101
|
Zuko A, Kleijer KTE, Oguro-Ando A, Kas MJH, van Daalen E, van der Zwaag B, Burbach JPH. Contactins in the neurobiology of autism. Eur J Pharmacol 2013; 719:63-74. [PMID: 23872404 DOI: 10.1016/j.ejphar.2013.07.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 06/18/2013] [Accepted: 07/01/2013] [Indexed: 12/21/2022]
Abstract
Autism is a disease of brain plasticity. Inspiring work of Willem Hendrik Gispen on neuronal plasticity has stimulated us to investigate gene defects in autism and the consequences for brain development. The central process in the pathogenesis of autism is local dendritic mRNA translation which is dependent on axodendritic communication. Hence, most autism-related gene products (i) are part of the protein synthesis machinery itself, (ii) are components of the mTOR signal transduction pathway, or (iii) shape synaptic activity and plasticity. Accordingly, prototype drugs have been recognized that interfere with these pathways. The contactin (CNTN) family of Ig cell adhesion molecules (IgCAMs) harbours at least three members that have genetically been implicated in autism: CNTN4, CNTN5, and CNTN6. In this chapter we review the genetic and neurobiological data underpinning their role in normal and abnormal development of brain systems, and the consequences for behavior. Although data on each of these CNTNs are far from complete, we tentatively conclude that these three contactins play roles in brain development in a critical phase of establishing brain systems and their plasticity. They modulate neuronal activities, such as neurite outgrowth, synaptogenesis, survival, guidance of projections and terminal branching of axons in forming neural circuits. Current research on these CNTNs concentrate on the neurobiological mechanism of their developmental functions. A future task will be to establish if proposed pharmacological strategies to counteract ASD-related symptomes can also be applied to reversal of phenotypes caused by genetic defects in these CNTN genes.
Collapse
Affiliation(s)
- Amila Zuko
- Department of Neuroscience and Pharmacology, Brain Center Rudolf Magnus, UMC Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Kristel T E Kleijer
- Department of Neuroscience and Pharmacology, Brain Center Rudolf Magnus, UMC Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Asami Oguro-Ando
- Department of Neuroscience and Pharmacology, Brain Center Rudolf Magnus, UMC Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Martien J H Kas
- Department of Neuroscience and Pharmacology, Brain Center Rudolf Magnus, UMC Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Emma van Daalen
- Department of Psychiatry, Brain Center Rudolf Magnus, UMC Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Bert van der Zwaag
- Department of Medical Genetics, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - J Peter H Burbach
- Department of Neuroscience and Pharmacology, Brain Center Rudolf Magnus, UMC Medical Center Utrecht, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
102
|
Rice HC, Young-Pearse TL, Selkoe DJ. Systematic evaluation of candidate ligands regulating ectodomain shedding of amyloid precursor protein. Biochemistry 2013; 52:3264-77. [PMID: 23597280 DOI: 10.1021/bi400165f] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Despite intense interest in the proteolysis of the β-Amyloid Precursor Protein (APP) in Alzheimer's disease, how the normal processing of this type I receptor-like glycoprotein is physiologically regulated remains ill-defined. In recent years, several candidate protein ligands for APP, including F-spondin, Reelin, β1 Integrin, Contactins, Lingo-1, and Pancortin, have been reported. However, a cognate ligand for APP that regulates its processing by α- or β-secretase has yet to be widely confirmed in multiple laboratories. Here, we developed new assays in an effort to confirm a role for one or more of these candidate ligands in regulating APP ectodomain shedding in a biologically relevant context. A comprehensive quantification of APPsα and APPsβ, the immediate products of secretase processing, in both non-neuronal cell lines and primary neuronal cultures expressing endogenous APP yielded no evidence that any of these published candidate ligands stimulate ectodomain shedding. Rather, Reelin, Lingo-1, and Pancortin-1 emerged as the most consistent ligands for significantly inhibiting ectodomain shedding. These findings led us to conduct further detailed analyses of the interactions of Reelin and Lingo-1 with APP.
Collapse
Affiliation(s)
- Heather C Rice
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts 02115, United States
| | | | | |
Collapse
|
103
|
Mercati O, Danckaert A, André-Leroux G, Bellinzoni M, Gouder L, Watanabe K, Shimoda Y, Grailhe R, De Chaumont F, Bourgeron T, Cloëz-Tayarani I. Contactin 4, -5 and -6 differentially regulate neuritogenesis while they display identical PTPRG binding sites. Biol Open 2013; 2:324-34. [PMID: 23519440 PMCID: PMC3603414 DOI: 10.1242/bio.20133343] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 11/28/2012] [Indexed: 12/22/2022] Open
Abstract
The neural cell-adhesion molecules contactin 4, contactin 5 and contactin 6 are involved in brain development, and disruptions in contactin genes may confer increased risk for autism spectrum disorders (ASD). We describe a co-culture of rat cortical neurons and HEK293 cells overexpressing and delivering the secreted forms of rat contactin 4-6. We quantified their effects on the length and branching of neurites. Contactin 4-6 effects were different depending on the contactin member and duration of co-culture. At 4 days in culture, contactin 4 and -6 increased the length of neurites, while contactin 5 increased the number of roots. Up to 8 days in culture, contactin 6 progressively increased the length of neurites while contactin 5 was more efficient on neurite branching. We studied the molecular sites of interaction between human contactin 4, -5 or -6 and the human Protein Tyrosine Phosphatase Receptor Gamma (PTPRG), a contactin partner, by modeling their 3D structures. As compared to contactin 4, we observed differences in the Ig2 and Ig3 domains of contactin 5 and -6 with the appearance of an omega loop that could adopt three distinct conformations. However, interactive residues between human contactin 4-6 and PTPRG were strictly conserved. We did not observe any differences in PTPRG binding on contactin 5 and -6 either. Our data suggest that the differential contactin effects on neurite outgrowth do not result from distinct interactions with PTPRG. A better understanding of the contactin cellular properties should help elucidate their roles in ASD.
Collapse
Affiliation(s)
- Oriane Mercati
- Human Genetics and Cognitive Functions, Institut Pasteur , 75015 Paris , France ; CNRS URA 2182 'Genes, synapses and cognition', Institut Pasteur , 75015 Paris , France ; Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions , 75013 Paris , France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Expanding the Ig superfamily code for laminar specificity in retina: expression and role of contactins. J Neurosci 2013; 32:14402-14. [PMID: 23055510 DOI: 10.1523/jneurosci.3193-12.2012] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bipolar, amacrine, and retinal ganglion cells elaborate arbors and form synapses within the inner plexiform layer (IPL) of the vertebrate retina. Specific subsets of these neuronal types synapse in one or a few of the ≥10 sublaminae of the IPL. Four closely related Ig superfamily transmembrane adhesion molecules--Sidekick1 (Sdk1), Sdk2, Dscam, and DscamL--are expressed by non-overlapping subsets of chick retinal neurons and promote their lamina-specific arborization (Yamagata and Sanes, 2008). Here, we asked whether contactins (Cntns), six homologs of Sdks and Dscams, are expressed by and play roles in other subsets. In situ hybridization showed that cntn1-5 were differentially expressed by subsets of amacrine cells. Immunohistochemistry showed that each Cntn protein was concentrated in a subset of IPL sublaminae. To assess roles of Cntns in retinal development, we focused on Cntn2. Depletion of Cntn2 by RNA interference markedly reduced the ability of Cntn2-positive cells to restrict their arbors to appropriate sublaminae. Conversely, ectopic expression of cntn2 redirected neurites of transduced neurons to the Cntn2-positive sublaminae. Thus, both loss- and gain-of-function strategies implicate Cntn2 in lamina-specific neurite targeting. Studies in heterologous cells showed that Cntn2 mediates homophilic adhesion, but does not bind detectably to Sdks, Dscams, or other Cntns. Overexpression analysis showed that Cntns1 and 3 can also redirect neurites to appropriate sublaminae. We propose that Cntns, Sdks, and Dscams comprise an Ig superfamily code that uses homophilic interactions to promote lamina-specific targeting of retinal dendrites in IPL.
Collapse
|
105
|
Shih WL, Kao CF, Chuang LC, Kuo PH. Incorporating Information of microRNAs into Pathway Analysis in a Genome-Wide Association Study of Bipolar Disorder. Front Genet 2012; 3:293. [PMID: 23264780 PMCID: PMC3524550 DOI: 10.3389/fgene.2012.00293] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 11/27/2012] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are known to be important post-transcriptional regulators that are involved in the etiology of complex psychiatric traits. The present study aimed to incorporate miRNAs information into pathway analysis using a genome-wide association dataset to identify relevant biological pathways for bipolar disorder (BPD). We selected psychiatric- and neurological-associated miRNAs (N = 157) from PhenomiR database. The miRNA target genes (miTG) predictions were obtained from microRNA.org. Canonical pathways (N = 4,051) were downloaded from the Molecule Signature Database. We employed a novel weighting scheme for miTGs in pathway analysis using methods of gene set enrichment analysis and sum-statistic. Under four statistical scenarios, 38 significantly enriched pathways (P-value < 0.01 after multiple testing correction) were identified for the risk of developing BPD, including pathways of ion channels associated (e.g., gated channel activity, ion transmembrane transporter activity, and ion channel activity) and nervous related biological processes (e.g., nervous system development, cytoskeleton, and neuroactive ligand receptor interaction). Among them, 19 were identified only when the weighting scheme was applied. Many miRNA-targeted genes were functionally related to ion channels, collagen, and axonal growth and guidance that have been suggested to be associated with BPD previously. Some of these genes are linked to the regulation of miRNA machinery in the literature. Our findings provide support for the potential involvement of miRNAs in the psychopathology of BPD. Further investigations to elucidate the functions and mechanisms of identified candidate pathways are needed.
Collapse
Affiliation(s)
- Wei-Liang Shih
- Department of Public Health and Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University Taipei, Taiwan ; Infectious Diseases Research and Education Center, Department of Health - Executive Yuan and National Taiwan University Taipei, Taiwan
| | | | | | | |
Collapse
|
106
|
Huang Z, Yu Y, Shimoda Y, Watanabe K, Liu Y. Loss of neural recognition molecule NB-3 delays the normal projection and terminal branching of developing corticospinal tract axons in the mouse. J Comp Neurol 2012; 520:1227-45. [PMID: 21935948 DOI: 10.1002/cne.22772] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neural recognition molecule NB-3 is involved in neural development and synapse formation. However, its role in axon tract formation is unclear. In this study, we found that the temporal expression of NB-3 in the deep layers of the motor cortex in mice was coincident with the development of the corticospinal tract (CST). Clear NB-3 immunoreactivity in the CST trajectory strongly suggested that NB-3 was expressed specifically in projecting CST axons. By tracing CST axons in NB-3−/− mice at different developmental stages, we found that these axons were capable of projecting and forming a normal trajectory. However, the projection was greatly delayed in NB-3−/− mice compared with wild-type (WT) mice from the embryonic to postnatal stages, a period that is coincident with the completion of the CST projection in mice. Subsequently, although their projection was delayed, CST axons in NB-3−/− mice gradually completed a normal projection. By stage P21, the characteristics of CST projections in NB-3−/− mice were not statistically different from those in WT mice. In addition, we found that the branching of CST axons into spinal gray matter also was delayed in NB-3−/− mice. The CST innervation area in the spinal gray matter of NB-3−/− mice was greatly reduced in comparison with WT mice until P30 and gradually became normal by P45. These data suggest that NB-3 is involved in the normal projection and terminal branching of developing CST axons.
Collapse
Affiliation(s)
- Zhenhui Huang
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | |
Collapse
|
107
|
Abstract
Cell adhesion molecules of the immunoglobulin-super-family (IgSF-CAMs) do not only have a physical effect, mediating merely attachment between cell surfaces. For navigating axons, IgSF-CAMs also exert an instructive impact: Upon activation, they elicit intracellular signalling cascades in the tip of the axon, the growth cone, which regulate in a spatio-temporally concerted action both speed and direction of the axon. Density and distribution of IgSF-CAMs in the growth cone plasma membrane play important roles for the activation of IgSF-CAMs, their clustering, and the adhesive forces they acquire, as well as for the local restriction and effective propagation of their intracellular signals.
Collapse
|
108
|
Katidou M, Tavernarakis N, Karagogeos D. The contactin RIG-6 mediates neuronal and non-neuronal cell migration in Caenorhabditis elegans. Dev Biol 2012; 373:184-95. [PMID: 23123963 DOI: 10.1016/j.ydbio.2012.10.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 10/22/2012] [Accepted: 10/25/2012] [Indexed: 12/20/2022]
Abstract
Cell adhesion molecules of the Immunoglobulin Superfamily (IgCAMs) are key factors in nervous system formation. The contactin subgroup of IgCAMs consists of GPI-anchored glycoproteins implicated in axon outgrowth, guidance, fasciculation and neuronal differentiation. The mechanism by which contactins facilitate neuronal development is not understood. To gain insight into the function of contactins, we characterized RIG-6, the sole contactin of Caenorhabditis elegans. We show that the contactin RIG-6 is involved in excretory cell (EC) tubular elongation. We also show that RIG-6 mediates axon outgrowth and guidance along both the anterior-posterior and dorso-ventral axis, during C. elegans development. We find that optimal RIG-6 expression is critical for accurate mechanosensory neuron axon elongation and ventral nerve cord architecture. In addition, our data suggest that the cytoplasmic UNC-53/NAV2 proteins may contribute to relay signaling via contactins.
Collapse
Affiliation(s)
- Markella Katidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | | | | |
Collapse
|
109
|
Zhou L, Barão S, Laga M, Bockstael K, Borgers M, Gijsen H, Annaert W, Moechars D, Mercken M, Gevaert K, Gevaer K, De Strooper B. The neural cell adhesion molecules L1 and CHL1 are cleaved by BACE1 protease in vivo. J Biol Chem 2012; 287:25927-40. [PMID: 22692213 DOI: 10.1074/jbc.m112.377465] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The β-site amyloid precursor protein-cleaving enzyme BACE1 is a prime drug target for Alzheimer disease. However, the function and the physiological substrates of BACE1 remain largely unknown. In this work, we took a quantitative proteomic approach to analyze the secretome of primary neurons after acute BACE1 inhibition, and we identified several novel substrate candidates for BACE1. Many of these molecules are involved in neuronal network formation in the developing nervous system. We selected the adhesion molecules L1 and CHL1, which are crucial for axonal guidance and maintenance of neural circuits, for further validation as BACE1 substrates. Using both genetic BACE1 knock-out and acute pharmacological BACE1 inhibition in mice and cell cultures, we show that L1 and CHL1 are cleaved by BACE1 under physiological conditions. The BACE1 cleavage sites at the membrane-proximal regions of L1 (between Tyr(1086) and Glu(1087)) and CHL1 (between Gln(1061) and Asp(1062)) were determined by mass spectrometry. This work provides molecular insights into the function and the pathways in which BACE1 is involved, and it will help to predict or interpret possible side effects of BACE1 inhibitor drugs in current clinical trials.
Collapse
Affiliation(s)
- Lujia Zhou
- VIB Center for the Biology of Disease, KULeuven, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
LewisX: A neural stem cell specific glycan? Int J Biochem Cell Biol 2012; 44:830-3. [DOI: 10.1016/j.biocel.2012.02.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/28/2012] [Accepted: 02/28/2012] [Indexed: 01/06/2023]
|
111
|
Prasov L, Masud T, Khaliq S, Mehdi SQ, Abid A, Oliver ER, Silva ED, Lewanda A, Brodsky MC, Borchert M, Kelberman D, Sowden JC, Dattani MT, Glaser T. ATOH7 mutations cause autosomal recessive persistent hyperplasia of the primary vitreous. Hum Mol Genet 2012; 21:3681-94. [PMID: 22645276 DOI: 10.1093/hmg/dds197] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The vertebrate basic helix-loop-helix (bHLH) transcription factor ATOH7 (Math5) is specifically expressed in the embryonic neural retina and is required for the genesis of retinal ganglion cells (RGCs) and optic nerves. In Atoh7 mutant mice, the absence of trophic factors secreted by RGCs prevents the development of the intrinsic retinal vasculature and the regression of fetal blood vessels, causing persistent hyperplasia of the primary vitreous (PHPV). We therefore screened patients with hereditary PHPV, as well as bilateral optic nerve aplasia (ONA) or hypoplasia (ONH), for mutations in ATOH7. We identified a homozygous ATOH7 mutation (N46H) in a large family with an autosomal recessive PHPV disease trait linked to 10q21, and a heterozygous variant (R65G, p.Arg65Gly) in one of five sporadic ONA patients. High-density single-nucleotide polymorphism analysis also revealed a CNTN4 duplication and an OTX2 deletion in the ONA cohort. Functional analysis of ATOH7 bHLH domain substitutions, by electrophoretic mobility shift and luciferase cotransfection assays, revealed that the N46H variant cannot bind DNA or activate transcription, consistent with structural modeling. The N46H variant also failed to rescue RGC development in mouse Atoh7-/- retinal explants. The R65G variant retains all of these activities, similar to wild-type human ATOH7. Our results strongly suggest that autosomal recessive persistent hyperplastic primary vitreous is caused by N46H and is etiologically related to nonsyndromic congenital retinal nonattachment. The R65G allele, however, cannot explain the ONA phenotype. Our study firmly establishes ATOH7 as a retinal disease gene and provides a functional basis to analyze new coding variants.
Collapse
Affiliation(s)
- Lev Prasov
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
F3/Contactin acts as a modulator of neurogenesis during cerebral cortex development. Dev Biol 2012; 365:133-51. [PMID: 22360968 DOI: 10.1016/j.ydbio.2012.02.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 01/13/2012] [Accepted: 02/10/2012] [Indexed: 12/18/2022]
Abstract
The expression of the cell recognition molecule F3/Contactin (CNTN1) is generally associated with the functions of post-mitotic neurons. In the embryonic cortex, however, we find it expressed by proliferating ventricular zone (VZ) precursors. In contrast to previous findings in the developing cerebellum, F3/Contactin transgenic overexpression in the early cortical VZ promotes proliferation and expands the precursor pool at the expense of neurogenesis. At later stages, when F3/Contactin levels subside, however, neurogenesis resumes, suggesting that F3/Contactin expression in the VZ is inversely related to neurogenesis and plays a role in a feedback control mechanism, regulating the orderly progression of cortical development. The modified F3/Contactin profile therefore results in delayed corticogenesis, as judged by downregulation in upper and lower layer marker expression and by BrdU birth dating, indicating that, in this transgenic model, increased F3/Contactin levels counteract neuronal precursor commitment. These effects also occur in primary cultures and are reproduced by addition of an F3/Fc fusion protein to wild type cultures. Together, these data indicate a completely novel function for F3/Contactin. Parallel changes in the generation of the Notch Intracellular Domain and in the expression of the Hes-1 transcription factor indicate that activation of the Notch pathway plays a role in this phenotype, consistent with previous in vitro reports that F3/Contactin is a Notch1 ligand.
Collapse
|
113
|
A cis-complex of NB-2/contactin-5 with amyloid precursor-like protein 1 is localized on the presynaptic membrane. Neurosci Lett 2012; 510:148-53. [DOI: 10.1016/j.neulet.2012.01.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 01/10/2012] [Accepted: 01/11/2012] [Indexed: 01/06/2023]
|
114
|
Bukalo O, Dityatev A. Synaptic Cell Adhesion Molecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 970:97-128. [DOI: 10.1007/978-3-7091-0932-8_5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
115
|
A complex between contactin-1 and the protein tyrosine phosphatase PTPRZ controls the development of oligodendrocyte precursor cells. Proc Natl Acad Sci U S A 2011; 108:17498-503. [PMID: 21969550 DOI: 10.1073/pnas.1108774108] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The six members of the contactin (CNTN) family of neural cell adhesion molecules are involved in the formation and maintenance of the central nervous system (CNS) and have been linked to mental retardation and neuropsychiatric disorders such as autism. Five of the six CNTNs bind to the homologous receptor protein tyrosine phosphatases gamma (PTPRG) and zeta (PTPRZ), but the biological roles of these interactions remain unclear. We report here the cocrystal structure of the carbonic anhydrase-like domain of PTPRZ bound to tandem Ig repeats of CNTN1 and combine these structural data with binding assays to show that PTPRZ binds specifically to CNTN1 expressed at the surface of oligodendrocyte precursor cells. Furthermore, analyses of glial cell populations in wild-type and PTPRZ-deficient mice show that the binding of PTPRZ to CNTN1 expressed at the surface of oligodendrocyte precursor cells inhibits their proliferation and promotes their development into mature oligodendrocytes. Overall, these results implicate the PTPRZ/CNTN1 complex as a previously unknown modulator of oligodendrogenesis.
Collapse
|
116
|
NYAP: a phosphoprotein family that links PI3K to WAVE1 signalling in neurons. EMBO J 2011; 30:4739-54. [PMID: 21946561 DOI: 10.1038/emboj.2011.348] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 08/30/2011] [Indexed: 12/18/2022] Open
Abstract
The phosphoinositide 3-kinase (PI3K) pathway has been extensively studied in neuronal function and morphogenesis. However, the precise molecular mechanisms of PI3K activation and its downstream signalling in neurons remain elusive. Here, we report the identification of the Neuronal tYrosine-phosphorylated Adaptor for the PI 3-kinase (NYAP) family of phosphoproteins, which is composed of NYAP1, NYAP2, and Myosin16/NYAP3. The NYAPs are expressed predominantly in developing neurons. Upon stimulation with Contactin5, the NYAPs are tyrosine phosphorylated by Fyn. Phosphorylated NYAPs interact with PI3K p85 and activate PI3K, Akt, and Rac1. Moreover, the NYAPs interact with the WAVE1 complex which mediates remodelling of the actin cytoskeleton after activation by PI3K-produced PIP(3) and Rac1. By simultaneously interacting with PI3K and the WAVE1 complex, the NYAPs bridge a PI3K-WAVE1 association. Disruption of the NYAP genes in mice affects brain size and neurite elongation. In conclusion, the NYAPs activate PI3K and concomitantly recruit the downstream effector WAVE complex to the close vicinity of PI3K and regulate neuronal morphogenesis.
Collapse
|
117
|
Bouyain S, Watkins DJ. Identification of tyrosine phosphatase ligands for contactin cell adhesion molecules. Commun Integr Biol 2011; 3:284-6. [PMID: 20714415 DOI: 10.4161/cib.3.3.11656] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 02/23/2010] [Indexed: 12/23/2022] Open
Abstract
The incessant tug of war between tyrosine kinases and tyrosine phosphatases regulates critical signaling events during embryogenesis and adulthood. Among these proteins, receptor protein tyrosine phosphatases (RPTPs) have emerged as an important class of neuronal receptors, seemingly capable of mediating cell adhesion and tyrosine dephosphorylation events. Indeed, these proteins combine extracellular domains that resemble those of cell adhesion molecules and tyrosine phosphatase domains that counter the activities of tyrosine kinases. However, the detailed mechanisms underlying RPTP-mediated cell adhesion and RPTP-mediated cell signaling continue to elude our understanding mainly because very few extracellular binding partners of RPTPs have been identified. We have recently characterized biochemically and structurally the interactions between members of the contactin family of neural recognition molecules and the homologous receptor protein tyrosine phosphatase zeta (PTPRZ) and gamma (PTPRG) that are expressed in the nervous system. Here, we present our main findings and we discuss their possible implication for the control of tyrosine dephosphorylation by contactin family members.
Collapse
Affiliation(s)
- Samuel Bouyain
- Division of Molecular Biology and Biochemistry; School of Biological Sciences; University of Missouri-Kansas City; Kansas City, MO USA
| | | |
Collapse
|
118
|
Cottrell CE, Bir N, Varga E, Alvarez CE, Bouyain S, Zernzach R, LambThrush D, Evans J, Trimarchi M, Butter EM, Cunningham D, Gastier-Foster JM, McBride K, Herman GE. Contactin 4 as an autism susceptibility locus. Autism Res 2011; 4:189-99. [PMID: 21308999 PMCID: PMC3209658 DOI: 10.1002/aur.184] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 12/15/2010] [Indexed: 01/05/2023]
Abstract
Structural and sequence variation have been described in several members of the contactin (CNTN) and contactin-associated protein (CNTNAP) gene families in association with neurodevelopmental disorders, including autism. Using array comparative genome hybridization (CGH), we identified a maternally inherited ∼535 kb deletion at 3p26.3 encompassing the 5' end of the contactin 4 gene (CNTN4) in a patient with autism. Based on this finding and previous reports implicating genomic rearrangements of CNTN4 in autism spectrum disorders (ASDs) and 3p- microdeletion syndrome, we undertook sequencing of the coding regions of the gene in a local ASD cohort in comparison with a set of controls. Unique missense variants were identified in 4 of 75 unrelated individuals with ASD, as well as in 1 of 107 controls. All of the amino acid substitutions were nonsynonomous, occurred at evolutionarily conserved positions, and were, thus, felt likely to be deleterious. However, these data did not reach statistical significance, nor did the variants segregate with disease within all of the ASD families. Finally, there was no detectable difference in binding of two of the variants to the interacting protein PTPRG in vitro. Thus, additional larger studies will be necessary to determine whether CNTN4 functions as an autism susceptibility locus in combination with other genetic and/or environmental factors.
Collapse
Affiliation(s)
| | - Natalie Bir
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital
| | - Elizabeth Varga
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital
| | - Carlos E. Alvarez
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital
- Department of Pediatrics, The Ohio State University, Columbus, OH
| | - Samuel Bouyain
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO
| | | | - Devon LambThrush
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital
- Department of Pediatrics, The Ohio State University, Columbus, OH
| | - Johnna Evans
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital
| | - Michael Trimarchi
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital
| | - Eric M. Butter
- Department of Pediatrics, The Ohio State University, Columbus, OH
| | - David Cunningham
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital
- Department of Pediatrics, The Ohio State University, Columbus, OH
| | - Julie M. Gastier-Foster
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital
- Department of Pediatrics, The Ohio State University, Columbus, OH
- Department of Pathology, The Ohio State University, Columbus, OH
| | - Kim McBride
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital
- Department of Pediatrics, The Ohio State University, Columbus, OH
| | - Gail E. Herman
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital
- Department of Pediatrics, The Ohio State University, Columbus, OH
| |
Collapse
|
119
|
Su SY, Cheng CY, Tsai TH, Hsiang CY, Ho TY, Hsieh CL. Paeonol attenuates H₂O₂-induced NF-κB-associated amyloid precursor protein expression. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2011; 38:1171-92. [PMID: 21061469 DOI: 10.1142/s0192415x1000855x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hydrogen peroxide (H₂O₂) has been shown to promote neurodegeneration by inducing the activation of nuclear factor-κB (NF-κB). In this study, NF-κB activation was induced by H₂O₂ in human neuroblastoma SH-SY5Y cells. Whether paeonol, one of the phenolic phytochemicals isolated from the Chinese herb Paeonia suffruticosa Andrews (MC), would attenuate the H₂O₂-induced NF-κB activity was investigated. Western blot results showed that paeonol inhibited the phosphorylation of IκB and the translocation of NF-κB into the nucleus. The ability of paeonol to reduce DNA binding ability and suppress the H₂O₂-induced NF-κB activation was confirmed by an electrophoretic mobility shift assay and a luciferase reporter assay. Using a microarray combined with gene set analysis, we found that the suppression of NF-κB was associated with mature T cell up-regulated genes, the c-jun N-terminal kinase pathway, and two hypoxia-related gene sets, including the hypoxia up-regulated gene set and hypoxia inducible factor 1 targets. Moreover, using network analysis to investigate genes that were altered by H₂O₂ and reversely regulated by paeonol, we found that NF-κB was the primary center of the network and amyloid precursor protein (APP) was the secondary center. Western blotting showed that paeonol inhibited APP at the protein level. In conclusion, our work suggests that paeonol down-regulates H₂O₂-induced NF-κB activity, as well as NF-κB-associated APP expression. Furthermore, the gene expression profile accompanying the suppression of NF-κB by paeonol was identified. The new gene set that can be targeted by paeonol provided a potential use for this drug and a possible pharmacological mechanism for other phenolic compounds that protect against oxidative-related injury.
Collapse
Affiliation(s)
- Shan-Yu Su
- China Medical University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
120
|
Braskie MN, Ringman JM, Thompson PM. Neuroimaging measures as endophenotypes in Alzheimer's disease. Int J Alzheimers Dis 2011; 2011:490140. [PMID: 21547229 PMCID: PMC3087508 DOI: 10.4061/2011/490140] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 01/08/2011] [Accepted: 02/07/2011] [Indexed: 01/06/2023] Open
Abstract
Late onset Alzheimer's disease (AD) is moderately to highly heritable. Apolipoprotein E allele ε4 (APOE4) has been replicated consistently as an AD risk factor over many studies, and recently confirmed variants in other genes such as CLU, CR1, and PICALM each increase the lifetime risk of AD. However, much of the heritability of AD remains unexplained. AD is a complex disease that is diagnosed largely through neuropsychological testing, though neuroimaging measures may be more sensitive for detecting the incipient disease stages. Difficulties in early diagnosis and variable environmental contributions to the disease can obscure genetic relationships in traditional case-control genetic studies. Neuroimaging measures may be used as endophenotypes for AD, offering a reliable, objective tool to search for possible genetic risk factors. Imaging measures might also clarify the specific mechanisms by which proposed risk factors influence the brain.
Collapse
Affiliation(s)
- Meredith N Braskie
- Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, 635 Charles Young Drive South, Suite 225, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
121
|
Nanomechanics of Ig-like domains of human contactin (BIG-2). J Mol Model 2011; 17:2313-23. [PMID: 21445711 PMCID: PMC3168757 DOI: 10.1007/s00894-011-1010-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 02/06/2011] [Indexed: 01/06/2023]
Abstract
Contactins are modular extracellular cell matrix proteins that are present in the brain, and they are responsible for the proper development and functioning of neurons. They contain six immunoglobulin-like IgC2 domains and four fibronectin type III repeats. The interactions of contactin with other proteins are poorly understood. The mechanical properties of all IgC2 domains of human contactin 4 were studied using a steered molecular dynamics approach and CHARMM force field with an explicit TIP3P water environment on a 10-ns timescale. Force spectra of all domains were determined computationally and the nanomechanical unfolding process is described. The domains show different mechanical stabilities. The calculated maxima of the unfolding force are in the range of 900–1700 pN at a loading rate of 7 N/s. Our data indicate that critical regions of IgC2 domains 2 and 3, which are responsible for interactions with tyrosine phosphatases and are important in nervous system development, are affected by even weak mechanical stretching. Thus, tensions present in the cell may modulate cellular activities related to contactin function. The present data should facilitate the interpretation of atomic force microscope single-molecule spectra of numerous proteins with similar IgC2 motives. The general fold of IgC2 domains of contactin 4 protein. Vectors show directions of pulling forces applied in mechanical unfolding computer experiments. ![]()
Collapse
|
122
|
ZUKO AMILA, BOUYAIN SAMUEL, VAN DER ZWAAG BERT, BURBACH JPETERH. Contactins: structural aspects in relation to developmental functions in brain disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2011; 84:143-80. [PMID: 21846565 PMCID: PMC9921585 DOI: 10.1016/b978-0-12-386483-3.00001-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The contactins are members of a protein subfamily of neural immunoglobulin (Ig) domain-containing cell adhesion molecules. Their architecture is based on six N-terminal Ig domains, four fibronectin type III domains, and a C-terminal glycophosphatidylinositol (GPI)-anchor to the extracellular part of the cell membrane. Genetics of neuropsychiatric disorders, particularly autism spectrum disorders, have pinpointed contactin-4, -5, and -6 (CNTN4, -5, and -6) as potential disease genes in neurodevelopmental disorders and suggested that they participate in pathways important for appropriate brain development. These contactins have distinct but overlapping patterns of brain expression, and null-mutation causes subtle morphological and functional defects in the brain. The molecular basis of their neurodevelopmental functions is likely conferred by heterophilic protein interactions. Cntn4, -5, and -6 interact with protein tyrosine phosphatase receptor gamma (Ptptg) using a shared binding site that spans their second and third Ig repeats. Interactions with amyloid precursor protein (APP), Notch, and other IgCAMs have also been indicated. The present data indicate that Cntn4, -5, and -6 proteins may be part of heteromeric receptor complexes as well as serve as ligands themselves.
Collapse
Affiliation(s)
- AMILA ZUKO
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - SAMUEL BOUYAIN
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - BERT VAN DER ZWAAG
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J. PETER H. BURBACH
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
123
|
Mix E, Meyer-Rienecker H, Hartung HP, Zettl UK. Animal models of multiple sclerosis--potentials and limitations. Prog Neurobiol 2010; 92:386-404. [PMID: 20558237 PMCID: PMC7117060 DOI: 10.1016/j.pneurobio.2010.06.005] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 06/01/2010] [Accepted: 06/07/2010] [Indexed: 12/17/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is still the most widely accepted animal model of multiple sclerosis (MS). Different types of EAE have been developed in order to investigate pathogenetic, clinical and therapeutic aspects of the heterogenic human disease. Generally, investigations in EAE are more suitable for the analysis of immunogenetic elements (major histocompatibility complex restriction and candidate risk genes) and for the study of histopathological features (inflammation, demyelination and degeneration) of the disease than for screening of new treatments. Recent studies in new EAE models, especially in transgenic ones, have in connection with new analytical techniques such as microarray assays provided a deeper insight into the pathogenic cellular and molecular mechanisms of EAE and potentially of MS. For example, it was possible to better delineate the role of soluble pro-inflammatory (tumor necrosis factor-α, interferon-γ and interleukins 1, 12 and 23), anti-inflammatory (transforming growth factor-β and interleukins 4, 10, 27 and 35) and neurotrophic factors (ciliary neurotrophic factor and brain-derived neurotrophic factor). Also, the regulatory and effector functions of distinct immune cell subpopulations such as CD4+ Th1, Th2, Th3 and Th17 cells, CD4+FoxP3+ Treg cells, CD8+ Tc1 and Tc2, B cells and γδ+ T cells have been disclosed in more detail. The new insights may help to identify novel targets for the treatment of MS. However, translation of the experimental results into the clinical practice requires prudence and great caution.
Collapse
Key Words
- apc, antigen-presenting cell
- at-eae, adoptive transfer eae
- bbb, blood–brain barrier
- bdnf, brain-derived neurotrophic factor
- cd, cluster of differentiation
- cns, central nervous system
- cntf, ciliary neurotrophic factor
- eae, experimental autoimmune encephalomyelitis
- hla, human leukocyte antigen
- ig, immunoglobulin
- il, interleukin
- ifn, interferon
- ivig, intravenous immunoglobulin
- mab, monoclonal antibody
- mbp, myelin basic protein
- mhc, major histocompatibility complex
- mog, myelin oligodendrocyte glycoprotein
- mp, methylprednisolone
- mri, magnetic resonance imaging
- ms, multiple sclerosis
- nk, natural killer
- odc, oligodendrocyte
- qtl, quantitative trait locus
- plp, proteolipid protein
- tc, cytotoxic t cell
- tcr, t cell receptor
- tgf, transforming growth factor
- th cell, helper t cell
- tnf, tumor necrosis factor
- animal model
- autoimmunity
- experimental autoimmune encephalomyelitis
- immunogenetics
- immunomodulatory therapy
- multiple sclerosis
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Clinical Trials as Topic
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Gene Expression Profiling
- History, 19th Century
- History, 20th Century
- History, 21st Century
- Humans
- Microarray Analysis
- Multiple Sclerosis/genetics
- Multiple Sclerosis/immunology
- Multiple Sclerosis/physiopathology
- Multiple Sclerosis/therapy
Collapse
Affiliation(s)
- Eilhard Mix
- Department of Neurology, University of Rostock, Germany
| | | | - Hans-Peter Hartung
- Department of Neurology, Heinrich-Heine-University, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Uwe K. Zettl
- Department of Neurology, University of Rostock, Germany
| |
Collapse
|
124
|
Synaptic formation in subsets of glutamatergic terminals in the mouse hippocampal formation is affected by a deficiency in the neural cell recognition molecule NB-3. Neurosci Lett 2010; 473:102-6. [DOI: 10.1016/j.neulet.2010.02.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 01/23/2010] [Accepted: 02/11/2010] [Indexed: 01/01/2023]
|
125
|
Labasque M, Faivre-Sarrailh C. GPI-anchored proteins at the node of Ranvier. FEBS Lett 2009; 584:1787-92. [PMID: 19703450 DOI: 10.1016/j.febslet.2009.08.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 08/19/2009] [Indexed: 01/06/2023]
Abstract
Contactin and TAG-1 are glycan phosphatidyl inositol (GPI)-anchored cell adhesion molecules that play a crucial role in the organization of axonal subdomains at the node of Ranvier of myelinating fibers. Contactin and TAG-1 mediate axo-glial selective interactions in association with Caspr-family molecules at paranodes and juxtaparanodes, respectively. How membrane proteins can be confined in these neighbouring domains along the axon has been the subject of intense investigations. This review will specifically examine the properties conferred by the lipid microenvironment to regulate trafficking and selective association of these axo-glial complexes. Increasing evidences from genetic and neuropathological models point to a role of lipid rafts in the formation or stabilization of the paranodal junctions.
Collapse
Affiliation(s)
- Marilyne Labasque
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, UMR 6231 CNRS, Université de la Méditerranée, Marseille, France
| | | |
Collapse
|
126
|
Modulation of synaptic transmission and plasticity by cell adhesion and repulsion molecules. ACTA ACUST UNITED AC 2009; 4:197-209. [PMID: 19674506 DOI: 10.1017/s1740925x09990111] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Adhesive and repellent molecular cues guide migrating cells and growing neurites during development. They also contribute to synaptic function, learning and memory in adulthood. Here, we review the roles of cell adhesion molecules of the immunoglobulin superfamily (Ig-CAMs) and semaphorins (some of which also contain Ig-like domains) in regulation of synaptic transmission and plasticity. Interestingly, among the seven studied Ig-CAMs, the neuronal cell adhesion molecule proved to be important for all tested forms of hippocampal plasticity, while its associated unusual glycan polysialic acid is necessary and sufficient part for synaptic plasticity only at CA3-CA1 synapses. In contrast, Thy-1 and L1 specifically regulate long-term potentiation (LTP) at synapses formed by entorhinal axons in the dentate gyrus and cornu ammonis, respectively. Contactin-1 is important for long-term depression but not for LTP at CA3-CA1 synapses. Analysis of CHL1-deficient mice illustrates that at intermediate stages of development a deficit in a cell adhesion molecule is compensated but appears as impaired LTP during early and late postnatal development. The emerging mechanisms by which adhesive Ig-CAMs contribute to synaptic plasticity involve regulation of activities of NMDA receptors and L-type Ca2+ channels, signaling via mitogen-activated protein kinase p38, changes in GABAergic inhibition and motility of synaptic elements. Regarding repellent molecules, available data for semaphorins demonstrate their activity-dependent regulation in normal and pathological conditions, synaptic localization of their receptors and their potential to elevate or inhibit synaptic transmission either directly or indirectly.
Collapse
|