1501
|
Tong M, Deng Z, Zhang X, He B, Yang M, Cheng W, Liu Q. New insights from the widening homogeneity perspective to target intratumor heterogeneity. Cancer Commun (Lond) 2018; 38:17. [PMID: 29764517 PMCID: PMC5993146 DOI: 10.1186/s40880-018-0287-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/18/2018] [Indexed: 12/12/2022] Open
Abstract
Precision medicine has shed new light on the treatment of heterogeneous cancer patients. However, intratumor heterogeneity strongly constrains the clinical benefit of precision medicine. Thus, rethinking therapeutic strategies from a different facet within the precision medicine framework will not only diversify clinical interventions, but also provide an avenue for precision medicine. Here, we explore the current approaches for targeting intratumor heterogeneity and their limitations. Furthermore, we propose a theoretical strategy with a "homogenization" feature based on iatrogenic evolutionary selection to target intratumor heterogeneity.
Collapse
Affiliation(s)
- Mengying Tong
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044 Liaoning P.R. China
| | - Ziqian Deng
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044 Liaoning P.R. China
| | - Xiaolong Zhang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044 Liaoning P.R. China
| | - Bin He
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510630 Guangdong P.R. China
| | - Mengying Yang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044 Liaoning P.R. China
| | - Wei Cheng
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044 Liaoning P.R. China
| | - Quentin Liu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044 Liaoning P.R. China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510630 Guangdong P.R. China
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen Univerisity, Guangzhou, 510630 Guangdong P.R. China
| |
Collapse
|
1502
|
Exosomes: Definition, Role in Tumor Development and Clinical Implications. CANCER MICROENVIRONMENT 2018; 11:13-21. [PMID: 29721824 DOI: 10.1007/s12307-018-0211-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 04/12/2018] [Indexed: 12/21/2022]
Abstract
Exosomes are microvesicles released by cells in both physiological and pathological situations. They are surrounded by a lipid bilayer with proteins derived from the origin cell, and contain a variety of molecules, such as nucleic acids. They represent an emerging mechanism of intercellular communication, and they play an important role in the pathogenesis of cancer, stimulating proliferation and aggressiveness of cancer cells, inducing a microenvironment favorable to tumor development and controlling immune responses. Because of the growing understanding of the potential implications of extracellular vesicles in the development of malignancies, research on exosomes, and its role as a diagnostic and therapeutic tool, constitutes nowadays a very exciting and promising field.
Collapse
|
1503
|
Li X, Hou J. A richer understanding of intratumoral heterogeneity: single-cell genomics put it within reach. J Thorac Dis 2018; 10:1178-1182. [PMID: 29707265 DOI: 10.21037/jtd.2018.03.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xuetao Li
- Guangdong Lung Cancer Institute, Guangdong General Hospital & Guangdong Academy of Medical Sciences, South China University of Technology, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Jun Hou
- School of Medicine, South China University of Technology, Guangzhou, China.,Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
1504
|
Viganó C, von Schubert C, Ahrné E, Schmidt A, Lorber T, Bubendorf L, De Vetter JRF, Zaman GJR, Storchova Z, Nigg EA. Quantitative proteomic and phosphoproteomic comparison of human colon cancer DLD-1 cells differing in ploidy and chromosome stability. Mol Biol Cell 2018; 29:1031-1047. [PMID: 29496963 PMCID: PMC5921571 DOI: 10.1091/mbc.e17-10-0577] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/15/2018] [Accepted: 02/21/2018] [Indexed: 11/11/2022] Open
Abstract
Although aneuploidy is poorly tolerated during embryogenesis, aneuploidy and whole chromosomal instability (CIN) are common hallmarks of cancer, raising the question of how cancer cells can thrive in spite of chromosome aberrations. Here we present a comprehensive and quantitative proteomics analysis of isogenic DLD-1 colorectal adenocarcinoma cells lines, aimed at identifying cellular responses to changes in ploidy and/or CIN. Specifically, we compared diploid (2N) and tetraploid (4N) cells with posttetraploid aneuploid (PTA) clones and engineered trisomic clones. Our study provides a comparative data set on the proteomes and phosphoproteomes of the above cell lines, comprising several thousand proteins and phosphopeptides. In comparison to the parental 2N line, we observed changes in proteins associated with stress responses and with interferon signaling. Although we did not detect a conspicuous protein signature associated with CIN, we observed many changes in phosphopeptides that relate to fundamental cellular processes, including mitotic progression and spindle function. Most importantly, we found that most changes detectable in PTA cells were already present in the 4N progenitor line. This suggests that activation of mitotic pathways through hyper-phosphorylation likely constitutes an important response to chromosomal burden. In line with this conclusion, cells with extensive chromosome gains showed differential sensitivity toward a number of inhibitors targeting cell cycle kinases, suggesting that the efficacy of anti-mitotic drugs may depend on the karyotype of cancer cells.
Collapse
Affiliation(s)
| | | | - Erik Ahrné
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | - Thomas Lorber
- Institute of Pathology, University Hospital Basel, University of Basel, 4056 Basel, Switzerland
| | - Lukas Bubendorf
- Institute of Pathology, University Hospital Basel, University of Basel, 4056 Basel, Switzerland
| | | | - Guido J. R. Zaman
- Netherlands Translational Research Center B.V., 5340 Oss, The Netherlands
| | | | - Erich A. Nigg
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
1505
|
Salk JJ, Schmitt MW, Loeb LA. Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations. Nat Rev Genet 2018; 19:269-285. [PMID: 29576615 PMCID: PMC6485430 DOI: 10.1038/nrg.2017.117] [Citation(s) in RCA: 346] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mutations, the fuel of evolution, are first manifested as rare DNA changes within a population of cells. Although next-generation sequencing (NGS) technologies have revolutionized the study of genomic variation between species and individual organisms, most have limited ability to accurately detect and quantify rare variants among the different genome copies in heterogeneous mixtures of cells or molecules. We describe the technical challenges in characterizing subclonal variants using conventional NGS protocols and the recent development of error correction strategies, both computational and experimental, including consensus sequencing of single DNA molecules. We also highlight major applications for low-frequency mutation detection in science and medicine, describe emerging methodologies and provide our vision for the future of DNA sequencing.
Collapse
Affiliation(s)
- Jesse J Salk
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Medicine, Divisions of Hematology and Medical Oncology, University of Washington School of Medicine, Seattle, WA, USA
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA, USA
| | - Michael W Schmitt
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Medicine, Divisions of Hematology and Medical Oncology, University of Washington School of Medicine, Seattle, WA, USA
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA, USA
| | - Lawrence A Loeb
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
1506
|
Qiao M, Jiang T, Zhou C. Shining light on advanced NSCLC in 2017: combining immune checkpoint inhibitors. J Thorac Dis 2018; 10:S1534-S1546. [PMID: 29951304 PMCID: PMC5994489 DOI: 10.21037/jtd.2018.04.99] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/11/2018] [Indexed: 12/25/2022]
Abstract
The treatment landscape has changed since the immune checkpoint inhibitors were approved in the treatment of non-small cell lung cancer (NSCLC). Although the promising clinical benefit from programmed death-1/programmed death ligand-1 (PD-1/PD-L1) inhibitors was observed in the second or subsequent line treatment of patients who progressed on chemotherapy, it has a long way for single PD-1/PD-L1 inhibitor to move forward to the frontline without a predictive biomarker. Tumor response is far from satisfactory without selection and primary or acquired resistance to PD-1/PD-L1 inhibitors hampered their utility. Therefore, it is crucial to determine a strategy that can optimize the application of immune checkpoint inhibitors and increase the numbers of the responders. Multiple combination approaches based on PD-1/PD-L1 inhibitors are designed and aimed to boost anti-tumor response and benefit a broader population. In this review, we will integrate the updated clinical data to highlight the four most promising combination strategies in advance NSCLC: combination of checkpoint inhibition with chemotherapy, anti-angiogenesis, immunotherapy and radiotherapy. We further discuss the issues needed to be addressed and perspectives in the context of "combination era".
Collapse
Affiliation(s)
- Meng Qiao
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
| | - Tao Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
| |
Collapse
|
1507
|
Araf S, Wang J, Korfi K, Pangault C, Kotsiou E, Rio-Machin A, Rahim T, Heward J, Clear A, Iqbal S, Davies JK, Johnson P, Calaminici M, Montoto S, Auer R, Chelala C, Gribben JG, Graham TA, Fest T, Fitzgibbon J, Okosun J. Genomic profiling reveals spatial intra-tumor heterogeneity in follicular lymphoma. Leukemia 2018; 32:1261-1265. [PMID: 29568095 PMCID: PMC5940637 DOI: 10.1038/s41375-018-0043-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/17/2017] [Accepted: 11/24/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Shamzah Araf
- Centre for Haemato-Oncology, Barts Cancer Institute, London, UK.
- Centre for Genomic Health, Queen Mary University of London, London, UK.
| | - Jun Wang
- Centre for Molecular Oncology, Barts Cancer Institute, London, UK
| | - Koorosh Korfi
- Centre for Haemato-Oncology, Barts Cancer Institute, London, UK
| | - Celine Pangault
- UMR INSERM 1236, Université de Rennes, 1, EFS de Bretagne, CHU de Rennes, Rennes, France
| | - Eleni Kotsiou
- Centre for Haemato-Oncology, Barts Cancer Institute, London, UK
| | - Ana Rio-Machin
- Centre for Haemato-Oncology, Barts Cancer Institute, London, UK
| | - Tahrima Rahim
- Centre for Haemato-Oncology, Barts Cancer Institute, London, UK
| | - James Heward
- Centre for Haemato-Oncology, Barts Cancer Institute, London, UK
| | - Andrew Clear
- Centre for Haemato-Oncology, Barts Cancer Institute, London, UK
| | - Sameena Iqbal
- Centre for Haemato-Oncology, Barts Cancer Institute, London, UK
| | - Jeff K Davies
- Centre for Haemato-Oncology, Barts Cancer Institute, London, UK
| | - Peter Johnson
- Cancer Sciences Unit, Cancer Research UK Centre, Southampton, UK
| | | | - Silvia Montoto
- Centre for Haemato-Oncology, Barts Cancer Institute, London, UK
| | - Rebecca Auer
- Centre for Haemato-Oncology, Barts Cancer Institute, London, UK
| | - Claude Chelala
- Centre for Molecular Oncology, Barts Cancer Institute, London, UK
| | - John G Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute, London, UK
| | - Trevor A Graham
- Evolution and Cancer Laboratory, Barts Cancer Institute, London, UK
| | - Thierry Fest
- UMR INSERM 1236, Université de Rennes, 1, EFS de Bretagne, CHU de Rennes, Rennes, France
| | - Jude Fitzgibbon
- Centre for Haemato-Oncology, Barts Cancer Institute, London, UK
| | - Jessica Okosun
- Centre for Haemato-Oncology, Barts Cancer Institute, London, UK.
| |
Collapse
|
1508
|
Clonal interference of signaling mutations worsens prognosis in core-binding factor acute myeloid leukemia. Blood 2018; 132:187-196. [PMID: 29692343 DOI: 10.1182/blood-2018-03-837781] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/17/2018] [Indexed: 11/20/2022] Open
Abstract
Mutations in receptor tyrosine kinase/RAS signaling pathway genes are frequent in core-binding factor (CBF) acute myeloid leukemias (AMLs), but their prognostic relevance is debated. A subset of CBF AML patients harbors several signaling gene mutations. Genotyping of colonies and of relapse samples indicates that these arise in independent clones, thus defining a process of clonal interference (or parallel evolution). Clonal interference is pervasive in cancers, but the mechanisms underlying this process remain unclear, and its prognostic impact remains unknown. We analyzed a cohort of 445 adult and pediatric patients with CBF AML treated with intensive chemotherapy and with deep sequencing of 6 signaling genes (KIT, NRAS, KRAS, FLT3, JAK2, CBL). A total of 152 (34%), 167 (38%), and 126 (28%) patients harbored no, a single, and multiple signaling clones (clonal interference), respectively. Clonal interference of signaling mutations was associated with older age (P = .004) and inv(16) subtype (P = .025) but not with white blood cell count or mutations in chromatin or cohesin genes. The median allele frequency of signaling mutations was 31% in patients with a single clone or clonal interference (P = .14). The repertoire of KIT, FLT3, and NRAS/KRAS variants differed between groups. Clonal interference did not affect complete remission rate or minimal residual disease after 1-2 courses, but it did convey inferior event-free survival (P < 10-4), whereas the presence of a single signaling clone did not (P = .44). This inferior outcome was independent of clinical parameters and of the presence of specific signaling clones. Our results suggest that specific clonal architectures can herald distinct prognoses in AML.
Collapse
|
1509
|
Leonetti A, Facchinetti F, Rossi G, Minari R, Conti A, Friboulet L, Tiseo M, Planchard D. BRAF in non-small cell lung cancer (NSCLC): Pickaxing another brick in the wall. Cancer Treat Rev 2018; 66:82-94. [PMID: 29729495 DOI: 10.1016/j.ctrv.2018.04.006] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/28/2018] [Accepted: 04/20/2018] [Indexed: 02/07/2023]
Abstract
Molecular characterization of non-small cell lung cancer (NSCLC) marked an historical turning point for the treatment of lung tumors harboring kinase alterations suitable for specific targeted drugs inhibition, translating into major clinical improvements. Besides EGFR, ALK and ROS1, BRAF represents a novel therapeutic target for the treatment of advanced NSCLC. BRAF mutations, found in 1.5-3.5% of NSCLC, are responsible of the constitutive activation of mitogen activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway. Clinical trials evaluating the efficacy of the BRAF inhibitor dabrafenib in combination with the downstream MEK inhibitor trametinib in metastatic BRAFV600E-mutated NSCLC guaranteed FDA and EMA rapid approval of the combination regimen in this clinical setting. In line with the striking results observed in metastatic melanoma harboring the same molecular alteration, BRAF and MEK inhibition should be considered a new standard of care in this molecular subtype of NSCLC. In the present review, we propose an overview of the available evidence about BRAF in NSCLC mutations (V600E and non-V600E), from biological significance to emerging clinical implications of BRAF mutations detection. Focusing on the current strategies to act against the mutated kinase, we moreover approach additional strategies to overcome treatment resistance.
Collapse
Affiliation(s)
| | | | - Giulio Rossi
- Pathology Unit, Santa Maria delle Croci Hospital, Ravenna, Italy
| | - Roberta Minari
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | | | - Luc Friboulet
- INSERM, U981, Gustave Roussy Cancer Campus, Villejuif, France
| | - Marcello Tiseo
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy.
| | - David Planchard
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
1510
|
Chen Y, Li W, Tang W, Yang X, Zhong W. [Observation - An Favorable Option Forthoracic Dissemination Patients with Lung Adenocarcinoma or Squamous Carcinoma]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2018; 21:303-309. [PMID: 29587911 PMCID: PMC5973350 DOI: 10.3779/j.issn.1009-3419.2018.04.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
背景与目的 手术非晚期期患者治疗的标准治疗,但是大量的回顾性研究显示胸腔内播散型肺癌接受主病灶切除后获益明显。非标准治疗之后患者该选择何种治疗策略?本研究通过回顾性数据去探究接受了主病灶切除的胸腔内播散型肺癌患者接下来何总治疗方式更优。 方法 回顾性收集早期肺腺癌或肺鳞癌且复发模式为胸腔内播散型患者;或拟行肺癌根治术,但术中胸腔探查发现胸腔内播散,接受主病灶切除的肺腺癌或肺鳞癌患者的一般资料、病理、淋巴结状态、基因突变状态、初始治疗方式等,随访至进展、死亡或失访,记录患者无进展生存时间、总生存时间、从确诊到开始治疗的时间。通过Kaplan-Meier绘制生存曲线,Log-rank检验比较组间生存差异,Cox比例回归风险模型分析无进展生存期(progression-free survival, PFS)和总生存期(overall survival, OS)相关预后因子。 结果 研究共纳入141例患者,70例r-M1a和71例s-M1a1患者。化疗组、靶向组、随访观察组患者中位PFS分别是14.7个月、41.0个月和31.0个月(95%CI: 19.01-26.01; P < 0.001),靶向治疗组和随访观察组患者PFS差异无统计学意义(P=0.600)。中位OS分别为39.0个月、42.6个月和38.1个月(95%CI: 32.47-45.33; P=0.478)。TTI < 3个月组和TTI≥3个月组患者的中位PFS分别是15.2个月和31.0个月(95%CI: 19.01-26.06; P<0.001),中位OS分别是41.7个月和38.7个月(95%CI: 32.47-45.33; P=0.714)。多因素分析显示性别(P=0.027)、淋巴结状态(P=0.036)、初始治疗方式(P<0.001)是PFS独立预后因子。 结论 随访观察不会缩短胸腔内播散腺癌和鳞癌患者的生存时间,是一种可选的治疗策略。
Collapse
Affiliation(s)
- Ying Chen
- The Second Medical College of Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Institute of Lung Cancer, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Wei Li
- Foshan First People Hospital, Foshan 528000, China
| | - Wenfang Tang
- Guangdong Provincial Institute of Lung Cancer, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Xuening Yang
- Guangdong Provincial Institute of Lung Cancer, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Wenzhao Zhong
- The Second Medical College of Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
1511
|
Turajlic S, Xu H, Litchfield K, Rowan A, Horswell S, Chambers T, O'Brien T, Lopez JI, Watkins TBK, Nicol D, Stares M, Challacombe B, Hazell S, Chandra A, Mitchell TJ, Au L, Eichler-Jonsson C, Jabbar F, Soultati A, Chowdhury S, Rudman S, Lynch J, Fernando A, Stamp G, Nye E, Stewart A, Xing W, Smith JC, Escudero M, Huffman A, Matthews N, Elgar G, Phillimore B, Costa M, Begum S, Ward S, Salm M, Boeing S, Fisher R, Spain L, Navas C, Grönroos E, Hobor S, Sharma S, Aurangzeb I, Lall S, Polson A, Varia M, Horsfield C, Fotiadis N, Pickering L, Schwarz RF, Silva B, Herrero J, Luscombe NM, Jamal-Hanjani M, Rosenthal R, Birkbak NJ, Wilson GA, Pipek O, Ribli D, Krzystanek M, Csabai I, Szallasi Z, Gore M, McGranahan N, Van Loo P, Campbell P, Larkin J, Swanton C. Deterministic Evolutionary Trajectories Influence Primary Tumor Growth: TRACERx Renal. Cell 2018; 173:595-610.e11. [PMID: 29656894 PMCID: PMC5938372 DOI: 10.1016/j.cell.2018.03.043] [Citation(s) in RCA: 446] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/12/2018] [Accepted: 03/19/2018] [Indexed: 02/07/2023]
Abstract
The evolutionary features of clear-cell renal cell carcinoma (ccRCC) have not been systematically studied to date. We analyzed 1,206 primary tumor regions from 101 patients recruited into the multi-center prospective study, TRACERx Renal. We observe up to 30 driver events per tumor and show that subclonal diversification is associated with known prognostic parameters. By resolving the patterns of driver event ordering, co-occurrence, and mutual exclusivity at clone level, we show the deterministic nature of clonal evolution. ccRCC can be grouped into seven evolutionary subtypes, ranging from tumors characterized by early fixation of multiple mutational and copy number drivers and rapid metastases to highly branched tumors with >10 subclonal drivers and extensive parallel evolution associated with attenuated progression. We identify genetic diversity and chromosomal complexity as determinants of patient outcome. Our insights reconcile the variable clinical behavior of ccRCC and suggest evolutionary potential as a biomarker for both intervention and surveillance.
Collapse
Affiliation(s)
- Samra Turajlic
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK; Renal and Skin Units, the Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Hang Xu
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Kevin Litchfield
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Andrew Rowan
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Stuart Horswell
- Department of Bioinformatics and Biostatistics, the Francis Crick Institute, London NW1 1AT, UK
| | - Tim Chambers
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Tim O'Brien
- Urology Centre, Guy's and St. Thomas' NHS Foundation Trust, London SE1 9RT, UK
| | - Jose I Lopez
- Department of Pathology, Cruces University Hospital, Biocruces Institute, University of the Basque Country, Barakaldo, Spain
| | - Thomas B K Watkins
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - David Nicol
- Department of Urology, the Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Mark Stares
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Ben Challacombe
- Urology Centre, Guy's and St. Thomas' NHS Foundation Trust, London SE1 9RT, UK
| | - Steve Hazell
- Department of Pathology, the Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Ashish Chandra
- Department of Pathology, Guy's and St. Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Thomas J Mitchell
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK; Department of Surgery, Addenbrooke's Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Lewis Au
- Renal and Skin Units, the Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Claudia Eichler-Jonsson
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Faiz Jabbar
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Aspasia Soultati
- Department of Medical Oncology, Guy's and St. Thomas' NHS Foundation Trust, London SE1 9RT, UK
| | - Simon Chowdhury
- Department of Medical Oncology, Guy's and St. Thomas' NHS Foundation Trust, London SE1 9RT, UK
| | - Sarah Rudman
- Department of Medical Oncology, Guy's and St. Thomas' NHS Foundation Trust, London SE1 9RT, UK
| | - Joanna Lynch
- Renal and Skin Units, the Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Archana Fernando
- Urology Centre, Guy's and St. Thomas' NHS Foundation Trust, London SE1 9RT, UK
| | - Gordon Stamp
- Experimental Histopathology Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Emma Nye
- Experimental Histopathology Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Aengus Stewart
- Department of Bioinformatics and Biostatistics, the Francis Crick Institute, London NW1 1AT, UK
| | - Wei Xing
- Department of Scientific Computing, the Francis Crick Institute, London NW1 1AT, UK
| | - Jonathan C Smith
- Department of Scientific Computing, the Francis Crick Institute, London NW1 1AT, UK
| | - Mickael Escudero
- Department of Bioinformatics and Biostatistics, the Francis Crick Institute, London NW1 1AT, UK
| | - Adam Huffman
- Department of Scientific Computing, the Francis Crick Institute, London NW1 1AT, UK
| | - Nik Matthews
- Advanced Sequencing Facility, the Francis Crick Institute, London NW1 1AT, UK
| | - Greg Elgar
- Advanced Sequencing Facility, the Francis Crick Institute, London NW1 1AT, UK
| | - Ben Phillimore
- Advanced Sequencing Facility, the Francis Crick Institute, London NW1 1AT, UK
| | - Marta Costa
- Advanced Sequencing Facility, the Francis Crick Institute, London NW1 1AT, UK
| | - Sharmin Begum
- Advanced Sequencing Facility, the Francis Crick Institute, London NW1 1AT, UK
| | - Sophia Ward
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK; Advanced Sequencing Facility, the Francis Crick Institute, London NW1 1AT, UK; Cancer Research UK Lung Cancer Centre of Excellence London, University College London Cancer Institute, London WC1E 6DD, UK
| | - Max Salm
- Department of Bioinformatics and Biostatistics, the Francis Crick Institute, London NW1 1AT, UK
| | - Stefan Boeing
- Department of Bioinformatics and Biostatistics, the Francis Crick Institute, London NW1 1AT, UK
| | - Rosalie Fisher
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Lavinia Spain
- Renal and Skin Units, the Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Carolina Navas
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Eva Grönroos
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Sebastijan Hobor
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Sarkhara Sharma
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Ismaeel Aurangzeb
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Sharanpreet Lall
- Department of Medical Oncology, Guy's and St. Thomas' NHS Foundation Trust, London SE1 9RT, UK
| | - Alexander Polson
- Department of Pathology, Guy's and St. Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Mary Varia
- Department of Pathology, Guy's and St. Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Catherine Horsfield
- Department of Pathology, Guy's and St. Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Nicos Fotiadis
- Department of Radiology, the Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Lisa Pickering
- Renal and Skin Units, the Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Roland F Schwarz
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Bruno Silva
- Department of Scientific Computing, the Francis Crick Institute, London NW1 1AT, UK
| | - Javier Herrero
- Bill Lyons Informatics Centre, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Nick M Luscombe
- Bioinformatics and Computational Biology Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence London, University College London Cancer Institute, London WC1E 6DD, UK
| | - Rachel Rosenthal
- Bill Lyons Informatics Centre, UCL Cancer Institute, University College London, London WC1E 6DD, UK; Cancer Research UK Lung Cancer Centre of Excellence London, University College London Cancer Institute, London WC1E 6DD, UK
| | - Nicolai J Birkbak
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK; Cancer Research UK Lung Cancer Centre of Excellence London, University College London Cancer Institute, London WC1E 6DD, UK
| | - Gareth A Wilson
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK; Cancer Research UK Lung Cancer Centre of Excellence London, University College London Cancer Institute, London WC1E 6DD, UK
| | - Orsolya Pipek
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dezso Ribli
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Marcin Krzystanek
- Department of Bio and Health Informatics, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Istvan Csabai
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Zoltan Szallasi
- Department of Bio and Health Informatics, Technical University of Denmark, Kgs Lyngby 2800, Denmark; Computational Health Informatics Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Martin Gore
- Renal and Skin Units, the Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence London, University College London Cancer Institute, London WC1E 6DD, UK
| | - Peter Van Loo
- Cancer Genomics Laboratory, the Francis Crick Institute, London NW1 1AT, UK; Department of Human Genetics, University of Leuven, 3000 Leuven, Belgium
| | - Peter Campbell
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - James Larkin
- Renal and Skin Units, the Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK.
| | - Charles Swanton
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK; Cancer Research UK Lung Cancer Centre of Excellence London, University College London Cancer Institute, London WC1E 6DD, UK; Department of Medical Oncology, University College London Hospitals, London NW1 2BU, UK.
| |
Collapse
|
1512
|
Bordonaro M. Hypothesis: Cancer Is a Disease of Evolved Trade-Offs Between Neoplastic Virulence and Transmission. J Cancer 2018; 9:1707-1724. [PMID: 29805696 PMCID: PMC5968758 DOI: 10.7150/jca.24679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 02/10/2018] [Indexed: 12/12/2022] Open
Abstract
Virulence is defined as the ability of a pathogen to cause morbidity and/or mortality in infected hosts. The relationship between virulence and transmissibility is complex; natural selection may promote decreased virulence to enhance host mobility and increase the probability for transmission, or transmissibility may be enhanced by increased virulence, leading to higher pathogen load and, in some cases, superior evasion from host defenses. An evolutionary trade-off exists between the ability of pathogens to maintain opportunities for long-term transmission via suppressed virulence and increased short-term transmission via enhanced virulence. We propose an analogy between transmissibility and virulence in microbial pathogens and in cancer. Thus, in the latter case, the outcome of invasive growth and metastasis is analogous to transmissibility, and virulence is defined by high rates of proliferation, invasiveness and motility, potential for metastasis, and the extent to which the cancer contributes to patient morbidity and mortality. Horizontal and vertical transmission, associated with increased or decreased pathogen virulence respectively, can also be utilized to model the neoplastic process and factors that would increase or decrease tumor aggressiveness. Concepts of soft vs. hard selection and evolutionary game theory can optimize our understanding of carcinogenesis and therapeutic strategies. Therefore, the language of transmissibility, horizontal vs. vertical transmission, selection, and virulence can be used to inform approaches to inhibit tumorigenic progression, and, more generally, for cancer prevention and treatment.
Collapse
Affiliation(s)
- Michael Bordonaro
- Department of Basic Sciences, Geisinger Commonwealth School of Medicine, 525 Pine Street, Scranton, PA 18509, USA
| |
Collapse
|
1513
|
Montagut C, Argilés G, Ciardiello F, Poulsen TT, Dienstmann R, Kragh M, Kopetz S, Lindsted T, Ding C, Vidal J, Clausell-Tormos J, Siravegna G, Sánchez-Martín FJ, Koefoed K, Pedersen MW, Grandal MM, Dvorkin M, Wyrwicz L, Rovira A, Cubillo A, Salazar R, Desseigne F, Nadal C, Albanell J, Zagonel V, Siena S, Fumi G, Rospo G, Nadler P, Horak ID, Bardelli A, Tabernero J. Efficacy of Sym004 in Patients With Metastatic Colorectal Cancer With Acquired Resistance to Anti-EGFR Therapy and Molecularly Selected by Circulating Tumor DNA Analyses: A Phase 2 Randomized Clinical Trial. JAMA Oncol 2018; 4:e175245. [PMID: 29423521 PMCID: PMC5885274 DOI: 10.1001/jamaoncol.2017.5245] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/26/2017] [Indexed: 12/20/2022]
Abstract
IMPORTANCE Acquired resistance to anti-EGFR therapy (epidermal growth factor receptor) is frequently due to RAS and EGFR extracellular domain (ECD) mutations in metastatic colorectal cancer (mCRC). Some anti-EGFR-refractory patients retain tumor EGFR dependency potentially targetable by agents such as Sym004, which is a mixture of 2 nonoverlapping monoclonal antibodies targeting EGFR. OBJECTIVE To determine if continuous blockade of EGFR by Sym004 has survival benefit. DESIGN, SETTING, AND PARTICIPANTS Multicenter, phase 2, randomized, clinical trial comparing 2 regimens of Sym004 with investigator's choice from March 6, 2014, through October 15, 2015. Circulating tumor DNA (ctDNA) was analyzed for biomarker and tracking clonal dynamics during treatment. Participants had wild-type KRAS exon 2 mCRC refractory to standard chemotherapy and acquired resistance to anti-EGFR monoclonal antibodies. INTERVENTIONS Participants were randomly assigned in a 1:1:1 ratio to Sym004, 12 mg/kg/wk (arm A), Sym004, 9 mg/kg loading dose followed by 6 mg/kg/wk (arm B), or investigator's choice of treatment (arm C). MAIN OUTCOMES AND MEASURES Overall survival (OS). Secondary end points included preplanned exploratory biomarker analysis in ctDNA. RESULTS A total of 254 patients were randomized (intent-to-treat [ITT] population) (median age, 63 [range, 34-91] years; 63% male; n = 160). Median OS in the ITT population was 7.9 months (95% CI, 6.5-9.9 months), 10.3 months (95% CI, 9.0-12.9 months), and 9.6 months (95% CI, 8.3-12.2 months) for arms A, B, and C, respectively (hazard ratio [HR], 1.31; 95% CI, 0.92-1.87 for A vs C; and HR, 0.97; 95% CI, 0.68-1.40 for B vs C). The ctDNA revealed high intrapatient genomic heterogeneity following anti-EGFR therapy. Sym004 effectively targeted EGFR ECD-mutated cancer cells, and a decrease in EGFR ECD ctDNA occurred in Sym004-treated patients. However, this did not translate into clinical benefit in patients with EGFR ECD mutations, likely owing to co-occurring resistance mechanisms. A subgroup of patients was defined by ctDNA (RAS/BRAF/EGFR ECD-mutation negative) associated with improved OS in Sym004-treated patients in arm B compared with arm C (median OS, 12.8 and 7.3 months, respectively). CONCLUSIONS AND RELEVANCE Sym004 did not improve OS in an unselected population of patients with mCRC and acquired anti-EGFR resistance. A prospective clinical validation of Sym004 efficacy in a ctDNA molecularly defined subgroup of patients with refractory mCRC is warranted. TRIAL REGISTRATION clinicaltrialsregister.eu Identifier: 2013-003829-29.
Collapse
Affiliation(s)
- Clara Montagut
- Medical Oncology Department, Hospital del Mar–CIBERONC, Barcelona, Spain
- Cancer Research Program, IMIM (Hospital del Mar Research Institute), Barcelona, Spain
| | - Guillem Argilés
- Medical Oncology Department, Vall d’Hebron University Hospital, Barcelona, Spain
- Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, CIBERONC, Barcelona, Spain
| | | | | | - Rodrigo Dienstmann
- Medical Oncology Department, Vall d’Hebron University Hospital, Barcelona, Spain
- Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, CIBERONC, Barcelona, Spain
| | | | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston
| | | | | | - Joana Vidal
- Medical Oncology Department, Hospital del Mar–CIBERONC, Barcelona, Spain
| | | | - Giulia Siravegna
- Candiolo Cancer Institute–FPO, IRCCS, Candiolo, Torino, Italy
- FIRC Institute of Molecular Oncology (IFOM), Milan, Italy
| | | | | | | | | | - Mikhail Dvorkin
- BHI of Omsk Region “Clinical Oncology Dispensary,” Omsk, Russia
| | - Lucjan Wyrwicz
- Centrum Onkologii-Instytut im. M. Sklodowskiej Curie, Warsaw, Poland
| | - Ana Rovira
- Cancer Research Program, IMIM (Hospital del Mar Research Institute), Barcelona, Spain
| | | | - Ramon Salazar
- Institut Català d’Oncologia, Institut d’Investigació biomèdica de Bellvitge, CIBERONC, Barcelona, Spain
| | - Françoise Desseigne
- Consultation d'Oncologie Génétique, Centre de Lutte Contre le Cancer Leon Berard, Lyon, France
| | - Cristina Nadal
- Hospital Clinic of Barcelona, University of Barcelona, Spain
| | - Joan Albanell
- Medical Oncology Department, Hospital del Mar–CIBERONC, Barcelona, Spain
- Cancer Research Program, IMIM (Hospital del Mar Research Institute), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
| | - Vittorina Zagonel
- Medical Oncology Unit 1, Istituto Oncologico Veneto, IRCCS, Padova, Italy
| | - Salvatore Siena
- Grande Ospedale Metropolitano Niguarda and Università degli Studi di Milano, Milano, Italy
| | | | - Giuseppe Rospo
- Candiolo Cancer Institute–FPO, IRCCS, Candiolo, Torino, Italy
| | | | | | - Alberto Bardelli
- Candiolo Cancer Institute–FPO, IRCCS, Candiolo, Torino, Italy
- University of Torino, School of Medicine, Torino, Italy
| | - Josep Tabernero
- Medical Oncology Department, Vall d’Hebron University Hospital, Barcelona, Spain
- Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, CIBERONC, Barcelona, Spain
| |
Collapse
|
1514
|
Jin Z, Guan L, Xiang GM, Gao BA. Radiation resistance of the lung adenocarcinoma is related to the AKT-Onzin-POU5F1 axis. Biochem Biophys Res Commun 2018; 499:538-543. [PMID: 29596836 DOI: 10.1016/j.bbrc.2018.03.185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 12/20/2022]
Abstract
Non-small cell lung carcinoma is the predominant type of lung cancer, and shows an easily developable tolerance to radiotherapy. Cancer stem cells are suggested to be involved in the resistance against therapies. Onzin might be accumulated during the process tumor overcoming the radiation stress. To address the relationship between Onzin, stemness and radiation resistance, we treated the lung cancer tumor bearing mice with radiaotherapy and observed the differences between radiation sensitive (RS) and resistant (RR) tumors. Immunohistochemistry and HE staining were used to observe Onzin and POU5F1 expression in tumor tissues. Quantitative realtime-PCR and Western blot were applied for Onzin and POU5F1 in tumors and cells. In-vitro cellular viability was assessed by CCK8 methods for tumor derived cells. The stably transfected A549 cell lines overexpressing Onzin were generated through lentivirus transfection. After radiotherapy, those RR adenocarcinoma tumors and cells derived from them showed an increased Onzin expression. Further, RR cells were found upregulated stemness, indicated by increased sphericity and proliferation, as well as POU5F1 expression. Next, we overexpressed Onzin in the A549 cells and found an elevated POU5F1 expression, increased proliferation, and enhanced sphericity. Moreover, this could be suppressed by the AKT inhibitor MK-2260. In vivo, the A549 cells overexpressing Onzin showed not only higher tumor formation capability and growth, but also a significant resistance to radiation. Taken together, RR tumors have upregulated Onzin and POU5F1 expression. Ectopic expression of Onzin promotes the POU5F1 expression as well as stemness functions, and confers adenocarcinomas the resistance to radiotherapy.
Collapse
Affiliation(s)
- Zhu Jin
- Institute of Respiratory Disease, China Three Gorges University, Yichang Central People's Hospital, China
| | - Li Guan
- Institute of Respiratory Disease, China Three Gorges University, Yichang Central People's Hospital, China
| | - Guang-Ming Xiang
- Institute of Respiratory Disease, China Three Gorges University, Yichang Central People's Hospital, China
| | - Bao-An Gao
- Institute of Respiratory Disease, China Three Gorges University, Yichang Central People's Hospital, China.
| |
Collapse
|
1515
|
Stanta G, Bonin S. Overview on Clinical Relevance of Intra-Tumor Heterogeneity. Front Med (Lausanne) 2018; 5:85. [PMID: 29682505 PMCID: PMC5897590 DOI: 10.3389/fmed.2018.00085] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/19/2018] [Indexed: 12/12/2022] Open
Abstract
Today, clinical evaluation of tumor heterogeneity is an emergent issue to improve clinical oncology. In particular, intra-tumor heterogeneity (ITH) is closely related to cancer progression, resistance to therapy, and recurrences. It is interconnected with complex molecular mechanisms including spatial and temporal phenomena, which are often peculiar for every single patient. This review tries to describe all the types of ITH including morphohistological ITH, and at the molecular level clonal ITH derived from genomic instability and nonclonal ITH derived from microenvironment interaction. It is important to consider the different types of ITH as a whole for any patient to investigate on cancer progression, prognosis, and treatment opportunities. From a practical point of view, analytical methods that are widely accessible today, or will be in the near future, are evaluated to investigate the complex pattern of ITH in a reproducible way for a clinical application.
Collapse
Affiliation(s)
- Giorgio Stanta
- DSM, Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Serena Bonin
- DSM, Department of Medical Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
1516
|
A case of second primary lung cancer diagnosed by surgical resection at salvage setting. Int Cancer Conf J 2018; 7:84-86. [PMID: 31149521 DOI: 10.1007/s13691-018-0325-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/02/2018] [Indexed: 10/17/2022] Open
Abstract
We report a case of metachronous second primary lung cancer; it was initially clinically favored as progression of primary disease and finally diagnosed as a second primary lung cancer by surgical resection at salvage setting. A 73-year-old man was diagnosed with stage IV lung adenocarcinoma at initial presentation. He underwent two lines of chemotherapy, and the tumors regressed dramatically. However, the residual lung mass shadow expanded after 22 months. We performed resection at salvage setting. The gene status and histological subtype were not identical with that of the primary tumor, suggesting this to be a second primary lung cancer.
Collapse
|
1517
|
Watkins TBK, Schwarz RF. Phylogenetic Quantification of Intratumor Heterogeneity. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a028316. [PMID: 28710259 DOI: 10.1101/cshperspect.a028316] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
As sequencing efforts continue to reveal the extent of the intratumor heterogeneity (ITH) present in human cancers, the importance of evolutionary studies attempting to trace its etiology has increased. Sequencing multiple samples or tumor regions from the same patient has become affordable and is an effective way of tracing these evolutionary pathways, understanding selection, and detecting clonal expansions in ways impractical with single samples alone. In this article, we discuss and show the benefits of such multisample studies. We describe how multiple samples can guide tree inference through accurate phasing of germline variants and copy-number profiles. We show their relevance in detecting clonal expansions and deriving summary statistics quantifying the overall degree of ITH, and discuss how the relationship of metastatic clades might give us insight into the dominant mode of cancer progression. We further outline how multisample studies might help us better understand selective processes acting on cancer genomes and help to detect neutral evolution and mutator phenotypes.
Collapse
Affiliation(s)
| | - Roland F Schwarz
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| |
Collapse
|
1518
|
Renaud S, Seitlinger J, Guerrera F, Reeb J, Beau-Faller M, Voegeli AC, Siat J, Clément-Duchêne C, Tiotiu A, Santelmo N, Costardi L, Ruffini E, Falcoz PE, Vignaud JM, Massard G. Prognostic Value of Exon 19 Versus 21 EGFR Mutations Varies According to Disease Stage in Surgically Resected Non-small Cell Lung Cancer Adenocarcinoma. Ann Surg Oncol 2018; 25:1069-1078. [DOI: 10.1245/s10434-018-6347-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
1519
|
Abstract
Therapeutics that block kinases, transcriptional modifiers, immune checkpoints and other biological vulnerabilities are transforming cancer treatment. As a result, many patients achieve dramatic responses, including complete radiographical or pathological remission, yet retain minimal residual disease (MRD), which results in relapse. New functional approaches can characterize clonal heterogeneity and predict therapeutic sensitivity of MRD at a single-cell level. Preliminary evidence suggests that iterative detection, profiling and targeting of MRD would meaningfully improve outcomes and may even lead to cure.
Collapse
Affiliation(s)
- Marlise R. Luskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA,
| | - Mark A. Murakami
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA,
| | - Scott R. Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA
- Corresponding authors: (S. R. M.) and (D. M. W.)
| | - David M. Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA,
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, 02142, USA
- Corresponding authors: (S. R. M.) and (D. M. W.)
| |
Collapse
|
1520
|
Liang H, Huang J, Wang B, Liu Z, He J, Liang W. The role of liquid biopsy in predicting post-operative recurrence of non-small cell lung cancer. J Thorac Dis 2018; 10:S838-S845. [PMID: 29780630 DOI: 10.21037/jtd.2018.04.08] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Radical resection is the cornerstone for patients with early stage of non-small cell lung cancer (NSCLC). However, fatal disease recurs in about 30-70% of resected cases. The circulating tumor cells (CTCs) is one of the main causes of recurrence of cancer. Circulating tumor DNA (ctDNA) is also a potential predictive biomarker of recurrence in patients with early stage NSCLC. A meta-analysis was conducted to identify the prognostic value of the CTCs and ctDNA in predicting the disease recurrence after surgery of NSCLC patients. Methods Electronic databases were comprehensively searched for eligible studies. A random effects model was used. The primary endpoint was the hazards ratio (HR) for the disease-free survival (DFS) between CTCs/ctDNA positive and negative groups. The relative risks (RR) of one and two-year recurrence rate between CTCs/ctDNA positive and negative groups were also calculated. Results A total of 5 studies involving 351 patients were included, in which 3 were studies on CTCs and 2 were ctDNA. Our result revealed that positive peripheral blood CTCs (HR, 3.37; 95% CI: 2.28-4.96; P<0.001) and ctDNA (HR, 8.15; 95% CI: 2.11-31.50; P=0.002) indicated poor prognosis for DFS. One (68% vs. 18.2%; RR 3.28; P<0.001) and two (76% vs. 44%; RR 1.80; P=0.06) years recurrence rate were higher in CTCs positive group compared with the negative group, respectively. The same result was also observed in ctDNA positive versus negative groups of 1 (77.9% vs. 8.3%; RR 9.05; P=0.001) and 2 (85.6% vs. 8.3%; RR 9.63; P<0.001) years recurrence rate. Conclusions Both postoperative CTCs and ctDNA are promising predictive biomarkers of early tumor recurrence in NSCLC patients. In addition, detection based on ctDNA seems to be more sensitive than CTCs.
Collapse
Affiliation(s)
- Hengrui Liang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.,China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China.,Nanshan School, Guangzhou Medical University, Guangzhou 510120, China
| | - Jianbin Huang
- Nanshan School, Guangzhou Medical University, Guangzhou 510120, China
| | - Bo Wang
- Nanshan School, Guangzhou Medical University, Guangzhou 510120, China
| | - Zhichao Liu
- Nanshan School, Guangzhou Medical University, Guangzhou 510120, China
| | - Jianxing He
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.,China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Wenhua Liang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.,China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| |
Collapse
|
1521
|
Liang W, Zhao Y, Huang W, Liang H, Zeng H, He J. Liquid biopsy for early stage lung cancer. J Thorac Dis 2018; 10:S876-S881. [PMID: 29780634 DOI: 10.21037/jtd.2018.04.26] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Liquid biopsy, which analyzes biological fluids especially blood specimen to detect and quantify circulating cancer biomarkers, have been rapidly introduced and represents a promising potency in clinical practice of lung cancer diagnosis and prognosis. Unlike conventional tissue biopsy, liquid biopsy is non-invasive, safe, simple in procedure, and is not influenced by manipulators' skills. Notably, some circulating cancer biomarkers are already detectable in disease with low-burden, making liquid biopsy feasible in detecting early stage lung cancer. In this review, we described a landscape of different liquid biopsy methods by highlighting the rationale and advantages, accessing the value of various circulating biomarkers and discussing their possible future development in the detection of early lung cancer.
Collapse
Affiliation(s)
- Wenhua Liang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Yi Zhao
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Weizhe Huang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Hengrui Liang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Haikang Zeng
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Jianxing He
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| |
Collapse
|
1522
|
Xiao H, Liu Y, Liang P, Wang B, Tan H, Zhang Y, Gao X, Gao J. TP53TG1 enhances cisplatin sensitivity of non-small cell lung cancer cells through regulating miR-18a/PTEN axis. Cell Biosci 2018; 8:23. [PMID: 29588850 PMCID: PMC5863826 DOI: 10.1186/s13578-018-0221-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/19/2018] [Indexed: 02/08/2023] Open
Abstract
Background The acquisition of drug resistance has been considered as a main obstacle for cancer chemotherapy. Tumor protein 53 target gene 1 (TP53TG1), a p53-induced lncRNA, plays a vital role in the progression of human cancers. However, little is known about the detailed function and molecular mechanism of TP53TG1 in cisplatin resistance of NSCLC. Methods qRT-PCR analysis was used to detect the expression of TP53TG1, miR-18a and PTEN mRNA in NSCLC tissues and cells. Western blot analysis was performed to determine the protein level of PTEN and cleaved caspase-3. Cell viability and IC50 value were measured by MTT assay. Cell apoptosis was confirmed by flow cytometry assay. Subcellular fractionation assay was used to identify the subcellular location of TP53TG1. Dual-luciferase reporter assay, RNA pull down assay and RNA immunoprecipitation assay were carried out to verify the interaction between TP53TG1 and miR-18a. Xenografts in nude mice were established to verify the effect of TP53TG1 on cisplatin sensitivity of NSCLC cells in vivo. Results TP53TG1 level was downregulated in NSCLC tissues and cell lines. Upregulated TP53TG1 enhanced cisplatin sensitivity and apoptosis of A549/DDP cells, while TP53TG1 depletion inhibited cisplatin sensitivity and apoptosis of A549 cells. TP53TG1 suppressed miR-18a expression in A549 cells. Moreover, TP53TG1-mediated enhancement effect on cisplatin sensitivity was abated following the restoration of miR-18a expression in A549/DDP cells, while si-TP53TG1-induced decrease of cisplatin sensitivity and apoptosis was counteracted by miR-18a inhibitor in A549 cells. Furthermore, TP53TG1 promoted PTEN expression via inhibiting miR-18a. Finally, TP53TG1 sensitized NSCLC cells to cisplatin in vivo. Conclusion TP53TG1 increased the sensitivity of NSCLC cells to cisplatin by modulating miR-18a/PTEN axis, elucidating a novel approach to boost the effectiveness of chemotherapy for NSCLC. Electronic supplementary material The online version of this article (10.1186/s13578-018-0221-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huijuan Xiao
- 1Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052 China
| | - Yihe Liu
- Department of General Surgery, Zhengzhou No. 7 People's Hospital, Zhengzhou, 450000 China
| | - Pan Liang
- 1Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052 China
| | - Bo Wang
- 1Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052 China
| | - Hongna Tan
- 3Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, 450000 China
| | - Yonggao Zhang
- 1Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052 China
| | - Xianzheng Gao
- 1Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052 China
| | - Jianbo Gao
- 1Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052 China
| |
Collapse
|
1523
|
Hirsch FR, Kerr KM, Bunn PA, Kim ES, Obasaju C, Pérol M, Bonomi P, Bradley JD, Gandara D, Jett JR, Langer CJ, Natale RB, Novello S, Paz-Ares L, Ramalingam SS, Reck M, Reynolds CH, Smit EF, Socinski MA, Spigel DR, Stinchcombe TE, Vansteenkiste JF, Wakelee H, Thatcher N. Molecular and Immune Biomarker Testing in Squamous-Cell Lung Cancer: Effect of Current and Future Therapies and Technologies. Clin Lung Cancer 2018; 19:331-339. [PMID: 29773328 DOI: 10.1016/j.cllc.2018.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 12/18/2022]
Abstract
Patients with non-small-cell lung cancer, including squamous-cell lung cancer (SqCLC), typically present at an advanced stage. The current treatment landscape, which includes chemotherapy, radiotherapy, surgery, immunotherapy, and targeted agents, is rapidly evolving, including for patients with SqCLC. Prompt molecular and immune biomarker testing can serve to guide optimal treatment choices, and immune biomarker testing is becoming more important for this patient population. In this review we provide an overview of current and emerging practices and technologies for molecular and immune biomarker testing in advanced non-small-cell lung cancer, with a focus on SqCLC.
Collapse
Affiliation(s)
- Fred R Hirsch
- Division of Medical Oncology, University of Colorado Cancer Center, Aurora, CO.
| | - Keith M Kerr
- Department of Pathology, University of Aberdeen School of Medicine and Aberdeen Royal Infirmary, Aberdeen, Scotland
| | - Paul A Bunn
- Division of Medical Oncology, University of Colorado Cancer Center, Aurora, CO
| | - Edward S Kim
- Levine Cancer Institute, Atrium Health, Charlotte, NC
| | | | - Maurice Pérol
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Philip Bonomi
- Department of Hematology and Oncology, Rush University Medical Center, Chicago, IL
| | - Jeffrey D Bradley
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO
| | - David Gandara
- Department of Hematology and Oncology, UC Davis Comprehensive Cancer Center, Sacramento, CA
| | - James R Jett
- Department of Oncology, formerly of National Jewish Health, Denver, CO
| | - Corey J Langer
- Department of Thoracic Oncology, University of Pennsylvania Abramson Cancer Center, Philadelphia, PA
| | - Ronald B Natale
- Cedars-Sinai Comprehensive Cancer Center, West Hollywood, CA
| | - Silvia Novello
- Department of Oncology, University of Turin, Turin, Italy
| | - Luis Paz-Ares
- Department of Medical Oncology, Hospital Universitario Doce de Octubre, Universidad Complutense, CIBERONC and CNIO, Madrid, Spain
| | - Suresh S Ramalingam
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Martin Reck
- Lung Clinic Grosshansdorf, Airway Research Center North, Member of the German Center for Lung Research, Grosshansdorf, Germany
| | | | - Egbert F Smit
- Department of Pulmonary Diseases, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | - Johan F Vansteenkiste
- Respiratory Oncology Unit, Department of Respiratory Medicine, University Hospital KU Leuven, Leuven, Belgium
| | - Heather Wakelee
- Department of Medicine (Oncology), Stanford Cancer Institute and Stanford University School of Medicine, Stanford, CA
| | - Nick Thatcher
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
1524
|
Hayashi T, Desmeules P, Smith RS, Drilon A, Somwar R, Ladanyi M. RASA1 and NF1 are Preferentially Co-Mutated and Define A Distinct Genetic Subset of Smoking-Associated Non-Small Cell Lung Carcinomas Sensitive to MEK Inhibition. Clin Cancer Res 2018; 24:1436-1447. [PMID: 29127119 PMCID: PMC6440215 DOI: 10.1158/1078-0432.ccr-17-2343] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 10/24/2017] [Accepted: 11/06/2017] [Indexed: 12/31/2022]
Abstract
Purpose: Ras-GTPase-activating proteins (RasGAP), notably NF1 and RASA1, mediate negative control of the RAS/MAPK pathway. We evaluated clinical and molecular characteristics of non-small cell lung carcinoma (NSCLC) with RASA1 mutations in comparison with NF1-mutated cases.Experimental Design: Large genomic datasets of NSCLC [MSK-IMPACT dataset at MSKCC (n = 2,004), TCGA combined lung cancer dataset (n = 1,144)] were analyzed to define concurrent mutations and clinical features of RASA1-mutated NSCLCs. Functional studies were performed using immortalized human bronchial epithelial cells (HBEC) and NSCLC lines with truncating mutations in RASA1, NF1, or both.Results: Overall, approximately 2% of NSCLCs had RASA1-truncating mutations, and this alteration was statistically, but not completely, mutually exclusive with known activating EGFR (P = 0.02) and KRAS (P = 0.02) mutations. Unexpectedly, RASA1-truncating mutations had a strong tendency to co-occur with NF1-truncating mutations (P < 0.001). Furthermore, all patients (16/16) with concurrent RASA1/NF1-truncating mutations lacked other known lung cancer drivers. Knockdown of RASA1 in HBECs activated signaling downstream of RAS and promoted cell growth. Conversely, restoration of RASA1 expression in RASA1-mutated cells reduced MAPK and PI3K signaling. Although growth of cell lines with inactivation of only one of these two RasGAPs showed moderate and variable sensitivity to inhibitors of MEK or PI3K, cells with concurrent RASA1/NF1 mutations were profoundly more sensitive (IC50: 0.040 μmol/L trametinib). Finally, simultaneous genetic silencing of RASA1 and NF1 sensitized both HBECs and NSCLC cells to MEK inhibition.Conclusions: Cancer genomic and functional data nominate concurrent RASA1/NF1 loss-of-function mutations as a strong mitogenic driver in NSCLC, which may sensitize to trametinib. Clin Cancer Res; 24(6); 1436-47. ©2017 AACRSee related commentary by Kitajima and Barbie, p. 1243.
Collapse
Affiliation(s)
- Takuo Hayashi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Patrice Desmeules
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Roger S Smith
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alexander Drilon
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Romel Somwar
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
1525
|
Alrifai D, Forster MD, Janes SM. Emerging resistance pathways in lung cancer: what has ROS-1 taught us? Transl Lung Cancer Res 2018. [PMID: 29531896 DOI: 10.21037/tlcr.2017.11.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Doraid Alrifai
- Lungs for Living Research Centre, UCL Respiratory, Rayne Institute, University College London, London, UK
| | | | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, Rayne Institute, University College London, London, UK
| |
Collapse
|
1526
|
Zhao H, Chen KZ, Hui BG, Zhang K, Yang F, Wang J. Role of circulating tumor DNA in the management of early-stage lung cancer. Thorac Cancer 2018. [PMID: 29528556 PMCID: PMC5928385 DOI: 10.1111/1759-7714.12622] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Lung cancer is one of the most common cancers and the predominant cause of cancer‐related death in the world. The low accuracy of early detection techniques and high risk of relapse greatly contribute to poor prognosis. An accurate clinical tool that can assist in diagnosis and surveillance is urgently needed. Circulating tumor DNA (ctDNA) is free DNA shed from tumor cells and isolated from peripheral blood. The genomic profiles of ctDNA have been shown to closely match those of the corresponding tumors. With the development of approaches with high sensitivity and specificity, ctDNA plays a vital role in the management of lung cancer as a result of its reproducible, non‐invasive, and easy‐to‐obtain characteristics. However, most previous studies have focused on advanced lung cancer. Few studies have investigated ctDNA in the early stages of the disease. In this review, we focus on ctDNA obtained from patients in the early stage of lung cancer, provide a summary of the related literature to date, and describe the main approaches to ctDNA and the clinical applications.
Collapse
Affiliation(s)
- Heng Zhao
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Ke-Zhong Chen
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Ben-Gang Hui
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Kai Zhang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Fan Yang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Jun Wang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| |
Collapse
|
1527
|
Patient-derived conditionally reprogrammed cells maintain intra-tumor genetic heterogeneity. Sci Rep 2018; 8:4097. [PMID: 29511269 PMCID: PMC5840339 DOI: 10.1038/s41598-018-22427-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/22/2018] [Indexed: 02/05/2023] Open
Abstract
Preclinical in vitro models provide an essential tool to study cancer cell biology as well as aid in translational research, including drug target identification and drug discovery efforts. For any model to be clinically relevant, it needs to recapitulate the biology and cell heterogeneity of the primary tumor. We recently developed and described a conditional reprogramming (CR) cell technology that addresses many of these needs and avoids the deficiencies of most current cancer cell lines, which are usually clonal in origin. Here, we used the CR cell method to generate a collection of patient-derived cell cultures from non-small cell lung cancers (NSCLC). Whole exome sequencing and copy number variations are used for the first time to address the capability of CR cells to keep their tumor-derived heterogeneity. Our results indicated that these primary cultures largely maintained the molecular characteristics of the original tumors. Using a mutant-allele tumor heterogeneity (MATH) score, we showed that CR cells are able to keep and maintain most of the intra-tumoral heterogeneity, suggesting oligoclonality of these cultures. CR cultures therefore represent a pre-clinical lung cancer model for future basic and translational studies.
Collapse
|
1528
|
Janku F, Yap TA, Meric-Bernstam F. Targeting the PI3K pathway in cancer: are we making headway? Nat Rev Clin Oncol 2018; 15:273-291. [PMID: 29508857 DOI: 10.1038/nrclinonc.2018.28] [Citation(s) in RCA: 743] [Impact Index Per Article: 106.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The PI3K-AKT-mTOR pathway is one of the most frequently dysregulated pathways in cancer and, consequently, more than 40 compounds that target key components of this signalling network have been tested in clinical trials involving patients with a range of different cancers. The clinical development of many of these agents, however, has not advanced to late-phase randomized trials, and the antitumour activity of those that have been evaluated in comparative prospective studies has typically been limited, or toxicities were found to be prohibitive. Nevertheless, the mTOR inhibitors temsirolimus and everolimus and the PI3K inhibitors idelalisib and copanlisib have been approved by the FDA for clinical use in the treatment of a number of different cancers. Novel compounds with greater potency and selectivity, as well as improved therapeutic indices owing to reduced risks of toxicity, are clearly required. In addition, biomarkers that are predictive of a response, such as PIK3CA mutations for inhibitors of the PI3K catalytic subunit α isoform, must be identified and analytically and clinically validated. Finally, considering that oncogenic activation of the PI3K-AKT-mTOR pathway often occurs alongside pro-tumorigenic aberrations in other signalling networks, rational combinations are also needed to optimize the effectiveness of treatment. Herein, we review the current experience with anticancer therapies that target the PI3K-AKT-mTOR pathway.
Collapse
Affiliation(s)
- Filip Janku
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
1529
|
Affiliation(s)
- Andrea Ventura
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lukas E. Dow
- Department of Medicine, Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
1530
|
Divisi D, Barone M, Zaccagna G, Gabriele F, Crisci R. Surgical approach in the oligometastatic patient. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:94. [PMID: 29666817 DOI: 10.21037/atm.2018.01.19] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In the setting of a stage IV non-small cell lung cancer (NSCLC), oligometastatic patients represent a heterogeneous group whose incidence is increasing as far as with the adoption of new therapeutic regimens, the improvement of the molecular characterization assays and the increasing number of long-survivor patients. The oligometastatic state undergone a major revision with the introduction of the new TNM lung cancer staging system, being characterized by a different prognosis compared to multi-metastatic patients. Furthermore, the presence of a limited number of metastases imposes a local control especially when clonal selections occur during adjuvant therapy. In this regard, the review seeks to clarify the indications for surgical treatment by organ according to recent guidelines, by analyzing prognostic factors and outcome of patients. Although accurate patient stratification is mandatory, aggressive local control strategies represent a valid therapeutic approach in patients with oligometastatic NSCLC. At the same time, persevering with ablative strategies raises both medical and ethical issues about limits and reiteration, which certainly requires a deep reflection, being, on the other hand, in front of a metastatic disease.
Collapse
Affiliation(s)
- Duilio Divisi
- Thoracic Surgery Unit, University of L'Aquila, "G. Mazzini" Hospital, Teramo, Italy
| | - Mirko Barone
- Thoracic Surgery Unit, University of L'Aquila, "G. Mazzini" Hospital, Teramo, Italy
| | - Gino Zaccagna
- Thoracic Surgery Unit, University of L'Aquila, "G. Mazzini" Hospital, Teramo, Italy
| | - Francesca Gabriele
- Thoracic Surgery Unit, University of L'Aquila, "G. Mazzini" Hospital, Teramo, Italy
| | - Roberto Crisci
- Thoracic Surgery Unit, University of L'Aquila, "G. Mazzini" Hospital, Teramo, Italy
| |
Collapse
|
1531
|
Venkatesan S, Rosenthal R, Kanu N, McGranahan N, Bartek J, Quezada SA, Hare J, Harris RS, Swanton C. Perspective: APOBEC mutagenesis in drug resistance and immune escape in HIV and cancer evolution. Ann Oncol 2018; 29:563-572. [PMID: 29324969 PMCID: PMC5888943 DOI: 10.1093/annonc/mdy003] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like (APOBEC) mutational signature has only recently been detected in a multitude of cancers through next-generation sequencing. In contrast, APOBEC has been a focus of virology research for over a decade. Many lessons learnt regarding APOBEC within virology are likely to be applicable to cancer. In this review, we explore the parallels between the role of APOBEC enzymes in HIV and cancer evolution. We discuss data supporting the role of APOBEC mutagenesis in creating HIV genome heterogeneity, drug resistance, and immune escape variants. We hypothesize similar functions of APOBEC will also hold true in cancer.
Collapse
Affiliation(s)
- S Venkatesan
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK; Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, London, UK
| | - R Rosenthal
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
| | - N Kanu
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
| | - N McGranahan
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
| | - J Bartek
- Danish Cancer Society Research Center, Copenhagen, Denmark, UK; Science for Life Laboratory, Stockholm, Sweden; Division of Genome Biology, Department of Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - S A Quezada
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK; Cancer Immunology Unit, UCL Cancer Institute, London, UK
| | - J Hare
- International AIDS Vaccine Initiative (IAVI), New York, USA
| | - R S Harris
- Masonic Cancer Center, Minneapolis, USA; Institute for Molecular Virology, Minneapolis, USA; Center for Genome Engineering, Minneapolis, USA; Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, USA; Howard Hughes Medical Institute, University of Minnesota, Minneapolis, USA.
| | - C Swanton
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK; Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
1532
|
Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG, Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FKM, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D'Angiolella V, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, Di Daniele N, Di Virgilio F, Dixit VM, Dixon SJ, Duckett CS, Dynlacht BD, El-Deiry WS, Elrod JW, Fimia GM, Fulda S, García-Sáez AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo H, Jäättelä M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lowe SW, Luedde T, Lugli E, MacFarlane M, Madeo F, Malewicz M, Malorni W, Manic G, et alGalluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG, Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FKM, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D'Angiolella V, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, Di Daniele N, Di Virgilio F, Dixit VM, Dixon SJ, Duckett CS, Dynlacht BD, El-Deiry WS, Elrod JW, Fimia GM, Fulda S, García-Sáez AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo H, Jäättelä M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lowe SW, Luedde T, Lugli E, MacFarlane M, Madeo F, Malewicz M, Malorni W, Manic G, Marine JC, Martin SJ, Martinou JC, Medema JP, Mehlen P, Meier P, Melino S, Miao EA, Molkentin JD, Moll UM, Muñoz-Pinedo C, Nagata S, Nuñez G, Oberst A, Oren M, Overholtzer M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pereira DM, Pervaiz S, Peter ME, Piacentini M, Pinton P, Prehn JHM, Puthalakath H, Rabinovich GA, Rehm M, Rizzuto R, Rodrigues CMP, Rubinsztein DC, Rudel T, Ryan KM, Sayan E, Scorrano L, Shao F, Shi Y, Silke J, Simon HU, Sistigu A, Stockwell BR, Strasser A, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Thorburn A, Tsujimoto Y, Turk B, Vanden Berghe T, Vandenabeele P, Vander Heiden MG, Villunger A, Virgin HW, Vousden KH, Vucic D, Wagner EF, Walczak H, Wallach D, Wang Y, Wells JA, Wood W, Yuan J, Zakeri Z, Zhivotovsky B, Zitvogel L, Melino G, Kroemer G. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 2018; 25:486-541. [PMID: 29362479 PMCID: PMC5864239 DOI: 10.1038/s41418-017-0012-4] [Show More Authors] [Citation(s) in RCA: 4329] [Impact Index Per Article: 618.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Paris Descartes/Paris V University, Paris, France.
| | - Ilio Vitale
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Stuart A Aaronson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dieter Adam
- Institute of Immunology, Kiel University, Kiel, Germany
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Emad S Alnemri
- Department of Biochemistry and Molecular Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lucia Altucci
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Ivano Amelio
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - David W Andrews
- Biological Sciences, Sunnybrook Research Institute, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | | - Alexey V Antonov
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Nickolai A Barlev
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, Louisiana State University School of Medicine, New Orleans, LA, USA
| | - Francesca Bernassola
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Mathieu J M Bertrand
- VIB Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Katiuscia Bianchi
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
- Department of Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, Albert Ludwigs University, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany
| | - Patricia Boya
- Department of Cellular and Molecular Biology, Center for Biological Investigation (CIB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Catherine Brenner
- INSERM U1180, Châtenay Malabry, France
- University of Paris Sud/Paris Saclay, Orsay, France
| | - Michelangelo Campanella
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
- University College London Consortium for Mitochondrial Research, London, UK
| | - Eleonora Candi
- Biochemistry Laboratory, Dermopatic Institute of Immaculate (IDI) IRCCS, Rome, Italy
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | | | - Francesco Cecconi
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cell Stress and Survival, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Francis K-M Chan
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Navdeep S Chandel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Emily H Cheng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jerry E Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John A Cidlowski
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Aaron Ciechanover
- Technion Integrated Cancer Center (TICC), The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Gerald M Cohen
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Marcus Conrad
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Juan R Cubillos-Ruiz
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Vincenzo D'Angiolella
- Cancer Research UK and Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vincenzo De Laurenzi
- Department of Medical, Oral and Biotechnological Sciences, CeSI-MetUniversity of Chieti-Pescara "G. d'Annunzio", Chieti, Italy
| | - Ruggero De Maria
- Institute of General Pathology, Catholic University "Sacro Cuore", Rome, Italy
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mohanish Deshmukh
- Department of Cell Biology and Physiology, Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Nicola Di Daniele
- Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Vishva M Dixit
- Department of Physiological Chemistry, Genentech, South San Francisco, CA, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Colin S Duckett
- Baylor Scott & White Research Institute, Baylor College of Medicine, Dallas, TX, USA
| | - Brian D Dynlacht
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - John W Elrod
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University School of Medicine, Philadelphia, PA, USA
| | - Gian Maria Fimia
- National Institute for Infectious Diseases IRCCS "Lazzaro Spallanzani", Rome, Italy
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site, Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ana J García-Sáez
- Interfaculty Institute of Biochemistry, Tübingen University, Tübingen, Germany
| | - Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Carmen Garrido
- INSERM U1231 "Lipides Nutrition Cancer", Dijon, France
- Faculty of Medicine, University of Burgundy France Comté, Dijon, France
- Cancer Centre Georges François Leclerc, Dijon, France
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Pierre Golstein
- Immunology Center of Marseille-Luminy, Aix Marseille University, Marseille, France
| | - Eyal Gottlieb
- Technion Integrated Cancer Center (TICC), The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Douglas R Green
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Lloyd A Greene
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Hinrich Gronemeyer
- Team labeled "Ligue Contre le Cancer", Department of Functional Genomics and Cancer, Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France
- CNRS UMR 7104, Illkirch, France
- INSERM U964, Illkirch, France
- University of Strasbourg, Illkirch, France
| | - Atan Gross
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Gyorgy Hajnoczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - J Marie Hardwick
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Isaac S Harris
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Cellular and Molecular Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Marja Jäättelä
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Bertrand Joseph
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Philipp J Jost
- III Medical Department for Hematology and Oncology, Technical University Munich, Munich, Germany
| | - Philippe P Juin
- Team 8 "Stress adaptation and tumor escape", CRCINA-INSERM U1232, Nantes, France
- University of Nantes, Nantes, France
- University of Angers, Angers, France
- Institute of Cancer Research in Western France, Saint-Herblain, France
| | - William J Kaiser
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, TX, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, University of California San Diego, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Oliver Kepp
- Paris Descartes/Paris V University, Paris, France
- Faculty of Medicine, Paris Sud/Paris XI University, Kremlin-Bicêtre, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Campus, Villejuif, France
- Team 11 labeled "Ligue Nationale contre le Cancer", Cordeliers Research Center, Paris, France
- INSERM U1138, Paris, France
- Pierre et Marie Curie/Paris VI University, Paris, France
| | - Adi Kimchi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Richard N Kitsis
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Daniel J Klionsky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Richard A Knight
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Sam W Lee
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - John J Lemasters
- Center for Cell Death, Injury and Regeneration, Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
- Center for Cell Death, Injury and Regeneration, Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Beth Levine
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andreas Linkermann
- Division of Nephrology, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Stuart A Lipton
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- Neuroscience Translational Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Richard A Lockshin
- Department of Biology, St. John's University, Queens, NY, USA
- Queens College of the City University of New York, Queens, NY, USA
| | - Carlos López-Otín
- Departament of Biochemistry and Molecular Biology, Faculty of Medicine, University Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Scott W Lowe
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tom Luedde
- Division of Gastroenterology, Hepatology and Hepatobiliary Oncology, University Hospital RWTH Aachen, Aachen, Germany
| | - Enrico Lugli
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Humanitas Flow Cytometry Core, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Marion MacFarlane
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Frank Madeo
- Department Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Michal Malewicz
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Walter Malorni
- National Centre for Gender Medicine, Italian National Institute of Health (ISS), Rome, Italy
| | - Gwenola Manic
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Seamus J Martin
- Departments of Genetics, Trinity College, University of Dublin, Dublin 2, Ireland
| | - Jean-Claude Martinou
- Department of Cell Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Cancer Genomics Center, Amsterdam, The Netherlands
| | - Patrick Mehlen
- Apoptosis, Cancer and Development laboratory, CRCL, Lyon, France
- Team labeled "La Ligue contre le Cancer", Lyon, France
- LabEx DEVweCAN, Lyon, France
- INSERM U1052, Lyon, France
- CNRS UMR5286, Lyon, France
- Department of Translational Research and Innovation, Léon Bérard Cancer Center, Lyon, France
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, London, UK
| | - Sonia Melino
- Department of Chemical Sciences and Technologies, University of Rome, Tor Vergata, Rome, Italy
| | - Edward A Miao
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA
| | - Jeffery D Molkentin
- Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ute M Moll
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Cristina Muñoz-Pinedo
- Cell Death Regulation Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Shigekazu Nagata
- Laboratory of Biochemistry and Immunology, World Premier International (WPI) Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Gabriel Nuñez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA, USA
- Center for Innate Immunity and Immune Disease, Seattle, WA, USA
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute, Rehovot, Israel
| | - Michael Overholtzer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michele Pagano
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA
| | - Theocharis Panaretakis
- Department of Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Manolis Pasparakis
- Institute for Genetics, Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Campus Vienna BioCentre, Vienna, Austria
| | - David M Pereira
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
- National University Cancer Institute, National University Health System (NUHS), Singapore, Singapore
| | - Marcus E Peter
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mauro Piacentini
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- National Institute for Infectious Diseases IRCCS "Lazzaro Spallanzani", Rome, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
- LTTA center, University of Ferrara, Ferrara, Italy
- Maria Cecilia Hospital, GVM Care & Research, Health Science Foundation, Cotignola, Italy
| | - Jochen H M Prehn
- Department of Physiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Hamsa Puthalakath
- Department of Biochemistry, La Trobe University, Victoria, Australia
| | - Gabriel A Rabinovich
- Laboratory of Immunopathology, Institute of Biology and Experimental Medicine (IBYME), National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
- Department of Biological Chemistry, Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, Stuttgart, Germany
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Cecilia M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Thomas Rudel
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Emre Sayan
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Luca Scorrano
- Department of Biology, University of Padua, Padua, Italy
- Venetian Institute of Molecular Medicine, Padua, Italy
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, China
| | - Yufang Shi
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Chinese Academy of Sciences, Shanghai, China
- Jiangsu Key Laboratory of Stem Cells and Medicinal Biomaterials, Institutes for Translational Medicine, Soochow University, Suzhou, China
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - John Silke
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
- Division of Inflammation, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Antonella Sistigu
- Institute of General Pathology, Catholic University "Sacro Cuore", Rome, Italy
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Gyorgy Szabadkai
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Department of Cell and Developmental Biology, University College London Consortium for Mitochondrial Research, London, UK
- Francis Crick Institute, London, UK
| | | | - Daolin Tang
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Center for DAMP Biology, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory for Protein Modification and Degradation of Guangdong Province, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas Medical School, University of Crete, Heraklion, Greece
| | - Andrew Thorburn
- Department of Pharmacology, University of Colorado, Aurora, CO, USA
| | | | - Boris Turk
- Department Biochemistry and Molecular Biology, "Jozef Stefan" Institute, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Tom Vanden Berghe
- VIB Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- VIB Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Andreas Villunger
- Division of Developmental Immunology, Innsbruck Medical University, Innsbruck, Austria
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| | - Erwin F Wagner
- Genes, Development and Disease Group, Cancer Cell Biology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Henning Walczak
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, London, UK
| | - David Wallach
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ying Wang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Will Wood
- School of Cellular and Molecular Medicine, Faculty of Biomedical Sciences, University of Bristol, Bristol, UK
| | - Junying Yuan
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zahra Zakeri
- Department of Biology, Queens College of the City University of New York, Queens, NY, USA
| | - Boris Zhivotovsky
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Laurence Zitvogel
- Faculty of Medicine, Paris Sud/Paris XI University, Kremlin-Bicêtre, France
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1015, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Gerry Melino
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Guido Kroemer
- Paris Descartes/Paris V University, Paris, France.
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Campus, Villejuif, France.
- Team 11 labeled "Ligue Nationale contre le Cancer", Cordeliers Research Center, Paris, France.
- INSERM U1138, Paris, France.
- Pierre et Marie Curie/Paris VI University, Paris, France.
- Biology Pole, European Hospital George Pompidou, AP-HP, Paris, France.
| |
Collapse
|
1533
|
Cordeiro MH, Smith RJ, Saurin AT. A fine balancing act: A delicate kinase-phosphatase equilibrium that protects against chromosomal instability and cancer. Int J Biochem Cell Biol 2018; 96:148-156. [PMID: 29108876 DOI: 10.1016/j.biocel.2017.10.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 12/31/2022]
Abstract
Cancer cells rewire signalling networks to acquire specific hallmarks needed for their proliferation, survival, and dissemination throughout the body. Although this is often associated with the constitutive activation or inactivation of protein phosphorylation networks, there are other contexts when the dysregulation must be much milder. For example, chromosomal instability is a widespread cancer hallmark that relies on subtle defects in chromosome replication and/or division, such that these processes remain functional, but nevertheless error-prone. In this article, we will discuss how perturbations to the delicate kinase-phosphatase balance could lie at the heart of this type of dysregulation. In particular, we will explain how the two principle mechanisms that safeguard the chromosome segregation process rely on an equilibrium between at least two kinases and two phosphatases to function correctly. This balance is set during mitosis by a central complex that has also been implicated in chromosomal instability - the BUB1/BUBR1/BUB3 complex - and we will put forward a hypothesis that could link these two findings. This could be relevant for cancer treatment because most tumours have evolved by pushing the boundaries of chromosomal instability to the limit. If this involves subtle changes to the kinase-phosphatase equilibrium, then it may be possible to exacerbate these defects and tip tumour cells over the edge, whilst still maintaining the viability of healthy cells.
Collapse
Affiliation(s)
- Marilia Henriques Cordeiro
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Richard John Smith
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Adrian Thomas Saurin
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK.
| |
Collapse
|
1534
|
Sansregret L, Vanhaesebroeck B, Swanton C. Determinants and clinical implications of chromosomal instability in cancer. Nat Rev Clin Oncol 2018; 15:139-150. [PMID: 29297505 DOI: 10.1038/nrclinonc.2017.198] [Citation(s) in RCA: 257] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aberrant chromosomal architecture, ranging from small insertions or deletions to large chromosomal alterations, is one of the most common characteristics of cancer genomes. Chromosomal instability (CIN) underpins much of the intratumoural heterogeneity observed in cancers and drives phenotypic adaptation during tumour evolution. Thus, an urgent need exists to increase our efforts to target CIN as if it were a molecular entity. Indeed, CIN accelerates the development of anticancer drug resistance, often leading to treatment failure and disease recurrence, which limit the effectiveness of most current therapies. Identifying novel strategies to modulate CIN and to exploit the fitness cost associated with aneuploidy in cancer is, therefore, of paramount importance for the successful treatment of cancer. Modern sequencing and analytical methods greatly facilitate the identification and cataloguing of somatic copy-number alterations and offer new possibilities to better exploit the dynamic process of CIN. In this Review, we describe the principles governing CIN propagation in cancer and how CIN might influence sensitivity to immune-checkpoint inhibition, and survey the vulnerabilities associated with CIN that offer potential therapeutic opportunities.
Collapse
Affiliation(s)
- Laurent Sansregret
- The Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, UK
- University College London Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Bart Vanhaesebroeck
- University College London Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Charles Swanton
- The Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London WC1E 6DD, UK
| |
Collapse
|
1535
|
Emoto K, Vaghjiani RG, Adusumilli PS. Tracing the origin, tracking the evolution, and the treatment of the future. J Thorac Cardiovasc Surg 2018; 155:1203-1204. [PMID: 29452466 DOI: 10.1016/j.jtcvs.2017.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 12/04/2017] [Indexed: 11/16/2022]
Affiliation(s)
- Katsura Emoto
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Raj G Vaghjiani
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Prasad S Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|
1536
|
Shiroyama T, Nasu S, Tanaka A, Takata S, Masuhiro K, Takada H, Morita S, Morishita N, Suzuki H, Okamoto N, Kawahara K, Hirashima T. Transformation to small cell lung cancer after first-line afatinib treatment. Respir Med Case Rep 2018; 23:188-190. [PMID: 29719814 PMCID: PMC5925950 DOI: 10.1016/j.rmcr.2018.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 02/28/2018] [Indexed: 11/18/2022] Open
Abstract
Acquiring resistance to epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) is inevitable. Transformation to small cell lung cancer (SCLC) is reported as a possible mechanism of this acquired resistance. We describe the case of a 35-year-old man with lung adenocarcinoma harboring EGFR exon 19 deletion. After 7 months of successful treatment with afatinib, he experienced relapse and rebiopsy revealed SCLC with EGFR exon 19 deletion. Tumor marker tests at this point showed normal levels of serum neuron-specific enolase and pro-gastrin releasing peptide. Our case highlights the importance of rebiopsy for revealing SCLC transformation, a potential mechanism of acquired resistance to afatinib as with other EGFR-TKIs, and normal-range values of tumor markers for SCLC cannot exclude the possibility of SCLC transformation.
Collapse
Affiliation(s)
- Takayuki Shiroyama
- Department of Thoracic Oncology, Osaka Habikino Medical Center, Osaka, Japan
- Corresponding author. Department of Thoracic Oncology, Osaka Habikino Medical Center, 3-7-1 Habikino, Habikino City, Osaka, 583-8588, Japan.
| | - Shingo Nasu
- Department of Thoracic Oncology, Osaka Habikino Medical Center, Osaka, Japan
| | - Ayako Tanaka
- Department of Thoracic Oncology, Osaka Habikino Medical Center, Osaka, Japan
| | - So Takata
- Department of Thoracic Oncology, Osaka Habikino Medical Center, Osaka, Japan
| | - Kentaro Masuhiro
- Department of Thoracic Oncology, Osaka Habikino Medical Center, Osaka, Japan
| | - Hiromune Takada
- Department of Thoracic Oncology, Osaka Habikino Medical Center, Osaka, Japan
| | - Satomu Morita
- Department of Thoracic Oncology, Osaka Habikino Medical Center, Osaka, Japan
| | - Naoko Morishita
- Department of Thoracic Oncology, Osaka Habikino Medical Center, Osaka, Japan
| | - Hidekazu Suzuki
- Department of Thoracic Oncology, Osaka Habikino Medical Center, Osaka, Japan
| | - Norio Okamoto
- Department of Thoracic Oncology, Osaka Habikino Medical Center, Osaka, Japan
| | | | - Tomonori Hirashima
- Department of Thoracic Oncology, Osaka Habikino Medical Center, Osaka, Japan
| |
Collapse
|
1537
|
McCoach CE, Bivona TG. The evolving understanding of immunoediting and the clinical impact of immune escape. J Thorac Dis 2018; 10:1248-1252. [PMID: 29708132 DOI: 10.21037/jtd.2018.03.60] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Caroline E McCoach
- Department of Medicine, University of California, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Trever G Bivona
- Department of Medicine, University of California, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| |
Collapse
|
1538
|
Niida A, Nagayama S, Miyano S, Mimori K. Understanding intratumor heterogeneity by combining genome analysis and mathematical modeling. Cancer Sci 2018; 109:884-892. [PMID: 29352488 PMCID: PMC5891172 DOI: 10.1111/cas.13510] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 01/06/2023] Open
Abstract
Cancer is composed of multiple cell populations with different genomes. This phenomenon called intratumor heterogeneity (ITH) is supposed to be a fundamental cause of therapeutic failure. Therefore, its principle‐level understanding is a clinically important issue. To achieve this goal, an interdisciplinary approach combining genome analysis and mathematical modeling is essential. For example, we have recently performed multiregion sequencing to unveil extensive ITH in colorectal cancer. Moreover, by employing mathematical modeling of cancer evolution, we demonstrated that it is possible that this ITH is generated by neutral evolution. In this review, we introduce recent advances in a research field related to ITH and also discuss strategies for exploiting novel findings on ITH in a clinical setting.
Collapse
Affiliation(s)
- Atsushi Niida
- Division of Health Medical Computational Science, Health Intelligence Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoshi Nagayama
- Department of Gastroenterological Surgery, Gastroenterological Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Satoru Miyano
- Division of Health Medical Computational Science, Health Intelligence Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| |
Collapse
|
1539
|
Drapkin BJ, George J, Christensen CL, Mino-Kenudson M, Dries R, Sundaresan T, Phat S, Myers DT, Zhong J, Igo P, Hazar-Rethinam MH, Licausi JA, Gomez-Caraballo M, Kem M, Jani KN, Azimi R, Abedpour N, Menon R, Lakis S, Heist RS, Büttner R, Haas S, Sequist LV, Shaw AT, Wong KK, Hata AN, Toner M, Maheswaran S, Haber DA, Peifer M, Dyson N, Thomas RK, Farago AF. Genomic and Functional Fidelity of Small Cell Lung Cancer Patient-Derived Xenografts. Cancer Discov 2018; 8:600-615. [PMID: 29483136 DOI: 10.1158/2159-8290.cd-17-0935] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 02/12/2018] [Accepted: 02/21/2018] [Indexed: 11/16/2022]
Abstract
Small cell lung cancer (SCLC) patient-derived xenografts (PDX) can be generated from biopsies or circulating tumor cells (CTC), though scarcity of tissue and low efficiency of tumor growth have previously limited these approaches. Applying an established clinical-translational pipeline for tissue collection and an automated microfluidic platform for CTC enrichment, we generated 17 biopsy-derived PDXs and 17 CTC-derived PDXs in a 2-year timeframe, at 89% and 38% efficiency, respectively. Whole-exome sequencing showed that somatic alterations are stably maintained between patient tumors and PDXs. Early-passage PDXs maintain the genomic and transcriptional profiles of the founder PDX. In vivo treatment with etoposide and platinum (EP) in 30 PDX models demonstrated greater sensitivity in PDXs from EP-naïve patients, and resistance to EP corresponded to increased expression of a MYC gene signature. Finally, serial CTC-derived PDXs generated from an individual patient at multiple time points accurately recapitulated the evolving drug sensitivities of that patient's disease. Collectively, this work highlights the translational potential of this strategy.Significance: Effective translational research utilizing SCLC PDX models requires both efficient generation of models from patients and fidelity of those models in representing patient tumor characteristics. We present approaches for efficient generation of PDXs from both biopsies and CTCs, and demonstrate that these models capture the mutational landscape and functional features of the donor tumors. Cancer Discov; 8(5); 600-15. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 517.
Collapse
Affiliation(s)
| | - Julie George
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, Cologne, Germany
| | | | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Ruben Dries
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Tilak Sundaresan
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Sarah Phat
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - David T Myers
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Jun Zhong
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Peter Igo
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | | | - Joseph A Licausi
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | | | - Marina Kem
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Roxana Azimi
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Nima Abedpour
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | | | | | - Rebecca S Heist
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Reinhard Büttner
- Department of Pathology, University Hospital Cologne, Cologne, Germany
| | - Stefan Haas
- Computational Molecular Biology Group, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lecia V Sequist
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Alice T Shaw
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Kwok-Kin Wong
- Department of Hematology and Oncology, New York University Langone Medical School, New York, New York
| | - Aaron N Hata
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Mehmet Toner
- Harvard Medical School, Boston, Massachusetts.,Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts.,Shriners Hospital for Children, Boston, Massachusetts
| | - Shyamala Maheswaran
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Daniel A Haber
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Martin Peifer
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Nicholas Dyson
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Roman K Thomas
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, Cologne, Germany. .,Department of Pathology, University Hospital Cologne, Cologne, Germany.,German Cancer Research Center, German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Anna F Farago
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts. .,Harvard Medical School, Boston, Massachusetts.,Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
1540
|
Martinez P, Mallo D, Paulson TG, Li X, Sanchez CA, Reid BJ, Graham TA, Kuhner MK, Maley CC. Evolution of Barrett's esophagus through space and time at single-crypt and whole-biopsy levels. Nat Commun 2018; 9:794. [PMID: 29476056 PMCID: PMC5824808 DOI: 10.1038/s41467-017-02621-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 12/13/2017] [Indexed: 12/22/2022] Open
Abstract
The low risk of progression of Barrett's esophagus (BE) to esophageal adenocarcinoma can lead to over-diagnosis and over-treatment of BE patients. This may be addressed through a better understanding of the dynamics surrounding BE malignant progression. Although genetic diversity has been characterized as a marker of malignant development, it is still unclear how BE arises and develops. Here we uncover the evolutionary dynamics of BE at crypt and biopsy levels in eight individuals, including four patients that experienced malignant progression. We assay eight individual crypts and the remaining epithelium by SNP array for each of 6-11 biopsies over 2 time points per patient (358 samples in total). Our results indicate that most Barrett's segments are clonal, with similar number and inferred rates of alterations observed for crypts and biopsies. Divergence correlates with geographical location, being higher near the gastro-esophageal junction. Relaxed clock analyses show that genomic instability precedes and is enhanced by genome doubling. These results shed light on the clinically relevant evolutionary dynamics of BE.
Collapse
Affiliation(s)
- Pierre Martinez
- Evolution and Cancer Laboratory, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon Cedex 08, 69373, France
| | - Diego Mallo
- Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, 85287, USA
| | - Thomas G Paulson
- Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109-1024, USA
| | - Xiaohong Li
- Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109-1024, USA
| | - Carissa A Sanchez
- Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109-1024, USA
| | - Brian J Reid
- Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109-1024, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195-5065, USA
| | - Trevor A Graham
- Evolution and Cancer Laboratory, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Mary K Kuhner
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195-5065, USA
| | - Carlo C Maley
- Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, 85287, USA.
- School of Life Sciences, Arizona State University, Tempe, Arizona, 85287, USA.
| |
Collapse
|
1541
|
Tamiya M, Tamiya A, Inoue T, Kimura M, Kunimasa K, Nakahama K, Taniguchi Y, Shiroyama T, Isa SI, Nishino K, Kumagai T, Suzuki H, Hirashima T, Atagi S, Imamura F. Metastatic site as a predictor of nivolumab efficacy in patients with advanced non-small cell lung cancer: A retrospective multicenter trial. PLoS One 2018; 13:e0192227. [PMID: 29470536 PMCID: PMC5823394 DOI: 10.1371/journal.pone.0192227] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 01/18/2018] [Indexed: 12/13/2022] Open
Abstract
Purpose To conduct a retrospective multicenter trial to determine the significance of metastatic site as a predictor of nivolumab efficacy in patients with advanced non-small cell lung cancer. Methods This study was conducted across three medical centers in Japan. We retrospectively reviewed all patients who commenced nivolumab treatment at these centers between December 17, 2015 and July 31, 2016. Clinical data were collected, including age, sex, smoking status, Eastern Cooperative Oncology Group performance status, and metastatic site (lymph nodes, liver, brain, bone, lungs [intrapulmonary metastasis], and malignant pleural effusion) at the time of commencing nivolumab treatment. Patients were followed-up until March 31, 2017. Results Two hundred and one patients were enrolled. The median age at the time of commencing nivolumab treatment was 68 (range, 27–87) years. One hundred and thirty-five patients were male, 157 patients had a history of smoking, 153 patients had a performance status of 0–1, and 42 patients had squamous cell carcinoma. The median progression-free survival of all patients was 2.5 months. In the univariate analysis, a performance status of ≥2 (hazard ratio [HR]: 1.89, 95.0% confidence interval [CI]: 1.33–2.69; p < 0.001) and liver (HR: 2.09, 95.0% CI: 1.35–3.25; p < 0.001) and lung (HR: 1.57, 95.0% CI: 1.14–2.16; p < 0.01) metastases correlated with a significantly shorter progression-free survival in nivolumab-treated patients. In the multivariate analysis, a performance status of ≥2 (HR: 1.54, 95.0% CI: 1.05–2.25; p < 0.05) and liver (HR: 1.90, 95.0% CI: 1.21–2.98; p < 0.01) and lung (HR: 1.41, 95.0% CI: 1.00–1.99; p < 0.05) metastases were independently correlated with a significantly shorter progression-free survival in nivolumab-treated patients. Conclusion Liver and lung metastases and a poor performance status are independent predictors of nivolumab efficacy in patients with advanced non-small cell lung cancer.
Collapse
Affiliation(s)
| | - Akihiro Tamiya
- National Hospital Organization Kinki-chuo Chest Medical Center, Osaka, Japan
| | - Takako Inoue
- Osaka International Cancer Institute, Osaka, Japan
| | | | - Kei Kunimasa
- Osaka International Cancer Institute, Osaka, Japan
| | - Kenji Nakahama
- National Hospital Organization Kinki-chuo Chest Medical Center, Osaka, Japan
| | - Yoshihiko Taniguchi
- National Hospital Organization Kinki-chuo Chest Medical Center, Osaka, Japan
| | - Takayuki Shiroyama
- Osaka Prefectural Medical Center for Respiratory and Allergic Diseases, Osaka, Japan
| | - Shun-ichi Isa
- National Hospital Organization Kinki-chuo Chest Medical Center, Osaka, Japan
| | | | - Toru Kumagai
- Osaka International Cancer Institute, Osaka, Japan
| | - Hidekazu Suzuki
- Osaka Prefectural Medical Center for Respiratory and Allergic Diseases, Osaka, Japan
| | - Tomonori Hirashima
- Osaka Prefectural Medical Center for Respiratory and Allergic Diseases, Osaka, Japan
| | - Shinji Atagi
- National Hospital Organization Kinki-chuo Chest Medical Center, Osaka, Japan
| | - Fumio Imamura
- Osaka International Cancer Institute, Osaka, Japan
- * E-mail:
| |
Collapse
|
1542
|
Herling CD, Abedpour N, Weiss J, Schmitt A, Jachimowicz RD, Merkel O, Cartolano M, Oberbeck S, Mayer P, Berg V, Thomalla D, Kutsch N, Stiefelhagen M, Cramer P, Wendtner CM, Persigehl T, Saleh A, Altmüller J, Nürnberg P, Pallasch C, Achter V, Lang U, Eichhorst B, Castiglione R, Schäfer SC, Büttner R, Kreuzer KA, Reinhardt HC, Hallek M, Frenzel LP, Peifer M. Clonal dynamics towards the development of venetoclax resistance in chronic lymphocytic leukemia. Nat Commun 2018; 9:727. [PMID: 29463802 PMCID: PMC5820258 DOI: 10.1038/s41467-018-03170-7] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 01/24/2018] [Indexed: 12/20/2022] Open
Abstract
Deciphering the evolution of cancer cells under therapeutic pressure is a crucial step to understand the mechanisms that lead to treatment resistance. To this end, we analyzed whole-exome sequencing data of eight chronic lymphocytic leukemia (CLL) patients that developed resistance upon BCL2-inhibition by venetoclax. Here, we report recurrent mutations in BTG1 (2 patients) and homozygous deletions affecting CDKN2A/B (3 patients) that developed during treatment, as well as a mutation in BRAF and a high-level focal amplification of CD274 (PD-L1) that might pinpoint molecular aberrations offering structures for further therapeutic interventions. BCL2-inhibitor venetoclax is used to treat relapsed/refractory chronic lymphocytic leukemia (CLL). Here, the authors show the clonal dynamics towards venetoclax resistance by performing whole-exome sequencing of 8 CLL patients undergoing venetoclax treatment.
Collapse
Affiliation(s)
- Carmen D Herling
- Department of Internal Medicine I, Center of Integrated Oncology Cologne-Bonn, University of Cologne, 50937 Cologne, Germany
| | - Nima Abedpour
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Jonathan Weiss
- Department of Internal Medicine I, Center of Integrated Oncology Cologne-Bonn, University of Cologne, 50937 Cologne, Germany
| | - Anna Schmitt
- Department of Internal Medicine I, Center of Integrated Oncology Cologne-Bonn, University of Cologne, 50937 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Ron Daniel Jachimowicz
- Department of Internal Medicine I, Center of Integrated Oncology Cologne-Bonn, University of Cologne, 50937 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Olaf Merkel
- Department of Internal Medicine I, Center of Integrated Oncology Cologne-Bonn, University of Cologne, 50937 Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Maria Cartolano
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Sebastian Oberbeck
- Department of Internal Medicine I, Center of Integrated Oncology Cologne-Bonn, University of Cologne, 50937 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany.,Laboratory of Lymphocyte Signaling and Oncoproteom, University of Cologne, 50931 Cologne, Germany
| | - Petra Mayer
- Department of Internal Medicine I, Center of Integrated Oncology Cologne-Bonn, University of Cologne, 50937 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany.,Laboratory of Lymphocyte Signaling and Oncoproteom, University of Cologne, 50931 Cologne, Germany
| | - Valeska Berg
- Department of Internal Medicine I, Center of Integrated Oncology Cologne-Bonn, University of Cologne, 50937 Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Daniel Thomalla
- Department of Internal Medicine I, Center of Integrated Oncology Cologne-Bonn, University of Cologne, 50937 Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Nadine Kutsch
- Department of Internal Medicine I, Center of Integrated Oncology Cologne-Bonn, University of Cologne, 50937 Cologne, Germany
| | - Marius Stiefelhagen
- Department of Internal Medicine I, Center of Integrated Oncology Cologne-Bonn, University of Cologne, 50937 Cologne, Germany
| | - Paula Cramer
- Department of Internal Medicine I, Center of Integrated Oncology Cologne-Bonn, University of Cologne, 50937 Cologne, Germany
| | - Clemens-Martin Wendtner
- Department of Hematology, Oncology, Immunology, Palliative Care, Infectious Diseases and Tropical Medicine, Klinikum Schwabing, 80804 Munich, Germany
| | - Thorsten Persigehl
- Department of Radiology, Cologne University Hospital, 50937 Cologne, Germany
| | - Andreas Saleh
- Department of Diagnostic and Interventional Radiology and Pediatric Radiology, Städtisches Klinikum München Schwabing, 80804 Munich, Germany
| | - Janine Altmüller
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.,Cologne Center for Genomics (CCG), University of Cologne, 50931 Cologne, Germany
| | - Peter Nürnberg
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany.,Cologne Center for Genomics (CCG), University of Cologne, 50931 Cologne, Germany
| | - Christian Pallasch
- Department of Internal Medicine I, Center of Integrated Oncology Cologne-Bonn, University of Cologne, 50937 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Viktor Achter
- Computing Center, University of Cologne, 50931 Cologne, Germany
| | - Ulrich Lang
- Computing Center, University of Cologne, 50931 Cologne, Germany.,Department of Informatics, University of Cologne, 50931 Cologne, Germany
| | - Barbara Eichhorst
- Department of Internal Medicine I, Center of Integrated Oncology Cologne-Bonn, University of Cologne, 50937 Cologne, Germany
| | | | - Stephan C Schäfer
- Department of Pathology, University of Cologne, 50937, Cologne, Germany
| | - Reinhard Büttner
- Department of Pathology, University of Cologne, 50937, Cologne, Germany
| | - Karl-Anton Kreuzer
- Department of Internal Medicine I, Center of Integrated Oncology Cologne-Bonn, University of Cologne, 50937 Cologne, Germany
| | - Hans Christian Reinhardt
- Department of Internal Medicine I, Center of Integrated Oncology Cologne-Bonn, University of Cologne, 50937 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Michael Hallek
- Department of Internal Medicine I, Center of Integrated Oncology Cologne-Bonn, University of Cologne, 50937 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Lukas P Frenzel
- Department of Internal Medicine I, Center of Integrated Oncology Cologne-Bonn, University of Cologne, 50937 Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Martin Peifer
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany. .,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
1543
|
Queiroz AL, Vakifahmetoglu-Norberg H, Norberg E. Resistant to Targeted Therapy - Aim for Metabolic Liabilities. Am J Cancer Res 2018; 8:2061-2063. [PMID: 29569651 PMCID: PMC5858517 DOI: 10.7150/thno.24454] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 01/06/2023] Open
Abstract
The advent of targeted therapies generated much optimism when discovered. Targeted therapies, are however associated with rapid acquisition of resistance. In a recent study by Dong et al. (Theranostics 2018; 8(7):1808-1823. doi:10.7150/thno.23177) it was shown that lung tumors resistant to the EGFR-inhibitor (Erlotinib), reprogram their metabolism and acquire a pro-survival dependency on Phosphoglycerate Dehydrogenase (PHGDH) that can be targeted to eliminate resistant tumors.
Collapse
|
1544
|
Kleczko EK, Heasley LE. Mechanisms of rapid cancer cell reprogramming initiated by targeted receptor tyrosine kinase inhibitors and inherent therapeutic vulnerabilities. Mol Cancer 2018; 17:60. [PMID: 29458371 PMCID: PMC5817864 DOI: 10.1186/s12943-018-0816-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/13/2018] [Indexed: 01/06/2023] Open
Abstract
Receptor tyrosine kinase (RTK) pathways serve as frequent oncogene drivers in solid cancers and small molecule and antibody-based inhibitors have been developed as targeted therapeutics for many of these oncogenic RTKs. In general, these drugs, when delivered as single agents in a manner consistent with the principles of precision medicine, induce tumor shrinkage but rarely complete tumor elimination. Moreover, acquired resistance of treated tumors is nearly invariant such that monotherapy strategies with targeted RTK drugs fail to provide long-term control or cures. The mechanisms mediating acquired resistance in tumors at progression treated with RTK inhibitors are relatively well defined compared to the molecular and cellular understanding of the cancer cells that persist early on therapy. We and others propose that these persisting cancer cells, termed "residual disease", provide the reservoir from which acquired resistance eventually emerges. Herein, we will review the literature that describes rapid reprogramming induced upon inhibition of oncogenic RTKs in cancer cells as a mechanism by which cancer cells persist to yield residual disease and consider strategies for disrupting these intrinsic responses for future therapeutic gain.
Collapse
Affiliation(s)
- Emily K. Kleczko
- Division of Renal Diseases and Hypertension, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Lynn E. Heasley
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| |
Collapse
|
1545
|
Wu SG, Shih JY. Management of acquired resistance to EGFR TKI-targeted therapy in advanced non-small cell lung cancer. Mol Cancer 2018; 17:38. [PMID: 29455650 PMCID: PMC5817870 DOI: 10.1186/s12943-018-0777-1] [Citation(s) in RCA: 508] [Impact Index Per Article: 72.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/01/2018] [Indexed: 12/12/2022] Open
Abstract
Recent advances in diagnosis and treatment are enabling a more targeted approach to treating lung cancers. Therapy targeting the specific oncogenic driver mutation could inhibit tumor progression and provide a favorable prognosis in clinical practice. Activating mutations of epidermal growth factor receptor (EGFR) in non-small cell lung cancer (NSCLC) are a favorable predictive factor for EGFR tyrosine kinase inhibitors (TKIs) treatment. For lung cancer patients with EGFR-exon 19 deletions or an exon 21 Leu858Arg mutation, the standard first-line treatment is first-generation (gefitinib, erlotinib), or second-generation (afatinib) TKIs. EGFR TKIs improve response rates, time to progression, and overall survival. Unfortunately, patients with EGFR mutant lung cancer develop disease progression after a median of 10 to 14 months on EGFR TKI. Different mechanisms of acquired resistance to first-generation and second-generation EGFR TKIs have been reported. Optimal treatment for the various mechanisms of acquired resistance is not yet clearly defined, except for the T790M mutation. Repeated tissue biopsy is important to explore resistance mechanisms, but it has limitations and risks. Liquid biopsy is a valid alternative to tissue re-biopsy. Osimertinib has been approved for patients with T790M-positive NSCLC with acquired resistance to EGFR TKI. For other TKI-resistant mechanisms, combination therapy may be considered. In addition, the use of immunotherapy in lung cancer treatment has evolved rapidly. Understanding and clarifying the biology of the resistance mechanisms of EGFR-mutant NSCLC could guide future drug development, leading to more precise therapy and advances in treatment.
Collapse
Affiliation(s)
- Shang-Gin Wu
- Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Jin-Yuan Shih
- Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan.
| |
Collapse
|
1546
|
Paoletti C, Cani AK, Larios JM, Hovelson DH, Aung K, Darga EP, Cannell EM, Baratta PJ, Liu CJ, Chu D, Yazdani M, Blevins AR, Sero V, Tokudome N, Thomas DG, Gersch C, Schott AF, Wu YM, Lonigro R, Robinson DR, Chinnaiyan AM, Bischoff FZ, Johnson MD, Park BH, Hayes DF, Rae JM, Tomlins SA. Comprehensive Mutation and Copy Number Profiling in Archived Circulating Breast Cancer Tumor Cells Documents Heterogeneous Resistance Mechanisms. Cancer Res 2018; 78:1110-1122. [PMID: 29233927 PMCID: PMC5815882 DOI: 10.1158/0008-5472.can-17-2686] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/19/2017] [Accepted: 12/07/2017] [Indexed: 01/05/2023]
Abstract
Addressing drug resistance is a core challenge in cancer research, but the degree of heterogeneity in resistance mechanisms in cancer is unclear. In this study, we conducted next-generation sequencing (NGS) of circulating tumor cells (CTC) from patients with advanced cancer to assess mechanisms of resistance to targeted therapy and reveal opportunities for precision medicine. Comparison of the genomic landscapes of CTCs and tissue metastases is complicated by challenges in comprehensive CTC genomic profiling and paired tissue acquisition, particularly in patients who progress after targeted therapy. Thus, we assessed by NGS somatic mutations and copy number alterations (CNA) in archived CTCs isolated from patients with metastatic breast cancer who were enrolled in concurrent clinical trials that collected and analyzed CTCs and metastatic tissues. In 76 individual and pooled informative CTCs from 12 patients, we observed 85% concordance in at least one or more prioritized somatic mutations and CNA between paired CTCs and tissue metastases. Potentially actionable genomic alterations were identified in tissue but not CTCs, and vice versa. CTC profiling identified diverse intra- and interpatient molecular mechanisms of endocrine therapy resistance, including loss of heterozygosity in individual CTCs. For example, in one patient, we observed CTCs that were either wild type for ESR1 (n = 5/32), harbored the known activating ESR1 p.Y537S mutation (n = 26/32), or harbored a novel ESR1 p.A569S (n = 1/32). ESR1 p.A569S was modestly activating in vitro, consistent with its presence as a minority circulating subclone. Our results demonstrate the feasibility and potential clinical utility of comprehensive profiling of archived fixed CTCs. Tissue and CTC genomic assessment are complementary, and precise combination therapies will likely be required for effective targeting in advanced breast cancer patients.Significance: These findings demonstrate the complementary nature of genomic profiling from paired tissue metastasis and circulating tumor cells from patients with metastatic breast cancer. Cancer Res; 78(4); 1110-22. ©2017 AACR.
Collapse
Affiliation(s)
- Costanza Paoletti
- Breast Oncology Program of the University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan
- Comphrehensive Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Andi K Cani
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, Michigan
- Molecular and Cellular Pathology Graduate Program, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jose M Larios
- Breast Oncology Program of the University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan
- Comphrehensive Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Daniel H Hovelson
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Kimberly Aung
- Breast Oncology Program of the University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan
- Comphrehensive Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Elizabeth P Darga
- Breast Oncology Program of the University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan
- Comphrehensive Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Emily M Cannell
- Breast Oncology Program of the University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan
- Comphrehensive Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Paul J Baratta
- Breast Oncology Program of the University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan
- Comphrehensive Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Chia-Jen Liu
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - David Chu
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine Department of Oncology, Baltimore, Maryland
| | - Maryam Yazdani
- Menarini Silicon Biosystems, Inc., San Diego, California
| | | | - Valeria Sero
- Menarini Silicon Biosystems, Inc., San Diego, California
| | - Nahomi Tokudome
- Breast Oncology Program of the University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan
- Comphrehensive Cancer Center, University of Michigan, Ann Arbor, Michigan
- Present address: Third Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Dafydd G Thomas
- Breast Oncology Program of the University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan
- Comphrehensive Cancer Center, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Christina Gersch
- Breast Oncology Program of the University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan
- Comphrehensive Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Anne F Schott
- Breast Oncology Program of the University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan
- Comphrehensive Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Yi-Mi Wu
- Comphrehensive Cancer Center, University of Michigan, Ann Arbor, Michigan
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Robert Lonigro
- Comphrehensive Cancer Center, University of Michigan, Ann Arbor, Michigan
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Dan R Robinson
- Comphrehensive Cancer Center, University of Michigan, Ann Arbor, Michigan
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Arul M Chinnaiyan
- Comphrehensive Cancer Center, University of Michigan, Ann Arbor, Michigan
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | | | | | - Ben H Park
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine Department of Oncology, Baltimore, Maryland
| | - Daniel F Hayes
- Breast Oncology Program of the University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan
- Comphrehensive Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - James M Rae
- Breast Oncology Program of the University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan
- Comphrehensive Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Scott A Tomlins
- Comphrehensive Cancer Center, University of Michigan, Ann Arbor, Michigan.
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Urology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
1547
|
Del C Monroig-Bosque P, Driver B, Morales-Rosado JA, Deavers M, Tacha D, Bernicker E, Cagle PT, Miller RA. Correlation Between Programmed Death Receptor-1 Expression in Tumor-Infiltrating Lymphocytes and Programmed Death Ligand-1 Expression in Non-Small Cell Lung Carcinoma. Arch Pathol Lab Med 2018; 142:1388-1393. [PMID: 29431467 DOI: 10.5858/arpa.2017-0516-oa] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT.— The interaction between programmed death ligand-1 (PD-L1) and programmed death receptor-1 (PD-1) on activated T cells sends an inhibitory signal that dampens the immune response. Tumors can express PD-L1 and evade the immune system. In advanced non-small cell lung carcinoma, expression of PD-1 in tumor-infiltrating lymphocytes (TILs) correlates with PD-L1 expression in tumor cells (TCs). However, this relationship has not been thoroughly explored in early disease. OBJECTIVE.— To investigate the correlation of PD-1 and PD-L1 in non-small cell lung carcinoma tumor samples, with emphasis on stage I disease. DESIGN.— Whole tissue sections from non-small cell lung carcinoma tumors were retrospectively evaluated by immunohistochemistry for PD-1 and PD-L1 expression. The scoring was based on the percentage of cells positive for PD-1 in TILs and PD-L1 in TCs and tumor-infiltrating immune cells (ICs). RESULTS.— Expression of PD-1 in TILs was observed in 147 of 161 non-small cell lung carcinoma cases (91%). The majority of cases negative for PD-1 also lacked PD-L1 in TCs. The 68 cases with highest PD-1 expression in TILs included 33 (49%) with expression of PD-L1 in TCs and ICs. Strong correlations were observed in patients with elevated PD-1 expression in TILs and PD-L1 in TCs ( P = .01) and ICs ( P = .003). Expression of PD-1 also correlated with increased PD-L1 in TCs and ICs when the 2 were grouped together ( P < .001). Finally, stage I patients with negative PD-1 and PD-L1 expression showed trends toward increased disease-specific survival. CONCLUSIONS.— Expression of PD-1 in TILs correlates with PD-L1 expression in both TCs and ICs. Furthermore, negative expression of PD-1 and PD-L1 suggest trends toward disease-specific survival, even in early disease stages.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ross A Miller
- From the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Drs Monroig-Bosque, Deavers, Bernicker, Cagle, and Miller); the Department of Pathology, Weill Cornell Medicine, New York, New York (Drs Monroig-Bosque, Bernicker, Cagle, and Miller); the Department of Pathology, University of Arkansas for Medical Science, Little Rock (Dr Driver); the Department of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan (Dr Morales-Rosado); and Biocare Medical LLC, Pacheco, California (Dr Tacha)
| |
Collapse
|
1548
|
Zhang S, Zhou K, Luo X, Li L, Tu HC, Sehgal A, Nguyen LH, Zhang Y, Gopal P, Tarlow BD, Siegwart DJ, Zhu H. The Polyploid State Plays a Tumor-Suppressive Role in the Liver. Dev Cell 2018; 44:447-459.e5. [PMID: 29429824 DOI: 10.1016/j.devcel.2018.01.010] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/06/2017] [Accepted: 01/09/2018] [Indexed: 12/17/2022]
Abstract
Most cells in the liver are polyploid, but the functional role of polyploidy is unknown. Polyploidization occurs through cytokinesis failure and endoreduplication around the time of weaning. To interrogate polyploidy while avoiding irreversible manipulations of essential cell-cycle genes, we developed orthogonal mouse models to transiently and potently alter liver ploidy. Premature weaning, as well as knockdown of E2f8 or Anln, allowed us to toggle between diploid and polyploid states. While there was no detectable impact of ploidy alterations on liver function, metabolism, or regeneration, mice with more polyploid hepatocytes suppressed tumorigenesis and mice with more diploid hepatocytes accelerated tumorigenesis in mutagen- and high-fat-induced models. Mechanistically, the diploid state was more susceptible to Cas9-mediated tumor-suppressor loss but was similarly susceptible to MYC oncogene activation, indicating that polyploidy differentially protected the liver from distinct genomic aberrations. This suggests that polyploidy evolved in part to prevent malignant outcomes of liver injury.
Collapse
Affiliation(s)
- Shuyuan Zhang
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kejin Zhou
- Simmons Comprehensive Cancer Center, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xin Luo
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Li
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ho-Chou Tu
- Alnylam Pharmaceuticals, Cambridge, MA 02142, USA
| | | | - Liem H Nguyen
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yu Zhang
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Purva Gopal
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Branden D Tarlow
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniel J Siegwart
- Simmons Comprehensive Cancer Center, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hao Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
1549
|
Wangsa D, Quintanilla I, Torabi K, Vila-Casadesús M, Ercilla A, Klus G, Yuce Z, Galofré C, Cuatrecasas M, Lozano JJ, Agell N, Cimini D, Castells A, Ried T, Camps J. Near-tetraploid cancer cells show chromosome instability triggered by replication stress and exhibit enhanced invasiveness. FASEB J 2018; 32:3502-3517. [PMID: 29452566 DOI: 10.1096/fj.201700247rr] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A considerable proportion of tumors exhibit aneuploid karyotypes, likely resulting from the progressive loss of chromosomes after whole-genome duplication. Here, by using isogenic diploid and near-tetraploid (4N) single-cell-derived clones from the same parental cell lines, we aimed at exploring how polyploidization affects cellular functions and how tetraploidy generates chromosome instability. Gene expression profiling in 4N clones revealed a significant enrichment of transcripts involved in cell cycle and DNA replication. Increased levels of replication stress in 4N cells resulted in DNA damage, impaired proliferation caused by a cell cycle delay during S phase, and higher sensitivity to S phase checkpoint inhibitors. In fact, increased levels of replication stress were also observed in nontransformed, proliferative posttetraploid RPE1 cells. Additionally, replication stress promoted higher levels of intercellular genomic heterogeneity and ongoing genomic instability, which could be explained by high rates of mitotic defects, and was alleviated by the supplementation of exogenous nucleosides. Finally, our data found that 4N cancer cells displayed increased migratory and invasive capacity, both in vitro and in primary colorectal tumors, indicating that tetraploidy can promote aggressive cancer cell behavior.-Wangsa, D., Quintanilla, I., Torabi, K., Vila-Casadesús, M., Ercilla, A., Klus, G., Yuce, Z., Galofré, C., Cuatrecasas, M., Lozano, J. J., Agell, N., Cimini, D., Castells, A., Ried, T., Camps, J. Near-tetraploid cancer cells show chromosome instability triggered by replication stress and exhibit enhanced invasiveness.
Collapse
Affiliation(s)
- Darawalee Wangsa
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Isabel Quintanilla
- Gastrointestinal and Pancreatic Oncology Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Keyvan Torabi
- Gastrointestinal and Pancreatic Oncology Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic de Barcelona, Barcelona, Spain.,Unitat de Biologia Cel·lular i Genètica Mèdica, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Maria Vila-Casadesús
- Gastrointestinal and Pancreatic Oncology Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic de Barcelona, Barcelona, Spain.,Bioinformatics Unit, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Amaia Ercilla
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Gregory Klus
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Zeynep Yuce
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.,Department of Medical Biology and Genetics, School of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Claudia Galofré
- Gastrointestinal and Pancreatic Oncology Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Miriam Cuatrecasas
- Department of Pathology-Centro de Diagnóstico Biomédico (CDB), Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Juan José Lozano
- Bioinformatics Unit, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Neus Agell
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Daniela Cimini
- Department of Biological Sciences, Biocomplexity Institute, Virginia Tech, Blacksburg, Virginia, USA
| | - Antoni Castells
- Gastrointestinal and Pancreatic Oncology Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Thomas Ried
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jordi Camps
- Gastrointestinal and Pancreatic Oncology Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic de Barcelona, Barcelona, Spain.,Unitat de Biologia Cel·lular i Genètica Mèdica, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
1550
|
MET amplification assessed using optimized FISH reporting criteria predicts early distant metastasis in patients with non-small cell lung cancer. Oncotarget 2018; 9:12959-12970. [PMID: 29560123 PMCID: PMC5849187 DOI: 10.18632/oncotarget.24430] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 01/30/2018] [Indexed: 01/02/2023] Open
Abstract
To investigate the prognostic impact of MET copy number (MET-CN) in patients with non-small cell lung cancer (NSCLC), we retrospectively reviewed clinical and pathologic data of NSCLC patients whose tumors were assessed for MET-CN using fluorescence in situ hybridization (FISH). We correlated MET-CN status with patient overall survival (OS) and optimized MET-FISH reporting criteria. The study group included 384 patients with NSCLC of which 88% were adenocarcinoma and 55.7% of patients had distant metastases. There were 170 patients with stages I-III and 214 patients with stage IV disease. Based on the MET-CN and MET/CEP7 ratio the patients were classified into 3 categories: MET-amplification (METamp): MET/CEP7 ≥ 2 or MET-CN ≥ 5; MET-CN-gain (METcng): MET-CN ≥ 4 to < 5; and MET-negative (METneg): MET-CN < 4. METamp was associated with high fatality (P=.036) and stage IV tumors (P=.038). In patients with stages I-III NSCLC, patients in the METamp category had the shortest OS (P=.015) and more often developed distant metastases within 1 year (P=.004). In patients with stage IV tumors, METamp did not further impact the OS. Patients in the METcng category had the longest OS (P=.053). Multivariate analysis confirmed METamp to be an independent high-risk factor (HR 3.26; P=.026) and predicted earlier progression to distant metastasis (HR 4.86; P=.001). In conclusion, we suggest that the MET-FISH criteria presented optimizes risk stratification by defining 3 categories of NSCLC patients. METamp is an independent risk factor predicting early distant metastasis and patients with METcng could represent a lower-risk group.
Collapse
|