101
|
A Prognostic Cuproptosis-Related LncRNA Signature for Colon Adenocarcinoma. JOURNAL OF ONCOLOGY 2023; 2023:5925935. [PMID: 36844874 PMCID: PMC9957631 DOI: 10.1155/2023/5925935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/13/2022] [Accepted: 11/24/2022] [Indexed: 02/19/2023]
Abstract
Background Cuproptosis, a recently discovered form of cell death, is caused by copper levels exceeding homeostasis thresholds. Although Cu has a potential role in colon adenocarcinoma (COAD), its role in the development of COAD remains unclear. Methods In this study, 426 patients with COAD were extracted from the Cancer Genome Atlas (TCGA) database. The Pearson correlation algorithm was used to identify cuproptosis-related lncRNAs. Using the univariate Cox regression analysis, the least absolute shrinkage and selection operator (LASSO) was used to select cuproptosis-related lncRNAs associated with COAD overall survival (OS). A risk model was established based on the multivariate Cox regression analysis. A nomogram model was used to evaluate the prognostic signature based on the risk model. Finally, mutational burden and sensitivity analyses of chemotherapy drugs were performed for COAD patients in the low- and high-risk groups. Result Ten cuproptosis-related lncRNAs were identified and a novel risk model was constructed. A signature based on ten cuproptosis-related lncRNAs was an independent prognostic predictor for COAD. Mutational burden analysis suggested that patients with high-risk scores had higher mutation frequency and shorter survival. Conclusion Constructing a risk model based on the ten cuproptosis-related lncRNAs could accurately predict the prognosis of COAD patients, providing a fresh perspective for future research on COAD.
Collapse
|
102
|
The Gut Microbiota Metabolite Urolithin B Prevents Colorectal Carcinogenesis by Remodeling Microbiota and PD-L1/HLA-B. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:6480848. [PMID: 36778211 PMCID: PMC9908333 DOI: 10.1155/2023/6480848] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 02/05/2023]
Abstract
Colorectal cancer has risen to the third occurring cancer in the world. Fluorouracil (5-Fu), oxaliplatin, and cisplatin are the most effective chemotherapeutic agents for clinical chemotherapy. Nevertheless, due to chemotherapeutic drug resistance, the survival rate of patients with CRC remains very low. In this study, we used the inflammation-induced or mutation-family-inherited murine CRC models to study the anticancer and immunotherapy effects of urolithin B (UB), the final metabolite of polyphenols in the gastrointestinal tract. The label-free proteomics analysis and the gene ontology (GO) classifications were used to test and analyze the proteins affected by UB. And 16S rDNA sequencing and flow cytometry were utilized to uncover gut microbiome composition and immune defense improved by UB administration. The results indicated that urolithin B prevents colorectal carcinogenesis by remodeling gut microbial and tumor immune microenvironments, such as HLA-B, NK cells, regulatory T cells, and γδ TCR cells, and decreasing the PD-L1. The combination of urolithin B with first-line therapeutic drugs improved the colorectal intestinal hematochezia by shaping gut microbiota, providing a strategy for the treatment of immunotherapy treatment for CRC treatments. UB combined with anti-PD-1 antibody could inhibit the growth of colon cancer. Urolithin B may thus contribute to anticancer treatments and provide a high immune response microenvironment for CRC patients' further immunotherapy.
Collapse
|
103
|
Ma SC, Zhang JQ, Yan TH, Miao MX, Cao YM, Cao YB, Zhang LC, Li L. Novel strategies to reverse chemoresistance in colorectal cancer. Cancer Med 2023. [PMID: 36645225 DOI: 10.1002/cam4.5594] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 01/17/2023] Open
Abstract
Colorectal cancer (CRC) is a common gastrointestinal malignancy with high morbidity and fatality. Chemotherapy, as traditional therapy for CRC, has exerted well antitumor effect and greatly improved the survival of CRC patients. Nevertheless, chemoresistance is one of the major problems during chemotherapy for CRC and significantly limits the efficacy of the treatment and influences the prognosis of patients. To overcome chemoresistance in CRC, many strategies are being investigated. Here, we review the common and novel measures to combat the resistance, including drug repurposing (nonsteroidal anti-inflammatory drugs, metformin, dichloroacetate, enalapril, ivermectin, bazedoxifene, melatonin, and S-adenosylmethionine), gene therapy (ribozymes, RNAi, CRISPR/Cas9, epigenetic therapy, antisense oligonucleotides, and noncoding RNAs), protein inhibitor (EFGR inhibitor, S1PR2 inhibitor, and DNA methyltransferase inhibitor), natural herbal compounds (polyphenols, terpenoids, quinones, alkaloids, and sterols), new drug delivery system (nanocarriers, liposomes, exosomes, and hydrogels), and combination therapy. These common or novel strategies for the reversal of chemoresistance promise to improve the treatment of CRC.
Collapse
Affiliation(s)
- Shu-Chang Ma
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, China
| | - Jia-Qi Zhang
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tian-Hua Yan
- Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, China
| | - Ming-Xing Miao
- Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, China
| | - Ye-Min Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Bing Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li-Chao Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Ling Li
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
104
|
Wu S, Zhao K, Wang J, Liu N, Nie K, Qi L, Xia L. Recent advances of tanshinone in regulating autophagy for medicinal research. Front Pharmacol 2023; 13:1059360. [PMID: 36712689 PMCID: PMC9877309 DOI: 10.3389/fphar.2022.1059360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
Initially described as an ancient and highly conserved catabolic biofunction, autophagy plays a significant role in disease pathogenesis and progression. As the bioactive ingredient of Salvia miltiorrhiza, tanshinone has recently shown profound effects in alleviating and treating various diseases by regulating autophagy. However, compared to the remarkable achievements in the known pharmacological effects of this traditional Chinese medicine, there is a lack of a concise and comprehensive review deciphering the mechanism by which tanshinone regulates autophagy for medicinal research. In this context, we concisely review the advances of tanshinone in regulating autophagy for medicinal research, including human cancer, the nervous system, and cardiovascular diseases. The pharmacological effects of tanshinone targeting autophagy involve the regulation of autophagy-related proteins, such as Beclin-1, LC3-II, P62, ULK1, Bax, ATG3, ATG5, ATG7, ATG9, and ATG12; the regulation of the PI3K/Akt/mTOR, MEK/ERK/mTOR, Beclin-1-related, and AMPK-related signaling pathways; the accumulation of reactive oxygen species (ROS); and the activation of AMPK. Notably, we found that tanshinone played a dual role in human cancers in an autophagic manner, which may provide a new avenue for potential clinical application. In brief, these findings on autophagic tanshinone and its derivatives provide a new clue for expediting medicinal research related to tanshinone compounds and autophagy.
Collapse
Affiliation(s)
- Sha Wu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kui Zhao
- College of Materials Science and Engineering, Southwest Forestry University, Kunming, Yunnan, China
| | - Jie Wang
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nannan Liu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kaidi Nie
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luming Qi
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lina Xia
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
105
|
Dong L, He J, Luo L, Wang K. Targeting the Interplay of Autophagy and ROS for Cancer Therapy: An Updated Overview on Phytochemicals. Pharmaceuticals (Basel) 2023; 16:ph16010092. [PMID: 36678588 PMCID: PMC9865312 DOI: 10.3390/ph16010092] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Autophagy is an evolutionarily conserved self-degradation system that recycles cellular components and damaged organelles, which is critical for the maintenance of cellular homeostasis. Intracellular reactive oxygen species (ROS) are short-lived molecules containing unpaired electrons that are formed by the partial reduction of molecular oxygen. It is widely known that autophagy and ROS can regulate each other to influence the progression of cancer. Recently, due to the wide potent anti-cancer effects with minimal side effects, phytochemicals, especially those that can modulate ROS and autophagy, have attracted great interest of researchers. In this review, we afford an overview of the complex regulatory relationship between autophagy and ROS in cancer, with an emphasis on phytochemicals that regulate ROS and autophagy for cancer therapy. We also discuss the effects of ROS/autophagy inhibitors on the anti-cancer effects of phytochemicals, and the challenges associated with harnessing the regulation potential on ROS and autophagy of phytochemicals for cancer therapy.
Collapse
Affiliation(s)
- Lixia Dong
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Jingqiu He
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Li Luo
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, China
- Correspondence: (L.L.); (K.W.)
| | - Kui Wang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
- Correspondence: (L.L.); (K.W.)
| |
Collapse
|
106
|
Cui WL, Guo DX, Wang N, Wang ZF, Ji JB, Wang X, Yang CG, Lin YQ, Wang SQ. Identification of chemosensitizing agents of colorectal cancer in Rauvolfia vomitoria using an NMR-based chemometric approach. Front Chem 2023; 10:1069591. [PMID: 36688051 PMCID: PMC9852911 DOI: 10.3389/fchem.2022.1069591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Searching for new adjuvants of conventional chemotherapeutic approaches against colorectal cancer cells is extremely urgent. In current research, a non-targeted analytical approach was established by combining proton nuclear magnetic resonance spectroscopy with a chemometrics data mining tool to identify chemosensitizing agents from Rauvolfia vomitoria. This approach enabled the identification of potential active constituents in the initial fractionation process and provided their structural information. This strategy was validated by its application to Rauvolfia vomitoria extract exhibiting chemosensitizing activity on 5-fluorouracil against colorectal cancer cells. After the workflow, the biochemometrics analysis showed that at least 15 signals (Variable influence on projection (VIP) > 1) could have contributions in the differentiation of various fractions. Through systematic literature and database searches, we found that the most active fraction (fraction 7) exhibited the highest presence of sabazin-type and armaniline-type alkaloids, which were potential chemosensitizers as previously reported. To validate the results of the strategy, the effect of 5-FU and compounds isolated from fraction seven incubation on HCT-8 and LoVo cell vialibilty were evaluated. These results evidenced that compound β-carboline (3), 1-methyl-β-carboline (4), and lochnerine (6) could enhance the cytotoxicity of 5-fluorouracil against to Colorectal cancer cells. Besides, 21 compounds including two new compounds were isolated from Rauvolfia vomitoria. The experimental results verify the reliability of the method, and this approach provides a new and efficient tool to overcome some of the bottlenecks in natural products drug discovery.
Collapse
Affiliation(s)
- Wei-Liang Cui
- Shandong Institute for Food and Drug Control, Jinan, Shandong, China
| | - Dong-Xiao Guo
- Shandong Institute for Food and Drug Control, Jinan, Shandong, China
| | - Ning Wang
- Key Laboratory of Chemical Biology of Nature Products (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhi-Fan Wang
- Key Laboratory of Chemical Biology of Nature Products (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jian-Bo Ji
- Key Laboratory of Chemical Biology of Nature Products (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao Wang
- Key Laboratory of Chemical Biology of Nature Products (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chun-Guo Yang
- Shandong Yifang Pharmaceutical Co., Ltd., Jinan, China
| | - Yong-Qiang Lin
- Shandong Institute for Food and Drug Control, Jinan, Shandong, China
- NMPA Key Laboratory for Quality Evaluation of Gelatin Products, Jinan, China
- Shandong Engineering Research Center for Generic Technologies of Traditional Chinese Medicine Formula Granules, Jinan, China
| | - Shu-Qi Wang
- Key Laboratory of Chemical Biology of Nature Products (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
107
|
Chandra F, Tania TF, Nurcahyanti ADR. Bixin and Fuxoxanthin Alone and in Combination with Cisplatin Regulate ABCC1 and ABCC2 Transcription in A549 Lung Cancer Cells. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2023; 15:15-20. [PMID: 37313537 PMCID: PMC10259734 DOI: 10.4103/jpbs.jpbs_50_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/04/2023] [Accepted: 02/16/2023] [Indexed: 06/15/2023] Open
Abstract
Background The ATP-Binding Cassette (ABC) transporter has long been studied to confer drug resistance in human tumors and play important role in metabolic processes and cellular signaling. The overexpression of ABCB1, ABCC1, ABCC2, ABCC3, and ABCG2 leads to decreased sensitivity of lung cancer to cisplatin. At the transcription level, the expression of ABC transporters is highly regulated and requires the complex interplay of factors involved in differentiation and development, cell survival and apoptosis upon intrinsic and environmental stress. The p53 regulation of drug-resistance genes is also complex yet not well understood. Previously, we demonstrated the synergistic interaction between bixin or fucoxanthin with cisplatin in A549 lung cancer cells. Objectives Current study aims to identify whether carotenoids enhancing therapeutic effect of Cisplatin due to the ability to reverse drug resistance associated proteins, such as ABC transporter and regulating the tumor suppressor corresponding gene, p53. Methods Real-Time Quantitative-Polymerase Chain Reaction (RT-qPCR) was performed to estimate the expression level of ABCC1 and ABCC2, and p53 of A549 cell lines in response to carotenoids alone and in combination with cisplatin. Results and Conclusion The administration of bixin or fucoxanthin decreases the expression of ABCC1 and ABCC2. Both carotenoids, either alone or in combination with cisplatin, upregulated p53 gene expression indicating the mechanism of proliferation inhibition and apoptosis occurs via the p53 caspase-independent pathway.
Collapse
Affiliation(s)
- Ferdy Chandra
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Teresa F. Tania
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Agustina D. R. Nurcahyanti
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| |
Collapse
|
108
|
Shen X, Zuo X, Liang L, Wang L, Luo B. Integrating machine learning and single-cell trajectories to analyze T-cell exhaustion to predict prognosis and immunotherapy in colon cancer patients. Front Immunol 2023; 14:1162843. [PMID: 37207222 PMCID: PMC10191250 DOI: 10.3389/fimmu.2023.1162843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/13/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction The incidence of colon adenocarcinoma (COAD) has recently increased, and patients with advanced COAD have a poor prognosis due to treatment resistance. Combining conventional treatment with targeted therapy and immunotherapy has shown unexpectedly positive results in improving the prognosis of patients with COAD. More study is needed to determine the prognosis for patients with COAD and establish the appropriate course of treatment. Methods This study aimed to explore the trajectory of T-cell exhaustion in COAD to predict the overall survival and treatment outcome of COAD patients. Clinical data were derived from the TCGA-COAD cohort through "UCSC", as well as the whole genome data. Prognostic genes driving T-cell trajectory differentiation were identified on the basis of single-cell trajectories and univariate Cox regression. Subsequently, T-cell exhaustion score (TES) was created by iterative LASSO regression. The potential biological logic associated with TES was explored through functional analysis, immune microenvironment assessment, immunotherapy response prediction, and in vitro experiments. Results Data showed that patients with significant TES had fewer favorable outcomes. Expression, proliferation, and invasion of COAD cells treated with TXK siRNA were also examined by cellular experiments. Both univariate and multivariate Cox regression indicated that TES was an independent prognostic factor in patients with COAD; in addition, subgroup analysis supported this finding. Functional assay revealed that immune response and cytotoxicity pathways are associated with TES, as the subgroup with low TES has an active immune microenvironment. Furthermore, patients with low TES responded better to chemotherapy and immunotherapy. Conclusion In this study, we systematically explored the T-cell exhaustion trajectory in COAD and developed a TES model to assess prognosis and provide guidelines for the treatment decision. This discovery gave rise to a fresh concept for novel therapeutic procedures for the clinical treatment of COAD.
Collapse
Affiliation(s)
- Xiaogang Shen
- Department of Gastrointestinal Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Xiaofei Zuo
- Department of Gastrointestinal Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Liang Liang
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- Cancer Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Wang
- Department of Gastrointestinal Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- *Correspondence: Bin Luo, ; Lin Wang,
| | - Bin Luo
- Department of Gastrointestinal Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- *Correspondence: Bin Luo, ; Lin Wang,
| |
Collapse
|
109
|
Murugaiyaa Pandiyan S, Shanmugaraj P, Manoharan JP, Vidyalakshmi S. A network pharmacological approach to reveal the multidrug resistance reversal and associated mechanisms of acetogenins against colorectal cancer. J Biomol Struct Dyn 2022; 40:13527-13546. [PMID: 34669561 DOI: 10.1080/07391102.2021.1990130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Multidrug Resistance (MDR) in tumors is caused by the over-expression of ATP Binding Cassette transporter proteins such as Multidrug Resistance Protein 1 and Breast Cancer Resistance Protein 1. This in silico study focuses on identifying a MDR inhibitor among acetogenins (AGEs) of Annona muricata and also aims at predicting colorectal cancer (CRC) core targets of AGEs through a network pharmacological approach. Twenty-four AGEs were initially screened for their ADME properties. Molecular interaction studies were performed with the two proteins MRP1 and BCRP1. As the structure of MRP1 was not available, an inward-facing conformation of MRP1 was modeled. A Protein-protein interaction network was constructed for the correlating targets of CRC. KEGG pathway and Gene Ontology analysis were performed for the predicted CRC targets. We identified four lead AGEs: Muricatocin B, Annonacinone, Annonacin A and Annomuricin E having a higher binding affinity towards MDR proteins. MD simulation studies performed with the three lead AGEs and the MDR proteins showed that MRP1(DBD): Annomuricin E complex was stable throughout the simulation. Our analysis revealed ABCG2, ERBB2, STAT3, AR, SRC and ABCC1 as CRC targets of the lead molecules. The top 10 signaling pathways and functions of correlative CRC targets were also predicted. We conclude that the identified lead molecules might act as competitive inhibitors for reversing MDR in CRC. Additionally, network pharmacological studies established the correlative CRC targets and their mechanisms of action. Further experimental studies are needed to validate our findings. Communicated by Ramaswamy H. Sarma.
Collapse
|
110
|
Liu Z, Xu Y, Liu X, Wang B. PCDH7 knockdown potentiates colon cancer cells to chemotherapy via inducing ferroptosis and changes in autophagy through restraining MEK1/2/ERK/c-Fos axis. Biochem Cell Biol 2022; 100:445-457. [PMID: 35926236 DOI: 10.1139/bcb-2021-0513] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Chemotherapy is a commonly utilized treatment strategy for colon cancer, a prevalent malignancy. The study intends to probe the function and mechanism of protocadherin 7 (PCDH7) in colon cancer. Gain or loss of functional assays of PCDH7 was performed. MTT and colony formation assay monitored cell proliferation. Transwell measured migration and invasion. Real-time quantitative polymerase chain reaction and western blot verified the profiles of PCDH7 and the MEK1/2/ERK/c-FOS pathway. Western blot was implemented to confirm the profiles of PP1α, MLC2, and p-MLC2 for evaluating the impact of PCDH7 on homotypic cells in cell (hocic) structures. Further, an in-vivo nude mouse model was engineered to figure out the function and mechanism of PCDH7 in tumor cell growth. As indicated by the data, PCDH7 knockdown boosted the cells' sensitivity to chemotherapy. PCDH7 overexpression facilitated their proliferation and invasion, altered autophagy, induced ferroptosis and hocic, and initiated the profile of the MEK1/2/ERK/c-FOS pathway. MEK1/2/ERK inhibition impaired the inhibitory impact of PCDH7 on colon cancer cells' chemotherapy sensitivity and dampened its pro-cancer function in the cells. In-vivo experiments displayed that PCDH7 overexpression stepped up tumor growth and pulmonary metastasis in colon cancer cells. All in all, the research has discovered that PCDH7 knockdown affects autophagy and induces ferroptosis, hence strengthening colon cancer cells' sensitivity to chemotherapy by repressing the MEK1/2/ERK/c-FOS axis.
Collapse
Affiliation(s)
- Zhendong Liu
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan, China
| | - Yuyang Xu
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan, China
| | - Xin Liu
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan, China
| | - Baochun Wang
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan, China
| |
Collapse
|
111
|
Yan K, Wang Y, Yan B, Ma Y, Yang Y, Dai S, Fang F, Wu S, Wang X, Wang H, Yang D, Di L, Cheng H, Liu J, Liu S. Establishment of X-ray diffraction fingerprints for identification of different configuration Realgar and its antitumor activity. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
112
|
Islam MR, Akash S, Rahman MM, Nowrin FT, Akter T, Shohag S, Rauf A, Aljohani AS, Simal-Gandara J. Colon cancer and colorectal cancer: Prevention and treatment by potential natural products. Chem Biol Interact 2022; 368:110170. [DOI: 10.1016/j.cbi.2022.110170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/24/2022] [Accepted: 09/03/2022] [Indexed: 11/29/2022]
|
113
|
Gul S, Maqbool MF, Maryam A, Khan M, Shakir HA, Irfan M, Ara C, Li Y, Ma T. Vitamin K: A novel cancer chemosensitizer. Biotechnol Appl Biochem 2022; 69:2641-2657. [PMID: 34993998 DOI: 10.1002/bab.2312] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/24/2021] [Indexed: 12/27/2022]
Abstract
Cancer incidences are growing rapidly and causing millions of deaths globally. Cancer treatment is one of the most exigent challenges. Drug resistance is a natural phenomenon and is considered one of the major obstacles in the successful treatment of cancer by chemotherapy. Combination therapy by the amalgamation of various anticancer drugs has suggested modulating tumor response by targeting various signaling pathways in a synergistic or additive manner. Vitamin K is an essential nutrient and has recently been investigated as a potential anticancer agent. The combination of vitamin K analogs, such as vitamins K1, K2, K3, and K5, with other chemotherapeutic drugs have demonstrated a safe, cost-effective, and most efficient way to overcome drug resistance and improved the outcomes of prevailing chemotherapy. Published reports have shown that vitamin K in combination therapy improved the efficacy of clinical drugs by promoting apoptosis and cell cycle arrest and overcoming drug resistance by inhibiting P-glycoprotein. In this review, we discuss the mechanism, cellular targets, and possible ways to develop vitamin K subtypes into effective cancer chemosensitizers. Finally, this review will provide a scientific basis for exploiting vitamin K as a potential agent to improve the efficacy of chemotherapeutic drugs.
Collapse
Affiliation(s)
- Sameena Gul
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Cancer Research Lab, Institute of Zoology, University of the Punjab, Quaid-e-Azam Campus Lahore, Lahore, Pakistan
| | - Muhammad Faisal Maqbool
- Cancer Research Lab, Institute of Zoology, University of the Punjab, Quaid-e-Azam Campus Lahore, Lahore, Pakistan
| | - Amara Maryam
- Cancer Research Lab, Institute of Zoology, University of the Punjab, Quaid-e-Azam Campus Lahore, Lahore, Pakistan
| | - Muhammad Khan
- Cancer Research Lab, Institute of Zoology, University of the Punjab, Quaid-e-Azam Campus Lahore, Lahore, Pakistan
| | - Hafiz Abdullah Shakir
- Cancer Research Lab, Institute of Zoology, University of the Punjab, Quaid-e-Azam Campus Lahore, Lahore, Pakistan
| | - Muhammad Irfan
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Chaman Ara
- Cancer Research Lab, Institute of Zoology, University of the Punjab, Quaid-e-Azam Campus Lahore, Lahore, Pakistan
| | - Yongming Li
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tonghui Ma
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
114
|
Ghazi B, El Ghanmi A, Kandoussi S, Ghouzlani A, Badou A. CAR T-cells for colorectal cancer immunotherapy: Ready to go? Front Immunol 2022; 13:978195. [PMID: 36458008 PMCID: PMC9705989 DOI: 10.3389/fimmu.2022.978195] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/14/2022] [Indexed: 08/12/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cells represent a new genetically engineered cell-based immunotherapy tool against cancer. The use of CAR T-cells has revolutionized the therapeutic approach for hematological malignancies. Unfortunately, there is a long way to go before this treatment can be developed for solid tumors, including colorectal cancer. CAR T-cell therapy for colorectal cancer is still in its early stages, and clinical data are scarce. Major limitations of this therapy include high toxicity, relapses, and an impermeable tumor microenvironment for CAR T-cell therapy in colorectal cancer. In this review, we summarize current knowledge, highlight challenges, and discuss perspectives regarding CAR T-cell therapy in colorectal cancer.
Collapse
Affiliation(s)
- Bouchra Ghazi
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Adil El Ghanmi
- Mohammed VI International University Hospital, Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Sarah Kandoussi
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Amina Ghouzlani
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Abdallah Badou
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| |
Collapse
|
115
|
Tariq H, Noreen Z, Ahmad A, Khan L, Ali M, Malik M, Javed A, Rasheed F, Fatima A, Kocagoz T, Sezerman U, Bokhari H. Colibactin possessing E. coli isolates in association with colorectal cancer and their genetic diversity among Pakistani population. PLoS One 2022; 17:e0262662. [PMID: 36367873 PMCID: PMC9651576 DOI: 10.1371/journal.pone.0262662] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cause of tumorigenesis and several pathogenic bacteria have been correlated with aggressive cases of cancer i.e., genotoxin (colibactin) producing Escherichia coli (E. coli). This study was designed to investigate the genetic diversity of clb+clb+E. coli strains and their association with CRC. Pathogenic E. coli isolates from colorectal biopsies were characterized based on phylotypes, antibiotic resistance pattern, and (Enterobacterial Repetitive Intergenic Consensus Sequence-based Polymerase Chain Reaction) ERIC-PCR. Furthermore, isolates were screened for the presence of the Pks (polyketide synthase) Island specifically targeting colibactin genes A and Q. The selective clb+clb+ isolates were subjected to cytotoxicity assay using Human embryonic kidney (HEK) cell lines. We revealed that 43.47% of the cancer-associated E. coli isolates were from phylogroup B2 comparatively more pathogenic than rest while in the case of healthy controls no isolate was found from B2. Moreover, 90% were found positive for colibactin and pks (polyketide synthase) island, while none of the healthy controls were found positive for colibactin genes. All healthy and cancer-associated isolates were tested against 15 antibiotic agents, we observed that cancer-associated isolates showed a wide range of resistance from 96% against Nalidixic acid to 48% against Doxycycline. Moreover, E. coli isolates were further genotyped using ERIC-PCR, and selected clb+clb+E. coli isolates were subjected to cytotoxicity assay. We recorded the significant cytotoxic activity of clb+clb+ E. coli phylogroup B2 isolates that might have contributed towards the progression of CRC or dysbiosis of healthy gut microbiota protecting against CRC pathogenesis. Our results revealed a significant p<0.023 association of dietary habits and hygiene p<0.001with CRC. This is the first study to report the prevalence of E. coli phylogroups and the role of colibactin most virulent phylogroup B2 among Pakistani individuals from low socioeconomic setup.
Collapse
Affiliation(s)
- Habiba Tariq
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Zobia Noreen
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Aftab Ahmad
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
- Department of Microbiology, Kohsar University Murree, Punjab, Pakistan
| | - Laraib Khan
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Mashhood Ali
- Department of Gastroenterology, Pakistan Institute of Medical Sciences (PIMS), Islamabad, Pakistan
| | - Muhammad Malik
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Aneela Javed
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Faisal Rasheed
- Department of Microbiology, Quaid-e-Azam University, Islamabad, Pakistan
| | - Alina Fatima
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Tanil Kocagoz
- Department of Medical Microbiology, Acibadem University, Istanbul, Turkey
| | - Ugur Sezerman
- Department of Biostatics and Medical Informatics, Acibadem University, Istanbul Turkey
| | - Habib Bokhari
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
- Department of Microbiology, Kohsar University Murree, Punjab, Pakistan
- * E-mail: ,
| |
Collapse
|
116
|
Ren J, Wang B, Wu Q, Wang G. Combination of niclosamide and current therapies to overcome resistance for cancer: New frontiers for an old drug. Biomed Pharmacother 2022; 155:113789. [DOI: 10.1016/j.biopha.2022.113789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/02/2022] Open
|
117
|
Takahashi H, Sovadinova I, Yasuhara K, Vemparala S, Caputo GA, Kuroda K. Biomimetic antimicrobial polymers—Design, characterization, antimicrobial, and novel applications. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 15:e1866. [PMID: 36300561 DOI: 10.1002/wnan.1866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
Biomimetic antimicrobial polymers have been an area of great interest as the need for novel antimicrobial compounds grows due to the development of resistance. These polymers were designed and developed to mimic naturally occurring antimicrobial peptides in both physicochemical composition and mechanism of action. These antimicrobial peptide mimetic polymers have been extensively investigated using chemical, biophysical, microbiological, and computational approaches to gain a deeper understanding of the molecular interactions that drive function. These studies have helped inform SARs, mechanism of action, and general physicochemical factors that influence the activity and properties of antimicrobial polymers. However, there are still lingering questions in this field regarding 3D structural patterning, bioavailability, and applicability to alternative targets. In this review, we present a perspective on the development and characterization of several antimicrobial polymers and discuss novel applications of these molecules emerging in the field. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Haruko Takahashi
- Graduate School of Integrated Sciences for Life Hiroshima University Higashi‐Hiroshima Hiroshima Japan
| | - Iva Sovadinova
- RECETOX, Faculty of Science Masaryk University Brno Czech Republic
| | - Kazuma Yasuhara
- Division of Materials Science, Graduate School of Science and Technology Nara Institute of Science and Technology Nara Japan
- Center for Digital Green‐Innovation Nara Institute of Science and Technology Nara Japan
| | - Satyavani Vemparala
- The Institute of Mathematical Sciences CIT Campus Chennai India
- Homi Bhabha National Institute Training School Complex Mumbai India
| | - Gregory A. Caputo
- Department of Chemistry & Biochemistry Rowan University Glassboro New Jersey USA
| | - Kenichi Kuroda
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry University of Michigan Ann Arbor Michigan USA
| |
Collapse
|
118
|
Biodegradable disulfide crosslinked chitosan/stearic acid nanoparticles for dual drug delivery for colorectal cancer. Carbohydr Polym 2022; 294:119833. [PMID: 35868778 DOI: 10.1016/j.carbpol.2022.119833] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 01/12/2023]
Abstract
Herein, redox responsive chitosan/stearic acid nanoparticles (CSSA NPs) (≈200 nm) are developed for dual drug delivery. These degradable nanoparticles are prepared based on disulfide (SS) crosslinking chemistry avoiding the use of any external crosslinking agent. CSSA NPs are further loaded with both DOX (hydrophilic) and curcumin (hydrophobic) drugs with ≈86 % and ≈82 % encapsulation efficiency respectively. This approach of combining anticancer therapeutics having different mode of anticancer action allows to develop systems for cancer therapy with enhanced efficacy. In vitro drug release experiments clearly exhibit the low leakage of drug under physiological conditions while ≈98 % DOX and ≈96 % curcumin is released after 136 h under GSH reducing conditions. The cytotoxicity experiments against HCT116 cells demonstrate higher cytotoxicity of dual drug loaded CSSA NPs. In vivo biodistribution experiments with c57bl/6j mice confirms the retention of CSSA NPs in the colon area up to 24 h exhibiting their potential for colorectal cancer therapy.
Collapse
|
119
|
Volovat SR, Augustin I, Zob D, Boboc D, Amurariti F, Volovat C, Stefanescu C, Stolniceanu CR, Ciocoiu M, Dumitras EA, Danciu M, Apostol DGC, Drug V, Shurbaji SA, Coca LG, Leon F, Iftene A, Herghelegiu PC. Use of Personalized Biomarkers in Metastatic Colorectal Cancer and the Impact of AI. Cancers (Basel) 2022; 14:4834. [PMID: 36230757 PMCID: PMC9562853 DOI: 10.3390/cancers14194834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/18/2022] [Accepted: 09/29/2022] [Indexed: 12/09/2022] Open
Abstract
Colorectal cancer is a major cause of cancer-related death worldwide and is correlated with genetic and epigenetic alterations in the colonic epithelium. Genetic changes play a major role in the pathophysiology of colorectal cancer through the development of gene mutations, but recent research has shown an important role for epigenetic alterations. In this review, we try to describe the current knowledge about epigenetic alterations, including DNA methylation and histone modifications, as well as the role of non-coding RNAs as epigenetic regulators and the prognostic and predictive biomarkers in metastatic colorectal disease that can allow increases in the effectiveness of treatments. Additionally, the intestinal microbiota's composition can be an important biomarker for the response to strategies based on the immunotherapy of CRC. The identification of biomarkers in mCRC can be enhanced by developing artificial intelligence programs. We present the actual models that implement AI technology as a bridge connecting ncRNAs with tumors and conducted some experiments to improve the quality of the model used as well as the speed of the model that provides answers to users. In order to carry out this task, we implemented six algorithms: the naive Bayes classifier, the random forest classifier, the decision tree classifier, gradient boosted trees, logistic regression and SVM.
Collapse
Affiliation(s)
- Simona-Ruxandra Volovat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
| | - Iolanda Augustin
- Department of Medical Oncology, AI.Trestioreanu Institute of Oncology, 022328 Bucharest, Romania
| | - Daniela Zob
- Department of Medical Oncology, AI.Trestioreanu Institute of Oncology, 022328 Bucharest, Romania
| | - Diana Boboc
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
| | - Florin Amurariti
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
| | - Constantin Volovat
- Department of Medical Oncology, “Euroclinic” Center of Oncology, 2 Vasile Conta Str., 700106 Iasi, Romania
| | - Cipriana Stefanescu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
| | - Cati Raluca Stolniceanu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Eduard Alexandru Dumitras
- Department of Pathophysiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Department of Anesthesiology and Intensive Care, Regional Institute of Oncology, 700115 Iasi, Romania
| | - Mihai Danciu
- Pathology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | | | - Vasile Drug
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
- Gastroenterology Clinic, Institute of Gastroenterology and Hepatology, ‘St. Spiridon’ Clinical Hospital, 700115 Iasi, Romania
| | - Sinziana Al Shurbaji
- Gastroenterology Clinic, Institute of Gastroenterology and Hepatology, ‘St. Spiridon’ Clinical Hospital, 700115 Iasi, Romania
| | - Lucia-Georgiana Coca
- Faculty of Computer Science, Alexandru Ioan Cuza University, 700115 Iasi, Romania
| | - Florin Leon
- Faculty of Automatic Control and Computer Engineering, Gheorghe Asachi Technical University, 700115 Iasi, Romania
| | - Adrian Iftene
- Faculty of Computer Science, Alexandru Ioan Cuza University, 700115 Iasi, Romania
| | - Paul-Corneliu Herghelegiu
- Faculty of Automatic Control and Computer Engineering, Gheorghe Asachi Technical University, 700115 Iasi, Romania
| |
Collapse
|
120
|
Moxidectin induces autophagy arrest in colorectal cancer. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:211. [PMID: 36175702 DOI: 10.1007/s12032-022-01799-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/15/2022] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is a cancer with a high morbidity and mortality worldwide. Hence, developing new therapeutic drugs for CRC is very important. Moxidectin (MOX) has shown good anti-glioblastoma effect both in vitro and in vivo. This study aimed to elucidate the anti-CRC effect of MOX and its potential mechanism by investigating the influence of MOX on the viability, apoptosis, necrosis and autophagy of colorectal cancer cells (HCT15 and SW620) and its underlying mechanisms. It was found that MOX can induce autophagy arrest, promote autophagy initiation, inhibit autophagic flux and cell proliferation, simultaneously PI3K-Akt-mTOR signaling pathway and microtubule acetylation. Furthermore, MOX suppressed the growth of xenograft tumors, which was consistent with the in vitro results.
Collapse
|
121
|
The role of PYCR1 in inhibiting 5-fluorouracil-induced ferroptosis and apoptosis through SLC25A10 in colorectal cancer. Hum Cell 2022; 35:1900-1911. [PMID: 36104652 DOI: 10.1007/s13577-022-00775-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/22/2022] [Indexed: 11/04/2022]
|
122
|
Lu M, Lan X, Wu X, Fang X, Zhang Y, Luo H, Gao W, Wu D. Salvia miltiorrhiza in cancer: Potential role in regulating MicroRNAs and epigenetic enzymes. Front Pharmacol 2022; 13:1008222. [PMID: 36172186 PMCID: PMC9512245 DOI: 10.3389/fphar.2022.1008222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
MicroRNAs are small non-coding RNAs that play important roles in gene regulation by influencing the translation and longevity of various target mRNAs and the expression of various target genes as well as by modifying histones and DNA methylation of promoter sites. Consequently, when dysregulated, microRNAs are involved in the development and progression of a variety of diseases, including cancer, by affecting cell growth, proliferation, differentiation, migration, and apoptosis. Preparations from the dried root and rhizome of Salvia miltiorrhiza Bge (Lamiaceae), also known as red sage or danshen, are widely used for treating cardiovascular diseases. Accumulating data suggest that certain bioactive constituents of this plant, particularly tanshinones, have broad antitumor effects by interfering with microRNAs and epigenetic enzymes. This paper reviews the evidence for the antineoplastic activities of S. miltiorrhiza constituents by causing or promoting cell cycle arrest, apoptosis, autophagy, epithelial-mesenchymal transition, angiogenesis, and epigenetic changes to provide an outlook on their future roles in the treatment of cancer, both alone and in combination with other modalities.
Collapse
Affiliation(s)
- Meng Lu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xintian Lan
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xi Wu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaoxue Fang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yegang Zhang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Haoming Luo
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Wenyi Gao
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Wenyi Gao, ; Donglu Wu,
| | - Donglu Wu
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
- School of Clinical Medical, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Wenyi Gao, ; Donglu Wu,
| |
Collapse
|
123
|
Amaryllidaceae Alkaloids Decrease the Proliferation, Invasion, and Secretion of Clinically Relevant Cytokines by Cultured Human Colon Cancer Cells. Biomolecules 2022; 12:biom12091267. [PMID: 36139106 PMCID: PMC9496155 DOI: 10.3390/biom12091267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 12/30/2022] Open
Abstract
Alkaloids isolated from members of the Amaryllidaceae plant family are promising anticancer agents. The purpose of the current study was to determine if the isocarbostyrils narciclasine, pancratistatin, lycorane, lycorine, crinane, and haemanthamine inhibit phenomena related to cancer progression in vitro. To achieve this, we examined the proliferation, adhesion, and invasion of cultured human colon cancer cells via MTT assay and Matrigel-coated Boyden chambers. In addition, Luminex assays were used to quantify the secretion of matrix metalloproteinases (MMP) and cytokines associated with poor clinical outcomes. We found that all alkaloids decreased cell proliferation regardless of TP53 status, with narciclasine exhibiting the greatest potency. The effects on cell proliferation also appear to be specific to cancer cells. Narciclasine, lycorine, and haemanthamine decrease both adhesion and invasion but with various potencies depending on the cell line. In addition, narciclasine, lycorine, and haemanthamine decreased the secretion of MMP-1, -2, and -7, as well as the secretion of the cytokines pentraxin 3 and vascular endothelial growth factor. In conclusion, the present study shows that Amaryllidaceae alkaloids decrease phenomena and cytokines associated with colorectal cancer progression, supporting future investigations regarding their potential as multifaceted drug candidates.
Collapse
|
124
|
Erdogan CS, Al Hassadi Y, Aru B, Yilmaz B, Gemici B. Combinatorial effects of melatonin and paclitaxel differ depending on the treatment scheme in colorectal cancer in vitro. Life Sci 2022; 308:120927. [PMID: 36063977 DOI: 10.1016/j.lfs.2022.120927] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 10/31/2022]
Abstract
AIMS Colorectal carcinoma (CRC) is the third most prevalent cancer with high mortality. Besides regulating the circadian rhythm, melatonin (MTN) exerts anticancer activities. Paclitaxel (PTX) is successful against different malignancies, however, acquired resistance and variability in patient response restrict its use. mTOR and MAPK pathways are often deregulated in human cancers. We aimed to investigate whether MTN enhances or sensitizes the chemotherapeutic activity of PTX and if so, determine the underlying possible mechanisms in CRC in vitro. MAIN METHODS Antiproliferative and cytotoxic activities of PTX and MTN were assessed alone and in combination, as well as with different treatment regimens (renewal or replacement of the treatment after 24 h), up to 48 h. Apoptosis, viability and autophagy were assessed by flow cytometry. mTOR and MAPK pathway activities were investigated by immunoblotting. KEY FINDINGS Both drugs reduced cell viability in a dose-dependent manner at 24 and 48 h. Only the highest dose of MTN (500 μM) potentiated the cytotoxicity of PTX (50 nM). Replacement of PTX after 24 h with MTN was superior in reducing cell viability than vice versa via apoptosis induction. Renewal of MTN treatment every 24 h reduced autophagy compared to the control group, while other treatments did not alter the autophagic activity. A 24 h MTN treatment followed by 24 h PTX treatment increased S6 phosphorylation in a mTOR-independent manner and increased Erk1/2 phosphorylation. SIGNIFICANCE The present study suggests that sequential treatment with MTN and PTX distinctly affect apoptosis and cytotoxicity via regulating mTOR and MAPK pathways differentially in CRC.
Collapse
Affiliation(s)
- Cihan Suleyman Erdogan
- Yeditepe University, Faculty of Medicine, Department of Physiology, Kayisdagi cad., 34755 Istanbul, Turkey
| | - Yasmine Al Hassadi
- Yeditepe University, Faculty of Medicine, Department of Physiology, Kayisdagi cad., 34755 Istanbul, Turkey
| | - Basak Aru
- Yeditepe University, Faculty of Medicine, Department of Immunology, Kayisdagi cad., 34755 Istanbul, Turkey
| | - Bayram Yilmaz
- Yeditepe University, Faculty of Medicine, Department of Physiology, Kayisdagi cad., 34755 Istanbul, Turkey
| | - Burcu Gemici
- Yeditepe University, Faculty of Medicine, Department of Physiology, Kayisdagi cad., 34755 Istanbul, Turkey.
| |
Collapse
|
125
|
Chen Y, Ma S, Pi D, Wu Y, Zuo Q, Li C, Ouyang M. Luteolin induces pyroptosis in HT-29 cells by activating the Caspase1/Gasdermin D signalling pathway. Front Pharmacol 2022; 13:952587. [PMID: 36105214 PMCID: PMC9464948 DOI: 10.3389/fphar.2022.952587] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/01/2022] [Indexed: 01/31/2023] Open
Abstract
Luteolin, which is a natural flavonoid, has anti-inflammatory, antioxidant, and anticancer properties. Numerous studies have proven that luteolin inhibits the growth of many types of cancer cells by promoting apoptosis, autophagy, and cell cycle arrest in tumour cells. However, in vivo research on this topic has been limited. In addition, other studies have shown that luteolin exerts a good inhibitory effect on apoptosis-resistant cancer cells. While existing studies have not completely elucidated the mechanism underlying this phenomenon, we assume that luteolin, which is a natural compound that exerts its effects through various mechanisms, may have the potential to inhibit tumour growth. In our study, we proved that luteolin exerted a good inhibitory effect on the proliferation of colon cancer cells according to CCK8 and EdU fluorescence assays, and the same conclusion was drawn in animal experiments. In addition, we found that luteolin, which is an antioxidant, unexpectedly promoted oxidative stress as shown by measuring the levels of oxidative balance-related indicators, such as reactive oxygen species (ROS), SOD, H2O2 and GSH. However, the decreased oxidation of luteolin-treated HT-29 cells after treatment with the active oxygen scavenger NAC did not reverse the inhibition of cell growth. However, the Caspase1 inhibitor VX765 did reverse the inhibition of cell growth. Western blotting analysis showed that luteolin treatment increased the expression of Caspase1, Gasdermin D and IL-1β, which are members of the pyroptosis signalling pathway, in colon cancer cells. We further intuitively observed NLRP3/Gasdermin D colocalization in luteolin-treated HT-29 cells and mouse tumour tissues by immunofluorescence. These results suggest that luteolin inhibits the proliferation of colon cancer cells through a novel pathway called pyroptosis. This study provides a new direction for the development of natural products that inhibit tumour growth by inducing pyroptosis.
Collapse
|
126
|
Plant-Derived Bioactive Compounds in Colorectal Cancer: Insights from Combined Regimens with Conventional Chemotherapy to Overcome Drug-Resistance. Biomedicines 2022; 10:biomedicines10081948. [PMID: 36009495 PMCID: PMC9406120 DOI: 10.3390/biomedicines10081948] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/25/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Acquired drug resistance represents a major clinical problem and one of the biggest limitations of chemotherapeutic regimens in colorectal cancer. Combination regimens using standard chemotherapeutic agents, together with bioactive natural compounds derived from diet or plants, may be one of the most valuable strategies to overcome drug resistance and re-sensitize chemoresistant cells. In this review, we highlight the effect of combined regimens based on conventional chemotherapeutics in conjunction with well-tolerated plant-derived bioactive compounds, mainly curcumin, resveratrol, and EGCG, with emphasis on the molecular mechanisms associated with the acquired drug resistance.
Collapse
|
127
|
Matuszyk J. MALAT1-miRNAs network regulate thymidylate synthase and affect 5FU-based chemotherapy. Mol Med 2022; 28:89. [PMID: 35922756 PMCID: PMC9351108 DOI: 10.1186/s10020-022-00516-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/22/2022] [Indexed: 12/12/2022] Open
Abstract
Background The active metabolite of 5-Fluorouracil (5FU), used in the treatment of several types of cancer, acts by inhibiting the thymidylate synthase encoded by the TYMS gene, which catalyzes the rate-limiting step in DNA replication. The major failure of 5FU-based cancer therapy is the development of drug resistance. High levels of TYMS-encoded protein in cancerous tissues are predictive of poor response to 5FU treatment. Expression of TYMS is regulated by various mechanisms, including involving non-coding RNAs, both miRNAs and long non-coding RNAs (lncRNAs). Aim To delineate the miRNAs and lncRNAs network regulating the level of TYMS-encoded protein. Main body Several miRNAs targeting TYMS mRNA have been identified in colon cancers, the levels of which can be regulated to varying degrees by lncRNAs. Due to their regulation by the MALAT1 lncRNA, these miRNAs can be divided into three groups: (1) miR-197-3p, miR-203a-3p, miR-375-3p which are downregulated by MALAT1 as confirmed experimentally and the levels of these miRNAs are actually reduced in colon and gastric cancers; (2) miR-140-3p, miR-330-3p that could potentially interact with MALAT1, but not yet supported by experimental results; (3) miR-192-5p, miR-215-5p whose seed sequences do not recognize complementary response elements within MALAT1. Considering the putative MALAT1-miRNAs interaction network, attention is drawn to the potential positive feedback loop causing increased expression of MALAT1 in colon cancer and hepatocellular carcinoma, where YAP1 acts as a transcriptional co-factor which, by binding to the TCF4 transcription factor/ β-catenin complex, may increase the activation of the MALAT1 gene whereas the MALAT1 lncRNA can inhibit miR-375-3p which in turn targets YAP1 mRNA. Conclusion The network of non-coding RNAs may reduce the sensitivity of cancer cells to 5FU treatment by upregulating the level of thymidylate synthase.
Collapse
Affiliation(s)
- Janusz Matuszyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 R. Weigla Street, 53-114, Wroclaw, Poland.
| |
Collapse
|
128
|
Younis NK, Roumieh R, Bassil EP, Ghoubaira JA, Kobeissy F, Eid AH. Nanoparticles: attractive tools to treat colorectal cancer. Semin Cancer Biol 2022; 86:1-13. [DOI: 10.1016/j.semcancer.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 10/31/2022]
|
129
|
Li X, Wang N, Wu Y, Liu Y, Wang R. ALDH6A1 weakens the progression of colon cancer via modulating the RAS/RAF/MEK/ERK pathway in cancer cell lines. Gene X 2022; 842:146757. [PMID: 35907565 DOI: 10.1016/j.gene.2022.146757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/23/2022] [Accepted: 07/24/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Aldehyde dehydrogenase 6 family member A1 (ALDH6A1) is associated with multiple diseases, but its pathogenesis in colon cancer (CC) is ambiguous and needs further study so that this research explores the function of ALDH6A1 in CC. METHODS The level of ALDH6A1 in colon adenocarcinoma (COAD), CC tissues, and cells was measured by starBase v2.0, quantitative real-time polymerase chain reaction (qRT-PCR), and western blot. Post transfection with overexpressed (oe)-ALDH6A1, cell biological behaviors, as well as apoptosis-, matrix metalloproteinase (MMP)-, and rat sarcoma virus (RAS)/rapidly accelerated fibrosarcoma (RAF)/mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway-related markers were measured by cell function experiments, qRT-PCR, and western blot. Next, the effects of small interfering RNA targeting ALDH6A1 (si-ALDH6A1) and RAS/RAF inhibitor (MCP110) on cell biological behaviors, as well as apoptosis-, MMP-, and RAS/RAF/MEK/ERK pathway-related markers were detected again. RESULTS ALDH6A1 was low-expressed in COAD, CC tissues, and cells . Oe-ALDH6A1 weakened cell vitality, migration and invasionbut facilitated apoptosis; while it reduced expression levels of Bcl-2, MMP-2, MMP-9 and the RAS/RAF/MEK/ERK pathway-related markers but promoted Bax level. However, the regulation of si-ALDH6A1 on cell biological behaviors and related genes was opposite to that of oe-ALDH6A1. Moreover, MCP110 rescued the regulation of si-ALDH6A1 on cell biological behaviors, expressions of apoptosis- MMP- as well as RAS/RAF/MEK/ERK pathway-related markers. To sum up, ALDH6A1 attenuated CC progression by down-regulating the expressions of RAS/RAF/MEK/ERK pathway-related markers.
Collapse
Affiliation(s)
- Xiang Li
- The Second Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, China
| | - Nan Wang
- The Tenth Department of Proctology Department, Dalian University Affiliated Xinhua Hospital, China
| | - Yutong Wu
- Graduate School, Dalian Medical University, China
| | - Yidan Liu
- Stomatology Department, Affiliated Zhongshan Hospital of Dalian University, China
| | - Ruoyu Wang
- Oncology Department, Affiliated Zhongshan Hospital of Dalian University, China.
| |
Collapse
|
130
|
Novoa Díaz MB, Martín MJ, Gentili C. Tumor microenvironment involvement in colorectal cancer progression via Wnt/β-catenin pathway: Providing understanding of the complex mechanisms of chemoresistance. World J Gastroenterol 2022; 28:3027-3046. [PMID: 36051330 PMCID: PMC9331520 DOI: 10.3748/wjg.v28.i26.3027] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/29/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) continues to be one of the main causes of death from cancer because patients progress unfavorably due to resistance to current therapies. Dysregulation of the Wnt/β-catenin pathway plays a fundamental role in the genesis and progression of several types of cancer, including CRC. In many subtypes of CRC, hyperactivation of the β-catenin pathway is associated with mutations of the adenomatous polyposis coli gene. However, it can also be associated with other causes. In recent years, studies of the tumor microenvironment (TME) have demonstrated its importance in the development and progression of CRC. In this tumor nest, several cell types, structures, and biomolecules interact with neoplastic cells to pave the way for the spread of the disease. Cross-communications between tumor cells and the TME are then established primarily through paracrine factors, which trigger the activation of numerous signaling pathways. Crucial advances in the field of oncology have been made in the last decade. This Minireview aims to actualize what is known about the central role of the Wnt/β-catenin pathway in CRC chemoresistance and aggressiveness, focusing on cross-communication between CRC cells and the TME. Through this analysis, our main objective was to increase the understanding of this complex disease considering a more global context. Since many treatments for advanced CRC fail due to mechanisms involving chemoresistance, the data here exposed and analyzed are of great interest for the development of novel and effective therapies.
Collapse
Affiliation(s)
- María Belén Novoa Díaz
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Argentina
| | - María Julia Martín
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Argentina
- Departamento de Química, Universidad Nacional del Sur (UNS)-INQUISUR (CONICET-UNS), Bahía Blanca 8000, Argentina
| | - Claudia Gentili
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Argentina
| |
Collapse
|
131
|
Liao W, Long J, Li Y, Xie F, Xun Z, Wang Y, Yang X, Wang Y, Zhou K, Sang X, Zhao H. Identification of an m6A-Related Long Noncoding RNA Risk Model for Predicting Prognosis and Directing Treatments in Patients With Colon Adenocarcinoma. Front Cell Dev Biol 2022; 10:910749. [PMID: 35912098 PMCID: PMC9326028 DOI: 10.3389/fcell.2022.910749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022] Open
Abstract
N6-methyladenosine (m6A) and lncRNAs have been implicated in the development of colon cancer, including tumorigenesis, migration, and invasion. However, the specific effect of m6A regulators on lncRNAs is not clear, and m6A-related lncRNAs may be new prognostic biomarkers and may help direct treatment and medication. We identified 29 prognostic m6A-related lncRNAs and constructed a risk model using 12 lncRNAs. The model was an independent prognostic factor and could accurately predict the prognosis. A stable and robust nomogram that combined the model and pathologic stage was constructed. A total of 2,424 differentially expressed genes (DEGs) were identified based on the model. Functional analysis of the DEGs showed that they were associated with tumor progression, helping investigate the underlying biological functions and signaling pathways of the risk model. In addition, the low-risk group based on the risk model had more sensitivity to afatinib, metformin, and GW.441756, and patients with low risk would more likely respond to immunotherapy. Moreover, patients with higher risk were more sensitive to olaparib, bexarotene, and doxorubicin.
Collapse
Affiliation(s)
- Wanying Liao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junyu Long
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiran Li
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fucun Xie
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ziyu Xun
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanyu Wang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu Yang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunchao Wang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kang Zhou
- Radiology Department, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Kang Zhou, ; Xinting Sang, ; Haitao Zhao,
| | - Xinting Sang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Kang Zhou, ; Xinting Sang, ; Haitao Zhao,
| | - Haitao Zhao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Kang Zhou, ; Xinting Sang, ; Haitao Zhao,
| |
Collapse
|
132
|
Song L, Chen J, Feng Y, Zhou Y, Li F, Dai G, Yuan Y, Yi H, Qian Y, Yang S, Chen Y, Zhao W. The Preparation of Gen-NH2-MCM-41@SA Nanoparticles and Their Anti-Rotavirus Effects. Pharmaceutics 2022; 14:pharmaceutics14071337. [PMID: 35890233 PMCID: PMC9318718 DOI: 10.3390/pharmaceutics14071337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 12/10/2022] Open
Abstract
Genistein (Gen), a kind of natural isoflavone drug monomer with poor water solubility and low oral absorption, was incorporated into oral nanoparticles with a new mesoporous carrier material, NH2-MCM-41, which was synthesized by copolycondensation. When the ratio of Gen to NH2-MCM-41 was 1:0.5, the maximum adsorption capacity of Gen was 13.15%, the maximum drug loading was 12.65%, and the particle size of the whole core–shell structure was in the range of 370 nm–390 nm. The particles were characterized by a Malvern particle size scanning machine, XRD, Fourier transform infrared spectroscopy, scanning electron microscopy, and nitrogen adsorption and desorption. Finally, Gen-NH2-MCM-41 was encapsulated by sodium alginate (SA), and the chimerism of this material, denoted as GEN-NH2-MCM-41@SA, was investigated. In vitro release experiments showed that, after 5 h in artificial colon fluid (pH = 8.0), the cumulative release reached 99.56%. In addition, its anti-rotavirus (RV) effect showed that the maximum inhibition rate was 62.24% at a concentration of 30 μM in RV-infected Caco-2 cells, and it significantly reduced the diarrhea rate and diarrhea index in an RV-infected-neonatal mice model at a dose of 0.3 mg/g, which was better than the results of Gen. Ultimately, Gen-NH2-MCM-41@SA was successfully prepared, which solves the problems of low solubility and poor absorption and provides an experimental basis for the application of Gen in the clinical treatment of RV infection.
Collapse
|
133
|
Study on the Expression Profile of Autophagy-Related Genes in Colon Adenocarcinoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7525048. [PMID: 35572821 PMCID: PMC9095386 DOI: 10.1155/2022/7525048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 12/24/2022]
Abstract
Colon adenocarcinoma (COAD) is a common digestive tract tumor. Autophagy-related genes (ARGs) may play an obbligato role in the biological processes of COAD. This study was aimed at exploring the role of ARGs in COAD. Clinical data and RNA sequencing data of tumor and healthy samples were obtained from The Cancer Genome Atlas (TCGA), and discrepantly expressed ARGs were screened. Statistical differences of ARGs were performed with Gene Ontology (GO) functional annotation and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. Eight ARGs were selected by univariate Cox and multivariate Cox regression. Kaplan–Meier (K-M) and multivariate receiver operating characteristic (multi-ROC) were used to check the fitness of the model. Among 398 COAD samples and 39 normal samples obtained from the TCGA database, 37 differentially expressed ARGs were screened. In the training group, eight prognostics-related ARGs (MTMR14, VAMP3, HSPA8, TSC1, DAPK1, CX3CL1, ATG13, and MAP1LC3C) were identified by Cox regression. A gene signature risk prediction model was constructed base on 8 autophagy-related genes. The survival time of the low-risk group was longer than the high-risk group, and the AUC of the model was 0.794. Univariate and multivariate Cox regression analysis showed that age and riskscore were the independent predictor. In conclusion, the prognosis model we built based one ARGs of COAD patients can estimate the prognosis of patients in clinical treatment.
Collapse
|
134
|
Huang CY, Chien JH, Chang KF, Hsiao CY, Huang YC, Chen YT, Hsu MY, Hsieh MC, Tsai NM. Cedrus atlantica extract exerts antiproliferative effect on colorectal cancer through the induction of cell cycle arrest and apoptosis. Food Sci Nutr 2022; 10:1638-1648. [PMID: 35592288 PMCID: PMC9094448 DOI: 10.1002/fsn3.2786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 12/24/2022] Open
Abstract
Cedrus atlantica is a tree species found in Morocco with many clinical benefits in genitourinary, musculoskeletal, and skin systems. Previous studies have reported that extracts of Cedrus atlantica have antioxidant, antimicrobial, and anticancer properties. However, its role in colorectal cancer (CRC) remains unclear. The present study investigated the effects and underlying mechanisms of Cedrus atlantica extract (CAt) using HT-29 (human colorectal adenocarcinoma) and CT-26 CRC cell lines. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to measure cell viability. Flow cytometry analysis and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay were used to study the cell cycle and cell apoptosis, respectively. The expression of cell cycle and apoptosis-associated proteins was detected by western blotting or immunohistochemical (IHC) staining. CAt showed significant inhibitory effects on the proliferation of HT-29 and CT-26 cells, and combined with the clinical drug, 5-fluorouracil (5-FU), exhibited synergistic effects. CAt induced cell cycle arrest at the G0/G1 phase through the upregulation of p53/p21 and the downregulation of cyclin-dependent kinases (CDKs)/cyclins. In addition, CAt-treated cells exhibited chromatin condensation, DNA fragmentation, and apoptotic bodies, which are typical characteristics of apoptosis activated via both the extrinsic (Fas ligand (FasL)/Fas/caspase-8) and intrinsic (Bax/caspase-9) pathways. Importantly, CAt suppressed tumor progression and prolonged the life span of mice within a well-tolerated dose. Therefore, our findings provide novel insights into the use of CAt for the treatment of CRC.
Collapse
Affiliation(s)
- Chih-Yuan Huang
- Devision of Nephrology Department of Internal Medicine Ditmanson Medical Foundation Chia-Yi Christian Hospital Chia-Yi Taiwan, ROC.,Department of Sport Management College of Recreation and Health Management Chia Nan University of Pharmacy and Science Tainan Taiwan, ROC
| | - Ju-Huei Chien
- Department of Research Taichung Tzu-Chi Hospital Buddhist Tzu-Chi Medical Foundation Taichung Taiwan, ROC.,Department of Medical Laboratory Science and Biotechnology Central Taiwan University of Science and Technology Taichung Taiwan, ROC
| | - Kai-Fu Chang
- Department of Medical Laboratory and Biotechnology Chung Shan Medical University Taichung Taiwan, ROC
| | - Chih-Yen Hsiao
- Devision of Nephrology Department of Internal Medicine Ditmanson Medical Foundation Chia-Yi Christian Hospital Chia-Yi Taiwan, ROC.,Department of Hospital and Health Care Administration Chia Nan University of Pharmacy and Science Tainan Taiwan, ROC
| | - Ya-Chih Huang
- Department of Medical Laboratory and Biotechnology Chung Shan Medical University Taichung Taiwan, ROC.,Institute of Medicine Chung Shan Medical University Taichung Taiwan, ROC
| | - Yi-Ting Chen
- Department of Medical Laboratory and Biotechnology Chung Shan Medical University Taichung Taiwan, ROC
| | - Ming-Yi Hsu
- Department of Nursing Chung Shan Medical University Taichung Taiwan, ROC.,Department of Nursing Chung Shan Medical University Hospital Taichung Taiwan, ROC
| | - Ming-Chang Hsieh
- Department of Medical Laboratory and Biotechnology Chung Shan Medical University Taichung Taiwan, ROC.,Clinical Laboratory Chung Shan Medical University Hospital Taichung Taiwan, ROC
| | - Nu-Man Tsai
- Department of Medical Laboratory and Biotechnology Chung Shan Medical University Taichung Taiwan, ROC.,Clinical Laboratory Chung Shan Medical University Hospital Taichung Taiwan, ROC.,Department of Life-and-Death Studies Nanhua University Chiayi Taiwan, ROC
| |
Collapse
|
135
|
Huang J, Zhuang C, Chen J, Chen X, Li X, Zhang T, Wang B, Feng Q, Zheng X, Gong M, Gong Q, Xiao K, Luo K, Li W. Targeted Drug/Gene/Photodynamic Therapy via a Stimuli-Responsive Dendritic-Polymer-Based Nanococktail for Treatment of EGFR-TKI-Resistant Non-Small-Cell Lung Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201516. [PMID: 35481881 DOI: 10.1002/adma.202201516] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/12/2022] [Indexed: 02/05/2023]
Abstract
Yes-associated protein (YAP) has been identified as a key driver for epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) resistance. Inhibition of YAP expression could be a potential therapeutic option for treating non-small-cell lung cancer (NSCLC). Herein, a nanococktail therapeutic strategy is proposed by employing amphiphilic and block-dendritic-polymer-based nanoparticles (NPs) for targeted co-delivery of EGFR-TKI gefitinib (Gef) and YAP-siRNA to achieve a targeted drug/gene/photodynamic therapy. The resulting NPs are effectively internalized into Gef-resistant NSCLC cells, successfully escape from late endosomes/lysosomes, and responsively release Gef and YAP-siRNA in an intracellular reductive environment. They preferentially accumulate at the tumor site after intravenous injection in both cell-line-derived xenograft (CDX) and patient-derived xenograft (PDX) models of Gef-resistant NSCLC, resulting in potent antitumor efficacy without distinct toxicity after laser irradiation. Mechanism studies reveal that the cocktail therapy could block the EGFR signaling pathway with Gef, inhibit activation of the EGFR bypass signaling pathway via YAP-siRNA, and induce tumor cell apoptosis through photodynamic therapy (PDT). Furthermore, this combination nanomedicine can sensitize PDT and impair glycolysis by downregulating HIF-1α. These results suggest that this stimuli-responsive dendritic-polymer-based nanococktail therapy may provide a promising approach for the treatment of EGFR-TKI resistant NSCLC.
Collapse
Affiliation(s)
- Jinxing Huang
- Precision Medicine Research Center, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, Department of Respiratory Medicine and Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Cheng Zhuang
- Precision Medicine Research Center, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, Department of Respiratory Medicine and Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Chen
- Precision Medicine Research Center, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, Department of Respiratory Medicine and Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xuanming Chen
- Precision Medicine Research Center, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, Department of Respiratory Medicine and Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaojie Li
- Precision Medicine Research Center, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, Department of Respiratory Medicine and Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Zhang
- Precision Medicine Research Center, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, Department of Respiratory Medicine and Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bing Wang
- Precision Medicine Research Center, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, Department of Respiratory Medicine and Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiyi Feng
- Precision Medicine Research Center, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, Department of Respiratory Medicine and Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiuli Zheng
- Precision Medicine Research Center, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, Department of Respiratory Medicine and Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Gong
- Precision Medicine Research Center, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, Department of Respiratory Medicine and Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.,West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Precision Medicine Research Center, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, Department of Respiratory Medicine and Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.,Sichuan Provincial Key Laboratory of Precision Medicine, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Kai Xiao
- Precision Medicine Research Center, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, Department of Respiratory Medicine and Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.,Sichuan Provincial Key Laboratory of Precision Medicine, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Kui Luo
- Precision Medicine Research Center, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, Department of Respiratory Medicine and Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.,Sichuan Provincial Key Laboratory of Precision Medicine, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Weimin Li
- Precision Medicine Research Center, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, Department of Respiratory Medicine and Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.,Sichuan Provincial Key Laboratory of Precision Medicine, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
136
|
Mostafazadeh M, Kahroba H, Haiaty S, TazeKand AP, Samadi N, Rahbarghazi R, Nouri M. In vitro exosomal transfer of Nrf2 led to the oxaliplatin resistance in human colorectal cancer LS174T cells. Cell Biochem Funct 2022; 40:391-402. [PMID: 35474580 DOI: 10.1002/cbf.3703] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 12/14/2022]
Abstract
Chemotherapy resistance is a serious pitfall in the treatment of colon cancers (CCs). Previous studies have found that exosomes (Exo) play a pivotal role in tumor drug resistance via the transfer of proteins and genetic materials to the acceptor cells. To date, the mechanisms orchestrating Exo-derived resistance in cancer cells have been the center of attention. Herein, we aimed to evaluate the role of exosomal nuclear factor erythroid 2-related factor 2 (Nrf2) on oxaliplatin (1-OHP) resistance in human colorectal cancer LS174T cells in vitro. To this end, exosomal-Nrf2-mediated 1-OHP resistance was examined using different assays. Exo was isolated from resistant LS174T cells (LS174T/R) and added to the culture medium of sensitive LS174T cells (LS174T/S). According to our data, LS174T/S cells successfully adsorbed PKH26-Exo driven from LS174T/R cells. Western blotting showed an increased Nrf2 level in Exo isolated from LS174T/R cells compared to LS174T/S cell-derived Exo (p < .05). The incubation of LS174T/S cells with LS174T/R-derived Exo increased half-maximal inhibitory concentration values in response to treatment with 1-OHP (p < .05). Besides this, the apoptotic changes were diminished in LS174T/S cells after incubation with LS174T/R-derived Exo. Of note, the exposure of LS174T/S cells to LS174T/R cell-derived Exo increased the expression of Nrf2 and P-glycoprotein (P-gp) compared to the nontreated LS174T/S cells (p < .05). In line with these changes, lower intracellular Rhodamin 123 content was detected in Exo-treated cells compared to the nontreated LS174T/S cells. Exo increased migration and clonogenic capacity of LS174T/S cells after incubation with Exo-derived from resistant cells. Of note, inhibition of Nrf2 with a specific blocker, brusatol, blunted these effects. Taken together, Exo-mediated transfer of Nrf2 is involved in the development of oxaliplatin resistance in CC cells by upregulating P-gp.
Collapse
Affiliation(s)
- Mostafa Mostafazadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Houman Kahroba
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastrich, The Netherlands.,Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Sanya Haiaty
- Research Center of Infectious Diseases and Tropical Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Abbas P TazeKand
- Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Samadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Research Center of Infectious Diseases and Tropical Medicine, Tabriz University of Medical Science, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
137
|
Li Y, Wang J, Wang H, Zhang S, Wei Y, Liu S. The Interplay Between Inflammation and Stromal Components in Pancreatic Cancer. Front Immunol 2022; 13:850093. [PMID: 35493517 PMCID: PMC9046560 DOI: 10.3389/fimmu.2022.850093] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/24/2022] [Indexed: 01/18/2023] Open
Abstract
Inflammation involves interactions between various immune cells, inflammatory cells, chemokines and cytokines in pancreatic cancer. Cancer cells as well as surrounding stromal and inflammatory cells establish an inflammatory tumor microenvironment (TME). Inflammation is closely associated with immunity. Meanwhile, immune cells are involved in both inflammation and immune response. Tumor-promoting inflammation and tumor-suppressive immunity are two main characteristics of the tumor microenvironment in pancreatic cancer. Yet, the mechanism of inflammation and immune response in pancreatic cancer development is still unclear due to the dual role of some cytokines and the complicated crosstalk between tumor and stromal components in TME. In this review, we outline the principal cytokines and stromal cells in the pancreatic TME that are involved in the tumor-promoting and immunosuppressive effects of inflammation, and discuss the interaction between inflammation and stromal components in pancreatic cancer progression. Moreover, the clinical approaches based on targeting TME in pancreatic cancer are also summarized. Defining the mechanisms of interplay between inflammation and stromal components will be essential for further development of anti-cancer therapies.
Collapse
Affiliation(s)
- Ying Li
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Wang
- Department of Operating Room, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haiyan Wang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shaoqiang Zhang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingxin Wei
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Shanglong Liu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
138
|
Hossain MS, Karuniawati H, Jairoun AA, Urbi Z, Ooi DJ, John A, Lim YC, Kibria KMK, Mohiuddin AM, Ming LC, Goh KW, Hadi MA. Colorectal Cancer: A Review of Carcinogenesis, Global Epidemiology, Current Challenges, Risk Factors, Preventive and Treatment Strategies. Cancers (Basel) 2022; 14:1732. [PMID: 35406504 PMCID: PMC8996939 DOI: 10.3390/cancers14071732] [Citation(s) in RCA: 366] [Impact Index Per Article: 122.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the second most deadly cancer. Global incidence and mortality are likely to be increased in the coming decades. Although the deaths associated with CRC are very high in high-income countries, the incidence and fatalities related to CRC are growing in developing countries too. CRC detected early is entirely curable by surgery and subsequent medications. However, the recurrence rate is high, and cancer drug resistance increases the treatment failure rate. Access to early diagnosis and treatment of CRC for survival is somewhat possible in developed countries. However, these facilities are rarely available in developing countries. Highlighting the current status of CRC, its development, risk factors, and management is crucial in creating public awareness. Therefore, in this review, we have comprehensively discussed the current global epidemiology, drug resistance, challenges, risk factors, and preventive and treatment strategies of CRC. Additionally, there is a brief discussion on the CRC development pathways and recommendations for preventing and treating CRC.
Collapse
Affiliation(s)
- Md. Sanower Hossain
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia
- Faculty of Science, Sristy College of Tangail, Tangail 1900, Bangladesh
| | - Hidayah Karuniawati
- Discipline of Social and Administrative Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia; (H.K.); (A.A.J.)
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Surakarta 57102, Indonesia
| | - Ammar Abdulrahman Jairoun
- Discipline of Social and Administrative Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia; (H.K.); (A.A.J.)
- Health and Safety Department, Dubai Municipality, Dubai 67, United Arab Emirates
| | - Zannat Urbi
- Department of Industrial Biotechnology, Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Kuantan 26300, Pahang, Malaysia;
| | - Der Jiun Ooi
- Department of Oral Biology & Biomedical Sciences, Faculty of Dentistry, MAHSA University, Jenjarom 42610, Selangor, Malaysia;
| | - Akbar John
- Institute of Oceanography and Maritime Studies (INOCEM), Kulliyyah of Science, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia;
| | - Ya Chee Lim
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei;
| | - K. M. Kaderi Kibria
- Department of Biotechnology & Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh; (K.M.K.K.); (A.K.M.M.)
| | - A.K. M. Mohiuddin
- Department of Biotechnology & Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh; (K.M.K.K.); (A.K.M.M.)
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei;
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Negeri Sembilan, Malaysia;
| | | |
Collapse
|
139
|
Rembiałkowska N, Novickij V, Baczyńska D, Dubińska-Magiera M, Saczko J, Rudno-Rudzińska J, Maciejewska M, Kulbacka J. Micro- and Nanosecond Pulses Used in Doxorubicin Electrochemotherapy in Human Breast and Colon Cancer Cells with Drug Resistance. Molecules 2022; 27:2052. [PMID: 35408450 PMCID: PMC9000361 DOI: 10.3390/molecules27072052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022] Open
Abstract
(1) Background: Pulsed electric field (PEF) techniques are commonly used to support the delivery of various molecules. A PEF seems a promising method for low permeability drugs or when cells demonstrate therapy resistance and the cell membrane becomes an impermeable barrier. (2) Methods: In this study, we have used doxorubicin-resistant and sensitive models of human breast cancer (MCF-7/DX, MCF-7/WT) and colon cancer cells (LoVo, LoVoDX). The study aimed to investigate the susceptibility of the cells to doxorubicin (DOX) and electric fields in the 20-900 ns pulse duration range. The viability assay was utilized to evaluate the PEF protocols' efficacy. Cell confluency and reduced glutathione were measured after PEF protocols. (3) Results: The obtained results showed that PEFs significantly supported doxorubicin delivery and cytotoxicity after 48 and 72 h. The 60 kV/cm ultrashort pulses × 20 ns × 400 had the most significant cytotoxic anticancer effect. The increase in DOX concentration provokes a decrease in cell viability, affected cell confluency, and reduced GSSH when combined with the ESOPE (European Standard Operating Procedures of Electrochemotherapy) protocol. Additionally, reactive oxygen species after PEF and PEF-DOX were detected. (4) Conclusions: Ultrashort electric pulses with low DOX content or ESOPE with higher DOX content seem the most promising in colon and breast cancer treatment.
Collapse
Affiliation(s)
- Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (N.R.); (D.B.); (J.S.)
| | - Vitalij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, LT-03227 Vilnius, Lithuania;
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (N.R.); (D.B.); (J.S.)
| | - Magda Dubińska-Magiera
- Department of Animal Developmental Biology, Faculty of Biological Science, University of Wroclaw, Sienkiewicza 21, 50-335 Wroclaw, Poland;
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (N.R.); (D.B.); (J.S.)
| | - Julia Rudno-Rudzińska
- 2nd Department of General Surgery and Surgical Oncology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Magdalena Maciejewska
- Laboratory of Experimental Anticancer Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Rudolfa Weigla 12, 53-114 Wroclaw, Poland;
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (N.R.); (D.B.); (J.S.)
| |
Collapse
|
140
|
Li T, Zhang H, Wang Z, Gao S, Zhang X, Zhu H, Wang N, Li H. The regulation of autophagy by the miR-199a-5p/p62 axis was a potential mechanism of small cell lung cancer cisplatin resistance. Cancer Cell Int 2022; 22:120. [PMID: 35292022 PMCID: PMC8922820 DOI: 10.1186/s12935-022-02505-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Autophagy has been found to be involved in the multidrug resistance (MDR) of cancers, but whether it is associated with resistance of small cell lung cancer (SCLC) has not been studied. Here, we hypothesized that a potential autophagy-regulating miRNA, miR-199a-5p, regulated cisplatin-resistant SCLC. METHODS We validated the MDR of H446/EP using CCK-8 and LDH. We tested the binding of miR-199a-5p to p62 using the Dual-Luciferase assay and validated the association of miR-199a-5p and p62 in SCLC samples. We overexpressed (OE) and knocked down (KD) miR-199a-5p in H446 and H446/EP and determined the expression of miR-199a-5p, autophagy-related proteins, and the formation of autophagolysosomes using QPCR, western blotting, and MDC staining respectively. These results were validated in an orthotopic H446 mouse model of SCLC. RESULTS H446/EP was resistant to cisplatin, etoposide, paclitexal, epirubicin, irinotecan, and vinorelbine. Exposure of cisplatin at 5 μg/ml for 24 h increased LC3II/LC3I, ATG5, p62, and the formation of autophagolysosomes in H446 cells, but not in H446/EP cells. The expression of miR-199a-5p was up-regulated in H446/EP compared to H446. MiR-199a-5p directly targeted the p62 gene. The expression of miR-199a-5p and p62 were correlated in SCLC samples. In H446 and H69PR, the OE of miR-199a-5p increased LC3II/LC3I, p62, and the formation of autophagolysosomes, but not ATG5, while the KD of miR-199a-5p decreased p62, but did not affect LC3II/LC3I, ATG5, and the formation of autophagolysosomes. In H446/EP, the OE of miR-199a-5p decreased p62 only. These results were generally consistent to results in the animal tumor samples. CONCLUSIONS The regulation of autophagy by the miR-199a-5p/p62 axis was a potential mechanism of small cell lung cancer cisplatin resistance.
Collapse
Affiliation(s)
- Tiezhi Li
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Helin Zhang
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhichao Wang
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shaolin Gao
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xu Zhang
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haiyong Zhu
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Na Wang
- Department of Pediatrics, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Honglin Li
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
141
|
Cai P, Sheng G, Jiang S, Wang D, Zhao Z, Huang M, Jin J. Comparative Proteomics Analysis Reveals the Reversal Effect of Cryptotanshinone on Gefitinib-Resistant Cells in Epidermal Growth Factor Receptor-Mutant Lung Cancer. Front Pharmacol 2022; 13:837055. [PMID: 35370706 PMCID: PMC8965640 DOI: 10.3389/fphar.2022.837055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/18/2022] [Indexed: 12/23/2022] Open
Abstract
Cryptotanshinone (CTS) is a lipophilic constituent of Salvia miltiorrhiza, with a broad-spectrum anticancer activity. We have observed that CTS enhances the efficacy of gefitinib in human lung cancer H1975 cells, yet little is known about its molecular mechanism. To explore how CTS enhances H1975 cell sensitivity to gefitinib, we figured out differential proteins of H1975 cells treated by gefitinib alone or in combination with CTS using label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS). Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein–protein interaction (PPI) bioinformatic analyses of the differential proteins were performed. CTS enhanced H1975 cell sensitivity to gefitinib in vitro and in vivo, with 115 and 128 differential proteins identified, respectively. GO enrichment, KEGG analysis, and PPI network comprehensively demonstrated that CTS mainly impacted the redox process and fatty acid metabolism in H1975 cells. Moreover, three differential proteins, namely, catalase (CAT), heme oxygenase 1 (HMOX1), and stearoyl-CoA desaturase (SCD) were validated by RT-qPCR and Western blot. In conclusion, we used a proteomic method to study the mechanism of CTS enhancing gefitinib sensitivity in H1975 cells. Our finding reveals the potential protein targets of CTS in overcoming gefitinib resistance, which may be therapeutical targets in lung cancer.
Collapse
Affiliation(s)
- Peiheng Cai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Gaofan Sheng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shiqin Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Daifei Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhongxiang Zhao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jing Jin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Jing Jin,
| |
Collapse
|
142
|
Toolabi N, Daliri FS, Mokhlesi A, Talkhabi M. Identification of key regulators associated with colon cancer prognosis and pathogenesis. J Cell Commun Signal 2022; 16:115-127. [PMID: 33770351 PMCID: PMC8688655 DOI: 10.1007/s12079-021-00612-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Colon cancer (CC) is the fourth deadliest cancer in the world. New insights into prognostication might be helpful to define the optimal adjuvant treatments for patients in routine clinical practice. Here, a microarray dataset with 30 primary tumors and 30 normal samples was analyzed using GEO2R to find differentially expressed genes (DEGs). Then, DAVID, KEGG, ChEA and X2K were used to analyze DEGs-related Gene Ontology, pathways, transcription factors (TFs) and kinases, respectively. Protein-protein interaction (PPI) networks were constructed using the STRING database and Cytoscape. The modules and hub genes of DEGs was determined through MCODE and CytoHubba plugins, and the expression of hub genes was verified using GEPIA. To find microRNAs and metabolites associated with DEGs, miRTarBase and HMDB were used, respectively. It was found that 233 and 373 genes were upregulated and downregulated in CC, respectively. GO analysis showed that the upregulated DEGs were mainly involved in mitotic nuclear division and cell division. Top 10 hub genes were identified, including AURKB, CDK1, DLGAP5, AURKA, CCNB2, CCNB1, BUB1B, CCNA2, KIF20A and BUB1. Whereas, FOMX1, E2F7, E2F1, E2F4 and AR were identified as top 5 TFs in CC. Moreover, CDK1, CDC2, MAPK14, ATM and CK2ALPHA was identified as top 5 kinases in CC. miRNAs analysis showed that Hsa-miR-215-5p hsa-miR-193b-3p, hsa-miR-192-5p and hsa-miR-16-5p could target the largest number of CC genes. Taken together, CC-related genes, especially the hub genes, TFs, and metabolites might be used as novel biomarkers for CC, as well as for diagnosis and guiding therapeutic strategies for CC.
Collapse
Affiliation(s)
- Narges Toolabi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Fattane Sam Daliri
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Amir Mokhlesi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mahmood Talkhabi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
143
|
Shi L, Su Y, Zheng Z, Qi J, Wang W, Wang C. miR-146b-5p promotes colorectal cancer progression by targeting TRAF6. Exp Ther Med 2022; 23:231. [PMID: 35222708 PMCID: PMC8815033 DOI: 10.3892/etm.2022.11155] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/06/2021] [Indexed: 12/09/2022] Open
Abstract
Increasing evidence highlights the multiple roles of microRNAs (miRs) in the tumorigenesis of colorectal cancer (CRC); however, the molecular mechanism, particularly the target of miR-146b-5p in CRC has not been fully elucidated. The present study aimed to elucidate the influence of miR-146b-5p via regulating tumor necrosis factor receptor-associated factor 6 (TRAF6) in CRC. The expression levels of miR-146b-5p and TRAF6 in CRC tissue and cells were determined by reverse transcription quantitative PCR and western blotting. Binding between miR-146b-5p and TRAF6 was examined using a dual luciferase reporter gene assay. The impact of miR-146b-5p and TRAF6 on proliferation and migration of CRC cells was determined using Cell Counting Kit-8 and Transwell assays, respectively. An animal model of CRC was established to determine the carcinogenic effect of the miR-146b-5p-TRAF6 axis. The results demonstrated that miR-146b-5p was highly expressed in CRC tissue samples compared with in normal adjacent tissue samples and in CRC cells compared with in the normal NCM460 cell line, whereas TRAF6 was expressed at low levels. Overexpression of miR-146b-5p decreased TRAF6 expression in CRC HT29 and SW620 cells. miR-146b-5p targeted and inhibited TRAF6 expression in CRC cells. Furthermore, transfection with a miR-146b-5p mimic promoted the proliferation, migration and invasion of CRC cells and tumor growth; however, these effects were abolished by TRAF6 overexpression. Transfection with a miR-146b-5p inhibitor suppressed the proliferation of CRC cells. Taken together, the results from the present study demonstrated that miR-146b-5p could enhance the initiation and tumorigenesis of CRC by targeting TRAF6. These results will help elucidate the mechanisms underlying CRC development and will facilitate the development of targeted therapy for CRC.
Collapse
Affiliation(s)
- Liangpan Shi
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
- Department of Gastrointestinal Surgery, The First Hospital of Quanzhou Affiliated of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Yibin Su
- Department of Gastrointestinal Surgery, The First Hospital of Quanzhou Affiliated of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Zhihua Zheng
- Department of Gastrointestinal Surgery, The First Hospital of Quanzhou Affiliated of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Jinyu Qi
- Department of Gastrointestinal Surgery, The First Hospital of Quanzhou Affiliated of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Weidong Wang
- Department of Gastrointestinal Surgery, The First Hospital of Quanzhou Affiliated of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Cunchuan Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
144
|
Caspase-Mediated Cleavage of the Transcription Factor Sp3: Possible Relevance to Cancer and the Lytic Cycle of Kaposi's Sarcoma-Associated Herpesvirus. Microbiol Spectr 2022; 10:e0146421. [PMID: 35019687 PMCID: PMC8754129 DOI: 10.1128/spectrum.01464-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The open reading frame 50 (ORF50) protein of Kaposi's sarcoma-associated herpesvirus (KSHV) is the master regulator essential for initiating the viral lytic cycle. Previously, we have demonstrated that the ORF50 protein can cooperate with Sp3 to synergistically activate a set of viral and cellular gene promoters through highly conserved ORF50-responsive elements that harbor a Sp3-binding motif. Herein, we show that Sp3 undergoes proteolytic cleavage during the viral lytic cycle, and the cleavage of Sp3 is dependent on caspase activation. Since similar cleavage patterns of Sp3 could be detected in both KSHV-positive and KSHV-negative lymphoma cells undergoing apoptosis, the proteolytic cleavage of Sp3 could be a common event during apoptosis. Mutational analysis identifies 12 caspase cleavage sites in Sp3, which are situated at the aspartate (D) positions D17, D19, D180, D273, D275, D293, D304 (or D307), D326, D344, D530, D543, and D565. Importantly, we noticed that three stable Sp3 C-terminal fragments generated through cleavage at D530, D543, or D565 encompass an intact DNA-binding domain. Like the full-length Sp3, the C-terminal fragments of Sp3 could still retain the ability to cooperate with ORF50 protein to activate specific viral and cellular gene promoters synergistically. Collectively, our findings suggest that despite the proteolytic cleavage of Sp3 under apoptotic conditions, the resultant Sp3 fragments may retain biological activities important for the viral lytic cycle or for cellular apoptosis. IMPORTANCE The ORF50 protein of Kaposi's sarcoma-associated herpesvirus (KSHV) is the key viral protein that controls the switch from latency to lytic reactivation. It is a potent transactivator that can activate target gene promoters via interacting with other cellular DNA-binding transcription factors, such as Sp3. In this report, we show that Sp3 is proteolytically cleaved during the viral lytic cycle, and up to 12 caspase cleavage sites are identified in Sp3. Despite the proteolytic cleavage of Sp3, several resulting C-terminal fragments that have intact zinc-finger DNA-binding domains still retain substantial influence in the synergy with ORF50 to activate specific gene promoters. Overall, our studies elucidate the caspase-mediated cleavage of Sp3 and uncover how ORF50 utilizes the cleavage fragments of Sp3 to transactivate specific viral and cellular gene promoters.
Collapse
|
145
|
Sun C, Han B, Zhai Y, Zhao H, Li X, Qian J, Hao X, Liu Q, Shen J, Kai G. Dihydrotanshinone I inhibits ovarian tumor growth by activating oxidative stress through Keap1-mediated Nrf2 ubiquitination degradation. Free Radic Biol Med 2022; 180:220-235. [PMID: 35074488 DOI: 10.1016/j.freeradbiomed.2022.01.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 12/20/2022]
Abstract
Dihydrotanshinone I (DHT), a bioactive compound in Salvia miltiorrhiza, was reported to exhibit cytotoxicity against various malignancies. However, the underlying mechanism on ovarian cancer remains unclear. Here, DHT inhibited cell viability of ovarian cancer HO8910PM, SKOV3, A2780 and ES2 cells. It showed moderate inhibitory effect on ovarian epithelial IOSE80 cells and lower toxicity than chemotherapy drugs. DHT induced apoptosis and G2 cell cycle arrest accompanied by reduced expression of Bcl-2, Caspase-3, and increased Bax. Meanwhile, DHT increased ROS accumulation, decreased mitochondrial membrane potential and activated oxidative stress in HO8910PM and ES2 cells. Mechanistically, DHT inhibited Nrf2 and p62 expression, Nrf2 target genes and enzymes, and Nrf2 nuclear translocation, while increased the expression of Nrf2 inhibitor Keap1. NAC, a ROS scavenger, rescued DHT-induced proliferation inhibition, ROS generation and Nrf2 inhibition. DHT alleviated tBHQ-induced Nrf2 expression and increased its mRNA level. However, the proteasome inhibitor MG132 blocked DHT-induced Nrf2 inhibition, suggesting a post-translational regulation manner. DHT enhanced Nrf2 binding with Keap1, leading to potentiated Nrf2 ubiquitination degradation. Furthermore, Nrf2 and p62 overexpression blocked DHT-induced Nrf2 and p62 inhibition. Consistent with the in vitro results, DHT significantly delayed tumor growth in HO8910PM and ES2 xenograft nude mice, decreased tumor marker HE4 and CA125 levels, reversed the abnormally expressed proteins including Ki67, Nrf2, p62, Keap1, Bcl-2, CyclinB1, Cdc-2, and antioxidant enzymes SOD, CAT in vivo. Serum from DHT-treated mice also inhibited cell growth in vitro. Taken together, DHT exhibits anti-ovarian tumor effect by activating oxidative stress through ubiquitination-mediated Nrf2 degradation. Our findings implicate a potential application of DHT for ovarian cancer therapy.
Collapse
Affiliation(s)
- Chengtao Sun
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Bing Han
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yufei Zhai
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Huan Zhao
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xuan Li
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jun Qian
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaolong Hao
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qun Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Jiayan Shen
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Guoyin Kai
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
146
|
Zhang B, Lin J, Zhang J, Wang X, Deng X. Integrated Chromatin Accessibility and Transcriptome Landscapes of 5-Fluorouracil-Resistant Colon Cancer Cells. Front Cell Dev Biol 2022; 10:838332. [PMID: 35252200 PMCID: PMC8891516 DOI: 10.3389/fcell.2022.838332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/26/2022] [Indexed: 12/11/2022] Open
Abstract
Background: 5-Fluorouracil (5-FU) is one of the most effective and widely used chemotherapeutic drugs in the treatment of colon cancer, yet chemoresistance is a common feature of colon cancer treatment, resulting in poor prognosis and short survival. Dynamic reprogramming of chromatin accessibility is crucial for proper regulation of gene transcription associated with cancer drug resistance by providing the gene regulatory machinery with rapid access to the open genomic DNA. Methods: Here, we explored the global chromatin accessibility and transcription changes by the assay for transposase-accessible chromatin using sequencing (ATAC-seq) in combination with transcriptome sequencing of both parental and 5-FU-resistant HCT15 cells, followed by integrative analysis to better understand the regulatory network underlying 5-FU resistance in colon cancer cells. Results: A total of 3,175 differentially expressed mRNAs (DEGs), lncRNAs (DELs), and miRNAs (DEMs) related to 5-FU resistance were identified, including significantly upregulated IL33, H19, and miR-17-5p; the downregulated AKR1B10, LINC01012, and miR-125b-5p; and chromatin modifiers such as INO80C, HDAC6, and KDM5A. The construction of the ceRNA regulatory network revealed that H19, HOXA11-AS, and NEAT1 might function as ceRNAs associated with 5-FU resistance in HCT15 cells. Moreover, 9,868 differentially accessible regions (DARs) were obtained, which were positively (r = 0.58) correlated with their nearest DEGs and DELs. The upregulated genes related to 4,937 hyper-accessible regions were significantly enriched in signaling pathways of MAPK, FOX, and WNT, while the 4,931 hypo-accessible regions were considered to be involved in declined biosynthesis of amino acids and nucleotide sugars, signaling pathways of Notch, and HIF-1. Analyses of the DAR sequences revealed that besides the AP-1 family, the TF motifs of FOX and KLF family members were highly enriched in hyper- and hypo-accessible regions, respectively. Finally, we obtained several critical TFs and their potential targets associated with DARs and 5-FU resistance, including FOXA1 and KLF3. Conclusion: These data provided clear insights and valuable resources for an improved understanding of the non-genetic landscape of 5-FU-resistant colon cancer cells based on chromatin accessibility and transcript levels, which allowed for genome-wide detection of TF binding sites, potential cis-regulatory elements and therapeutic targets.
Collapse
Affiliation(s)
- Bishu Zhang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiewei Lin
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaqiang Zhang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Jiaqiang Zhang, ; Xuelong Wang, ; Xiaxing Deng,
| | - Xuelong Wang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Jiaqiang Zhang, ; Xuelong Wang, ; Xiaxing Deng,
| | - Xiaxing Deng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Jiaqiang Zhang, ; Xuelong Wang, ; Xiaxing Deng,
| |
Collapse
|
147
|
Zhang C, Zhou X, Zhang H, Han X, Li B, Yang R, Zhou X. Recent Progress of Novel Nanotechnology Challenging the Multidrug Resistance of Cancer. Front Pharmacol 2022; 13:776895. [PMID: 35237155 PMCID: PMC8883114 DOI: 10.3389/fphar.2022.776895] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Multidrug resistance (MDR) of tumors is one of the clinical direct reasons for chemotherapy failure. MDR directly leads to tumor recurrence and metastasis, with extremely grievous mortality. Engineering a novel nano-delivery system for the treatment of MDR tumors has become an important part of nanotechnology. Herein, this review will take those different mechanisms of MDR as the classification standards and systematically summarize the advances in nanotechnology targeting different mechanisms of MDR in recent years. However, it still needs to be seriously considered that there are still some thorny problems in the application of the nano-delivery system against MDR tumors, including the excessive utilization of carrier materials, low drug-loading capacity, relatively narrow targeting mechanism, and so on. It is hoped that through the continuous development of nanotechnology, nano-delivery systems with more universal uses and a simpler preparation process can be obtained, for achieving the goal of defeating cancer MDR and accelerating clinical transformation.
Collapse
Affiliation(s)
- Chengyuan Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, China
| | - Xuemei Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, China
| | - Hanyi Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, China
| | - Xuanliang Han
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, China
| | - Baijun Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, China
| | - Ran Yang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, China
| | - Xing Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, China
- Department of Pharmacy, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
148
|
Pérez Regalado S, León J, Feriche B. Therapeutic approach for digestive system cancers and potential implications of exercise under hypoxia condition: what little is known? a narrative review. J Cancer Res Clin Oncol 2022; 148:1107-1121. [PMID: 35157120 DOI: 10.1007/s00432-022-03918-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/04/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Cancer, like other chronic pathologies, is associated with the presence of hypoxic regions due to the uncontrolled cell growth. Under this pathological hypoxic condition, various molecular signaling pathways are activated to ensure cell survival, such as those that govern angiogenesis, erythropoiesis, among others. These molecular processes are very similar to the physiological response caused by exposure to altitude (natural hypobaric systemic hypoxia), the use of artificial hypoxia devices (systemic normobaric simulated hypoxia) or the delivery of vascular occlusion to the extremities (also called local hypoxia by the blood flow restriction technique). "Tumor hypoxia" has gained further clinical importance due to its crucial role in both tumor progression and resistance to treatment. However, the ability to manipulate this pathway through physical exercise and systemic hypoxia-mediated signaling pathways could offer an important range of therapeutic opportunities that should be further investigated. METHODS This review is focused on the potential implications of systemic hypoxia combined with exercise in digestive system neoplasms prognosis. Articles included in the review were retrieved by searching among the three main scientific databases: PubMed, Scopus, and Embase. FINDINGS The findings of this review suggest that exercise performed under systemic hypoxic conditions could have a positive impact in prognosis and quality of life of the population with digestive system cancers. CONCLUSIONS Further studies are needed to consider this paradigm as a new potential intervention in digestive oncological population.
Collapse
Affiliation(s)
- Sergio Pérez Regalado
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Josefa León
- Clinical Management Unit of Digestive System, San Cecilio Hospital, Ibs.GRANADA, Granada, Spain.
| | - Belén Feriche
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
149
|
Chu J, Fang X, Sun Z, Gai L, Dai W, Li H, Yan X, Du J, Zhang L, Zhao L, Xu D, Yan S. Non-Coding RNAs Regulate the Resistance to Anti-EGFR Therapy in Colorectal Cancer. Front Oncol 2022; 11:801319. [PMID: 35111681 PMCID: PMC8802825 DOI: 10.3389/fonc.2021.801319] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third prevalent cancer worldwide, the morbidity and mortality of which have been increasing in recent years. As molecular targeting agents, anti-epidermal growth factor receptor (EGFR) monoclonal antibodies (McAbs) have significantly increased the progression-free survival (PFS) and overall survival (OS) of metastatic CRC (mCRC) patients. Nevertheless, most patients are eventually resistant to anti-EGFR McAbs. With the intensive study of the mechanism of anti-EGFR drug resistance, a variety of biomarkers and pathways have been found to participate in CRC resistance to anti-EGFR therapy. More and more studies have implicated non-coding RNAs (ncRNAs) primarily including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are widely involved in tumorigenesis and tumor progression. They function as essential regulators controlling the expression and function of oncogenes. Increasing data have shown ncRNAs affect the resistance of molecular targeted drugs in CRC including anti-EGFR McAbs. In this paper, we have reviewed the advance in mechanisms of ncRNAs in regulating anti-EGFR McAbs therapy resistance in CRC. It provides insight into exploring ncRNAs as new molecular targets and prognostic markers for CRC.
Collapse
Affiliation(s)
- Jinjin Chu
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Xianzhu Fang
- Department of Pathology and Pathophysiology, Weifang Medical University, Weifang, China
| | - Zhonghou Sun
- Department of Pediatrics of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Linlin Gai
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Wenqing Dai
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Haibo Li
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Xinyi Yan
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Jinke Du
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Lili Zhang
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Lu Zhao
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Donghua Xu
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Shushan Yan
- Department of Gastrointestinal and Anal Diseases Surgery of the Affiliated Hospital, Weifang Medical University, Weifang, China
| |
Collapse
|
150
|
Wang Y, Xu J, Wang Y, Xiang L, He X. S-20, a steroidal saponin from the berries of black nightshade, exerts anti-multidrug resistance activity in K562/ADR cells through autophagic cell death and ERK activation. Food Funct 2022; 13:2200-2215. [PMID: 35119449 DOI: 10.1039/d1fo03191k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multidrug resistance (MDR) is a major cause of chemotherapy failure. Adriamycin (ADR) has been widely used to treat cancer, however, as a substrate of the adenosine triphosphate binding cassette (ABC) transporter, it is easy to develop drug resistance during the treatment. Here, we demonstrated that steroidal saponin S-20 isolated from the berries of black nightshade has comparable cytotoxicity in ADR-sensitive and resistant K562 cell lines. Autophagy is generally considered to be a protective mechanism to mediate MDR during treatment. However, we found that S-20-induced cell death in K562/ADR is associated with autophagy. We further explored the underlying mechanisms and found that S-20 induces caspase-dependent apoptosis in ADR-sensitive and resistant K562 cell lines. Most importantly, S-20-induced autophagy activates the ERK pathway and then inhibits the expression of drug resistance protein, which is the main reason to overcome K562/ADR resistance, rather than apoptosis. Taken together, our findings emphasize that S-20 exerts anti-multidrug resistance activity in K562/ADR cells through autophagic cell death and ERK activation, which may be considered as an effective strategy.
Collapse
Affiliation(s)
- Yi Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Jingwen Xu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China. .,Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, 510006, China
| | - Yihai Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China. .,Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, 510006, China
| | - Limin Xiang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China. .,Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, 510006, China
| | - Xiangjiu He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China. .,Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, 510006, China
| |
Collapse
|