovascular disease is the leading cause of death worldwide. Tissue repair after pathological injury in the heart remains a major challenge due to the limited regenerative ability of cardiomyocytes in adults. Stem cell-derived cardiomyocytes provide a promising source for the cell transplantation-based treatment of injured hearts. AIM To explore the function and mechanisms of miR-301a in regulating cardiomyocyte differentiation of mouse embryonic stem (mES) cells, and provide experimental evidence for applying miR-301a to the cardiomyocyte differentiation induction from stem cells. METHODS mES cells with or without overexpression of miR-301a were applied for all functional assays. The hanging drop technique was applied to form embryoid bodies from mES cells. Cardiac markers including GATA-4, TBX5, MEF2C, and α-actinin were used to determine cardiomyocyte differentiation from mES cells. RESULTS High expression of miR-301a was detected in the heart from late embryonic to neonatal mice. Overexpression of miR-301a in mES cells significantly induced the expression of cardiac transcription factors, thereby promoting cardiomyocyte differentiation and beating cardiomyocyte clone formation. PTEN is a target gene of miR-301a in cardiomyocytes. PTEN-regulated PI3K-AKT-mTOR-Stat3 signaling showed involvement in regulating miR-301a-promoted cardiomyocyte differentiation from mES cells. CONCLUSION MiR-301a is capable of promoting embryonic stem cell differentiation to cardiomyocytes.
Collapse
Affiliation(s)
- Li-Xiao Zhen
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Tongji University School of Medicine, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yu-Ying Gu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Tongji University School of Medicine, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Qian Zhao
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Tongji University School of Medicine, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Hui-Fang Zhu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Tongji University School of Medicine, Shanghai 200120, China
| | - Jin-Hui Lv
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Tongji University School of Medicine, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Shu-Jun Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Tongji University School of Medicine, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zhen Xu
- Department of Microbiology and Immunology, Wenzhou Medical College, Wenzhou 325000, Zhejiang Province, China
| | - Li Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Tongji University School of Medicine, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zuo-Ren Yu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Tongji University School of Medicine, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
143
|
Bartoszewski R, Sikorski AF. Editorial focus: understanding off-target effects as the key to successful RNAi therapy. Cell Mol Biol Lett 2019; 24:69. [PMID: 31867046 PMCID: PMC6902517 DOI: 10.1186/s11658-019-0196-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/03/2019] [Indexed: 12/21/2022] Open
Abstract
With the first RNA interference (RNAi) drug (ONPATTRO (patisiran)) on the market, we witness the RNAi therapy field reaching a critical turning point, when further improvements in drug candidate design and delivery pipelines should enable fast delivery of novel life changing treatments to patients. Nevertheless, ignoring parallel development of RNAi dedicated in vitro pharmacological profiling aiming to identify undesirable off-target activity may slow down or halt progress in the RNAi field. Since academic research is currently fueling the RNAi development pipeline with new therapeutic options, the objective of this article is to briefly summarize the basics of RNAi therapy, as well as to discuss how to translate basic research into better understanding of related drug candidate safety profiles early in the process.
Collapse
Affiliation(s)
- Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Aleksander F. Sikorski
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
144
|
Jaquenod De Giusti C, Santalla M, Das S. Exosomal non-coding RNAs (Exo-ncRNAs) in cardiovascular health. J Mol Cell Cardiol 2019; 137:143-151. [PMID: 31669445 DOI: 10.1016/j.yjmcc.2019.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 09/05/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) play a role in the pathophysiological processes and in different diseases, including cardiovascular disease. Out of several categories of EVs, exosomes (smallest - 30 to 150 nm) are gaining most of the focus as the next generation of biomarkers and in therapeutic strategies. This is because exosomes can be differentiated from other types of EVs based on the expression of tetraspanin molecules on the surface. More importantly, exosomes can be traced back to the cell of origin by identifying the unique cellular marker(s) on the exosomal surface. Recently, several researchs have demonstrated an important and underappreciated mechanism of paracrine cell-cell communication involving exosomal transfer, and its subsequent functional impact on recipient cells. Exosomes are enriched in proteins, mRNAs, miRNAs, and other non-coding RNAs, which can potentially alter myocardial function. Additionally, different stages of tissue damage can also be identified by measuring these bioactive molecules in the circulation. There are several aspects of this new concept still unknown. Therefore, in this review, we have summarized the knowledge we have so far and highlighted the potential of this novel concept of next generation biomarkers and therapeutic intervention.
Collapse
Affiliation(s)
- Carolina Jaquenod De Giusti
- Centro de Investigaciones Cardiovasculares UNLP-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina.
| | - Manuela Santalla
- Centro de Investigaciones Cardiovasculares UNLP-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina; Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de Buenos Aires, Pergamino, Argentina
| | - Samarjit Das
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
145
|
Wang S, Min J, Yu Y, Yin L, Wang Q, Shen H, Yang J, Zhang P, Xiao J, Wang Z. Differentially expressed miRNAs in circulating exosomes between atrial fibrillation and sinus rhythm. J Thorac Dis 2019; 11:4337-4348. [PMID: 31737319 DOI: 10.21037/jtd.2019.09.50] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Exosomes are small (30-150 nm) membrane vesicles released by cells that transmit intercellular information. As one of the contents of exosomes, microRNAs (miRNAs) may play an important role in the pathogenesis of atrial fibrillation (AF). Exosomal miRNAs potentially function as biomarkers in AF, as shown in many other diseases. Methods To identify the different expression level of plasma exosomal miRNAs between persistent AF and sinus rhythm (SR) patients, we performed high-throughput sequencing of small RNAs in the exosomes of AF (n=4) and SR (n=4) patients. Target genes of the DE miRNAs were predicted and put into gene ontology analysis and pathway analysis. In the validation phase, we performed quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) of 6 of the DE miRNAs in AF (n=40) and SR (n=20) patients. Univariate and multivariate logistic analysis were used to analyze risk factors of AF. Results With high-throughput sequencing, we revealed 39 differentially expressed (DE) miRNAs in circulating exosomes. We validated 4 of the DE plasma exosomal miRNAs (miR-483-5p, miR-142-5p, miR-223-3p, miR-223-5p) using qRT-PCR. Univariate logistic analysis shows miR-483-5p, miR-142-5p, miR-223-3p are related with AF, while multivariate logistic analysis suggests miR-483-5p is independently in correlation with AF. Conclusions This discovery opens up a new perspective in the complicated mechanism underlying AF and the DE plasma exosomal miRNAs exert enormous potential of acting as biomarkers in assessing severity or prognostic of AF and help selecting therapeutic strategy.
Collapse
Affiliation(s)
- Suyu Wang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai 200003, China
| | - Jie Min
- Department of Cardiothoracic Surgery, Bethune international peace hospital, Shijiazhuang 50082, China
| | - Yue Yu
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai 200003, China
| | - Liang Yin
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai 200003, China
| | - Qing Wang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai 200003, China
| | - Hua Shen
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai 200003, China
| | - Jie Yang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai 200003, China
| | - Peng Zhang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai 200003, China
| | - Jian Xiao
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai 200003, China
| | - Zhinong Wang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai 200003, China
| |
Collapse
|
146
|
11PS04 is a new chemical entity identified by microRNA-based biosensing with promising therapeutic potential against cancer stem cells. Sci Rep 2019; 9:11916. [PMID: 31417117 PMCID: PMC6695485 DOI: 10.1038/s41598-019-48359-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
Phenotypic drug discovery must take advantage of the large amount of clinical data currently available. In this sense, the impact of microRNAs (miRs) on human disease and clinical therapeutic responses is becoming increasingly well documented. Accordingly, it might be possible to use miR-based signatures as phenotypic read-outs of pathological status, for example in cancer. Here, we propose to use the information accumulating regarding the biology of miRs from clinical research in the preclinical arena, adapting it to the use of miR biosensors in the earliest steps of drug screening. Thus, we have used an amperometric dual magnetosensor capable of monitoring a miR-21/miR-205 signature to screen for new drugs that restore these miRs to non-tumorigenic levels in cell models of breast cancer and glioblastoma. In this way we have been able to identify a new chemical entity, 11PS04 ((3aR,7aS)-2-(3-propoxyphenyl)-7,7a-dihydro-3aH-pyrano[3,4-d]oxazol-6(4H)-one), the therapeutic potential of which was suggested in mechanistic assays of disease models, including 3D cell culture (oncospheres) and xenografts. These assays highlighted the potential of this compound to attack cancer stem cells, reducing the growth of breast and glioblastoma tumors in vivo. These data demonstrate the enhanced chain of translatability of this strategy, opening up new perspectives for drug-discovery pipelines and highlighting the potential of miR-based electro-analytical sensors as efficient tools in modern drug discovery.
Collapse
|
147
|
Recent progress in microRNA-based delivery systems for the treatment of human disease. ACTA ACUST UNITED AC 2019. [DOI: 10.1186/s41544-019-0024-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
148
|
Shao BZ, Wang SL, Pan P, Yao J, Wu K, Li ZS, Bai Y, Linghu EQ. Targeting NLRP3 Inflammasome in Inflammatory Bowel Disease: Putting out the Fire of Inflammation. Inflammation 2019; 42:1147-1159. [PMID: 30937839 DOI: 10.1007/s10753-019-01008-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel disease (IBD) is a group of inflammatory conditions of the colon and small intestine, comprised of ulcerative colitis and Crohn's disease. Among the complicated pathogenic factors of IBD, the overaction of inflammatory and immune reaction serves as an important factor. Inflammasome is a form of innate immunity as well as inflammation. Among all kinds of inflammasomes, the NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome is the most studied one, and has been revealed to be involved in the pathogenesis and progression of IBD. Here, in this review, the association between the NLRP3 inflammasome and IBD will be discussed. Furthermore, several NLRP3 inflammasome inhibitors which have been demonstrated to be effective in the alleviation of IBD will be described in this review.
Collapse
Affiliation(s)
- Bo-Zong Shao
- Department of Gastroenterology, General Hospital of the Chinese People's Liberation Army, Beijing, China.
| | - Shu-Ling Wang
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Peng Pan
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Jun Yao
- Department of Gastroenterology, The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
| | - Kai Wu
- Department of Gastroenterology, General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Zhao-Shen Li
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China.
| | - Yu Bai
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China.
| | - En-Qiang Linghu
- Department of Gastroenterology, General Hospital of the Chinese People's Liberation Army, Beijing, China.
| |
Collapse
|
149
|
Xie J, Zhang L, Fan X, Dong X, Zhang Z, Fan W. MicroRNA-146a improves sepsis-induced cardiomyopathy by regulating the TLR-4/NF-κB signaling pathway. Exp Ther Med 2019; 18:779-785. [PMID: 31281454 PMCID: PMC6591494 DOI: 10.3892/etm.2019.7657] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 05/03/2019] [Indexed: 12/22/2022] Open
Abstract
The aim of the current study was to investigate the regulatory effect of miR-146a on the toll-like receptor 4 (TLR-4)/NF-κB pathway and therefore inflammation in septic cardiomyopathy. A total of 60 healthy male Sprague Dawley rats were equally divided into a control, LPS, miR-146a agonist and miR-146a inhibitor group. Blood samples were collected from rats 24 h after intraperitoneal lipopolysaccharide injection and myocardial tissues were subsequently collected. After hematoxylin and eosin staining of rat myocardial tissues, the degree of inflammatory cell infiltration and myocardial damage was observed. The content of certain myocardial injury markers were also observed, including cardiac troponin I (cTnI), B-type natriuretic peptide (BNP), creatine kinase myocardial bound (CK-MB) and myoglobin (Mb). Western blot analysis was performed to detect the expression of NF-κB/TLR-4, tumor necrosis factor (TNF-α) and intercellular adhesion molecule-1 (ICAM-1) in myocardial tissues. Reverse transcription-quantitative (RT-q) PCR was used to detect the expression of miR-146a, TNF-α, interleukin (IL)-1α and IL-1β mRNA in myocardial tissues. In the LPS group, myocardial interstitial tissue edema occurred, with enlarged and loosely arranged cardiomyocytes. Compared with the sepsis model group, myocardial interstitial tissue edema was relieved in the miR-146a agonist group, but was aggravated in the miR-146a inhibition group. The serum levels of cTnI, BNP, CK-MB, Mb, NF-κB, TLR-4, TNF-α and ICAM-1 in the sepsis model group were higher than those in the control group. In the miR-146a agonist group, levels of myocardial injury markers were lower than those in the sepsis model group, but were higher in the miR-146a inhibition group. The results of RT-qPCR demonstrated that the expression of miR-146a, TNF-α, IL-1α and IL-1β in the sepsis model group were upregulated compared with the control group. In addition, miR-146a expression in the miR-146a agonist group and the miR-146a inhibition group was increased, but TNF-α, IL-1α and IL-1β mRNA was downregulated. miR-146a may regulate the TLR-4/NF-κB signaling pathway via negative feedback mechanisms, leading to the improvement of the inflammatory response and cardiac dysfunction in sepsis-induced cardiomyopathy.
Collapse
Affiliation(s)
- Jin Xie
- Department of Emergency, Zhangqiu District People's Hospital, Jinan, Shandong 250200, P.R. China
| | - Lina Zhang
- Department of Emergency, Zhangqiu District People's Hospital, Jinan, Shandong 250200, P.R. China
| | - Xiaoyan Fan
- Department of Obstetrics, Zhangqiu District People's Hospital, Jinan, Shandong 250200, P.R. China
| | - Xiaoqing Dong
- Department of Emergency, Zhangqiu District People's Hospital, Jinan, Shandong 250200, P.R. China
| | - Zhe Zhang
- Department of Emergency, Zhangqiu District People's Hospital, Jinan, Shandong 250200, P.R. China
| | - Wenxing Fan
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
150
|
Zhang XL, An BF, Zhang GC. MiR-27 alleviates myocardial cell damage induced by hypoxia/reoxygenation via targeting TGFBR1 and inhibiting NF-κB pathway. Kaohsiung J Med Sci 2019; 35:607-614. [PMID: 31169351 DOI: 10.1002/kjm2.12092] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/07/2019] [Indexed: 12/13/2022] Open
Abstract
MiR-27 prevents atherosclerosis by inhibiting inflammatory responses induced by lipoprotein lipase. Overexpression of miR-27b attenuates angiotensin-induced atrial fibrosis. Nevertheless, studies have rarely investigated on the effect of miR-27 in cardiomyocyte injury. H9c2 cells were transfected with miR-27 mimic/inhibitor. Then the cell proliferation was tested by MTT assay and the cell apoptosis was detected by flow cytometry. The luciferase activity assay was utilized to analyze the relationship between miR-27 and TGFBR1. Quantificational real-time polymerase chain reaction and western blot were utilized to detect the cardiomyocyte differentiation marker and nuclear factor kappa B (NF-κB) pathway. Our outcomes demonstrated that miR-27 expression was downregulated cardiomyocyte injury subjected to hypoxia/reoxygenation (H/R). Additionally, overexpression of miR-27 could significantly alleviate cardiomyocyte injury by regulating cell activity and apoptosis. The luciferase activity assay confirmed that transforming growth factor ß receptor 1 (TGFBR1) is a direct hallmark of miR-27. Besides, overexpression of miR-27 promoted the expression of TGFBR1 in H/R model. After transfection with miR-27 mimic/inhibitor, the expression of NF-κB pathway-related proteins was decreased/increased. Taken together, our data manifested that miR-27 repressed cardiomyocyte injury induced by H/R via mediating TGFBR1 and inhibiting NF-κB signaling pathway. Furthermore, miR-27/ TGFBR1 might be utilized as hopeful biomarkers for myocardial ischemia diagnosis and treatment.
Collapse
Affiliation(s)
- Xue-Lian Zhang
- Department of Internal Medicine-Cardiovascular, Jilin People's Hospital, Changchun, Jilin, People's Republic of China
| | - Bai-Fu An
- Department of Internal Medicine-Cardiovascular, Jilin People's Hospital, Changchun, Jilin, People's Republic of China
| | - Guang-Cheng Zhang
- Department of Internal Medicine-Cardiovascular, Jilin People's Hospital, Changchun, Jilin, People's Republic of China
| |
Collapse
|