101
|
Tetik Vardarlı A, Ozgur S, Goksel T, Korba K, Karakus HS, Asık A, Pelit L, Gunduz C. Conversion of specific lncRNAs to biomarkers in exhaled breath condensate samples of patients with advanced stage non-small-cell lung cancer. Front Genet 2023; 14:1200262. [PMID: 37424727 PMCID: PMC10324032 DOI: 10.3389/fgene.2023.1200262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
Objectives: Lung cancer (LC) is one of the most prevalent cancers with the highest fatality rate worldwide. Long noncoding RNAs (lncRNAs) are being considered potential new molecular targets for early diagnosis, follow-up, and individual treatment decisions in LC. Therefore, this study evaluated whether lncRNA expression levels obtained from exhaled breath condensate (EBC) samples play a role in the occurrence of metastasis in the diagnosis and follow-up of patients with advanced lung adenocarcinoma (LA). Methods: A total of 40 patients with advanced primary LA and 20 healthy controls participated in the study. EBC samples were collected from patients (during diagnosis and follow-up) and healthy individuals for molecular analysis. Liquid biopsy samples were also randomly obtained from 10 patients with LA and 10 healthy people. The expression of lncRNA genes, such as MALAT1, HOTAIR, PVT1, NEAT1, ANRIL, and SPRY4-IT1 was analyzed using cfRNA extracted from all clinical samples. Results: In the diagnosis and follow-up of patients with LA, lncRNA HOTAIR (5-fold), PVT1 (7.9-fold), and NEAT1 (12.8-fold), PVT1 (6.8-fold), MALAT1 (8.4-fold) expression levels were significantly higher than those in healthy controls, respectively. Additionally, the distinct lncRNA expression profiles identified in EBC samples imply that decreased ANRIL-NEAT1 and increased ANRIL gene expression levels can be used as biomarkers to predict the development of bone and lung metastases, respectively. Conclusion: EBC is an innovative, easily reproducible approach for predicting the development of metastases, molecular diagnosis, and follow-up of LC. EBC has shown potential in elucidating the molecular structure of LC, monitoring changes, and discovering novel biomarkers.
Collapse
Affiliation(s)
- Aslı Tetik Vardarlı
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Türkiye
- EgeSAM-Ege University Translational Pulmonary Research Center, Izmir, Türkiye
| | - Su Ozgur
- EgeSAM-Ege University Translational Pulmonary Research Center, Izmir, Türkiye
- Regional Hub for Cancer Registration in Northern Africa, Central and Western Asia, WHO/IARC-GICR, Izmir, Türkiye
| | - Tuncay Goksel
- EgeSAM-Ege University Translational Pulmonary Research Center, Izmir, Türkiye
- Department of Pulmonary Medicine, Faculty of Medicine, Ege University, Izmir, Türkiye
| | - Korcan Korba
- Department of Chemical Engineering, Faculty of Engineering, Ege University, Izmir, Türkiye
- Department of Medical Biology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Türkiye
| | - Hardar Soydaner Karakus
- EgeSAM-Ege University Translational Pulmonary Research Center, Izmir, Türkiye
- Department of Pulmonary Medicine, Faculty of Medicine, Ege University, Izmir, Türkiye
| | - Aycan Asık
- Department of Medical Biology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Türkiye
| | - Levent Pelit
- EgeSAM-Ege University Translational Pulmonary Research Center, Izmir, Türkiye
- Department of Chemistry, Faculty of Science, Ege University, Izmir, Türkiye
| | - Cumhur Gunduz
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Türkiye
- EgeSAM-Ege University Translational Pulmonary Research Center, Izmir, Türkiye
| |
Collapse
|
102
|
Huang LA, Lin C, Yang L. Plumbing mysterious RNAs in "dark genome" for the conquest of human diseases. Mol Ther 2023; 31:1577-1595. [PMID: 37165619 PMCID: PMC10278048 DOI: 10.1016/j.ymthe.2023.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/11/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023] Open
Abstract
Next-generation sequencing has revealed that less than 2% of transcribed genes are translated into proteins, with a large portion transcribed into noncoding RNAs (ncRNAs). Among these, long noncoding RNAs (lncRNAs) represent the largest group and are pervasively transcribed throughout the genome. Dysfunctions in lncRNAs have been found in various diseases, highlighting their potential as therapeutic, diagnostic, and prognostic targets. However, challenges, such as unknown molecular mechanisms and nonspecific immune responses, and issues of drug specificity and delivery present obstacles in translating lncRNAs into clinical applications. In this review, we summarize recent publications that have explored lncRNA functions in human diseases. We also discuss challenges and future directions for developing lncRNA treatments, aiming to bridge the gap between functional studies and clinical potential and inspire further exploration in the field.
Collapse
Affiliation(s)
- Lisa A Huang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
103
|
Zhao H, Wu L, Liao Q, Huang P, Sun R, Yang X, Du J. A five-cuproptosis-related LncRNA Signature: predicting prognosis, assessing immune function & drug sensitivity in lung squamous cell carcinoma. J Cancer 2023; 14:1499-1514. [PMID: 37325063 PMCID: PMC10266248 DOI: 10.7150/jca.82370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023] Open
Abstract
Lung squamous cell carcinoma has so far lacked effective targets for diagnosis and treatment. In cancer research, long noncoding RNAs (LncRNAs) emerge as novel therapeutic targets and biomarkers. Cuprophosis is a new death type involving multiple biological processes in tumor cells. Here, we aimed to explore whether Cuprophosis-related lncRNAs could be used to predict prognosis, assess immune function, and test drug sensitivity in LUSC patients. The Cancer Genome Map (TCGA) was used to obtain genome and clinical data, and Cuprophosis-relevant genes were found in the literature. A cuproptosis-related lncRNA risk model was built using co-expression analysis, univariate/multivariate Cox regression, and LASSO analysis. The survival analysis was used to assess the model's prognostic value. The univariate and multivariate Cox regression analyses were performed to determine whether risk score, age, gender, or clinical stages could be used as independent prognostic factors. Gene Set Enrichment Analysis and mutation analysis were performed on differentially expressed mRNA between high-risk and low-risk groups. The (TIDE) algorithm was used to conduct immunological functional analysis and drug sensitivity testing. Five cuproptosis-related LncRNAs were identified, and the selected LncRNAs constructed a prognosis model. According to the Kaplan-Meier survival analysis, the overall survival time for patients in the high-risk group was shorter than for those in the low-risk group. For LUSC patients, the risk score serves as an independent prognostic indicator. The GO and KEGG enrichment analysis revealed that the differentially expressed mRNAs between the high- and low-risk groups were enriched in several immune-related processes. The enrichment score of differentially expressed mRNAs in the high-risk group is higher than that of the low-risk group in multiple immune function pathways, including the IFN-γ and MHC I pathways. The Tumor Immune Dysfunction and Exclusion (TIDE) test revealed that the high-risk group was more likely to experience immune escape. The drug sensitivity analysis showed that patients with low-risk ratings were likely to respond to GW441756 and Salubrinal. In contrast, patients with higher risk scores were more responsive to dasatinib and Z-LLNIe CHO. The 5-Cuprophosis-related lncRNA signature can be used to predict prognosis, assess immune function, and test drug sensitivity in LUSC patients.
Collapse
Affiliation(s)
- Hongtao Zhao
- Department of Immunology, College of Basic Medicine, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Lei Wu
- College of continuing education, Guilin Medical University, Guilin 541004, China
| | - Qinyuan Liao
- Department of Immunology, College of Basic Medicine, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Peiluo Huang
- Department of Immunology, College of Basic Medicine, Guilin Medical University, Guilin 541199, Guangxi, China
- College of pharmacy, Guilin Medical University, Guilin 541199, China
| | - Ruonan Sun
- Department of Immunology, College of Basic Medicine, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Xiuzhen Yang
- Department of clinical laboratory, Zibo Central Hospital, Zibo 255036, China
| | - Juan Du
- Department of Immunology, College of Basic Medicine, Guilin Medical University, Guilin 541199, Guangxi, China
| |
Collapse
|
104
|
Hamada T, Higashi M, Yokoyama S, Akahane T, Hisaoka M, Noguchi H, Furukawa T, Tanimoto A. MALAT1 functions as a transcriptional promoter of MALAT1::GLI1 fusion for truncated GLI1 protein expression in cancer. BMC Cancer 2023; 23:424. [PMID: 37165307 PMCID: PMC10173563 DOI: 10.1186/s12885-023-10867-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/20/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND The long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a cancer biomarker. Furthermore, fusion of the MALAT1 gene with glioma-associated oncogene 1 (GLI1) is a diagnostic marker of plexiform fibromyxoma and gastroblastoma; however, the function of this fusion gene remains unexplored. METHOD In this study, we elucidate the structure and function of the MALAT1::GLI1 fusion gene. To this end, we determined a transcriptional start site (TSS) and promoter region for truncated GLI1 expression using rapid amplification of the 5' cDNA end and a luciferase reporter assay in cultured cells transfected with a plasmid harboring the MALAT1::GLI1 fusion gene. RESULTS We found that the TATA box, ETS1 motif, and TSS were located in MALAT1 and that MALAT1 exhibited transcriptional activity and induced expression of GLI1 from the MALAT1::GLI1 fusion gene. Truncated GLI1, lacking SUMOylation and SUFU binding sites and located in the nucleus, upregulated mRNA expression of GLI1 target genes in the hedgehog signaling pathway. CONCLUSIONS We demonstrate a distinct and alternative function of MALAT1 as a transcriptional promoter for expression of the MALAT1::GLI1 fusion gene. Our findings will aid future research on MALAT1 and its fusion gene partners.
Collapse
Affiliation(s)
- Taiji Hamada
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Michiyo Higashi
- Department of Surgical Pathology, Kagoshima University Hospital, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Seiya Yokoyama
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Toshiaki Akahane
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
- Center for Human Genome and Gene Analysis, Kagoshima University Hospital, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Masanori Hisaoka
- Department of Pathology and Oncology, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi, Kitakyushu, 807-8556, Japan
| | - Hirotsugu Noguchi
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Tatsuhiko Furukawa
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Akihide Tanimoto
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
- Center for Human Genome and Gene Analysis, Kagoshima University Hospital, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
- Center for the Research of Advanced Diagnosis and Therapy of Cancer, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
| |
Collapse
|
105
|
Safi A, Saberiyan M, Sanaei MJ, Adelian S, Davarani Asl F, Zeinaly M, Shamsi M, Ahmadi R. The role of noncoding RNAs in metabolic reprogramming of cancer cells. Cell Mol Biol Lett 2023; 28:37. [PMID: 37161350 PMCID: PMC10169341 DOI: 10.1186/s11658-023-00447-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/11/2023] [Indexed: 05/11/2023] Open
Abstract
Metabolic reprogramming is a well-known feature of cancer that allows malignant cells to alter metabolic reactions and nutrient uptake, thereby promoting tumor growth and spread. It has been discovered that noncoding RNAs (ncRNAs), including microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA), have a role in a variety of biological functions, control physiologic and developmental processes, and even influence disease. They have been recognized in numerous cancer types as tumor suppressors and oncogenic agents. The role of ncRNAs in the metabolic reprogramming of cancer cells has recently been noticed. We examine this subject, with an emphasis on the metabolism of glucose, lipids, and amino acids, and highlight the therapeutic use of targeting ncRNAs in cancer treatment.
Collapse
Affiliation(s)
- Amir Safi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammadreza Saberiyan
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Adelian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fateme Davarani Asl
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahsa Zeinaly
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Mahdi Shamsi
- Department of Cell and Molecular Biology, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Reza Ahmadi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Rahmatiyeh Region, Shahrekord, Iran.
| |
Collapse
|
106
|
Hua X, Li J, Shang M, He W, Gao P, Min L, Peng X. Pathogenesis of psoriasis via miR-149-5p/AKT1axis by long noncoding RNA BLACAT1. Skin Res Technol 2023; 29:e13339. [PMID: 37204030 PMCID: PMC10170242 DOI: 10.1111/srt.13339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/19/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Psoriasis is a chronic, complicated, and recurrent inflammatory skin disease, whose precise molecular mechanisms need to be further explored. The lncRNA bladder cancer-associated transcript 1 (BLACAT1) is aberrantly expressed in many cancers and associated with cellular hyperproliferation and may play a role in the pathogenesis of psoriasis. Thus, this study aimed at identifying the primary mechanism associated with BLACAT1 in psoriasis pathogenesis. MATERIALS AND METHODS Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) was performed to detect the expression of BLACAT1 in psoriasis tissues. Cell proliferation and apoptosis were assessed using cell counting kit-8 and apoptosis assays, respectively. In vivo experiments and histopathological examinations were performed to investigate the effects of BLACAT1 on psoriasis. Dual-luciferase Reporter and RNA immunoprecipitation assays were used to evaluate the relationship among BLACAT1 and miR-149-5p and AKT1. RESULTS BLACAT1 was upregulated in psoriasis tissues. Overexpression exacerbated the clinical manifestation of psoriasis and increased the epidermal thickness in imiquimod-induced mice. BLACAT1 could promote proliferation and inhibit apoptosis of keratinocytes. Further studies demonstrated that BLACAT1 positively regulated AKT1 expression, functioning as a competing endogenous RNA (ceRNA) by sponging miR-149-5p. CONCLUSIONS The combination of lncRNA BLACAT1 and miR-149-5p regulates AKT1 expression and promotes psoriasis formation thus may provide a new direction for psoriasis treatment.
Collapse
Affiliation(s)
- Xiang Hua
- Department of DermatologyNanfang Hospital of Southern Medical UniversityGuangzhouChina
| | - JiaZheng Li
- Department of DermatologyNanfang Hospital of Southern Medical UniversityGuangzhouChina
- Department of DermatologyGuangzhou Panyu central hospitalGuangzhouChina
| | - MingWei Shang
- Department of DermatologyNanfang Hospital of Southern Medical UniversityGuangzhouChina
| | - WanMei He
- Department of DermatologyNanfang Hospital of Southern Medical UniversityGuangzhouChina
| | - PengFei Gao
- Department of DermatologyNanfang Hospital of Southern Medical UniversityGuangzhouChina
| | - Li Min
- Department of DermatologyNanfang Hospital of Southern Medical UniversityGuangzhouChina
| | - XueBiao Peng
- Department of DermatologyNanfang Hospital of Southern Medical UniversityGuangzhouChina
| |
Collapse
|
107
|
Arman K, Dalloul Z, Bozgeyik E. Emerging role of microRNAs and long non-coding RNAs in COVID-19 with implications to therapeutics. Gene 2023; 861:147232. [PMID: 36736508 PMCID: PMC9892334 DOI: 10.1016/j.gene.2023.147232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection which is commonly known as COVID-19 (COronaVIrus Disease 2019) has creeped into the human population taking tolls of life and causing tremendous economic crisis. It is indeed crucial to gain knowledge about their characteristics and interactions with human host cells. It has been shown that the majority of our genome consists of non-coding RNAs. Non-coding RNAs including micro RNAs (miRNAs) and long non-coding RNAs (lncRNAs) display significant roles in regulating gene expression in almost all cancers and viral diseases. It is intriguing that miRNAs and lncRNAs remarkably regulate the function and expression of major immune components of SARS-CoV-2. MiRNAs act via RNA interference mechanism in which they bind to the complementary sequences of the viral RNA strand, inducing the formation of silencing complex that eventually degrades or inhibits the viral RNA and viral protein expression. LncRNAs have been extensively shown to regulate gene expression in cytokine storm and thus emerges as a critical target for COVID-19 treatment. These lncRNAs also act as competing endogenous RNAs (ceRNAs) by sponging miRNAs and thus affecting the expression of downstream targets during SARS-CoV-2 infection. In this review, we extensively discuss the role of miRNAs and lncRNAs, describe their mechanism of action and their different interacting human targets cells during SARS-CoV-2 infection. Finally, we discuss possible ways how an interference with their molecular function could be exploited for new therapies against SARS-CoV-2.
Collapse
Affiliation(s)
- Kaifee Arman
- Institut de recherches cliniques de Montréal, Montréal, QC H2W 1R7, Canada.
| | - Zeinab Dalloul
- Institut de recherches cliniques de Montréal, Montréal, QC H2W 1R7, Canada
| | - Esra Bozgeyik
- Department of Medical Services and Techniques, Vocational School of Health Services, Adiyaman University, Adiyaman, Turkey
| |
Collapse
|
108
|
Nandi S, Mondal A, Ghosh A, Mukherjee S, Das C. Lnc-ing epigenetic mechanisms with autophagy and cancer drug resistance. Adv Cancer Res 2023; 160:133-203. [PMID: 37704287 DOI: 10.1016/bs.acr.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Long noncoding RNAs (lncRNAs) comprise a diverse class of RNA molecules that regulate various physiological processes and have been reported to be involved in several human pathologies ranging from neurodegenerative disease to cancer. Therapeutic resistance is a major hurdle for cancer treatment. Over the past decade, several studies has emerged on the role of lncRNAs in cancer drug resistance and many trials have been conducted employing them. LncRNAs also regulate different cell death pathways thereby maintaining a fine balance of cell survival and death. Autophagy is a complex cell-killing mechanism that has both cytoprotective and cytotoxic roles. Similarly, autophagy can lead to the induction of both chemosensitization and chemoresistance in cancer cells upon therapeutic intervention. Recently the role of lncRNAs in the regulation of autophagy has also surfaced. Thus, lncRNAs can be used in cancer therapeutics to alleviate the challenges of chemoresistance by targeting the autophagosomal axis. In this chapter, we discuss about the role of lncRNAs in autophagy-mediated cancer drug resistance and its implication in targeted cancer therapy.
Collapse
Affiliation(s)
- Sandhik Nandi
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Atanu Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Aritra Ghosh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Indian Institute of Science Education and Research, Kolkata, India
| | - Shravanti Mukherjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
109
|
Hosseini FA, Rejali L, Zabihi MR, Salehi Z, Daskar-Abkenar E, Taraz T, Fatemi N, Hashemi M, Asadzadeh-Aghdaei H, Nazemalhosseini-Mojarad E. Long non‑coding RNA LINC00460 contributes as a potential prognostic biomarker through its oncogenic role with ANXA2 in colorectal polyps. Mol Biol Rep 2023; 50:4505-4515. [PMID: 37024747 DOI: 10.1007/s11033-023-08393-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/17/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND Long intergenic non-coding RNA 460 (LINC00460) as a potential oncogene and Annexin A2 (ANXA2) as a promoter in different cancer progression processes was considered. A significant relationship between the LINC00460 and ANXA2 has been recently discovered in colorectal cancer (CRC). Therefore, defining molecular biomarkers accompanied by lesion histopathologic features can be a suggestive prognostic biomarker in precancerous polyps. This study aimed to investigate the elusive expression pattern of ANXA2 and LINC00460 in polyps. MATERIALS AND METHODS The construction of the co-expression and correlation network of LINC00460 and ANXA2 was plotted. LINC00460 and ANXA2 expression in 40 colon polyps was quantified by reverse transcription-real-time polymerase chain reaction. The receiver operating characteristic (ROC) curve was designed for distinguishing the high-risk precancerous lesion from the low-risk. Further, bioinformatics analysis was applied to find the shared MicroRNA-Interaction-Targets (MITs) between ANXA2 and LINC00460, and the associated pathways. RESULTS ANXA2 has a high co-expression rank with LINC00460 in the lncHUB database. Overexpression of ANXA2 and LINC00460 was distinguished in advanced adenoma polyps compared to the adjacent normal samples. The estimated AUC for ANXA2 and LINC00460 was 0.88 - 0.85 with 93%-90% sensitivity and 81%-70% specificity. In addition, eight MITs were shared between ANXA2 and LINC00460. Enrichment analysis detected several GO terms and pathways, including HIF-1α associated with cancer development. CONCLUSION In conclusion, the expression of the ANXA2 and LINC00460 were significantly elevated in pre-cancerous polyps, especially in high-risk adenomas. Collectively, ANXA2 and LINC00460 may be administered as potential prognostic biomarkers in patients with a precancerous large intestine lesion as an alarming issue.
Collapse
Affiliation(s)
- Farzaneh Alsadat Hosseini
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Leili Rejali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zabihi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Salehi
- Laboratory of Complex Biological Systems and Bio-informatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Elahe Daskar-Abkenar
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tannaz Taraz
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nayeralsadat Fatemi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence sciences Research Centre, Farhikhtegan Hospital, Islamic Azad University, Tehran Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh-Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Yeman St, Chamran Expressway, 19857-17413, Tehran, Iran.
| |
Collapse
|
110
|
Wang Y, Bai H, Jiang M, Zhou C, Gong Z. Emerging role of long non-coding RNA JPX in malignant processes and potential applications in cancers. Chin Med J (Engl) 2023; 136:757-766. [PMID: 37027401 PMCID: PMC10150895 DOI: 10.1097/cm9.0000000000002392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Indexed: 04/08/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) reportedly function as important modulators of gene regulation and malignant processes in the development of human cancers. The lncRNA JPX is a novel molecular switch for X chromosome inactivation and differentially expressed JPX has exhibited certain clinical correlations in several cancers. Notably, JPX participates in cancer growth, metastasis, and chemoresistance, by acting as a competing endogenous RNA for microRNA, interacting with proteins, and regulating some specific signaling pathways. Moreover, JPX may serve as a potential biomarker and therapeutic target for the diagnosis, prognosis, and treatment of cancer. The present article summarizes our current understanding of the structure, expression, and function of JPX in malignant cancer processes and discusses its molecular mechanisms and potential applications in cancer biology and medicine.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Clinical Medicine, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, China
| | - Huihui Bai
- Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, China
- Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, China
| | - Meina Jiang
- Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, China
- Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, China
| | - Chengwei Zhou
- Department of Clinical Medicine, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, China
- Department of Thoracic Surgery, The Affiliated Hospital of Ningbo University School of Medicine, Ningbo, Zhejiang 315020, China
| | - Zhaohui Gong
- Department of Clinical Medicine, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, China
- Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, China
- Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, China
| |
Collapse
|
111
|
Konani M, Pourhoseini M, Hashemi M, Entezari M, Khaleghi S. LncRNA GHET1 and LncRNA ZXF2 as New Biomarkers in Oral Squamous Cell Carcinoma in Relation to Clinicopathological Variables. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2023. [DOI: 10.5812/ijcm-121372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Background: The utilization of molecular techniques in detecting cancer has resulted in an improved prediction of outcomes. Oral squamous cell carcinoma (OSCC) is a prevalent illness that is frequently detected in its late stages. Therefore, finding molecular biomarkers that lead to the early detection of OSCC is of great importance. Objectives: This study aimed at evaluating the expression levels of long non-coding RNA (LncRNA) gastric carcinoma highly expressed transcript 1 (GHET1) and lncRNA ZXF2 in OSCC patients and their relationship with clinical pathology variables due to biomarker discovery and early diagnosis of OSCC. Methods: Tissue sampling was performed after selecting 30 OSCC patients and 30 healthy individuals from Emam-Khomeini Hospital, Tehran, Iran. Then, RNA extraction and cDNA synthesis were performed from these samples, using the relevant kits and their quantity and quality were measured, using nanodrop and agarose gel electrophoresis, respectively. For molecular biomarker identification and validation, real-time PCR (RT-PCR) was utilized to assess the expression of lncRNA GHET1 and lncRNA ZXF2. Data analysis was done, using GraphPad prism V.8 software. Results: The results showed that the expressions of both lncRNA GHET1 and lncRNA ZXF2 in OSCC tumor tissue increased compared to normal tissue (P < 0.0001). Receiver operating characteristic (ROC) analysis indicated that lncRNA GHET1 and lncRNA ZXF2 have the capability to be employed as biomarkers for OSCC detection. However, no significant relationship was observed between lncRNA GHET1 and lncRNA ZXF2 expressions with clinicopathological variables such as tumor stage and grade as well as patients' age. Conclusions: LncRNA GHET1 and lncRNA ZXF2 have the potential to be used as biomarkers in the early detection of OSCC and evaluating their expression in clinical settings are recommended. The use of these biomarkers in the early detection of OSCC can prevent the high mortality rate of OSCC patients. In the current study, the important role of the studied lncRNAs in OSCC diagnosis was shown. However, further studies are needed to confirm this.
Collapse
|
112
|
Aljohani AI, Toss MS, Green AR, Rakha EA. The clinical significance of cyclin B1 (CCNB1) in invasive breast cancer with emphasis on its contribution to lymphovascular invasion development. Breast Cancer Res Treat 2023; 198:423-435. [PMID: 36418517 PMCID: PMC10036284 DOI: 10.1007/s10549-022-06801-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Lymphovascular invasion (LVI) is regulated through complex molecular mechanisms. Cyclin B1 (CCNB1) was previously determined as being associated with LVI using large cohorts of breast cancer (BC) and artificial neural network (ANN) technique. In this study, we aimed to assess the association between CCNB1 and LVI, other clinicopathological and other LVI-related biomarkers at the molecular (RNA transcriptomic) and proteomic levels in BC. METHODS Two transcriptomic BC cohorts (n = 2834) were used to assess the association between the expression of CCNB1 at the mRNA level and clinicopathological characteristics and patient outcome. Tissue microarrays (TMAs) from a well-characterised BC cohort (n = 2480) with long-term outcome were also used to assess the clinical significance of CCNB1 protein expression using immunohistochemistry. RESULTS High CCNB1 mRNA expression was associated with aggressive tumour behaviour, including LVI, larger size, higher tumour grade, high lymph nodal stage, hormonal receptor negativity, HER2 positivity and poor clinical outcome (all p < 0.0001). Similarly, high CCNB1 protein expression was associated with higher tumour grade, hormonal receptor negativity and HER2 positivity (all p < 0.0001). Additionally, there was a significant association between CCNB1- and LVI-related biomarkers including N-cadherin, P-cadherin and TWIST2 at the transcriptomic and proteomic level. Multivariate analysis revealed that CCNB1 was an independent predictor of shorter BC-specific survival (HR = 1.3; 95% CI 1.2-1.5; p = 0.010). CONCLUSION CCNB1 is a key gene associated with LVI in BC and has prognostic value. More functional studies are warranted to unravel the mechanistic role of CCNB1 in the development of LVI.
Collapse
Affiliation(s)
- Abrar I Aljohani
- Academic Unit for Translational Medical Sciences, School of Medicine, Nottingham Breast Cancer Research Centre, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, UK
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Michael S Toss
- Academic Unit for Translational Medical Sciences, School of Medicine, Nottingham Breast Cancer Research Centre, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, UK
| | - Andrew R Green
- Academic Unit for Translational Medical Sciences, School of Medicine, Nottingham Breast Cancer Research Centre, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, UK
| | - Emad A Rakha
- Academic Unit for Translational Medical Sciences, School of Medicine, Nottingham Breast Cancer Research Centre, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, UK.
- Histopathology Department, Faculty of Medicine, Menoufia University, Shebeen El-Kom, Egypt.
- Department of Histopathology, Nottingham University Hospital NHS Trust, City Hospital Campus, Hucknall Road, Nottingham, NG5 1PB, UK.
| |
Collapse
|
113
|
Aydın E, Saus E, Chorostecki U, Gabaldón T. A hybrid approach to assess the structural impact of long noncoding RNA mutations uncovers key
NEAT1
interactions in colorectal cancer. IUBMB Life 2023. [PMID: 36971476 DOI: 10.1002/iub.2710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/25/2023] [Indexed: 03/29/2023]
Abstract
Long noncoding RNAs (lncRNAs) are emerging players in cancer and they entail potential as prognostic biomarkers or therapeutic targets. Earlier studies have identified somatic mutations in lncRNAs that are associated with tumor relapse after therapy, but the underlying mechanisms behind these associations remain unknown. Given the relevance of secondary structure for the function of some lncRNAs, some of these mutations may have a functional impact through structural disturbance. Here, we examined the potential structural and functional impact of a novel A > G point mutation in NEAT1 that has been recurrently observed in tumors of colorectal cancer patients experiencing relapse after treatment. Here, we used the nextPARS structural probing approach to provide first empirical evidence that this mutation alters NEAT1 structure. We further evaluated the potential effects of this structural alteration using computational tools and found that this mutation likely alters the binding propensities of several NEAT1-interacting miRNAs. Differential expression analysis on these miRNA networks shows upregulation of Vimentin, consistent with previous findings. We propose a hybrid pipeline that can be used to explore the potential functional effects of lncRNA somatic mutations.
Collapse
Affiliation(s)
- Efe Aydın
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund, Sweden
| | - Ester Saus
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Barcelona Supercomputing Centre (BSC-CNS). Plaça Eusebi Güell, Barcelona, Spain
| | - Uciel Chorostecki
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Barcelona Supercomputing Centre (BSC-CNS). Plaça Eusebi Güell, Barcelona, Spain
| | - Toni Gabaldón
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Barcelona Supercomputing Centre (BSC-CNS). Plaça Eusebi Güell, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| |
Collapse
|
114
|
Fouani Y, Gholipour A, Oveisee M, Shahryari A, Saberi H, Mowla SJ, Malakootian M. Distinct gene expression patterns of SOX2 and SOX2OT variants in different types of brain tumours. J Genet 2023. [DOI: 10.1007/s12041-023-01423-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
115
|
Mart Nez-Terroba E, de Miguel FJ, Li V, Robles-Oteiza C, Politi K, Zamudio JR, Dimitrova N. Overexpressed Malat1 Drives Metastasis through Inflammatory Reprogramming of Lung Adenocarcinoma Microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533534. [PMID: 36993368 PMCID: PMC10055261 DOI: 10.1101/2023.03.20.533534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Metastasis is the main cause of cancer deaths but the molecular events leading to metastatic dissemination remain incompletely understood. Despite reports linking aberrant expression of long noncoding RNAs (lncRNAs) with increased metastatic incidence , in vivo evidence establishing driver roles for lncRNAs in metastatic progression is lacking. Here, we report that overexpression of the metastasis-associated lncRNA Malat1 (metastasis-associated lung adenocarcinoma transcript 1) in the autochthonous K-ras/p53 mouse model of lung adenocarcinoma (LUAD) is sufficient to drive cancer progression and metastatic dissemination. We show that increased expression of endogenous Malat1 RNA cooperates with p53 loss to promote widespread LUAD progression to a poorly differentiated, invasive, and metastatic disease. Mechanistically, we observe that Malat1 overexpression leads to the inappropriate transcription and paracrine secretion of the inflammatory cytokine, Ccl2, to augment the mobility of tumor and stromal cells in vitro and to trigger inflammatory responses in the tumor microenvironment in vivo . Notably, Ccl2 blockade fully reverses cellular and organismal phenotypes of Malat1 overexpression. We propose that Malat1 overexpression in advanced tumors activates Ccl2 signaling to reprogram the tumor microenvironment to an inflammatory and pro-metastatic state.
Collapse
|
116
|
Shi F, Wu L, Cui D, Sun M, Shen Y, Zhou Z, Deng Z, Han B, Xia S, Zhu Z, Sun F. LncFALEC recruits ART5/PARP1 and promotes castration-resistant prostate cancer through enhancing PARP1-meditated self PARylation. Cell Oncol (Dordr) 2023; 46:761-776. [PMID: 36913068 DOI: 10.1007/s13402-023-00783-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 03/14/2023] Open
Abstract
Accumulating evidence indicates that long noncoding RNAs (lncRNAs) are abnormal expression in various malignant tumors. Our previous research demonstrated that focally amplified long non-coding RNA (lncRNA) on chromosome 1 (FALEC) is an oncogenic lncRNA in prostate cancer (PCa). However, the role of FALEC in castration-resistant prostate cancer (CRPC) is poorly understood. In this study, we showed FALEC was upregulated in post-castration tissues and CRPC cells, and increased FALEC expression was associated with poor survival in post-castration PCa patients. RNA FISH demonstrated FALEC was translocated into nucleus in CRPC cells. RNA pulldown and followed Mass Spectrometry (MS) assay demonstrated FALEC directly interacted with PARP1 and loss of function assay showed FALEC depletion sensitized CRPC cells to castration treatment and restored NAD+. Specific PARP1 inhibitor AG14361 and NAD+ endogenous competitor NADP+ sensitized FALEC-deleted CRPC cells to castration treatment. FALEC increasing PARP1 meditated self PARylation through recruiting ART5 and down regulation of ART5 decreased CRPC cell viability and restored NAD+ through inhibiting PARP1meditated self PARylation in vitro. Furthermore, ART5 was indispensable for FALEC directly interaction and regulation of PARP1, loss of ART5 impaired FALEC and PARP1 associated self PARylation. In vivo, FALEC depleted combined with PARP1 inhibitor decreased CRPC cell derived tumor growth and metastasis in a model of castration treatment NOD/SCID mice. Together, these results established that FALEC may be a novel diagnostic marker for PCa progression and provides a potential new therapeutic strategy to target the FALEC/ART5/PARP1 complex in CRPC patients.
Collapse
Affiliation(s)
- Fei Shi
- Department of Urology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
| | - Lei Wu
- Department of Urology, Shanghai General Hospital, Nanjing Medical University, Shanghai, 200080, China
| | - Di Cui
- Department of Urology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China.,Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Menghao Sun
- Department of Urology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
| | - Yuanhao Shen
- School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Zhou
- Department of Urology, Shanghai General Hospital, Nanjing Medical University, Shanghai, 200080, China
| | - Zheng Deng
- Department of Urology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
| | - Bangmin Han
- Department of Urology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China.,Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Shujie Xia
- Department of Urology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China.,Department of Urology, Shanghai General Hospital, Nanjing Medical University, Shanghai, 200080, China.,Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Zheng Zhu
- Department of Internal Medicine, Division of Hematology/Oncology, University of California Davis, Sacramento, CA, 95817, USA.
| | - Feng Sun
- Department of Urology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China. .,Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, China.
| |
Collapse
|
117
|
Pereira IOA, da Silva GN, Almeida TC, Lima APB, Sávio ALV, Leite KRM, Salvadori DMF. LncRNA JHDM1D-AS1 Is a Key Biomarker for Progression and Modulation of Gemcitabine Sensitivity in Bladder Cancer Cells. Molecules 2023; 28:molecules28052412. [PMID: 36903656 PMCID: PMC10005151 DOI: 10.3390/molecules28052412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
Long non-coding RNAs are frequently found to be dysregulated and are linked to carcinogenesis, aggressiveness, and chemoresistance in a variety of tumors. As expression levels of the JHDM1D gene and lncRNA JHDM1D-AS1 are altered in bladder tumors, we sought to use their combined expression to distinguish between low-and high-grade bladder tumors by RTq-PCR. In addition, we evaluated the functional role of JHDM1D-AS1 and its association with the modulation of gemcitabine sensitivity in high-grade bladder-tumor cells. J82 and UM-UC-3 cells were treated with siRNA-JHDM1D-AS1 and/or three concentrations of gemcitabine (0.39, 0.78, and 1.56 µM), and then submitted to cytotoxicity testing (XTT), clonogenic survival, cell cycle progression, cell morphology, and cell migration assays. When JHDM1D and JHDM1D-AS1 expression levels were used in combination, our findings indicated favorable prognostic value. Furthermore, the combined treatment resulted in greater cytotoxicity, a decrease in clone formation, G0/G1 cell cycle arrest, morphological alterations, and a reduction in cell migration capacity in both lineages compared to the treatments alone. Thus, silencing of JHDM1D-AS1 reduced the growth and proliferation of high-grade bladder-tumor cells and increased their sensitivity to gemcitabine treatment. In addition, the expression of JHDM1D/JHDM1D-AS1 indicated potential prognostic value in the progression of bladder tumors.
Collapse
Affiliation(s)
| | - Glenda Nicioli da Silva
- Departamento de Análises Clínicas, Pharmacy School, UFOP—Federal University of Ouro Preto, Ouro Preto 35400-000, MG, Brazil
- Correspondence:
| | - Tamires Cunha Almeida
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo 05503-900, SP, Brazil
| | - Ana Paula Braga Lima
- Departamento de Análises Clínicas, Pharmacy School, UFOP—Federal University of Ouro Preto, Ouro Preto 35400-000, MG, Brazil
| | - André Luiz Ventura Sávio
- Departamento de Odontologia, Faculdade do Centro Oeste Paulista—FACOP, Piratininga 17490-000, SP, Brazil
- Departamento de Ciências Médicas, Universidade do Oeste Paulista—UNOESTE, Jaú 19050-900, SP, Brazil
| | - Katia Ramos Moreira Leite
- Departamento de Cirurgia, Medical School, USP—University of São Paulo, São Paulo 05508-060, SP, Brazil
| | | |
Collapse
|
118
|
Singh VK, Kainat KM, Sharma PK. Crosstalk between epigenetics and tumor promoting androgen signaling in prostate cancer. VITAMINS AND HORMONES 2023; 122:253-282. [PMID: 36863797 DOI: 10.1016/bs.vh.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Prostate cancer (PCa) is one of the major health burdens among all cancer types in men globally. Early diagnosis and efficacious treatment options are highly warranted as far as the incidence of PCa is concerned. Androgen-dependent transcriptional activation of androgen receptor (AR) is central to the prostate tumorigenesis and therefore hormonal ablation therapy remains the first line of treatment for PCa in the clinics. However, the molecular signaling engaged in AR-dependent PCa initiation and progression is infrequent and diverse. Moreover, apart from the genomic changes, non-genomic changes such as epigenetic modifications have also been suggested as critical regulator of PCa development. Among the non-genomic mechanisms, various epigenetic changes such as histones modifications, chromatin methylation and noncoding RNAs regulations etc. play decisive role in the prostate tumorigenesis. Given that epigenetic modifications are reversible using pharmacological modifiers, various promising therapeutic approaches have been designed for the better management of PCa. In this chapter, we discuss the epigenetic control of tumor promoting AR signaling that underlies the mechanism of prostate tumorigenesis and progression. In addition, we have discussed the approaches and opportunities to develop novel epigenetic modifications based therapeutic strategies for targeting PCa including castrate resistant prostate cancer (CRPC).
Collapse
Affiliation(s)
- Vipendra Kumar Singh
- Environmental Carcinogenesis Lab, Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - K M Kainat
- Environmental Carcinogenesis Lab, Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pradeep Kumar Sharma
- Environmental Carcinogenesis Lab, Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
119
|
Zhang F, Mao D, He Z, Li W, Zhang X, Li L. SLCO4A1-AS1 regulates laryngeal squamous cell carcinoma cell phenotypes via the Wnt pathway. Oral Dis 2023; 29:390-401. [PMID: 33914996 DOI: 10.1111/odi.13893] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
AIM Long non-coding RNAs were widely reported to regulate laryngeal squamous cell carcinoma (LSCC), a prevalent tumor in the head and neck. We aimed to investigate the role of solute carrier organic anion transporter family member 4A1 antisense RNA 1 (SLCO4A1-AS1) in LSCC. MATERIALS & METHODS CCK-8 and colony formation assays were conducted to examine the viability and proliferation of LSCC cells. The apoptosis of LSCC cells was evaluated using flow cytometry and TUNEL assays. The distribution of SLCO4A1-AS1 in LSCC cells was detected by subcellular fractionation assay. The interaction between molecules was confirmed using luciferase reporter assay. RESULTS SLCO4A1-AS1 was overexpressed in LSCC tissues and cells. Furthermore, silenced SLCO4A1-AS1 repressed the proliferation and facilitated apoptosis of LSCC cells. Mechanistical investigation revealed that SLCO4A1-AS1 was a competing endogenous RNA (ceRNA) to upregulate SETD7 by binding with miR-7855-p. Additionally, SLCO4A1-AS1 positively regulated the Wnt/β-catenin signaling pathway by upregulating SETD7. Rescue experiments demonstrated that SLCO4A1-AS1 promoted LSCC proliferation and inhibited LSCC apoptosis by upregulation of SETD7 and activation of the Wnt/β-catenin pathway. CONCLUSION SLCO4A1-AS1 promotes proliferation and inhibits apoptosis of LSCC cells by upregulation of SETD7 in a miR-7855-5p dependent way to activate the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Otolaryngology, Yongchuan Hospital (T.C.M) of Chongqing Medical University, Chongqing, China
| | - Dehong Mao
- Department of Otolaryngology, Yongchuan Hospital (T.C.M) of Chongqing Medical University, Chongqing, China
| | - Zhongmei He
- Department of Otolaryngology, Yongchuan Hospital (T.C.M) of Chongqing Medical University, Chongqing, China
| | - Weichun Li
- Department of Otolaryngology, Yongchuan Hospital (T.C.M) of Chongqing Medical University, Chongqing, China
| | - Xu Zhang
- Department of Otolaryngology, Yongchuan Hospital (T.C.M) of Chongqing Medical University, Chongqing, China
| | - Linglong Li
- Department of Otolaryngology, Yongchuan Hospital (T.C.M) of Chongqing Medical University, Chongqing, China
| |
Collapse
|
120
|
Franco PIR, Neto JRDC, de Menezes LB, Machado JR, Miguel MP. Revisiting the hallmarks of cancer: A new look at long noncoding RNAs in breast cancer. Pathol Res Pract 2023; 243:154381. [PMID: 36857948 DOI: 10.1016/j.prp.2023.154381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/16/2023] [Indexed: 02/19/2023]
Abstract
Breast cancer is one of the leading causes of death in women worldwide. The increasing understanding of the molecular mechanisms underlying its heterogeneity favors a better understanding of tumor biology and consequently the development of better diagnostic and treatment techniques. The advent of tumor genome sequencing techniques has highlighted more participants in the process, in addition to protein-coding genes. Thus, it is now known that long noncoding RNAs, previously described as transcriptional noise with no biological function, are intimately associated with tumor development. In breast cancer, they are abnormally expressed and closely associated with tumor progression, which makes them attractive diagnostic biomarkers and prognostic and specific therapeutic targets. Therefore, a thorough understanding of the regulatory mechanisms of long noncoding RNAs in breast cancer is essential for the search for new treatment strategies. In this review, we summarize the major long noncoding RNAs and their association with the cancer characteristics of the ability to sustain proliferative signaling, evasion of growth suppressors, replicative immortality, activation of invasion and metastasis, induction of angiogenesis, resistance to cell death, reprogramming of energy metabolism, genomic instability and sustained mutations, promotion of tumor inflammation, and evasion of the immune system. In addition, we report and suggest how they can be used as prognostic biomarkers and possible therapeutic targets.
Collapse
Affiliation(s)
- Pablo Igor Ribeiro Franco
- Instituto de Patologia Tropical e Saúde Pública, Programa de Pós-Graduação em Medicina Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| | - José Rodrigues do Carmo Neto
- Instituto de Patologia Tropical e Saúde Pública, Programa de Pós-Graduação em Medicina Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Liliana Borges de Menezes
- Setor de Patologia Geral, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil; Escola de Veterinária e Zootecnia, Programa de Pós-Graduação em Ciência Animal, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Juliana Reis Machado
- Instituto de Patologia Tropical e Saúde Pública, Programa de Pós-Graduação em Medicina Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil; Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Marina Pacheco Miguel
- Setor de Patologia Geral, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil; Escola de Veterinária e Zootecnia, Programa de Pós-Graduação em Ciência Animal, Universidade Federal de Goiás, Goiânia, GO, Brazil
| |
Collapse
|
121
|
Khazaal A, Zandavi SM, Smolnikov A, Fatima S, Vafaee F. Pan-Cancer Analysis Reveals Functional Similarity of Three lncRNAs across Multiple Tumors. Int J Mol Sci 2023; 24:ijms24054796. [PMID: 36902227 PMCID: PMC10003012 DOI: 10.3390/ijms24054796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging as key regulators in many biological processes. The dysregulation of lncRNA expression has been associated with many diseases, including cancer. Mounting evidence suggests lncRNAs to be involved in cancer initiation, progression, and metastasis. Thus, understanding the functional implications of lncRNAs in tumorigenesis can aid in developing novel biomarkers and therapeutic targets. Rich cancer datasets, documenting genomic and transcriptomic alterations together with advancement in bioinformatics tools, have presented an opportunity to perform pan-cancer analyses across different cancer types. This study is aimed at conducting a pan-cancer analysis of lncRNAs by performing differential expression and functional analyses between tumor and non-neoplastic adjacent samples across eight cancer types. Among dysregulated lncRNAs, seven were shared across all cancer types. We focused on three lncRNAs, found to be consistently dysregulated among tumors. It has been observed that these three lncRNAs of interest are interacting with a wide range of genes across different tissues, yet enriching substantially similar biological processes, found to be implicated in cancer progression and proliferation.
Collapse
Affiliation(s)
- Abir Khazaal
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
- UNSW Data Science Hub, University of New South Wales, Sydney, NSW 2052, Australia
| | - Seid Miad Zandavi
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Andrei Smolnikov
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Shadma Fatima
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
- Ingham Institute of Applied Medical Research, Sydney, NSW 2170, Australia
| | - Fatemeh Vafaee
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
- UNSW Data Science Hub, University of New South Wales, Sydney, NSW 2052, Australia
- Correspondence:
| |
Collapse
|
122
|
Zhang G, Hou J, Mei C, Wang X, Wang Y, Wang K. Effect of circular RNAs and N6-methyladenosine (m6A) modification on cancer biology. Biomed Pharmacother 2023; 159:114260. [PMID: 36657303 DOI: 10.1016/j.biopha.2023.114260] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/09/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
N6-methyladenosine (m6A), as the most abundant and well-known RNA modification, has been found to play an important role in cancer. Circular RNAs (circRNAs) are a class of single-stranded covalently closed RNA molecules generated by the reverse splicing process. Recent studies have revealed the vital roles of circRNAs in many diseases, including tumorigenesis. Accumulating evidence also shows an association between m6A modification and circRNAs. This study aimed to review the interactions between m6A modification and circRNAs and illustrate their roles in tumorigenesis. m6A modification can modulate the biogenesis, translation, cytoplasmic export, degradation, and other functions of circRNAs in different tumors. circRNAs can also modulate m6A modification by affecting writers, erasers, and readers. We focused on the potential regulatory mechanisms and the biological consequences of m6A modification of circRNAs, as well as the interactions in tumors of different systems. Finally, we listed the possible development directions of m6A modification and circRNAs, which might facilitate the clinical application of tumor therapy. AVAILABILITY OF DATA AND MATERIALS: Not applicable. Keywords.
Collapse
Affiliation(s)
- Gong Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Junhui Hou
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Chenxue Mei
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yuan Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
123
|
Expression analysis of novel long non-coding RNAs for invasive ductal and invasive lobular breast carcinoma cases. Pathol Res Pract 2023; 244:154391. [PMID: 36868097 DOI: 10.1016/j.prp.2023.154391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/04/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
AIM Long non-coding RNAs (LncRNAs) serve as important regulatory molecules of gene expression and protein functionality at multiple biological levels, and their deregulation plays a key role in tumorigenesis including in breast cancer metastasis. Therefore, in this study, we aim to compare the expression of novel lncRNAs in the landscape of invasive ductal carcinoma (IDC) and invasive lobular (ILC) carcinoma of breast. MAIN METHODS We have designed an in-silico approach to find the lncRNAs that regulate the breast cancer. Then, we used the clinical samples to carry out the verification of our in silico finding. In the present study, the tissues of breast cancer were deparaffinized. RNA was extracted by the TRIzole method. After synthesizing cDNA from the extracted RNA, expression levels of lncRNAs were analyzed by qPCR using primers specifically designed and validated for the targeted lncRNAs. In this study, breast biopsy materials from 41 female patients with IDC and 10 female patients with ILC were examined histopathological and expression changes of candidate lncRNAs were investigated in line with the findings. The results were analyzed using IBM SPSS Statistics 25 version. RESULTS The mean age of the cases was 53.78 ± 14.96. The minimum age was 29, while the maximum age was 87. While 27 of the cases were pre-menopausal, 24 cases were post-menopausal. The number of hormone receptor-positive cases was found to be 40, 35, and 27 for ER, PR, and cerb2/neu, respectively. While the expressions of LINC00501, LINC00578, LINC01209, LINC02015, LINC02584, ABCC5-AS1, PEX5L-AS2, SHANK2-AS3 and SOX2-OT showed significant differences (p < 0.05), the expressions of LINC01206, LINC01994, SHANK2-AS1, and TPRG1-AS2 showed no significant differences (p > 0.05). In addition, it was determined that the regulation of all lncRNAs could be able to involve in the development of cancer such as the NOTCH1, NFKB, and estrogen receptor signalings. CONCLUSION As a result, it was thought that the discovery of novel lncRNAs might be an important player in the diagnosis, prognosis and therapeutic development of breast cancer.
Collapse
|
124
|
Lashen AG, Toss MS, Ghannam SF, Makhlouf S, Green A, Mongan NP, Rakha E. Expression, assessment and significance of Ki67 expression in breast cancer: an update. J Clin Pathol 2023; 76:357-364. [PMID: 36813558 DOI: 10.1136/jcp-2022-208731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023]
Abstract
Ki67 expression is one of the most important and cost-effective surrogate markers to assess for tumour cell proliferation in breast cancer (BC). The Ki67 labelling index has prognostic and predictive value in patients with early-stage BC, particularly in the hormone receptor-positive, HER2 (human epidermal growth factor receptor 2)-negative (luminal) tumours. However, many challenges exist in using Ki67 in routine clinical practice and it is still not universally used in the clinical setting. Addressing these challenges can potentially improve the clinical utility of Ki67 in BC. In this article, we review the function, immunohistochemical (IHC) expression, methods for scoring and interpretation of results as well as address several challenges of Ki67 assessment in BC. The prodigious attention associated with use of Ki67 IHC as a prognostic marker in BC resulted in high expectation and overestimation of its performance. However, the realisation of some pitfalls and disadvantages, which are expected with any similar markers, resulted in an increasing criticism of its clinical use. It is time to consider a pragmatic approach and weigh the benefits against the weaknesses and identify factors to achieve the best clinical utility. Here we highlight the strengths of its performance and provide some insights to overcome the existing challenges.
Collapse
Affiliation(s)
- Ayat Gamal Lashen
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK.,Department of Pathology, Faculty of Medicine, Menoufia University, Shebin El Kom, Egypt
| | - Michael S Toss
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK.,Department of pathology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Suzan Fathy Ghannam
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK.,Department of Histology, Suez Canal University, Ismailia, Egypt
| | - Shorouk Makhlouf
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK.,Department of Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Andrew Green
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK.,Nottingham Breast Cancer Research Centre, University of Nottingham, Nottingham, UK
| | - Nigel P Mongan
- School of Veterinary Medicine and Sciences, University of Nottingham, Nottingham, UK.,Department of Pharmacology, Weill Cornell Medicine, New York, New York, USA
| | - Emad Rakha
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK .,Department of Pathology, Faculty of Medicine, Menoufia University, Shebin El Kom, Egypt.,Pathology Department, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
125
|
Zhao W, Zhang Y, Zhang W, Sun Y, Zheng B, Wang J, Gu Y, Qi J, Li J, Wang XJ, Chen J, Yang F. Exosomal LINC00355 promotes the malignant progression of gastric cancer through histone deacetylase HDAC3-mediated TP53INP1 transcriptional inhibition. Life Sci 2023; 315:121387. [PMID: 36640904 DOI: 10.1016/j.lfs.2023.121387] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
AIMS Exosomes are a subpopulation of extracellular vesicles (EV) derived from multivesicular body (MVB) that transmit various cellular molecular constituents, including long noncoding RNAs (lncRNAs), to promote intercellular communication. Our aim was to investigate the function and mechanism of exosomal LINC00355 in gastric cancer cells. MAIN METHODS Exosomal levels of LINC00355 in GC patients and healthy controls were measured by RT-qPCR. The effects of exosomal LINC00355 on GC cell viability, proliferation, migration and invasion were evaluated by CCK8, colony formation, Transwell and wound healing assays. The expression levels of Ki67 in xenograft tumor tissues were confirmed by immunohistochemistry assay, and apoptosis was analyzed by TUNEL apoptosis assay. Western blotting was used to monitor protein expression. RNA immunoprecipitation and RNA pulldown were performed to detect the interaction between LINC00355 and HDAC3. Chromatin immunoprecipitation was used to assess the interaction of HDAC3 with the TP53INP1 promoter. KEY FINDINGS Exosomal LINC00355 levels were higher in plasma from gastric cancer patients than in plasma from healthy volunteers. Exosomal LINC00355 promoted the proliferation, migration and invasion of gastric cancer cell lines. RNA sequence analysis demonstrated that LINC00355 knockdown downregulated histone deacetylase HDAC3 and upregulated TP53INP1. Mechanistic investigation indicated that exosomal LINC00355 interacted with HDAC3 to suppress TP53INP1 transcription, which promoted epithelial-mesenchymal transition (EMT). SIGNIFICANCE Exosomal LINC00355 plays a pivotal role in regulating EMT to induce the malignant progression of GC. Exosomal LINC00355 could be a promising biomarker in the early diagnosis and prognosis of GC.
Collapse
Affiliation(s)
- Wenjing Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Yunan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Wei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Yiming Sun
- Department of Pharmacy, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui, PR China
| | - Beiyao Zheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Junbin Wang
- Department of Oncology, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui, PR China
| | - Yazhou Gu
- Nanjing Heron Pharmaceutical Science and Technology Co., Ltd, Nanjing 211166, Jiangsu, PR China
| | - Junxia Qi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Juxue Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Xue Jun Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China.
| | - Jinfei Chen
- Department of Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China.
| | - Fen Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China.
| |
Collapse
|
126
|
Zhang Z, Shi S, Li J, Costa M. Long Non-Coding RNA MEG3 in Metal Carcinogenesis. TOXICS 2023; 11:toxics11020157. [PMID: 36851033 PMCID: PMC9962265 DOI: 10.3390/toxics11020157] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 06/06/2023]
Abstract
Most transcripts from human genomes are non-coding RNAs (ncRNAs) that are not translated into proteins. ncRNAs are divided into long (lncRNAs) and small non-coding RNAs (sncRNAs). LncRNAs regulate their target genes both transcriptionally and post-transcriptionally through interactions with proteins, RNAs, and DNAs. Maternally expressed gene 3 (MEG3), a lncRNA, functions as a tumor suppressor. MEG3 regulates cell proliferation, cell cycle, apoptosis, hypoxia, autophagy, and many other processes involved in tumor development. MEG3 is downregulated in various cancer cell lines and primary human cancers. Heavy metals, such as hexavalent chromium (Cr(VI)), arsenic, nickel, and cadmium, are confirmed human carcinogens. The exposure of cells to these metals causes a variety of cancers. Among them, lung cancer is the one that can be induced by exposure to all of these metals. In vitro studies have demonstrated that the chronic exposure of normal human bronchial epithelial cells (BEAS-2B) to these metals can cause malignant cell transformation. Metal-transformed cells have the capability to cause an increase in cell proliferation, resistance to apoptosis, elevated migration and invasion, and properties of cancer stem-like cells. Studies have revealed that MEG is downregulated in Cr(VI)-transformed cells, nickel-transformed cells, and cadmium (Cd)-transformed cells. The forced expression of MEG3 reduces the migration and invasion of Cr(VI)-transformed cells through the downregulation of the neuronal precursor of developmentally downregulated protein 9 (NEDD9). MEG3 suppresses the malignant cell transformation of nickel-transformed cells. The overexpression of MEG3 decreases Bcl-xL, causing reduced apoptosis resistance in Cd-transformed cells. This paper reviews the current knowledge of lncRNA MEG3 in metal carcinogenesis.
Collapse
|
127
|
Speina E, Wilczek M, Mieczkowski A. Dimeric Benzodiazepines as Peptide Mimetics to Overcome p53-Dependent Drug Resistance of Tumors. Biomolecules 2023; 13:biom13020291. [PMID: 36830660 PMCID: PMC9953746 DOI: 10.3390/biom13020291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Benzodiazepines that consist of one α- and one β-amino acid residues linked together in a seven-membered heterocyclic ring could be treated as small, rigid, cyclic dipeptides capable of exhibiting a wide range of biological activities. During our research on novel analogues of anthramycin, a tricyclic antibiotic benzodiazepine, we developed the synthesis of two benzodiazepine dimers, obtained through the cyclization of appropriate linear tripeptides. The synthesized compounds were tested on a panel of seven cancer and normal cell lines. The developed molecules exhibited promising cytotoxic activity against the lung cancer cell lines A549 and NCI-H1299 and the epidermoid carcinoma cell line A-431. Moreover, they showed significant selectivity compared to the reference cell lines (BJ-human normal skin fibroblasts and MRC-5-human normal lung cell line). When tested on two isogenic cell lines, HCT116 and HCT116p53-/- (colon cancer), contrary to cisplatin being used as a positive control, the obtained compounds showed a cytotoxic effect independent of the p53 protein status. For the above reasons, the obtained compounds can be considered a new group of promising anticancer agents, useful in the fight against p53-dependent drug resistance in cancers. They can also be treated as convenient, leading structures suitable for further optimization and searching for more active and selective molecules.
Collapse
Affiliation(s)
- Elżbieta Speina
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Marcin Wilczek
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Adam Mieczkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
- Correspondence:
| |
Collapse
|
128
|
Shen G, Li F, Wang Y, Huang Y, Aizezi G, Yuan J, Ma C, Lin C. New insights on the interaction between m 6A modification and non-coding RNA in cervical squamous cell carcinoma. World J Surg Oncol 2023; 21:25. [PMID: 36710350 PMCID: PMC9885588 DOI: 10.1186/s12957-023-02907-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/26/2022] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND N6-Methyladenosine (m6A) and long non-coding RNAs (lncRNAs) are both crucial regulators in human cancer growth and metastasis. However, their regulation on cervical squamous cell carcinoma (CSCC) is largely unclear. The present study aimed to explore the role of m6A-associated lncRNAs in CSCC. METHODS We screened the expression of methylation modification-related enzymes in CECC samples from TCGA. The qRT-PCR was used to detect METTL3 and lncRNA METTL4-2 expression. The biological activities of METTL3 in CSCC cells were evaluated by CCK-8, colony formation, transwell, wound healing, and xenograft tumor assays, respectively. The SRAMP tool was used to screen m6A modification sites of METTL4-2. Finally, the quantitative analysis of m6A modification was carried out by MeRIP. RESULTS METTL3 expression was upregulated in CSCC cells and tissues. Biological function and function loss analysis indicated that METTL3 promoted the migration and proliferation of CSCC cells. In addition, METTL3 promoted CSCC tumor growth in vivo. Mechanically, METTL3 installed the m6A modification and enhanced METTL4-2 transcript stability to increase its expression. Meanwhile, the m6A "reader" YTHDF1 recognized METTL4-2 installed by METTL3 and facilitated the translation of METTL4-2. CONCLUSIONS In conclusion, our study highlights the function and mechanism of METTL3-induced METTL4-2 in CSCC. These findings support that METTL3-stabilized METTL4-2 promoted CSCC progression via a m6A-dependent modality, which provides new insights into therapeutic strategies for CSCC.
Collapse
Affiliation(s)
- Guqun Shen
- The Second Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Fen Li
- The Second Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Yan Wang
- Xinjiang Key Laboratory of Oncology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Yongmei Huang
- Operating Theatre, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Gulibiya Aizezi
- The Second Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Jinrui Yuan
- The Second Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Cailing Ma
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia/Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Chen Lin
- Department of Pathology, School of Basic Medicine, Xinjiang Medical University, 789 Suzhou East Street, Urumqi, 830011, China.
| |
Collapse
|
129
|
Morelli E, Fulciniti M, Samur MK, Ribeiro CF, Wert-Lamas L, Henninger JE, Gullà A, Aktas-Samur A, Todoerti K, Talluri S, Park WD, Federico C, Scionti F, Amodio N, Bianchi G, Johnstone M, Liu N, Gramegna D, Maisano D, Russo NA, Lin C, Tai YT, Neri A, Chauhan D, Hideshima T, Shammas MA, Tassone P, Gryaznov S, Young RA, Anderson KC, Novina CD, Loda M, Munshi NC. A MIR17HG-derived long noncoding RNA provides an essential chromatin scaffold for protein interaction and myeloma growth. Blood 2023; 141:391-405. [PMID: 36126301 PMCID: PMC10082365 DOI: 10.1182/blood.2022016892] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 01/31/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) can drive tumorigenesis and are susceptible to therapeutic intervention. Here, we used a large-scale CRISPR interference viability screen to interrogate cell-growth dependency to lncRNA genes in multiple myeloma (MM) and identified a prominent role for the miR-17-92 cluster host gene (MIR17HG). We show that an MIR17HG-derived lncRNA, named lnc-17-92, is the main mediator of cell-growth dependency acting in a microRNA- and DROSHA-independent manner. Lnc-17-92 provides a chromatin scaffold for the functional interaction between c-MYC and WDR82, thus promoting the expression of ACACA, which encodes the rate-limiting enzyme of de novo lipogenesis acetyl-coA carboxylase 1. Targeting MIR17HG pre-RNA with clinically applicable antisense molecules disrupts the transcriptional and functional activities of lnc-17-92, causing potent antitumor effects both in vitro and in vivo in 3 preclinical animal models, including a clinically relevant patient-derived xenograft NSG mouse model. This study establishes a novel oncogenic function of MIR17HG and provides potent inhibitors for translation to clinical trials.
Collapse
Affiliation(s)
- Eugenio Morelli
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Mariateresa Fulciniti
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Mehmet K. Samur
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Caroline F. Ribeiro
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Leon Wert-Lamas
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
| | - Jon E. Henninger
- Whitehead Institute of Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA
| | - Annamaria Gullà
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Anil Aktas-Samur
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Katia Todoerti
- Department of Hematology, Fondazione Cà Granda IRCCS Policlinico, Milan, Italy
| | - Srikanth Talluri
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| | - Woojun D. Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Cinzia Federico
- Department of Clinical and Experimental Medicine, Magna Graecia University, Catanzaro, Italy
| | - Francesca Scionti
- Department of Clinical and Experimental Medicine, Magna Graecia University, Catanzaro, Italy
- Clinical Research Development and Phase I Unit, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Nicola Amodio
- Department of Clinical and Experimental Medicine, Magna Graecia University, Catanzaro, Italy
| | - Giada Bianchi
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Megan Johnstone
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA
| | - Na Liu
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA
| | - Doriana Gramegna
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Domenico Maisano
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Nicola A. Russo
- Istituto di Ricerche Genetiche “G. Salvatore,” Biogem s.c.ar.l., Avellino, Italy
| | - Charles Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Yu-Tzu Tai
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Antonino Neri
- Department of Hematology, Fondazione Cà Granda IRCCS Policlinico, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
- Scientific Directorate, Azienda USL-IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - Dharminder Chauhan
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Teru Hideshima
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Masood A. Shammas
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| | - Pierfrancesco Tassone
- Department of Clinical and Experimental Medicine, Magna Graecia University, Catanzaro, Italy
| | | | - Richard A. Young
- Whitehead Institute of Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA
| | - Kenneth C. Anderson
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Carl D. Novina
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Nikhil C. Munshi
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| |
Collapse
|
130
|
Tan WQ, Yuan L, Cao X, Wu XY, Xing YQ, Ye M. Overexpression of lncRNA TUG1 enhances the efficacy of DC-CIK immunotherapy in neuroblastoma in vitro and in vivo. Cancer Biomark 2023; 36:53-61. [PMID: 36373305 DOI: 10.3233/cbm-210436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Long non-coding RNA (LncRNA) TUG1 plays a critical role in the development of human cancers. This study explored whether TUG1 is involved in the cytotoxicity of dendritic cells and cytokine-induced killer cells (DCs-CIK), an immunotherapy approach, in neuroblastoma. METHODS A TUG1 expression plasmid was transfected into DCs. Neuroblastoma SK-N-SH cells were incubated with CIK cells, DCs-CIK cells, and TUG1-overexpressing DCs-CIK cells, with or without irradiation. SK-N-SH cell viability, colony formation, migration, and apoptosis were analyzed using CCK-8, colony formation assay, transwell assay, and flow cytometry, respectively. Production of IL-12, IL-2 and IFN-γ in the supernatants was determined using ELISA. A dual luciferase activity assay was performed to confirm the molecular interactions between TUG1 and miR-204. Tumor-bearing mice were established by injection of SK-N-SH cells followed by stimulation with CIK cells, DC-CIK cells, and TUG1-overexpressing DCs-CIK cells. RESULTS Compared to CIK alone or DC-CIK therapy, overexpression of TUG1 significantly suppressed tumor cell proliferation, colony formation, and migration of neuroblastoma cells. Moreover, upregulation of TUG1 robustly induced apoptosis and altered key molecules associated with apoptosis and epithelial-mesenchymal transition. Contents of IL-12, IL-2 and IFN-γ were dramatically elevated in the supernatants in the coculturing system upon transfection with TUG1. In addition, TUG1 was found to be act as miR-204 sponge. Furthermore, in vivo experiments demonstrated that upregulation of TUG1 potentiated the antitumor activity of DC-CIK immunotherapy. CONCLUSION Overexpression of TUG1 promotes DC maturation and enhances CIK cytotoxicity, suggesting that TUG1 may be a novel target for enhancing DC-CIK based immunotherapy for neuroblastoma.
Collapse
Affiliation(s)
- Wei-Qiang Tan
- Department of Surgery, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China.,Department of Surgery, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China
| | - Li Yuan
- Department of Surgery, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China.,Department of Surgery, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China
| | - Xu Cao
- Department of Surgery, Children's Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China.,Department of Surgery, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China
| | - Xiao-Yuan Wu
- Department of Surgery, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China
| | - Yi-Qun Xing
- Department of Surgery, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China
| | - Ming Ye
- Department of Surgery, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
131
|
Makki AA, Ibraheem W, Alzain AA. Cytosporone E analogues as BRD4 inhibitors for cancer treatment: molecular docking and molecular dynamic investigations. J Biomol Struct Dyn 2023; 41:12643-12653. [PMID: 36644887 DOI: 10.1080/07391102.2023.2167122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/05/2023] [Indexed: 01/17/2023]
Abstract
Cancer is considered one of the worldwide life-threatening and leading causes of human mortality. In 2020, 19,292,789 cancer cases and 9,958,133 cancer deaths have been estimated worldwide. Therefore, efforts have been devoted to discover novel anticancer agents. Bromodomains have a vital role in the regulation of transcription. Many reports have shown that bromodomain-containing protein 4 (BRD4) is an important target for cancer therapeutics. In this study, several in silico approaches were utilized to discover new inhibitors against the BRD4 protein using the Schrodinger suite. A library of 27 cytosporone E derivatives was docked into the active site of the BRD4 protein. Docked ligands showed docking scores ranging between -11.289 to -3.992 Kcal/mol. Ligands 1-4 showed better binding affinities with docking scores ranging from -11.289 to -8.917 Kcal/mol compared to the reference ligand BI-2536 (-8.426 Kcal/mol). These ligands displayed favorable MM-GBSA free binding energy. Also, ligands 1-4 were subjected to molecular dynamics simulations for 100 ns to get insight into the ligand-binding stability. These compounds exhibited an average RMSD below 2.8 Å, indicating the stability of the compounds with BRD4 protein. Further, Moreover, ligands 1-3 displayed favorable AMDET properties (absorption, distribution, metabolism, excretion, and toxicity). These new compounds might be potential leads to combat cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Alaa A Makki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - Walaa Ibraheem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - Abdulrahim A Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| |
Collapse
|
132
|
Shams A, Ahmed A, Khan A, Khawaja S, Rehman NU, Qazi AS, Khan A, Bawazeer S, Ali SA, Al-Harrasi A. Naturally Isolated Sesquiterpene Lactone and Hydroxyanthraquinone Induce Apoptosis in Oral Squamous Cell Carcinoma Cell Line. Cancers (Basel) 2023; 15:cancers15020557. [PMID: 36672505 PMCID: PMC9856832 DOI: 10.3390/cancers15020557] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most prevalent cancers worldwide, especially in Asian countries. The emergence of its drug resistance and its side effects demands alternatives, to improve prognosis. Since the majority of cancer drugs are derived from natural sources, it provides a window to look for more biocompatible alternatives. In this study, two natural compounds, costunolide (CE) and aloe emodin (AE), were isolated from the stem of Lycium shawii. The compounds were examined for their anticancer and apoptotic potentials against OSCC (CAL 27) cells, using an in vitro analysis, such as a MTT assay, scratch assay, gene, and protein expressions. Both compounds, CE and AE, were found to be cytotoxic against the cancer cells with an IC50 value of 32 and 38 µM, respectively. Moreover, the compounds were found to be non-toxic against normal NIH-3T3 cells and comparable with the standard drug i.e., 5-fluorouracil (IC50 = 97.76 µM). These compounds were active against normal cells at higher concentrations. Nuclear staining displayed the presence of apoptosis-associated morphological changes, i.e., karyopyknosis and karyorrhexis in the treated cancer cells. Flow cytometry results further confirmed that these compounds induce apoptosis rather than necrosis, as the majority of the cells were found in the late apoptotic phase. Gene and protein expression analyses showed an increased expression of apoptotic genes, i.e., BAK, caspase 3, 6, and 9. Moreover, the compounds significantly downregulated the expression of the anti-apoptotic (BCL-2 L1), metastatic (MMP-2), and pro-inflammatory (COX-2) genes. Both compounds have shown promising anticancer, apoptotic, and anti-migratory activities against the OSCC cell line (i.e., CAL-27). However, further in vivo studies are required to explore these compounds as anticancer agents.
Collapse
Affiliation(s)
- Afshan Shams
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Ayaz Ahmed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-Al-Mouz, P.O. Box 33, Nizwa 616, Oman
| | - Shariqa Khawaja
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Najeeb Ur Rehman
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-Al-Mouz, P.O. Box 33, Nizwa 616, Oman
| | - Asma Saleem Qazi
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Adnan Khan
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan
| | - Sami Bawazeer
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Syed Abid Ali
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan
- Correspondence: (S.A.A.); (A.A.-H.)
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-Al-Mouz, P.O. Box 33, Nizwa 616, Oman
- Correspondence: (S.A.A.); (A.A.-H.)
| |
Collapse
|
133
|
Kashyap D, Sharma R, Goel N, Buttar HS, Garg VK, Pal D, Rajab K, Shaikh A. Coding roles of long non-coding RNAs in breast cancer: Emerging molecular diagnostic biomarkers and potential therapeutic targets with special reference to chemotherapy resistance. Front Genet 2023; 13:993687. [PMID: 36685962 PMCID: PMC9852779 DOI: 10.3389/fgene.2022.993687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/07/2022] [Indexed: 01/08/2023] Open
Abstract
Dysregulation of epigenetic mechanisms have been depicted in several pathological consequence such as cancer. Different modes of epigenetic regulation (DNA methylation (hypomethylation or hypermethylation of promotor), histone modifications, abnormal expression of microRNAs (miRNAs), long non-coding RNAs, and small nucleolar RNAs), are discovered. Particularly, lncRNAs are known to exert pivot roles in different types of cancer including breast cancer. LncRNAs with oncogenic and tumour suppressive potential are reported. Differentially expressed lncRNAs contribute a remarkable role in the development of primary and acquired resistance for radiotherapy, endocrine therapy, immunotherapy, and targeted therapy. A wide range of molecular subtype specific lncRNAs have been assessed in breast cancer research. A number of studies have also shown that lncRNAs may be clinically used as non-invasive diagnostic biomarkers for early detection of breast cancer. Such molecular biomarkers have also been found in cancer stem cells of breast tumours. The objectives of the present review are to summarize the important roles of oncogenic and tumour suppressive lncRNAs for the early diagnosis of breast cancer, metastatic potential, and chemotherapy resistance across the molecular subtypes.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Riya Sharma
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Neelam Goel
- Department of Information Technology, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
| | - Harpal S. Buttar
- Department of Pathology and Laboratory Medicine, University of Ottawa, Faculty of Medicine, Ottawa, ON, Canada
| | - Vivek Kumar Garg
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Gharuan, Mohali, India
| | - Deeksha Pal
- Department of Translational and Regenerative Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Khairan Rajab
- College of Computer Science and Information Systems, Najran University, Najran, Saudi Arabia
| | - Asadullah Shaikh
- College of Computer Science and Information Systems, Najran University, Najran, Saudi Arabia
| |
Collapse
|
134
|
Functional Relationships between Long Non-Coding RNAs and Estrogen Receptor Alpha: A New Frontier in Hormone-Responsive Breast Cancer Management. Int J Mol Sci 2023; 24:ijms24021145. [PMID: 36674656 PMCID: PMC9863308 DOI: 10.3390/ijms24021145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
In the complex and articulated machinery of the human genome, less than 2% of the transcriptome encodes for proteins, while at least 75% is actively transcribed into non-coding RNAs (ncRNAs). Among the non-coding transcripts, those ≥200 nucleotides long (lncRNAs) are receiving growing attention for their involvement in human diseases, particularly cancer. Genomic studies have revealed the multiplicity of processes, including neoplastic transformation and tumor progression, in which lncRNAs are involved by regulating gene expression at epigenetic, transcriptional, and post-transcriptional levels by mechanism(s) that still need to be clarified. In breast cancer, several lncRNAs were identified and demonstrated to have either oncogenic or tumor-suppressive roles. The functional understanding of the mechanisms of lncRNA action in this disease could represent a potential for translational applications, as these molecules may serve as novel biomarkers of clinical use and potential therapeutic targets. This review highlights the relationship between lncRNAs and the principal hallmark of the luminal breast cancer phenotype, estrogen receptor α (ERα), providing an overview of new potential ways to inhibit estrogenic signaling via this nuclear receptor toward escaping resistance to endocrine therapy.
Collapse
|
135
|
Wu S, Zhu H, Wu Y, Wang C, Duan X, Xu T. Molecular mechanisms of long noncoding RNAs associated with cervical cancer radiosensitivity. Front Genet 2023; 13:1093549. [PMID: 36685972 PMCID: PMC9846343 DOI: 10.3389/fgene.2022.1093549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
Despite advances in cervical cancer screening and human papilloma virus (HPV) vaccines, cervical cancer remains a global health burden. The standard treatment of cervical cancer includes surgery, radiation therapy, and chemotherapy. Radiotherapy (RT) is the primary treatment for advanced-stage disease. However, due to radioresistance, most patients in the advanced stage have an adverse outcome. Recent studies have shown that long noncoding RNAs (lncRNAs) participate in the regulation of cancer radiosensitivity by regulating DNA damage repair, apoptosis, cancer stem cells (CSCs), and epithelial-mesenchymal transition (EMT). In this review, we summarize the molecular mechanisms of long noncoding RNAs in cervical cancer and radiosensitivity, hoping to provide a theoretical basis and a new molecular target for the cervical cancer RT in the clinic.
Collapse
Affiliation(s)
| | | | | | | | | | - Tianmin Xu
- Department of Obstetrics and Gynecology, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
136
|
Furtado CLM, da Silva Santos R, Sales SLA, Teixeira LPR, Pessoa CDÓ. Long Non-coding RNAs and CRISPR-Cas Edition in Tumorigenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1429:41-58. [PMID: 37486515 DOI: 10.1007/978-3-031-33325-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Long non-coding RNAs (lncRNAs) are one of the most abundant and heterogeneous transcripts with key roles in chromatin remodeling and gene regulation at the transcriptional and post-transcriptional levels. Due to their role in cell growth and differentiation, lncRNAs have emerged as an important biomarker in cancer diagnosis, prognosis, and targeted treatment. Recent studies have focused on elucidating lncRNA function during malignant transformation, tumor progression and drug resistance. The advent of the CRISPR system has made it possible to precisely edit complex genomic loci such as lncRNAs. Thus, we summarized the advances in CRISPR-Cas approaches for functional studies of lncRNAs including gene knockout, knockdown, overexpression and RNA targeting in tumorigenesis and drug resistance. Additionally, we highlighted the perspectives and potential applications of CRISPR approaches to treat cancer, as an emerging and promising target therapy.
Collapse
Affiliation(s)
- Cristiana Libardi Miranda Furtado
- University of Fortaleza, Experimental Biology Center, Fortaleza, Ceara, Brazil.
- Drug Research and Development Center, Postgraduate Program in Translational Medicine, Federal University of Ceara, Fortaleza, Brazil.
| | - Renan da Silva Santos
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceara, Fortaleza, Brazil
| | - Sarah Leyenne Alves Sales
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceara, Fortaleza, Brazil
| | | | - Claudia do Ó Pessoa
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceara, Fortaleza, Brazil
| |
Collapse
|
137
|
Maroni P, Gomarasca M, Lombardi G. Long non-coding RNAs in bone metastasis: progresses and perspectives as potential diagnostic and prognostic biomarkers. Front Endocrinol (Lausanne) 2023; 14:1156494. [PMID: 37143733 PMCID: PMC10153099 DOI: 10.3389/fendo.2023.1156494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
In a precision medicine perspective, among the biomarkers potentially useful for early diagnosis of cancers, as well as to define their prognosis and eventually to identify novel and more effective therapeutic targets, there are the long non-coding RNAs (lncRNAs). The term lncRNA identifies a class of non-coding RNA molecules involved in the regulation of gene expression that intervene at the transcriptional, post-transcriptional, and epigenetic level. Metastasis is a natural evolution of some malignant tumours, frequently encountered in patients with advanced cancers. Onset and development of metastasis represents a detrimental event that worsen the patient's prognosis by profoundly influencing the quality of life and is responsible for the ominous progression of the disease. Due to the peculiar environment and the biomechanical properties, bone is a preferential site for the secondary growth of breast, prostate and lung cancers. Unfortunately, only palliative and pain therapies are currently available for patients with bone metastases, while no effective and definitive treatments are available. The understanding of pathophysiological basis of bone metastasis formation and progression, as well as the improvement in the clinical management of the patient, are central but challenging topics in basic research and clinical practice. The identification of new molecular species that may have a role as early hallmarks of the metastatic process could open the door to the definition of new, and more effective, therapeutic and diagnostic approaches. Non-coding RNAs species and, particularly, lncRNAs are promising compounds in this setting, and their study may bring to the identification of relevant processes. In this review, we highlight the role of lncRNAs as emerging molecules in mediating the formation and development of bone metastases, as possible biomarkers for cancer diagnosis and prognosis, and as therapeutic targets to counteract cancer spread.
Collapse
Affiliation(s)
- Paola Maroni
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Marta Gomarasca
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
- *Correspondence: Marta Gomarasca,
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| |
Collapse
|
138
|
Ray SK, Mukherjee S. Interaction Among Noncoding RNAs, DNA Damage Reactions, and Genomic Instability in the Hypoxic Tumor: Is it Therapeutically Exploitable Practice? Curr Mol Med 2023; 23:200-215. [PMID: 35048804 DOI: 10.2174/1566524022666220120123557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 02/08/2023]
Abstract
Hypoxia is a classical function of the tumor's microenvironment with a substantial effect on the development and therapeutic response of cancer. When put in hypoxic environments, cells undergo several biological reactions, including activation of signaling pathways that control proliferation, angiogenesis, and death. These pathways have been adapted by cancer cells to allow tumors to survive and even develop in hypoxic conditions, and poor prognosis is associated with tumor hypoxia. The most relevant transcriptional regulator in response to hypoxia, Hypoxia-inducible factor-1 alpha (HIF-1α), has been shown to modulate hypoxic gene expression and signaling transduction networks significantly. The significance of non-coding RNAs in hypoxic tumor regions has been revealed in an increasing number of studies over the past few decades. In regulating hypoxic gene expression, these hypoxia-responsive ncRNAs play pivotal roles. Hypoxia, a general characteristic of the tumor's microenvironment, significantly affects the expression of genes and is closely associated with the development of cancer. Indeed, the number of known hypoxia-associated lncRNAs has increased dramatically, demonstrating the growing role of lncRNAs in cascades and responses to hypoxia signaling. Decades of research have helped us create an image of the shift in hypoxic cancer cells' DNA repair capabilities. Emerging evidence suggests that hypoxia can trigger genetic instability in cancer cells because of microenvironmental tumor stress. Researchers have found that critical genes' expression is coordinately repressed by hypoxia within the DNA damage and repair pathways. In this study, we include an update of current knowledge on the presentation, participation, and potential clinical effect of ncRNAs in tumor hypoxia, DNA damage reactions, and genomic instability, with a specific emphasis on their unusual cascade of molecular regulation and malignant progression induced by hypoxia.
Collapse
Affiliation(s)
| | - Sukhes Mukherjee
- Department of Biochemistry All India Institute of Medical Sciences. Bhopal, Madhya Pradesh-462020. India
| |
Collapse
|
139
|
The Role of Long Noncoding RNA (lncRNAs) Biomarkers in Renal Cell Carcinoma. Int J Mol Sci 2022; 24:ijms24010643. [PMID: 36614082 PMCID: PMC9820502 DOI: 10.3390/ijms24010643] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Renal cell carcinoma is one of the common cancers whose incidence and mortality are continuously growing worldwide. Initially, this type of tumour is usually asymptomatic. Due to the lack of reliable diagnostic markers, one-third of ccRCC patients already have distant metastases at the time of diagnosis. This underlines the importance of establishing biomarkers that would enable the prediction of the disease's course and the risk of metastasis. LncRNA, which modulates genes at the epigenetic, transcriptional, and post-transcriptional levels, appears promising. The actions of lncRNA involve sponging and sequestering target miRNAs, thus affecting numerous biological processes. Studies have confirmed the involvement of RNAs in various diseases, including RCC. In this review, we focused on MALAT1 (a marker of serious pathological changes and a factor in the promotion of tumorigenesis), RCAT1 (tumour promoter in RCC), DUXAP9 (a plausible marker of localized ccRCC), TCL6 (exerting tumour-suppressive effects in renal cancer), LINC00342 (acting as an oncogene), AGAP2 Antisense1 (plausible predictor of RCC progression), DLEU2 (factor promoting tumours growth via the regulation of epithelial-mesenchymal transition), NNT-AS1 (sponge of miR-22 contributing to tumour progression), LINC00460 (favouring ccRCC development and progression) and Lnc-LSG1 (a factor that may stimulate ccRCC metastasis).
Collapse
|
140
|
Saadi W, Fatmi A, Pallardó FV, García-Giménez JL, Mena-Molla S. Long Non-Coding RNAs as Epigenetic Regulators of Immune Checkpoints in Cancer Immunity. Cancers (Basel) 2022; 15:cancers15010184. [PMID: 36612180 PMCID: PMC9819025 DOI: 10.3390/cancers15010184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/19/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022] Open
Abstract
In recent years, cancer treatment has undergone significant changes, predominantly in the shift towards immunotherapeutic strategies using immune checkpoint inhibitors. Despite the clinical efficacy of many of these inhibitors, the overall response rate remains modest, and immunotherapies for many cancers have proved ineffective, highlighting the importance of knowing the tumor microenvironment and heterogeneity of each malignancy in patients. Long non-coding RNAs (lncRNAs) have attracted increasing attention for their ability to control various biological processes by targeting different molecular pathways. Some lncRNAs have a regulatory role in immune checkpoints, suggesting they might be utilized as a target for immune checkpoint treatment. The focus of this review is to describe relevant lncRNAs and their targets and functions to understand key regulatory mechanisms that may contribute in regulating immune checkpoints. We also provide the state of the art on super-enhancers lncRNAs (selncRNAs) and circular RNAs (circRNAs), which have recently been reported as modulators of immune checkpoint molecules within the framework of human cancer. Other feasible mechanisms of interaction between lncRNAs and immune checkpoints are also reported, along with the use of miRNAs and circRNAs, in generating new tumor immune microenvironments, which can further help avoid tumor evasion.
Collapse
Affiliation(s)
- Wiam Saadi
- Department of Biology, Faculty of Nature, Life and Earth Sciences, University of Djillali Bounaama, Khemis Miliana 44225, Algeria
- Correspondence: (W.S.); (S.M.-M.)
| | - Ahlam Fatmi
- INCLIVA Health Research Institute, INCLIVA, 46010 Valencia, Spain
| | - Federico V. Pallardó
- INCLIVA Health Research Institute, INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - José Luis García-Giménez
- INCLIVA Health Research Institute, INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - Salvador Mena-Molla
- INCLIVA Health Research Institute, INCLIVA, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Correspondence: (W.S.); (S.M.-M.)
| |
Collapse
|
141
|
Abdollahi S, Hasanpour Ardekanizadeh N, Poorhosseini SM, Gholamalizadeh M, Roumi Z, Goodarzi MO, Doaei S. Unraveling the Complex Interactions between the Fat Mass and Obesity-Associated (FTO) Gene, Lifestyle, and Cancer. Adv Nutr 2022; 13:2406-2419. [PMID: 36104156 PMCID: PMC9776650 DOI: 10.1093/advances/nmac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/28/2022] [Accepted: 09/12/2022] [Indexed: 01/29/2023] Open
Abstract
Carcinogenesis is a complicated process and originates from genetic, epigenetic, and environmental factors. Recent studies have reported a potential critical role for the fat mass and obesity-associated (FTO) gene in carcinogenesis through different signaling pathways such as mRNA N6-methyladenosine (m6A) demethylation. The most common internal modification in mammalian mRNA is the m6A RNA methylation that has significant biological functioning through regulation of cancer-related cellular processes. Some environmental factors, like physical activity and dietary intake, may influence signaling pathways engaged in carcinogenesis, through regulating FTO gene expression. In addition, people with FTO gene polymorphisms may be differently influenced by cancer risk factors, for example, FTO risk allele carriers may need a higher intake of nutrients to prevent cancer than others. In order to obtain a deeper viewpoint of the FTO, lifestyle, and cancer-related pathway interactions, this review aims to discuss upstream and downstream pathways associated with the FTO gene and cancer. The present study discusses the possible mechanisms of interaction of the FTO gene with various cancers and provides a comprehensive picture of the lifestyle factors affecting the FTO gene as well as the possible downstream pathways that lead to the effect of the FTO gene on cancer.
Collapse
Affiliation(s)
- Sepideh Abdollahi
- Department of Medical Genetics, School of Medicine, Tehran University of
Medical Sciences, Tehran, Iran
| | - Naeemeh Hasanpour Ardekanizadeh
- Department of Clinical Nutrition, School of Nutrition and Food Sciences,
Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maryam Gholamalizadeh
- Cancer Research Center, Shahid Beheshti University of Medical
Sciences, Tehran, Iran
| | - Zahra Roumi
- Department of Nutrition, Science and Research Branch, Islamic Azad
University, Tehran, Iran
| | - Mark O Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine,
Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Saeid Doaei
- Department of Community Nutrition, School of Nutrition and Food Sciences,
Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
142
|
Proteome-Wide Identification of RNA-Dependent Proteins in Lung Cancer Cells. Cancers (Basel) 2022; 14:cancers14246109. [PMID: 36551595 PMCID: PMC9776756 DOI: 10.3390/cancers14246109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Following the concept of RNA dependence and exploiting its application in the R-DeeP screening approach, we have identified RNA-dependent proteins in A549 lung adenocarcinoma cells. RNA-dependent proteins are defined as proteins whose interactome depends on RNA and thus entails RNA-binding proteins (RBPs) as well as proteins in ribonucleoprotein complexes (RNPs) without direct RNA interaction. With this proteome-wide technique based on sucrose density gradient ultracentrifugation and fractionation followed by quantitative mass spectrometry and bioinformatic analysis, we have identified 1189 RNA-dependent proteins including 170 proteins which had never been linked to RNA before. R-DeeP provides quantitative information on the fraction of a protein being RNA-dependent as well as it allows the reconstruction of protein complexes based on co-segregation. The RNA dependence of three newly identified RNA-dependent proteins, DOCK5, ELMO2, also known as CED12A, and ABRAXAS1, also known as CCDC98, was validated using western blot analysis, and the direct RNA interaction was verified by iCLIP2 for the migration-related protein DOCK5 and the mitosis-related protein ABRAXAS1. The R-DeeP 2.0 database provides proteome-wide and cell line-specific information from A549 and HeLa S3 cells on proteins and their RNA dependence to contribute to understanding the functional role of RNA and RNA-binding proteins in cancer cells.
Collapse
|
143
|
Bizet M, Defrance M, Calonne E, Bontempi G, Sotiriou C, Fuks F, Jeschke J. Improving Infinium MethylationEPIC data processing: re-annotation of enhancers and long noncoding RNA genes and benchmarking of normalization methods. Epigenetics 2022; 17:2434-2454. [DOI: 10.1080/15592294.2022.2135201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Martin Bizet
- Laboratory of Cancer Epigenetics, Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Matthieu Defrance
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Emilie Calonne
- Laboratory of Cancer Epigenetics, Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Gianluca Bontempi
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - François Fuks
- Laboratory of Cancer Epigenetics, Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institut Jules Bordet, ULB, Brussels, Belgium
| | - Jana Jeschke
- Laboratory of Cancer Epigenetics, Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institut Jules Bordet, ULB, Brussels, Belgium
| |
Collapse
|
144
|
Wang J, Chen Y, Wang Q, Xu H, Jiang Q, Wang M, Li S, Chen Y, Wu C, Yu P, Xiao Z, Chen W, Lan Q. LncRNA SPRY4‐IT1 facilitates cell proliferation and angiogenesis of glioma via the miR‐101‐3p/EZH2/VEGFA signaling axis. Cancer Med 2022; 12:7309-7326. [PMID: 36479622 PMCID: PMC10067065 DOI: 10.1002/cam4.5517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/16/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND SPRY4-IT1 (SPRY4 intronic transcript 1) is a long non-coding RNA (lncRNA) that has been identified as a novel oncogene in various cancers, including glioma. However, its function and underlying mechanism in glioma remain largely unclear. Here, we investigated the role of SPRY4-IT1 in the development of glioma and its underlying mechanism. METHODS Bioinformatics analysis and RT-qPCR assay were used to examine the expression of SPRY4-IT1 in glioma tissues. The CCK-8, EdU, and Xenograft tumor assays wereperformed to assess the proliferation effect of glioma cells. The tube forming assay and Chick Embryo Chorioallantoic Membrane (CAM) assay were conducted to detect the angiogenesis effect of HUVECs. RNA-sequencing, western blotting, RT-qPCR, ELISA, and IHC assays were employed to verify the regulatory mechanism of the SPRY4-IT1/ miR-101-3p/EZH2/VEGFA axis. RESULTS Analysis of the TCGA dataset and data from our own cohort demonstrated that SPRY4-IT1 was overexpressed in patients with glioma, and high SPRY4-IT1 expression correlated with poor prognosis. In vitro and in vivo experiments showed that SPRY4-IT1 promoted the proliferation of glioma cells. RNA sequencing and Gene Ontology (GO) enrichment analysis indicated significant enrichment of angiogenesis. HUVEC tube forming assay and CAM assay confirmed that SPRY4-IT1 could induce angiogenesis of glioma cells in vitro and in vivo. Mechanistically, SPRY4-IT1 upregulated EZH2 expression by sponging miR-101-3p to induce VEGFA expression in glioma cells. Moreover, SPRY4-IT1 activated the VEGFR2/AKT/ERK1/2 pathway in HUVECs mediated by glioma cells. Rescue experiments further confirmed that SPRY4-IT1 promoted glioma cell proliferation and angiogenesis via the miR-101-3p/EZH2/VEGFA signaling axis. CONCLUSIONS Our findings provide compelling evidence showing that SPRY4-IT1 upregulated EZH2 to induce VEGFA by sponging miR-101-3p, thereby achieving cell proliferation and angiogenesis in glioma. Therefore, targeting SPRY4-IT1/miR-101-3p/EZH2/VEGFA axis may improve the outcomes of patients with glioma.
Collapse
Affiliation(s)
- Ji Wang
- Department of Neurosurgery The Second Affiliated Hospital of Soochow University Suzhou China
| | - Yanming Chen
- Department of Neurosurgery The Second Affiliated Hospital of Soochow University Suzhou China
| | - Qing Wang
- Department of Neurosurgery The Second Affiliated Hospital of Soochow University Suzhou China
| | - Hui Xu
- Department of Neurosurgery The Second Affiliated Hospital of Soochow University Suzhou China
| | - Qianqian Jiang
- Department of Neurosurgery The Second Affiliated Hospital of Soochow University Suzhou China
| | - Man Wang
- Department of Neurosurgery The Second Affiliated Hospital of Soochow University Suzhou China
| | - Shenggang Li
- Department of Neurosurgery The Second Affiliated Hospital of Soochow University Suzhou China
| | - Ying Chen
- Department of Neurosurgery The Second Affiliated Hospital of Soochow University Suzhou China
| | - Chunwang Wu
- Department of Neurosurgery The Second Affiliated Hospital of Soochow University Suzhou China
| | - Pei Yu
- Department of Neurosurgery The Second Affiliated Hospital of Soochow University Suzhou China
| | - Zongyu Xiao
- Department of Neurosurgery Dushu Lake Hospital Affiliated to Soochow University Suzhou China
| | - Wenjin Chen
- Department of Neurosurgery Peking University Shenzhen Hospital Shenzhen China
| | - Qing Lan
- Department of Neurosurgery The Second Affiliated Hospital of Soochow University Suzhou China
| |
Collapse
|
145
|
Deng Y, Xiao M, Wan AH, Li J, Sun L, Liang H, Wang QP, Yin S, Bu X, Wan G. RNA and RNA Derivatives: Light and Dark Sides in Cancer Immunotherapy. Antioxid Redox Signal 2022; 37:1266-1290. [PMID: 35369726 DOI: 10.1089/ars.2022.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: Immunotherapy, which utilizes the patient's immune system to fight tumor cells, has been approved for the treatment of some types of advanced cancer. Recent Advances: The complexity and diversity of tumor immunity are responsible for the varying response rates toward current immunotherapy strategies and highlight the importance of exploring regulators in tumor immunotherapy. Several genetic factors have proved to be critical regulators of tumor immunotherapy. RNAs, including messenger RNAs and non-coding RNAs, play vital and diverse roles in tumorigenesis, metastasis, drug resistance, and immunotherapy response. RNA modifications, including N6-methyladenosine methylation, are involved in tumor immunity. Critical Issues: A critical issue is the lack of summary of the regulatory RNA molecules and their derivatives in mediating immune activities in human cancers that could provide potential applications for tumor immunotherapeutic strategy. Future Directions: This review summarizes the dual roles (the light and dark sides) of RNA and its derivatives in tumor immunotherapy and discusses the development of RNA-based therapies as novel immunotherapeutic strategies for cancer treatment. Antioxid. Redox Signal. 37, 1266-1290.
Collapse
Affiliation(s)
- Yuan Deng
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Min Xiao
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Arabella H Wan
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiarui Li
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Lei Sun
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Heng Liang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Qiao-Ping Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Sheng Yin
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xianzhang Bu
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Guohui Wan
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
146
|
Long noncoding RNA CLAN promotes lymphangiogenesis in the colorectal carcinoma. Virchows Arch 2022; 481:847-852. [PMID: 36301367 DOI: 10.1007/s00428-022-03439-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 12/14/2022]
Abstract
Metastasis is the main cause of colorectal cancer (CRC)-related death and lymph node plays a vital role in this process. Long noncoding RNAs (lncRNAs) are emerging as an important factor of biological progress in cancers. However, lncRNAs related to CRC metastasis was rarely reported.CLAN expression data of tumor tissues and normal tissues were obtained from GEPIA database and 23 paired tumor and normal samples of patients. CLAN expression of 85 patients was carried out with RNA extracted from FFPE samples and quantified with qRT-PCR. Patients' clinical features were collected from department of Pathology of the Affiliated Hospital of Southwest Medical University. Immunohistochemistry staining was used to detect the metastasis-related proteins.CLAN was highly expressed in tumor tissues. And the expression level was not correlated with age, gender, differentiation, and location of CRC patients. Also, CLAN expression did not correlated with budding, LVI, and TILs. However, CLAN expression was strongly associated with lymph node metastasis and higher TNM stage. CLAN changed the lymphatic vessel density by promoting lymphangiogenesis but CLAN did not affect the blood vessel density.CLAN was a unique lncRNA that promoted lymphangiogenesis to accelerate CRC metastasis. CLAN might play a unique role in tumor early dissemination through lymphatic vessel.
Collapse
|
147
|
Han X, Tian R, Wang C, Li Y, Song X. CircRNAs: Roles in regulating head and neck squamous cell carcinoma. Front Oncol 2022; 12:1026073. [PMID: 36483049 PMCID: PMC9723173 DOI: 10.3389/fonc.2022.1026073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/31/2022] [Indexed: 09/15/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), the most common head and neck malignant tumor, with only monotherapy, is characterized by poor prognosis, and low 5-year survival rate. Due to the lack of therapeutic targets, the targeted drugs for HNSCC are rare. Therefore, exploring the regulation mechanism of HNSCC and identifying effective therapeutic targets will be beneficial to its treatment of. Circular RNA (CircRNA) is a class of RNA molecules with a circular structure, which is widely expressed in human body. CircRNAs regulate gene expression by exerting the function as a miRNA sponge, thereby mediating the occurrence and development of HNSCC cell proliferation, apoptosis, migration, invasion, and other processes. In addition, circRNAs are also involved in the regulation of tumor sensitivity to chemical drugs and other biological functions. In this review, we systematically listed the functions of circRNAs and explored the regulatory mechanisms of circRNAs in HNSCC from the aspects of tumor growth, cell death, angiogenesis, tumor invasion and metastasis, tumor stem cell regulation, tumor drug resistance, immune escape, and tumor microenvironment. It will assist us in discovering new diagnostic markers and therapeutic targets, while encourage new ideas for the diagnosis and treatment of HNSCC.
Collapse
Affiliation(s)
- Xiao Han
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Ruxian Tian
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Cai Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Yumei Li
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Xicheng Song
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| |
Collapse
|
148
|
Dey Ghosh R, Guha Majumder S. Circulating Long Non-Coding RNAs Could Be the Potential Prognostic Biomarker for Liquid Biopsy for the Clinical Management of Oral Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:5590. [PMID: 36428681 PMCID: PMC9688117 DOI: 10.3390/cancers14225590] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Long non-coding RNA (lncRNA) have little or no coding potential. These transcripts are longer than 200 nucleotides. Since lncRNAs are master regulators of almost all biological processes, recent evidence proves that aberrantly expressed lncRNAs are pathogenic for oral squamous cell carcinoma (OSCC) and other diseases. LncRNAs influence chromatin modifications, transcriptional modifications, post-transcriptional modifications, genomic imprinting, cell proliferation, invasion, metastasis, and apoptosis. Consequently, they have an impact on the disease transformation, progression, and morbidity in OSCC. Therefore, circulating lncRNAs could be the potential cancer biomarker for the better clinical management (diagnosis, prognosis, and monitoring) of OSCC to provide advanced treatment strategies and clinical decisions. In this review, we report and discuss the recent understandings and perceptions of dysregulated lncRNAs with a focus on their clinical significance in OSCC-disease monitoring and treatment. Evidence clearly indicates that a specific lncRNA expression signature could act as an indicator for the early prediction of diagnosis and prognosis for the initiation, progression, recurrence, metastasis and other clinical prognostic-factors (overall survival, disease-free survival, etc.) in OSCC. The present review demonstrates the current knowledge that all potential lncRNA expression signatures are molecular biomarkers for the early prediction of prognosis in OSCC. Finally, the review provides information about the clinical significance, challenges and limitations of the clinical usage of circulating lncRNAs in a liquid biopsy method in early, pre-symptomatic, sub-clinical, accurate OSCC prognostication. More studies on lncRNA are required to unveil the biology of the inherent mechanisms involved in the process of the development of differential prognostic outcomes in OSCC.
Collapse
Affiliation(s)
- Ruma Dey Ghosh
- Molecular Biology Department, Netaji Subhas Chandra Bose Cancer Research Institute, 3081 Nayabad, Kolkata 700094, India
| | | |
Collapse
|
149
|
Guo P, Wang P, Liu L, Wang P, Qu Z, Yu Z, Liu N. A novel
N7
‐methylguanosine‐related long noncoding
RNAs
signature for predicting prognosis and immune microenvironment in gastric cancer patients. PRECISION MEDICAL SCIENCES 2022. [DOI: 10.1002/prm2.12087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Peisen Guo
- College of Public Health Zhengzhou University Zhengzhou People's Republic of China
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Jinming Avenue North Section Henan University Kaifeng People's Republic of China
| | - Panpan Wang
- College of Public Health Zhengzhou University Zhengzhou People's Republic of China
| | - Limin Liu
- College of Public Health Zhengzhou University Zhengzhou People's Republic of China
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Jinming Avenue North Section Henan University Kaifeng People's Republic of China
| | - Peixi Wang
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Jinming Avenue North Section Henan University Kaifeng People's Republic of China
| | - Zhi Qu
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Jinming Avenue North Section Henan University Kaifeng People's Republic of China
| | - Zengli Yu
- College of Public Health Zhengzhou University Zhengzhou People's Republic of China
| | - Nan Liu
- College of Public Health Zhengzhou University Zhengzhou People's Republic of China
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Jinming Avenue North Section Henan University Kaifeng People's Republic of China
- Institute of Environment and Health, South China Hospital, Health Science Center Shenzhen University Shenzhen People's Republic of China
| |
Collapse
|
150
|
Kerachian MA, Azghandi M. Identification of long non-coding RNA using single nucleotide epimutation analysis: a novel gene discovery approach. Cancer Cell Int 2022; 22:337. [PMID: 36333783 PMCID: PMC9636742 DOI: 10.1186/s12935-022-02752-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are involved in a variety of mechanisms related to tumorigenesis by functioning as oncogenes or tumor-suppressors or even harboring oncogenic and tumor-suppressing effects; representing a new class of cancer biomarkers and therapeutic targets. It is predicted that more than 35,000 ncRNA especially lncRNA are positioned at the intergenic regions of the human genome. Emerging research indicates that one of the key pathways controlling lncRNA expression and tissue specificity is epigenetic regulation. METHODS In the current article, a novel approach for lncRNA discovery based on the intergenic position of most lncRNAs and a single CpG site methylation level representing epigenetic characteristics has been suggested. RESULTS Using this method, a novel antisense lncRNA named LINC02892 presenting three transcripts without the capacity of coding a protein was found exhibiting nuclear, cytoplasmic, and exosome distributions. CONCLUSION The current discovery strategy could be applied to identify novel non-coding RNAs influenced by methylation aberrations.
Collapse
Affiliation(s)
- Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran.
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON, Canada.
| | - Marjan Azghandi
- Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|