1501
|
Effect of photoreceptor degeneration on circadian photoreception and free-running period in the Royal College of Surgeons rat. Brain Res 2007; 1148:76-82. [PMID: 17382912 DOI: 10.1016/j.brainres.2007.02.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 02/07/2007] [Accepted: 02/10/2007] [Indexed: 10/23/2022]
Abstract
The study of how the retina processes the photic information required for the entrainment of the circadian system is an exciting new topic in retinal neurobiology. We have recently shown that in RCS/N-rdy rats melanopsin mRNA levels are dramatically reduced (about 90%) and melanopsin immunoreactivity cannot be detected in the retina of these rats at 60 days of age. Although RCS/N-rdy rats are a widely used model to investigate mechanisms of photoreceptor degeneration, no study has investigated circadian photoreception in these animals. The aim of this study was to examine circadian photoreception in RCS/N-rdy(+) (rdy(+)) rats homozygous for the normal rdy allele and age-matched RCS/N-rdy (rdy) homozygotes with retinal dystrophy. No differences between RCS/N-rdy and rdy(+) were observed in light-induced phase shift of locomotor activity at the three light intensities used (1 x 10(-3), 1 x 10(-1), and 1 x 10(1) microW cm(-2)). Surprisingly, we observed that in RCS/N-rdy the free-running period of the circadian rhythm of locomotor activity was shorter (P<0.01) than in rdy(+), thus suggesting that photoreceptor degeneration may affect the free-running period of the locomotor activity rhythm.
Collapse
|
1502
|
Gamlin PDR, McDougal DH, Pokorny J, Smith VC, Yau KW, Dacey DM. Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells. Vision Res 2007; 47:946-54. [PMID: 17320141 PMCID: PMC1945238 DOI: 10.1016/j.visres.2006.12.015] [Citation(s) in RCA: 398] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 10/16/2006] [Accepted: 12/08/2006] [Indexed: 11/13/2022]
Abstract
Melanopsin, a novel photopigment, has recently been localized to a population of retinal ganglion cells that display inherent photosensitivity. During continuous light and following light offset, primates are known to exhibit sustained pupilloconstriction responses that resemble closely the photoresponses of intrinsically-photoreceptive ganglion cells. We report that, in the behaving macaque, following pharmacological blockade of conventional photoreceptor signals, significant pupillary responses persist during continuous light and following light offset. These pupil responses display the unique spectral tuning, slow kinetics, and irradiance coding of the sustained, melanopsin-derived ganglion cell photoresponses. We extended our observations to humans by using the sustained pupil response following light offset to document the contribution of these novel ganglion cells to human pupillary responses. Our results indicate that the intrinsic photoresponses of intrinsically-photoreceptive retinal ganglion cells play an important role in the pupillary light reflex and are primarily responsible for the sustained pupilloconstriction that occurs following light offset.
Collapse
Affiliation(s)
- Paul D R Gamlin
- Department of Vision Sciences, University of Alabama at Birmingham, AL 35294, USA.
| | | | | | | | | | | |
Collapse
|
1503
|
Masana MI, Sumaya IC, Becker-Andre M, Dubocovich ML. Behavioral characterization and modulation of circadian rhythms by light and melatonin in C3H/HeN mice homozygous for the RORbeta knockout. Am J Physiol Regul Integr Comp Physiol 2007; 292:R2357-67. [PMID: 17303680 DOI: 10.1152/ajpregu.00687.2006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study reports for the first time the effects of retinoid-related orphan receptors [RORbeta; receptor gene deletion RORbeta(C3H)(-/-)] in C3H/HeN mice on behavioral and circadian phenotypes. Pineal melatonin levels showed a robust diurnal rhythm with high levels at night in wild-type (+/+), heterozygous (+/-), and knockout (-/-) mice. The RORbeta(C3H)(-/-) mice displayed motor ("duck gait," hind paw clasping reflex) and olfactory deficits, and reduced anxiety and learned helplessness-related behaviors. Circadian rhythms of wheel-running activity in all genotypes showed entrainment to the light-dark (LD) cycle, and free running in constant dark, with RORbeta(C3H)(-/-) mice showing a significant increase in circadian period (tau). Melatonin administration (90 microg/mouse sc for 3 days) at circadian time (CT) 10 induced phase advances, while exposure to a light pulse (300 lux) at CT 14 induced phase delays of circadian activity rhythms of the same magnitude in all genotypes. In RORbeta(C3H)(-/-) mice a light pulse at CT 22 elicited a larger phase advance in activity rhythms and a slower rate of reentrainment after a 6-h advance in the LD cycle compared with (+/+) mice. Yet, the rate of reentrainment was significantly advanced by melatonin administration at the new dark onset in both (+/+) and (-/-) mice. We conclude that the RORbeta nuclear receptor is not involved in either the rhythmic production of pineal melatonin or in mediating phase shifts of circadian rhythms by melatonin, but it may regulate clock responses to photic stimuli at certain time domains.
Collapse
MESH Headings
- Adaptation, Physiological/physiology
- Adaptation, Physiological/radiation effects
- Animals
- Behavior, Animal/physiology
- Behavior, Animal/radiation effects
- Circadian Rhythm/physiology
- Circadian Rhythm/radiation effects
- Dose-Response Relationship, Radiation
- Light
- Melatonin/metabolism
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Knockout
- Nuclear Receptor Subfamily 1, Group F, Member 2
- Pineal Gland/metabolism
- Pineal Gland/radiation effects
- Radiation Dosage
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
Collapse
Affiliation(s)
- Monica I Masana
- Department of Molecular Pharmacology and Biological Chemistry Northwestern University Feinberg School of Medicine, Chicago, IL 60611-3008, USA
| | | | | | | |
Collapse
|
1504
|
Beersma DGM, Gordijn MCM. Circadian control of the sleep–wake cycle. Physiol Behav 2007; 90:190-5. [PMID: 17055008 DOI: 10.1016/j.physbeh.2006.09.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Accepted: 09/04/2006] [Indexed: 12/22/2022]
Abstract
It is beyond doubt that the timing of sleep is under control of the circadian pacemaker. Humans are a diurnal species; they sleep mostly at night, and they do so at approximately 24-h intervals. If they do not adhere to this general pattern, for instance when working night shifts or when travelling across time zones, they experience the stubborn influence of their circadian clock. In recent years much has been discovered about the organisation of the circadian clock. New photoreceptor cells in the retina have been found to influence the input to the clock, and much of the molecular machinery of the clock has been unravelled. It is now known that the circadian rhythm of sleep and wakefulness is only loosely coupled to the circadian rhythm of the pacemaker. New theories have been proposed for the functions of sleep and the sites at which those functions are executed. In spite of this rapid increase in knowledge of the circadian clock and of sleep regulatory processes, much remains to be discovered concerning the precise interaction between the biological clock and sleep timing. This is particularly unfortunate in view of the 24-h demands of our society for 7 days a week. Too little is known about the negative consequences of the societal pressures on well-being and performance.
Collapse
Affiliation(s)
- Domien G M Beersma
- Department of Chronobiology, University of Groningen, PO Box 14, 9750 AA, Haren, The Netherlands.
| | | |
Collapse
|
1505
|
Gotow T, Nishi T. Involvement of a Go-type G-protein coupled to guanylate cyclase in the phototransduction cGMP cascade of molluscan simple photoreceptors. Brain Res 2007; 1144:42-51. [PMID: 17320058 DOI: 10.1016/j.brainres.2007.01.068] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2006] [Revised: 01/11/2007] [Accepted: 01/21/2007] [Indexed: 11/30/2022]
Abstract
Simple photoreceptors, namely photoresponsive neurons, designated as A-P-1, Es-1, Ip-2 and Ip-1, exist in the sea slug Onchidium ganglion. Previous works has shown that, of these, Ip-2 and Ip-1 respond to light with a hyperpolarizing receptor potential, caused by the opening of light-dependent, cGMP-gated K+ channels, whereas A-P-1 and Es-1 are depolarized by light, owing to the closing of the same K+ channels. The present study of Ip-2 or Ip-1 cells was undertaken to identify the G-proteins that couple light to the activation of guanylate cyclase (GC), thereby leading to the opening of K+ channels and the consequent hyperpolarizing photocurrents. The specific channel blocker, 4-aminopyridine (4-AP), and a GC inhibitor, LY-83583, both suppressed this hyperpolarizing photocurrent. N-ethylmaleimide and GDP-beta-S also inhibited this photocurrent, consistent with the involvement of G-proteins. Mastoparan an activator of both Go- and Gi-type G-proteins, induced an outward current. Furthermore, benzalkonium chloride (C(16)BAC), a selective activator of Go, dose-dependently generated an outward current similar to that induced by mastoparan. Both of these outward currents were susceptible to 4-AP, LY-83583 and N-ethylmaleimide. Taken together, these results suggest that phototransduction in Ip-2 or Ip-1 cells is triggered by a Go-type G-protein coupled to GC. Thus, this new cGMP cascade contrasts with the conventional phototransduction cGMP cascade mediated by the Gt-type G-protein coupled to phosphodiesterase, seen in the vertebrate photoreceptors and the above A-P-1 or Es-1 cells.
Collapse
Affiliation(s)
- Tsukasa Gotow
- Department of Neurology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka Kagoshima 890-8520, Japan.
| | | |
Collapse
|
1506
|
Yao G, Zhang K, Bellassai M, Chang B, Lei B. Ultraviolet light-induced and green light-induced transient pupillary light reflex in mice. Curr Eye Res 2007; 31:925-33. [PMID: 17114118 DOI: 10.1080/02713680600932308] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE To study UV light-induced and green light-induced pupillary light reflex (PLR) in mice and to measure the illumination thresholds of rod-mediated and cone-mediated PLR responses. METHODS We measured dark-adapted transient PLR- in C57BL/6 mice elicited with ultraviolet and green light over an intensity range of 9 log units. To assist in isolating the responses mediated by rods and cones, we studied the PLRs in mouse models presenting pure cone and pure rod functions. We also characterized ERG signals in these mice under the same experimental conditions. RESULTS The UV light-induced transient PLR has identical intensity-response curves as green light-induced PLR in all the three mice strains. The threshold (5% PLR) of rod-driven PLR is 107 approximately 108 photons cm2 s-1, which is 1 approximately 2 log units lower than the dark-adapted ERG b-wave. The threshold of cone-driven PLR is approximately 1012.5 photons cm-2 s-1 and is similar to that of the cone ERG. CONCLUSIONS We demonstrated that mice have PLR responses under UV stimulation. The cone-elicited PLRs have a threshold that is approximately 5 log units higher than that of rod-elicited PLR at both UV and green wavelengths. We observed a divergence between the spectra responses in PLR and ERG. However, the mechanism and implications of this phenomenon are yet to be identified.
Collapse
Affiliation(s)
- Gang Yao
- Department of Biological Engineering, University of Missouri Columbia, Columbia, MO 65211-0001, USA
| | | | | | | | | |
Collapse
|
1507
|
Jasser SA, Hanifin JP, Rollag MD, Brainard GC. Dim light adaptation attenuates acute melatonin suppression in humans. J Biol Rhythms 2007; 21:394-404. [PMID: 16998159 DOI: 10.1177/0748730406292391] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract Studies in rodents with retinal degeneration indicated that neither the rod nor the cone photoreceptors obligatorily participate in circadian responses to light, including melatonin suppression and photoperiodic response. Yet there is a residual phase-shifting response in melanopsin knockout mice, which suggests an alternate or redundant means for light input to the SCN of the hypothalamus. The findings of Aggelopoulos and Meissl suggest a complex, dynamic interrelationship between the classic visual photoreceptors and SCN cell sensitivity to light stimuli, relative to various adaptive lighting conditions. These studies raised the possibility that the phototransductive physiology of the retinohypothalamic tract in humans might be modulated by the visual rod and cone photoreceptors. The aim of the following two-part study was to test the hypothesis that dim light adaptation will dampen the subsequent suppression of melatonin by monochromatic light in healthy human subjects. Each experiment included 5 female and 3 male human subjects between the ages of 18 and 30 years, with normal color vision. Dim white light and darkness adaptation exposures occurred between midnight and 0200 h, and a full-field 460-nm light exposure subsequently occurred between 0200 and 0330-h for each adaptation condition, at 2 different intensities. Plasma samples were drawn following the 2-h adaptation, as well as after the 460-nm monochromatic light exposure, and melatonin was measured by radioimmunoassay. Comparison of melatonin suppression responses to monochromatic light in both studies revealed a loss of significant suppression after dim white light adaptation compared with dark adaptation (p < 0.04 and p < 0.01). These findings indicate that the activity of the novel circadian photoreceptive system in humans is subject to subthreshold modulation of its sensitivity to subsequent monochromatic light exposure, varying with the conditions of light adaptation prior to exposure.
Collapse
Affiliation(s)
- Samar A Jasser
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | |
Collapse
|
1508
|
Vugler AA, Redgrave P, Hewson-Stoate NJ, Greenwood J, Coffey PJ. Constant illumination causes spatially discrete dopamine depletion in the normal and degenerate retina. J Chem Neuroanat 2007; 33:9-22. [PMID: 17223011 DOI: 10.1016/j.jchemneu.2006.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 10/20/2006] [Accepted: 10/21/2006] [Indexed: 11/20/2022]
Abstract
A fully competent retinal dopamine system underpins normal visual function. Although this system is known to be compromised both prior to and during retinal degeneration, the spatial dynamics of dopamine turnover within the degenerate retina are at present unknown. Here, using immunohistochemistry for dopamine in combination with quantitative optical density measurements, we reveal a global decline in retinal dopamine levels in the light adapted RCS dystrophic rat, which is restricted to plexiform layers in the dark. Pharmacological blockade of dopamine production with the drug alpha-methyl-p-tyrosine (AMPT) allows the direct visualisation of dopamine depletion in normal and degenerate retina in response to constant illumination. In normal retinae this effect is spatially discrete, being undetectable in perikarya and specific to amacrine cell fibres in sublamina 1 of the inner plexiform layer. A similar response was observed in the retinae of dystrophic rats but with a reduction in amplitude of approximately 50%. It is suggested that the pattern of dopamine depletion observed in rat retina may reflect an AMPT-resistant pool of perikaryal dopamine and/or a reduction in extrasynaptic release of this neurotransmitter in response to illumination in vivo. We conclude that the visualisation of dopamine depletion reported here represents a release of this neurotransmitter in the response to light. Turnover of dopamine in the dystrophic retina is discussed in the context of surviving photoreceptors, including the intrinsically photosensitive melanopsin ganglion cells of the inner retina.
Collapse
Affiliation(s)
- A A Vugler
- Division of Cellular Therapy, Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK.
| | | | | | | | | |
Collapse
|
1509
|
Doyle S, Menaker M. Circadian photoreception in vertebrates. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 72:499-508. [PMID: 18419310 DOI: 10.1101/sqb.2007.72.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
To be adaptively useful, internal circadian clocks must be entrained (synchronized) to daily rhythms in the external world. The entraining process adjusts the period of the internal clock to 24 hours and its phase to a value that determines the organism's temporal niche (e.g., diurnal and nocturnal). For most vertebrates, the dominant environmental synchronizer is light. All vertebrates employ specialized photoreceptor cells to perceive synchronizing light signals, but mammals and nonmammalian vertebrates do this differently. Mammals concentrate circadian photoreceptors in the retina, employing rods, cones, and a subset of retinal ganglion cells that are directly photosensitive and contain an unusual photopigment (melanopsin). Nonmammalian vertebrates use photoreceptors located deep in the brain and in the pineal gland as well as others in the retina. Such photoreceptor extravagance is difficult to explain. It seems likely that the different photoreceptor classes in this elaborate sensory system may have specialized roles in entrainment. There is some evidence that this is in fact the case. Furthermore, this nonvisual "circadian" photoreceptive system also controls acute behavioral responses to light (masking), pupillary constriction, and photoperiodic regulation of reproductive state. We review some of the early work on birds and describe new findings that indicate specific roles for retinal rods, cones, and photosensitive retinal ganglion cells in mammals.
Collapse
Affiliation(s)
- S Doyle
- Department of Biology, University of Virginia, Charlottesville, Virginia 22936, USA
| | | |
Collapse
|
1510
|
Güler AD, Altimus CM, Ecker JL, Hattar S. Multiple photoreceptors contribute to nonimage-forming visual functions predominantly through melanopsin-containing retinal ganglion cells. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 72:509-515. [PMID: 18522518 DOI: 10.1101/sqb.2007.72.074] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In the absence of functional rod and cone photoreceptors, mammals retain the ability to detect light for a variety of physiological functions such as circadian photoentrainment and pupillary light reflex. This is attributed to a third class of photoreceptors, the intrinsically photosensitive retinal ganglion cells that express the photopigment melanopsin. Even though in the absence of rods and cones, mammals retain the ability to detect light for various nonimage-forming visual functions, rods and cones can compensate for the absence of the melanopsin protein in nonvisual light-dependent physiological behaviors. Several studies have addressed the relative contribution of each photoreceptor type to nonimage-forming visual functions; however, a comprehensive model for these interactions is far from complete. Under conditions where melanopsin-containing retinal ganglion cells were genetically ablated, image formation is maintained, whereas circadian photoentrainment and pupillary light reflex are severely impaired. The findings indicate that multiple photoreceptors contribute to nonimage-forming visual functions through signaling via melanopsin-containing retinal ganglion cells. Future studies will aim to determine more quantitatively the relative contributions of each retinal photoreceptor in signaling light for nonimage-forming visual functions.
Collapse
Affiliation(s)
- A D Güler
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | |
Collapse
|
1511
|
CNS*2007. Abstracts of the 16th Annual Computational Neuroscience Meeting, Toronto, Canada, 7-12 July 2007. BMC Neurosci 2007; 8 Suppl 2:S1-P207. [PMID: 17634105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
|
1512
|
Hanifin JP, Brainard GC. Photoreception for Circadian, Neuroendocrine, and Neurobehavioral Regulation. J Physiol Anthropol 2007; 26:87-94. [PMID: 17435349 DOI: 10.2114/jpa2.26.87] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
In the art and science of lighting, four traditional objectives have been to provide light that: 1) is optimum for visual performance; 2) is visually comfortable; 3) permits aesthetic appreciation of the space; and 4) conserves energy. Over the past 25 years, it has been demonstrated that there are nonvisual, systemic effects of light in healthy humans. Furthermore, light has been used to successfully treat patients with selected affective and sleep disorders as well as healthy individuals who have circadian disruption due to shift work, transcontinental jet travel, or space flight. Recently, there has been an upheaval in the understanding of photoreceptive input to the circadian system of humans and other mammals. Analytical action spectra in rodents, primates, and humans have identified 446-484 nm (predominantly the blue part of the spectrum) as the most potent wavelength region for neuroendocrine, circadian, and neurobehavioral responses. Those studies suggested that a novel photosensory system, distinct from the visual rods and cones, is primarily responsible for this regulation. Studies have now shown that this new photosensory system is based on a small population of widely dispersed retinal ganglion cells that are intrinsically responsive to light, and project to the suprachiasmatic nuclei and other nonvisual centers in the brain. These light-sensitive retinal ganglion cells contain melanopsin, a vitamin A photopigment that mediates the cellular phototransduction cascade. Although light detection for circadian and neuroendocrine phototransduction seems to be mediated principally by a novel photosensory system in the eye, the classic rod and cone photoreceptors appear to play a role as well. These findings are important in understanding how humans adapt to lighting conditions in modern society and will provide the basis for major changes in future architectural lighting strategies.
Collapse
Affiliation(s)
- John P Hanifin
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | |
Collapse
|
1513
|
Juslén H, Wouters M, Tenner A. The influence of controllable task-lighting on productivity: a field study in a factory. APPLIED ERGONOMICS 2007; 38:39-44. [PMID: 16527244 DOI: 10.1016/j.apergo.2006.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 12/09/2004] [Accepted: 01/05/2006] [Indexed: 05/06/2023]
Abstract
This study examines whether or not a controllable task-lighting system that allows people to select high lighting levels will enhance productivity under real working conditions. For a period of 16 months a study was carried out in a luminaire factory in Finland in which such a task-lighting system was installed above 10 individual workstations. The illuminances selected by the users were recorded and productivity was monitored. Enhancing productivity can be relevant in industrial processes. The increase of productivity for the test group was +4.5% compared to a reference group, and statistically significant. The mechanism for this increase can be improved visual performance, biological effects of light, or psychological effects. Different dimming speeds were used to see whether the subjects' choices were based on illuminance or on the response of the control system. Decreasing the dimming speed of the system decreased the illuminance chosen by 13%. However, at slower dimming speeds the subjects took 55% longer to reach a given level, which suggests that they were aiming to set the lighting to their preferred level and not just pushing the button for a certain time.
Collapse
Affiliation(s)
- Henri Juslén
- Philips Lighting BV and Helsinki University of Technology, Lighting Laboratory, Idman Oy, Mattilantie 75, PL 4, Mäntsälä, Finland.
| | | | | |
Collapse
|
1514
|
Pu M, Chen B, Li RS, Tay D, So KF. A suprachiasmatic nucleus projecting retinal ganglion cell exhibits an unusually large dendritic field in the hamster. Neuroreport 2006; 17:1469-72. [PMID: 16957590 DOI: 10.1097/01.wnr.0000234757.26610.e8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The majority of retinal ganglion cells innervating the suprachiasmatic nucleus are intrinsically light sensitive, while the rest are conventional ganglion cells that collect inputs through conventional photoreceptors. Here we report a rarely encountered ganglion cell that had a dendritic field covering approximately 14.4% of retinal surface and its processes ramified in both the inner and the outer plexiform layers. This cell could have a potential role in detecting luminance changes over a large area of retinal surface.
Collapse
Affiliation(s)
- Mingliang Pu
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | | | | | | | | |
Collapse
|
1515
|
Bellingham J, Chaurasia SS, Melyan Z, Liu C, Cameron MA, Tarttelin EE, Iuvone PM, Hankins MW, Tosini G, Lucas RJ. Evolution of melanopsin photoreceptors: discovery and characterization of a new melanopsin in nonmammalian vertebrates. PLoS Biol 2006; 4:e254. [PMID: 16856781 PMCID: PMC1514791 DOI: 10.1371/journal.pbio.0040254] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Accepted: 05/25/2006] [Indexed: 11/18/2022] Open
Abstract
In mammals, the melanopsin gene
(Opn4) encodes a sensory photopigment that underpins newly discovered inner retinal photoreceptors. Since its first discovery in
Xenopus laevis and subsequent description in humans and mice, melanopsin genes have been described in all vertebrate classes. Until now, all of these sequences have been considered representatives of a single orthologous gene (albeit with duplications in the teleost fish). Here, we describe the discovery and functional characterisation of a new melanopsin gene in fish, bird, and amphibian genomes, demonstrating that, in fact, the vertebrates have evolved two quite separate melanopsins. On the basis of sequence similarity, chromosomal localisation, and phylogeny, we identify our new melanopsins as the true orthologs of the melanopsin gene previously described in mammals and term this grouping
Opn4m. By contrast, the previously published melanopsin genes in nonmammalian vertebrates represent a separate branch of the melanopsin family which we term
Opn4x. RT-PCR analysis in chicken, zebrafish, and
Xenopus identifies expression of both
Opn4m and
Opn4x genes in tissues known to be photosensitive (eye, brain, and skin). In the day-14 chicken eye,
Opn4m mRNA is found in a subset of cells in the outer nuclear, inner nuclear, and ganglion cell layers, the vast majority of which also express
Opn4x. Importantly, we show that a representative of the new melanopsins (chicken
Opn4m) encodes a photosensory pigment capable of activating G protein signalling cascades in a light- and retinaldehyde-dependent manner under heterologous expression in Neuro-2a cells. A comprehensive in silico analysis of vertebrate genomes indicates that while most vertebrate species have both
Opn4m and
Opn4x genes, the latter is absent from eutherian and, possibly, marsupial mammals, lost in the course of their evolution as a result of chromosomal reorganisation. Thus, our findings show for the first time that nonmammalian vertebrates retain two quite separate melanopsin genes, while mammals have just one. These data raise important questions regarding the functional differences between Opn4x and Opn4m pigments, the associated adaptive advantages for most vertebrate species in retaining both melanopsins, and the implications for mammalian biology of lacking Opn4x.
A new melanopsin gene, identified in fish, bird, and amphibian genomes, is the true ortholog of the melanopsin gene previously described in mammals.
Collapse
Affiliation(s)
- James Bellingham
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1516
|
Markov D, Goldman M. Normal sleep and circadian rhythms: neurobiologic mechanisms underlying sleep and wakefulness. Psychiatr Clin North Am 2006; 29:841-53; abstract vii. [PMID: 17118271 DOI: 10.1016/j.psc.2006.09.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Sleep is a vital, highly organized process regulated by complex systems of neuronal networks and neurotransmitters. Sleep plays an important role in the regulation of central nervous system and body physiologic functions. Sleep architecture changes with age and is easily susceptible to external and internal disruption. Reduction or disruption of sleep can affect numerous functions varying from thermoregulation to learning and memory during the waking state.
Collapse
Affiliation(s)
- Dimitri Markov
- Department of Psychiatry and Human Behavior, Thomas Jefferson University, Philadelphia, PA 19107-5004, USA.
| | | |
Collapse
|
1517
|
Abstract
Visual perception occurs when radiation with a wavelength between 400 and 760 nm reaches the retina. The retina has evolved to capture photons efficiently and initiate visual transduction. The retina, however, is vulnerable to damage by light, a vulnerability that has long been recognized. Photochemical damage has been widely studied, because it can cause retinal damage within the intensity range of natural light. Photochemical lesions are primarily located in the outer layers at the central region of the retina. Two classes of photochemical damage have been recognized: Class I damage, which is characterized by the rhodopsin action spectrum, is believed to be mediated by visual pigments, with the primary lesions located in the photoreceptors; whereas Class II damage is generally confined to the retinal pigment epithelium. The action spectrum peaks in the short wavelength region, providing the basis for the concept of blue light hazard. Several factors can modify the susceptibility of the retina to photochemical damage. Photochemical mechanisms, in particular mechanisms that arise from illumination with blue light, are responsible for solar retinitis and for iatrogenic retinal insult from ophthalmological instruments. Further, blue light may play a role in the pathogenesis of age-related macular degeneration. Laboratory studies have suggested that photochemical damage includes oxidative events. Retinal cells die by apoptosis in response to photic injury, and the process of cell death is operated by diverse damaging mechanisms. Modern molecular biology techniques help to study in-depth the basic mechanism of photochemical damage of the retina and to develop strategies of neuroprotection.
Collapse
Affiliation(s)
- Jiangmei Wu
- Department of Vitreoretinal Diseases, Saint Erik's Eye Hospital and Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
1518
|
Warren EJ, Allen CN, Brown RL, Robinson DW. The light-activated signaling pathway in SCN-projecting rat retinal ganglion cells. Eur J Neurosci 2006; 23:2477-87. [PMID: 16706854 PMCID: PMC2435203 DOI: 10.1111/j.1460-9568.2006.04777.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In mammals, the master circadian clock resides in the suprachiasmatic nuclei (SCN) of the hypothalamus. The period and phase of the circadian pacemaker are calibrated by direct photic input from retinal ganglion cells (RGCs). SCN-projecting RGCs respond to light in the absence of rod- and cone-driven synaptic input, a property for which they are termed intrinsically photosensitive. In SCN-projecting RGCs, light activates a nonselective cationic current that displays inward and outward rectification. The goal of the present study was to investigate the identity of the light-activated ion channel and the intracellular signaling pathway leading to its activation. We considered two candidate channels, cyclic nucleotide-gated (CNG) channels and transient receptor potential (TRP) channels, which mediate vertebrate and invertebrate phototransduction, respectively. We report that the intrinsic light response relies upon a G-protein-dependent process. Although our data indicate that cyclic nucleotides modulate the signaling pathway, CNG channels do not appear to conduct the light-activated current because (i) cyclic nucleotides in the pipette solution do not activate a conductance or completely block the light response, (ii) CNG channel blockers fail to inhibit the light response, (iii) the effects of internal and external divalent cations are inconsistent with their effects on CNG channels, and (iv) immunohistochemistry reveals no CNG channels in SCN-projecting RGCs. Finally, we show that the pharmacology of the light-activated channel resembles that of some TRPC channel family members; the response is blocked by lanthanides and ruthenium red and SK&F 96365, and is enhanced by flufenamic acid and 1-oleoyl-2-acetyl-sn-glycerol. Furthermore, immunohistochemical experiments reveal that TRPC6 is expressed in many RGCs, including those that express melanopsin.
Collapse
Affiliation(s)
- Erin J Warren
- Center for Research on Occupational and Environmental Toxicology, L606, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
1519
|
Lima LHRG, Scarparo AC, Isoldi MC, Visconti MA, Castrucci AML. Melanopsin in chicken melanocytes and retina. BIOL RHYTHM RES 2006. [DOI: 10.1080/09291010600870230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
1520
|
Fleming MD, Benca RM, Behan M. Retinal projections to the subcortical visual system in congenic albino and pigmented rats. Neuroscience 2006; 143:895-904. [PMID: 16996223 PMCID: PMC1876705 DOI: 10.1016/j.neuroscience.2006.08.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 08/06/2006] [Accepted: 08/08/2006] [Indexed: 11/21/2022]
Abstract
The primary visual pathway in albino mammals is characterized by an increased decussation of retinal ganglion cell axons at the optic chiasm and an enhanced contralateral projection to the dorsal lateral geniculate nucleus. In contrast to the primary visual pathway, little is known about the organization of retinal input to most nuclei of the subcortical visual system in albino mammals. The subcortical visual system is a large group of retinorecipient nuclei in the diencephalon and mesencephalon. These areas mediate a range of behaviors that include both circadian and acute responses to light. We used a congenic strain of albino and pigmented rats with a mutation at the c locus for albinism (Fischer 344-c/+; LaVail MM, Lawson NR (1986) Development of a congenic strain of pigmented and albino rats for light damage studies. Exp Eye Res 43:867-869) to quantitatively assess the effects of albinism on retinal projections to a number of subcortical visual nuclei including the ventral lateral hypothalamus (VLH), ventral lateral preoptic area (VLPO), olivary pretectal nucleus (OPN), posterior limitans (PLi), commissural pretectal area (CPA), intergeniculate leaflet (IGL), ventral lateral geniculate nucleus (vLGN) and superior colliculus (SC). Following eye injections of the neuroanatomical tracer cholera toxin-beta, the distribution of anterogradely transported label was measured. The retinal projection to the contralateral VLH, PLi, CPA and IGL was enhanced in albino rats. No significant differences were found between albino and pigmented rats in retinal input to the VLPO, OPN and vLGN. These findings raise the possibility that enhanced retinofugal projections to subcortical visual nuclei in albinos may underlie some light-mediated behaviors that differ between albino and pigmented mammals.
Collapse
Affiliation(s)
- M D Fleming
- Department of Comparative Biosciences, University of Wisconsin, 2015 Linden Drive, Madison, WI 53706-1102, USA
| | | | | |
Collapse
|
1521
|
Brennan R, Jan JE, Lyons CJ. Light, dark, and melatonin: emerging evidence for the importance of melatonin in ocular physiology. Eye (Lond) 2006; 21:901-8. [PMID: 17001324 DOI: 10.1038/sj.eye.6702597] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Melatonin is a hormone, which is mainly produced by the pineal gland, a vestigial eye. Rather than the rods and cones, it is a newly discovered subgroup of photosensitive retinal ganglion cells, which is responsible for mediating the light-dark cycles, thus regulating melatonin's secretion. One of the correlates of the circadian rhythm of melatonin release is the habitual sleep pattern. Patients with circadian rhythm sleep disorders, including some blind patients with no light-induced suppression of melatonin, benefit from melatonin treatment. Melatonin is synthesized in the retina, lens, ciliary body as well as other parts of the body. In this review, we discuss the physiological roles of melatonin in the eye, as well as the potential therapeutic avenues currently under study.
Collapse
Affiliation(s)
- R Brennan
- Department of Ophthalmology, British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
1522
|
Chen B, So KF, Yu E, Tay DKC. Expression of nicotinamide adenine dinucleotide phosphate-diaphorase in the retina of postnatal golden hamsters deprived of light stimulation. Neurosci Lett 2006; 405:74-8. [PMID: 16854523 DOI: 10.1016/j.neulet.2006.06.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 06/20/2006] [Accepted: 06/20/2006] [Indexed: 11/18/2022]
Abstract
Nicotinamide Adenine Dinucleotide Phosphate-Diaphorase (NADPH-d) expressing neurons in the retina of golden hamsters have been identified to be a subset of amacrine cells that provide a major source of Nitric Oxide (NO) in retina. This subset of amacrine cells in mouse retina was recently proved to contain the circadian clock gene Per1 (D.Q. Zhang, T. Zhou, G.X. Ruan, D.G. McMahon, Circadian rhythm of Period 1 clock gene expression in NOS amacrine cells of the mouse retina, Brain Res., 1050 (2005) 101-109). However, it remains unknown whether these clock-related NADPH-d amacrine cells can be regulated by light stimulation and thus synchronized to ambient day/night cycle. A previous study has reported that NADPH-d expressing amacrine cells in postnatal hamsters exhibited a surge after eye-opening (D. Tay, Y.C. Diao, Y.M. Xiao, K.F. So, Postnatal development of nicotinamide adenine dinucleotide phosphate-diaphorase-positive neurons in the retina of the golden hamster, J. Comp. Neurol., 446 (2002) 342-348) suggesting a possible effect of light on the NADPH-d amacrine cells. In order to further reveal the relationship between NADPH-d amacrine cells and light stimulation, the present study focuses on the changes of the expression of NADPH-d in the retina of postnatal hamsters reared in completely deprived light conditions. Prior to eye opening, P12 hamster pups were subjected to either bilateral eyelid suturing or dark rearing. On P28 a subgroup of light deprived hamsters was returned to lighting conditions and the expression of NADPH-d activities in the retina was assessed. In hamsters reared in the 12:12 light-dark cycle, the number of NADPH-d amacrine cells in the ganglion cell layer (GCL) increased right after eye-opening and reached the adult level gradually. However, hamsters subjected to both bilateral eyelid suturing and dark rearing, the number of NADPH-d amacrine cells in GCL was maintained at a low level but increased again upon returning to the 12:12 light-dark condition. In contrast, the number of NADPH-d expressing amacrine cells in the inner nuclear layer (INL) remained low and unaltered regardless of the lighting environment. This study demonstrates that there are two subpopulations of NADPH-d expressing amacrine cells with respect to different locations in the retina of hamsters. Different from those in INL, the NADPH-d amacrine cells in GCL of postnatal hamsters are dependent on the lighting environment implicating that these clock-related amacrine cells and the production of NO might be under a modulation of light stimulation.
Collapse
Affiliation(s)
- Baiyu Chen
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | | | | | | |
Collapse
|
1523
|
Lupi D, Sekaran S, Jones SL, Hankins MW, Foster RG. Light-evoked FOS induction within the suprachiasmatic nuclei (SCN) of melanopsin knockout (Opn4-/-) mice: a developmental study. Chronobiol Int 2006; 23:167-79. [PMID: 16687291 DOI: 10.1080/07420520500545870] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The aims of this study were to address three related questions: (1) Do the photosensitive ganglion cells of the mouse convey light information to the suprachiasmatic nuclei (SCN) at P0? (2) Do the differentiating rods and cones contribute to light-evoked FOS induction within the murine SCN at P4? (3) How does light-evoked FOS induction within the SCN of melanopsin knockout (Opn4-/-) mice differ at P4 and P14? Our approaches took advantage of the published descriptions of murine ocular development, melanopsin knockout (Opn4-/-) mouse, and light-induced expression of FOS (the phosphoprotein product of immediate early gene c-fos) within the SCN as a marker of retinohypothalamic tract competence. Collectively, our results show that photosensitive melanopsin-dependent retinal ganglion cells provide light information to the murine SCN on the day of birth, and possibly beforehand, and that developing rods and cones fail to provide light information to the SCN during early postnatal life. On the basis of previous publications and data presented here, we suggest that at ages around P14 the rods and cones might be capable of fully compensating for the loss of melanopsin-photosensitive ganglion cells if exposure to light is of sufficiently long duration. These results are related to the broader context of recent findings and the potential role(s) of a neonatal photoreceptor.
Collapse
Affiliation(s)
- Daniela Lupi
- Department of Visual Neuroscience, Division of Neuroscience and Mental Health, Imperial College London, Charing Cross Hospital Campus, London, UK
| | | | | | | | | |
Collapse
|
1524
|
HATTAR SAMER, KUMAR MONICA, PARK ALEXANDER, TONG PATRICK, TUNG JONATHAN, YAU KINGWAI, BERSON DAVIDM. Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J Comp Neurol 2006; 497:326-49. [PMID: 16736474 PMCID: PMC2885916 DOI: 10.1002/cne.20970] [Citation(s) in RCA: 708] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A rare type of ganglion cell in mammalian retina is directly photosensitive. These novel retinal photoreceptors express the photopigment melanopsin. They send axons directly to the suprachiasmatic nucleus (SCN), intergeniculate leaflet (IGL), and olivary pretectal nucleus (OPN), thereby contributing to photic synchronization of circadian rhythms and the pupillary light reflex. Here, we sought to characterize more fully the projections of these cells to the brain. By targeting tau-lacZ to the melanopsin gene locus in mice, ganglion cells that would normally express melanopsin were induced to express, instead, the marker enzyme beta-galactosidase. Their axons were visualized by X-gal histochemistry or anti-beta-galactosidase immunofluorescence. Established targets were confirmed, including the SCN, IGL, OPN, ventral division of the lateral geniculate nucleus (LGv), and preoptic area, but the overall projections were more widespread than previously recognized. Targets included the lateral nucleus, peri-supraoptic nucleus, and subparaventricular zone of the hypothalamus, medial amygdala, margin of the lateral habenula, posterior limitans nucleus, superior colliculus, and periaqueductal gray. There were also weak projections to the margins of the dorsal lateral geniculate nucleus. Co-staining with the cholera toxin B subunit to label all retinal afferents showed that melanopsin ganglion cells provide most of the retinal input to the SCN, IGL, and lateral habenula and much of that to the OPN, but that other ganglion cells do contribute at least some retinal input to these targets. Staining patterns after monocular enucleation revealed that the projections of these cells are overwhelmingly crossed except for the projection to the SCN, which is bilaterally symmetrical.
Collapse
Affiliation(s)
- SAMER HATTAR
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2105
| | - MONICA KUMAR
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | - ALEXANDER PARK
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2105
| | - PATRICK TONG
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2105
| | - JONATHAN TUNG
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | - KING-WAI YAU
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2105
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2105
| | - DAVID M. BERSON
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
- Correspondence to: David M. Berson, Department of Neuroscience, Box 1953, Brown University, Providence, RI 02912.
| |
Collapse
|
1525
|
Kardon R, Kawasaki A, Miller NR. Origin of the Relative Afferent Pupillary Defect in Optic Tract Lesions. Ophthalmology 2006; 113:1345-53. [PMID: 16877073 DOI: 10.1016/j.ophtha.2006.02.055] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Revised: 01/14/2006] [Accepted: 02/20/2006] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE To determine the percent decussation of pupil input fibers in humans and to explain the size and range of the log unit relative afferent pupillary defect (RAPD) in patients with optic tract lesions. DESIGN Experimental study. PARTICIPANTS AND CONTROLS Five patients with a unilateral optic tract lesion. METHODS The pupil response from light stimulation of the nasal hemifield, temporal hemifield, and full field of each eye of 5 patients with a unilateral optic tract lesion was recorded using computerized binocular infrared pupillography. Six stimulus light intensities, separated by 0.5-log unit steps, were used; 12 stimulus repetitions were given for each stimulus condition. MAIN OUTCOME MEASURES For each stimulus condition, the pupil response of each eye was characterized by plotting the mean pupil contraction amplitude as a function of stimulus light intensity. The percentage of decussating afferent pupillomotor input fibers was calculated from the ratio of the maximal pupil contractions elicited from each eye. The RAPD was determined pupillographically from full-field stimulation to each eye. RESULTS In all patients, the pupil response from the functioning temporal hemifield ipsilateral to the tract lesion was greater than that from the functioning contralateral nasal hemifield. This temporal-nasal asymmetry increased with increasing stimulus intensity and was similar in hemifield and full-field stimuli, eventually saturating at maximal light intensity. The log unit RAPD did not correlate with the estimated percentage of decussating pupil fibers, which ranged from 54% to 67%. CONCLUSIONS In patients with a unilateral optic tract lesion, the pupillary responses from full-field stimulation to each eye are the same as comparing the functioning temporal field with the functioning nasal field. The percentage of decussating fibers is reflected in the ratio of the maximal pupil contraction amplitudes resulting from stimulus input between the two eyes. The RAPD that occurs in this setting reflects the difference in light sensitivity between the intact temporal and nasal hemifields. Its magnitude does not correlate with the difference in the number of crossed and uncrossed axons, but its sidedness contralateral to the side of the optic tract lesion is consistent with the greater percentage of decussating pupillomotor input.
Collapse
Affiliation(s)
- Randy Kardon
- Department of Ophthalmology and Visual Science, University of Iowa and Veterans Administration Hospitals, Iowa City, Iowa 52242, USA.
| | | | | |
Collapse
|
1526
|
Tu DC, Owens LA, Anderson L, Golczak M, Doyle SE, McCall M, Menaker M, Palczewski K, Van Gelder RN. Inner retinal photoreception independent of the visual retinoid cycle. Proc Natl Acad Sci U S A 2006; 103:10426-10431. [PMID: 16788071 PMCID: PMC1502474 DOI: 10.1073/pnas.0600917103] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mice lacking the visual cycle enzymes RPE65 or lecithin-retinol acyl transferase (Lrat) have pupillary light responses (PLR) that are less sensitive than those of mice with outer retinal degeneration (rd/rd or rdta). Inner retinal photoresponses are mediated by melanopsin-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs), suggesting that the melanopsin-dependent photocycle utilizes RPE65 and Lrat. To test this hypothesis, we generated rpe65(-/-); rdta and lrat(-/-); rd/rd mutant mice. Unexpectedly, both rpe65(-/-); rdta and lrat(-/-); rd/rd mice demonstrate paradoxically increased PLR photosensitivity compared with mice mutant in visual cycle enzymes alone. Acute pharmacologic inhibition of the visual cycle of melanopsin-deficient mice with all-trans-retinylamine results in a near-total loss of PLR sensitivity, whereas treatment of rd/rd mice has no effect, demonstrating that the inner retina does not require the visual cycle. Treatment of rpe65(-/-); rdta with 9-cis-retinal partially restores PLR sensitivity. Photic sensitivity in P8 rpe65(-/-) and lrat(-/-) ipRGCs is intact as measured by ex vivo multielectrode array recording. These results demonstrate that the melanopsin-dependent ipRGC photocycle is independent of the visual retinoid cycle.
Collapse
Affiliation(s)
- Daniel C Tu
- Departments of *Ophthalmology and Visual Sciences and
| | - Leah A Owens
- Departments of *Ophthalmology and Visual Sciences and
| | | | - Marcin Golczak
- Department of Pharmacology, Case Western Reserve School of Medicine, Cleveland, OH 44106-4965
| | - Susan E Doyle
- Department of Biology, University of Virginia, Charlottesville, VA 22904
| | - Maureen McCall
- and Departments of Ophthalmology and Visual Sciences and Psychological and Brain Sciences, University of Louisville, Louisville, KY 40292
| | - Michael Menaker
- Department of Biology, University of Virginia, Charlottesville, VA 22904
| | - Krzysztof Palczewski
- Department of Pharmacology, Case Western Reserve School of Medicine, Cleveland, OH 44106-4965
| | - Russell N Van Gelder
- Departments of *Ophthalmology and Visual Sciences and
- Molecular Biology and Pharmacology, Washington University Medical School, St. Louis, MO 63110
| |
Collapse
|
1527
|
Doyle SE, Castrucci AM, McCall M, Provencio I, Menaker M. Nonvisual light responses in the Rpe65 knockout mouse: rod loss restores sensitivity to the melanopsin system. Proc Natl Acad Sci U S A 2006; 103:10432-10437. [PMID: 16788070 PMCID: PMC1502475 DOI: 10.1073/pnas.0600934103] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing the photopigment melanopsin (OPN4), together with rods and cones, provide light information driving nonvisual light responses. We examined nonvisual photoreception in mice lacking RPE65, a protein that is required for regeneration of visual chromophore in rods and cones. Although Rpe65 knockouts retain a small degree of rod function, we show here that circadian phase shifting responses in Rpe65(-/-) mice are attenuated far beyond what has been reported for rodless/coneless mice. Furthermore, the number of melanopsin-immunoreactive perikarya and the extent of dendritic arborizations were decreased in Rpe65 knockout mice compared with controls. To assess the nature of the photoreceptive defect in Rpe65 null mice, we eliminated either rods or melanopsin from Rpe65(-/-) retinas by generating (i) Rpe65(-/-) mice carrying a transgene (rdta) that results in selective elimination of rods and (ii) double knockout Rpe65(-/-);Opn4(-/-) mice. Surprisingly, rod loss in Rpe65 knockout mice resulted in restoration of circadian photosensitivity. Normal photoentrainment was lost in Rpe65(-/-);Opn4(-/-) mice, and, instead, a diurnal phenotype was observed. Our findings demonstrate that RPE65 is not required for ipRGC function but reveal the existence of a mechanism whereby rods may influence the function of ipRGCs.
Collapse
Affiliation(s)
- Susan E Doyle
- *Department of Biology, University of Virginia, Charlottesville, VA 22904;
| | - Ana Maria Castrucci
- *Department of Biology, University of Virginia, Charlottesville, VA 22904
- Graduate Program in Physiology, Institute of Bioscience, University of São Paulo, 05508-900, São Paulo, Brazil; and
| | - Maureen McCall
- Departments of Ophthalmology and Visual Sciences and Psychological and Brain Sciences, University of Louisville, Louisville, KY 40292
| | - Ignacio Provencio
- *Department of Biology, University of Virginia, Charlottesville, VA 22904
| | - Michael Menaker
- *Department of Biology, University of Virginia, Charlottesville, VA 22904
| |
Collapse
|
1528
|
Partch CL, Sancar A. Photochemistry and photobiology of cryptochrome blue-light photopigments: the search for a photocycle. Photochem Photobiol 2006; 81:1291-304. [PMID: 16164372 DOI: 10.1562/2005-07-08-ir-607] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cryptochromes are flavoproteins that exhibit high sequence and structural similarity to the light-dependent DNA-repair enzyme, photolyase. Cryptochromes have lost the ability to repair DNA; instead, they use the energy from near-UV/blue light to regulate a variety of growth and adaptive processes in organisms ranging from bacteria to humans. The photocycle of cryptochrome is not yet known, although it is hypothesized that it may share some similarity to that of photolyase, which utilizes light-driven electron transfer from the catalytic flavin chromophore. In this review, we present genetic evidence for the photoreceptive role of cryptochromes and discuss recent biochemical studies that have furthered our understanding of the cryptochrome photocycle. In particular, the role of the unique C-terminal domain in cryptochrome phototransduction is discussed.
Collapse
Affiliation(s)
- Carrie L Partch
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
1529
|
Morin LP, Allen CN. The circadian visual system, 2005. ACTA ACUST UNITED AC 2006; 51:1-60. [PMID: 16337005 DOI: 10.1016/j.brainresrev.2005.08.003] [Citation(s) in RCA: 306] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 07/19/2005] [Accepted: 08/09/2005] [Indexed: 11/17/2022]
Abstract
The primary mammalian circadian clock resides in the suprachiasmatic nucleus (SCN), a recipient of dense retinohypothalamic innervation. In its most basic form, the circadian rhythm system is part of the greater visual system. A secondary component of the circadian visual system is the retinorecipient intergeniculate leaflet (IGL) which has connections to many parts of the brain, including efferents converging on targets of the SCN. The IGL also provides a major input to the SCN, with a third major SCN afferent projection arriving from the median raphe nucleus. The last decade has seen a blossoming of research into the anatomy and function of the visual, geniculohypothalamic and midbrain serotonergic systems modulating circadian rhythmicity in a variety of species. There has also been a substantial and simultaneous elaboration of knowledge about the intrinsic structure of the SCN. Many of the developments have been driven by molecular biological investigation of the circadian clock and the molecular tools are enabling novel understanding of regional function within the SCN. The present discussion is an extension of the material covered by the 1994 review, "The Circadian Visual System."
Collapse
Affiliation(s)
- L P Morin
- Department of Psychiatry and Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794, USA.
| | | |
Collapse
|
1530
|
|
1531
|
Quina LA, Pak W, Lanier J, Banwait P, Gratwick K, Liu Y, Velasquez T, O'Leary DDM, Goulding M, Turner EE. Brn3a-expressing retinal ganglion cells project specifically to thalamocortical and collicular visual pathways. J Neurosci 2006; 25:11595-604. [PMID: 16354917 PMCID: PMC6726022 DOI: 10.1523/jneurosci.2837-05.2005] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Retinal ganglion cells (RGCs) innervate several specific CNS targets serving cortical and subcortical visual pathways and the entrainment of circadian rhythms. Recent studies have shown that retinal ganglion cells express specific combinations of POU- and LIM-domain transcription factors, but how these factors relate to the subsequent development of the retinofugal pathways and the functional identity of RGCs is mostly unknown. Here, we use targeted expression of an genetic axonal tracer, tau/beta-galactosidase, to examine target innervation by retinal ganglion cells expressing the POU-domain factor Brn3a. Brn3a is expressed in RGCs innervating the principal retinothalamic/retinocollicular pathway mediating cortical vision but is not expressed in RGCs of the accessory optic, pretectal, and hypothalamic pathways serving subcortical visuomotor and circadian functions. In the thalamus, Brn3a ganglion cell fibers are primarily restricted to the outer shell of the dorsal lateral geniculate, providing new evidence for the regionalization of this nucleus in rodents. Brn3a RGC axons have a relative preference for the contralateral hemisphere, but known mediators of the laterality of RGC axons are not repatterned in the absence of Brn3a. Brn3a is coexpressed extensively with the closely related factor Brn3b in the embryonic retina, and the effects of the loss of Brn3a in retinal development are not severe, suggesting partial redundancy of function in this gene class.
Collapse
Affiliation(s)
- Lely A Quina
- Department of Psychiatry, University of California, San Diego, Veterans Affairs San Diego Healthcare System, La Jolla, California 92093-0603, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1532
|
Barnard AR, Hattar S, Hankins MW, Lucas RJ. Melanopsin regulates visual processing in the mouse retina. Curr Biol 2006; 16:389-95. [PMID: 16488873 DOI: 10.1016/j.cub.2005.12.045] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 12/20/2005] [Accepted: 12/21/2005] [Indexed: 11/30/2022]
Abstract
The discovery of melanopsin-dependent inner retinal photoreceptors in mammals has precipitated a fundamental reassessment of such non-image forming (NIF) light responses as circadian photoentrainment and the pupil light reflex. By contrast, it remains unclear whether these new photoreceptors also play a role in classical image-forming vision. The retinal ganglion cells that subserve inner retinal photoreception (ipRGCs) project overwhelmingly to brain areas involved in NIF responses, indicating that, in terms of central signaling, their predominant function is non-image forming. However, ipRGCs also exhibit intraretinal communication via gap junction coupling, which could allow them to modulate classical visual pathways within this tissue. Here, we explore this second possibility by using melanopsin knockout (Opn4-/-) mice to examine the role of inner retinal photoreceptors in diurnal regulation of retinal function. By using electroretinography in wild-type mice, we describe diurnal rhythms in both the amplitude and speed of the retinal cone pathway that are a function of both prior light exposure and circadian phase. Unexpectedly, loss of the melanopsin gene abolishes circadian control of these parameters, causing significant attenuation of the diurnal variation in cone vision. Our results demonstrate for the first time a melanopsin-dependent regulation of visual processing within the retina, revealing an important function for inner retinal photoreceptors in optimizing classical visual pathways according to time of day.
Collapse
Affiliation(s)
- Alun R Barnard
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | | | |
Collapse
|
1533
|
Postolache TT, Oren DA. Circadian phase shifting, alerting, and antidepressant effects of bright light treatment. Clin Sports Med 2006; 24:381-413, xii. [PMID: 15892931 DOI: 10.1016/j.csm.2004.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bright light treatment is the most potent melatonin suppressor and circadian phase shifter and is a safe nonpharmacologic antidepressant for seasonal depression. In addition, bright light treatment may restore performance in conditions of sleep debt and misalignment between peak performance and the athletic event. This article discusses the therapeutic use of bright light treatment, its side effects, and mechanisms of action.
Collapse
Affiliation(s)
- Teodor T Postolache
- Department of Psychiatry, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA.
| | | |
Collapse
|
1534
|
Alvarez-López C, Cernuda-Cernuda R, García-Fernández JM. The mPer1 clock gene expression in the rd mouse suprachiasmatic nucleus is affected by the retinal degeneration. Brain Res 2006; 1087:134-41. [PMID: 16626665 DOI: 10.1016/j.brainres.2006.03.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 03/08/2006] [Accepted: 03/09/2006] [Indexed: 11/19/2022]
Abstract
Endogenous rhythms of mammals are controlled by the clock located in the suprachiasmatic nucleus (SCN). The molecular mechanism of a clock involves transcription/translation-based feedback loops in which the expression of the so called "clock genes" is suppressed periodically by their protein products. Previous studies reported influence of the eye itself on the circadian oscillation of the SCN, apart from the well-known photic readjustment of the central clock. With this in mind, we decided to analyze the mPer1 clock gene expression in the retinally degenerate (rd) mouse SCN by means of immunohistochemical techniques. Our objective was to detect possible alterations of the daily endogenous oscillation of PER1 protein in the SCN of these rd mice, as well as to make clear whether or not this protein was involved in the resetting of the central clock in a manner similar to wild-type animals. We found that the endogenous levels of PER1 protein were reduced in the SCN of rd mice throughout the 24-h cycle, which suggests that loss of classic photoreceptors influences somehow the main mechanism of the SCN clock. Light stimulation induced a parallel increase of Per1 expression at the subjective night, but not at the subjective day, in both rd and wild-type mice. Therefore, SCN readjustment by light in the rd mice occurs with a pattern similar to wild-type controls, despite the reduced PER1 protein levels detected. The effect of retinal degeneration on the circadian system and the possible interactions between the retinal and the SCN clocks are discussed.
Collapse
Affiliation(s)
- C Alvarez-López
- Department of Morphology and Cell Biology, Oviedo University, 33071 Oviedo, Spain
| | | | | |
Collapse
|
1535
|
Wan J, Zheng H, Hu BY, Xiao HL, She ZJ, Chen ZL, Zhou GM. Acute photoreceptor degeneration down-regulates melanopsin expression in adult rat retina. Neurosci Lett 2006; 400:48-52. [PMID: 16580133 DOI: 10.1016/j.neulet.2006.02.084] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Revised: 02/10/2006] [Accepted: 02/12/2006] [Indexed: 11/25/2022]
Abstract
Melanopsin in retinal ganglion cells plays an important role in mammalian circadian systems. Previous studies indicate melanopsin is responsible for circadian photoentrainment independent of classical rods and cones. However, expression of melanopsin in ganglion cells may be regulated by photoreceptors. In this study, we investigated the effects of N-methyl-N-nitrosourea (MNU)-induced acute photoreceptor degeneration on melanopsin mRNA expression and protein distribution in adult rats. Expression of melanopsin was analyzed 0.5, 1, 5, 7, 13 and 28 days after MNU administration by real-time RT-PCR and immunohistochemistry. MNU-induced gradual degeneration of photoreceptors, and by day 7 most of the photoreceptors were lost. The number of ganglion cells did not change significantly at all time points after MNU injection. In contrast, melanopsin mRNA decreased gradually with the loss of photoreceptors, at the same time pituitary adenylate cyclase-activating polypeptide (PACAP) mRNA levels, which co-express with melanopsin in ganglion cells, were not affected by MNU treatment, indicating decrease of melanopsin mRNA levels is not due to ganglion cell damage. Distribution of melanopsin protein in the dendrites of ganglion cells dramatically decreased with the degeneration of photoreceptors, but its expression in the soma persisted for a long time. Our results suggest that intact photoreceptors maintain the expression of melanopsin and its distribution in ganglion cell dendrites.
Collapse
Affiliation(s)
- Jin Wan
- Department of Anatomy, Histology and Embryology, Shanghai Medical School, Fudan University, 200032 Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
1536
|
Münch M, Kobialka S, Steiner R, Oelhafen P, Wirz-Justice A, Cajochen C. Wavelength-dependent effects of evening light exposure on sleep architecture and sleep EEG power density in men. Am J Physiol Regul Integr Comp Physiol 2006; 290:R1421-8. [PMID: 16439671 DOI: 10.1152/ajpregu.00478.2005] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Light strongly influences the circadian timing system in humans via non-image-forming photoreceptors in the retinal ganglion cells. Their spectral sensitivity is highest in the short-wavelength range of the visible light spectrum as demonstrated by melatonin suppression, circadian phase shifting, acute physiological responses, and subjective alertness. We tested the impact of short wavelength light (460 nm) on sleep EEG power spectra and sleep architecture. We hypothesized that its acute action on sleep is similar in magnitude to reported effects for polychromatic light at higher intensities and stronger than longer wavelength light (550 nm). The sleep EEGs of eight young men were analyzed after 2-h evening exposure to blue (460 nm) and green (550 nm) light of equal photon densities (2.8 × 1013 photons·cm−2·s−1) and to dark (0 lux) under constant posture conditions. The time course of EEG slow-wave activity (SWA; 0.75–4.5 Hz) across sleep cycles after blue light at 460 nm was changed such that SWA was slightly reduced in the first and significantly increased during the third sleep cycle in parietal and occipital brain regions. Moreover, blue light significantly shortened rapid eye movement (REM) sleep duration during these two sleep cycles. Thus the light effects on the dynamics of SWA and REM sleep durations were blue shifted relative to the three-cone visual photopic system probably mediated by the circadian, non-image-forming visual system. Our results can be interpreted in terms of an induction of a circadian phase delay and/or repercussions of a stronger alerting effect after blue light, persisting into the sleep episode.
Collapse
Affiliation(s)
- Mirjam Münch
- Centre for Chronobiology, Psychiatric Univ. Clinics, University of Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
1537
|
Revell VL, Arendt J, Fogg LF, Skene DJ. Alerting effects of light are sensitive to very short wavelengths. Neurosci Lett 2006; 399:96-100. [PMID: 16490309 DOI: 10.1016/j.neulet.2006.01.032] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 01/13/2006] [Accepted: 01/16/2006] [Indexed: 11/24/2022]
Abstract
In humans a range of non-image-forming (NIF) light responses (melatonin suppression, phase shifting and alertness) are short wavelength sensitive (440-480 nm). The aim of the current study was to assess the acute effect of three different short wavelength light pulses (420, 440 and 470 nm) and 600 nm light on subjective alertness. Healthy male subjects (n = 12, aged 27 +/- 4 years, mean +/- S.D.) were studied in 39, 4-day laboratory study sessions. The subjects were maintained in dim light (<8 lx) and on day 3 they were exposed to a single 4-h light pulse (07:15-11:15 h). Four monochromatic wavelengths were administered at two photon densities: 420 and 440 nm at 2.3 x 10(13)photons/cm(2)/s and 440, 470 and 600 nm at 6.2 x 10(13)photons/cm(2)/s. Subjective mood and alertness were assessed at 30 min intervals during the light exposure, using four 9-point VAS scales. Mixed model regression analysis was used to compare alertness and mood ratings during the 470 nm light to those recorded with the other four light conditions. There was a significant effect of duration of light exposure (p < 0.001) on alertness but no significant effect of subject. Compared to 470 nm light, alertness levels were significantly higher in 420 nm light and significantly lower in the 600 nm light (p < 0.05). These data (420 nm>470 nm>600 nm) suggest that subjective alertness may be maximally sensitive to very short wavelength light.
Collapse
Affiliation(s)
- Victoria L Revell
- School of Biomedical and Molecular Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK.
| | | | | | | |
Collapse
|
1538
|
Steele-Russell I, Russell MI, Castiglioni JA, Reuter JA, van Hof MW. Selective attention and Pavlovian conditioning. Exp Brain Res 2006; 173:587-602. [PMID: 16628399 DOI: 10.1007/s00221-006-0404-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Accepted: 02/04/2006] [Indexed: 11/26/2022]
Abstract
The present results show that the common practice of using self-indexing conditioned stimuli (CSs) in research on Pavlovian conditioning is a major source of experimental bias. The typical stimulus used is either a light flash or a sound pulse in a light/sound-shielded chamber. Under these conditions the onset characteristics of the CS signal totally predominate over the durational characteristic, i.e. the pattern information. Thus a visual pattern presented as a CS in a dark chamber is confounded with a brightness change from darkness to light. In the first experiment, animals were conditioned with a brightness CS using a self-indexing signal paradigm. When tested for specificity of the conditioning, they showed complete transfer of learning to either a visual pattern or even an auditory CS. These findings indicated that the traditional conditioning paradigm is biased towards non-specific sensory learning. The second experiment showed that specific sensory conditioning is critically dependent on selective attention mechanisms. When the onset characteristics of the CS signal were de-emphasized by the use of equal energy background illumination in the intertribal interval (ITI) during conditioning, the animals were not able to feature extract either the onset or the durational component of the CS signal from the ITI background despite prolonged training. It was only by starting with conditioning that was initially anchored to the CS onset characteristics that a perceptual fade-in procedure would bias attention to feature extract the durational characteristics of the CS. Thus conditioning occurred only when the rabbit's attention was directed to detection of the gratings display without any associated changes in visual albedo. Perhaps the most important finding of the present experiments is that the use of self-indexing CS signals in Pavlovian conditioning inevitably introduces non-specific sensory processing involving multiple sensory input pathways in the conditioning. This inherent uncertainty of the sensory input pathways presents a problem for clarifying the role of sensory pathways in the neural mechanisms of NM conditioning. In addition, the use of self-indexing CSs inevitably leads to an underestimation of the role of forebrain mechanisms in Pavlovian conditioning.
Collapse
Affiliation(s)
- Ian Steele-Russell
- Sensory Neuroscience Laboratory, Texas A & M University System Health Science Center, College Station, TX 77843-1114, USA.
| | | | | | | | | |
Collapse
|
1539
|
Erkert HG, Gburek V, Scheideler A. Photic entrainment and masking of prosimian circadian rhythms (Otolemur garnettii, Primates). Physiol Behav 2006; 88:39-46. [PMID: 16624344 DOI: 10.1016/j.physbeh.2006.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 02/14/2006] [Accepted: 03/02/2006] [Indexed: 10/24/2022]
Abstract
Besides rods the retina of the nocturnal greater bushbaby, genus Otolemur, also contains small cones which, however, do not allow color vision. In order to find out whether these cones might be involved in circadian photoreception in the Garnet's galago Otolemur garnettii we determined the threshold for photic entrainment. Activity recordings revealed a short circadian period of 22.6+/-0.7 h subjected to pronounced long-lasting aftereffects. The animals had a relatively high threshold for photic entrainment at about 3-30 lux. This indicates that the cones and/or other, as yet unidentified photoreceptive retinal cells may be involved in circadian photoreception. The galagos' threshold for photic entrainment also depended on the luminosity during the dark phase of the light dark cycles. Results furthermore showed that in Otolemur aftereffects may play a crucial role for circadian entrainment. Light time luminosities just below the individuals' threshold for photic entrainment strongly inhibited the galagos' locomotor activity and, thus, produced pronounced negative masking effects on their free-running circadian activity rhythm. From this it may be inferred that masking direct effects of light are not induced or mediated via the circadian system, i.e. via the circadian pacemaker in the hypothalamic suprachiasmatic nuclei, but at a higher central nervous integrational stage.
Collapse
Affiliation(s)
- Hans G Erkert
- Institute for Zoology/Animal Physiology, University of Tuebingen, Morgenstelle 28, D-72076 Tuebingen, Germany.
| | | | | |
Collapse
|
1540
|
Abstract
To adapt to a 24-hour environment, nearly all organisms, from mammals to single-celled organisms, have developed endogenous mechanisms that generate nearly 24-hour (circadian) rhythms in physiology and behavior, the most notable being that of the daily cycles of sleep and wake. Disruption of these circadian rhythms is often accompanied by disorders of sleep and wakefulness. With the recent advances in the molecular biology that underlies the development and maintenance of these rhythms, the pathophysiology behind circadian rhythm sleep disorders is becoming better understood.
Collapse
Affiliation(s)
- Prasanth Manthena
- Department of Neurology, Northwestern University School of Medicine, 710 North Lake Shore Drive, 11th Floor, Chicago, IL 60611, USA
| | | |
Collapse
|
1541
|
Gerstner JR, Vander Heyden WM, Lavaute TM, Landry CF. Profiles of novel diurnally regulated genes in mouse hypothalamus: expression analysis of the cysteine and histidine-rich domain-containing, zinc-binding protein 1, the fatty acid-binding protein 7 and the GTPase, ras-like family member 11b. Neuroscience 2006; 139:1435-48. [PMID: 16517089 PMCID: PMC1602105 DOI: 10.1016/j.neuroscience.2006.01.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Revised: 01/19/2006] [Accepted: 01/21/2006] [Indexed: 01/09/2023]
Abstract
Gene expression profiling of suprachiasmatic nucleus, ventrolateral preoptic area and the lateral hypothalamus was used to identify genes regulated diurnally in the hypothalamus of Mus musculus. The putative transcription regulator, cysteine and histidine-rich domain-containing, zinc binding protein 1, which had not been previously described in brain, was found to cycle diurnally in hypothalamus and forebrain with peak levels of mRNA expression during the dark phase. mRNA for the brain-type fatty acid binding protein 7 was found to change rhythmically in hypothalamic and extra-hypothalamic brain regions reaching peak levels early in the light phase suggesting that lipid metabolism is under circadian regulation in astrocytes. Rhythmically expressed genes in suprachiasmatic nucleus identified here were compared with previous reports in a meta-analysis. Genes held in common included fabp7, and the period gene, Per2. Also identified were genes implicated in guanosine-mediated signaling pathways that included dexamethasone-induced ras-related protein one (dexras1), regulator of G-protein signaling (rgs) 16, and ras-like family member 11b. Northern blotting confirmed diurnal changes in mRNA expression in the hypothalamus for these genes. Ras-like family member 11b was examined in more detail using in situ hybridization and antiphase diurnal changes in expression in suprachiasmatic nucleus and arcuate nucleus were identified implicating the gene in circadian-related, guanosine-mediated signaling. The transcription transactivator protein, CBP/p300-interacting transactivators with glutamic acid/aspartic acid-rich carboxyl-terminal domain, which had not been previously identified in brain, was enriched in suprachiasmatic nucleus and discrete regions of the hypothalamus and forebrain. The potential regulatory role of CBP/p300-interacting transactivators with glutamic acid/aspartic acid-rich carboxyl-terminal domain in the transcription of genes like TGF-alpha implicates the protein in diurnal activity rhythms. These results demonstrate the ability of gene expression profiling to identify potential candidates important in circadian or homeostatic processes.
Collapse
Affiliation(s)
- J R Gerstner
- Neuroscience Training Program, University of Wisconsin-Madison, 53719, USA
| | | | | | | |
Collapse
|
1542
|
Sakamoto K, Liu C, Kasamatsu M, Pozdeyev NV, Iuvone PM, Tosini G. Dopamine regulates melanopsin mRNA expression in intrinsically photosensitive retinal ganglion cells. Eur J Neurosci 2006; 22:3129-36. [PMID: 16367779 DOI: 10.1111/j.1460-9568.2005.04512.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In mammals a subpopulation of retinal ganglion cells are intrinsically photosensitive (ipRGCs), express the photopigment melanopsin, and play an important role in the regulation of the nonimage-forming visual system. We have recently reported that melanopsin mRNA and protein levels in the rat retina are under photic and circadian control. The aim of the present work was to investigate the mechanisms that control melanopsin expression in the rat retina. We discovered that dopamine (DA) is involved in the regulation of melanopsin mRNA, possibly via dopamine D2 receptors that are located on these ipRGCs. Interestingly, we also discovered that pituitary adenylate cyclase-activating peptide (PACAP) mRNA levels are affected by DA. Dopamine synthesis and release in the retina are regulated by the rod and the cone photoreceptors via retinal circuitry; our new data indicate that DA controls melanopsin expression, indicating that classical photoreceptors may modulate the transcription of this new photopigment. Our study also suggests that DA may have an important role in mediating the light signals that are used for circadian entrainment and for other responses that are mediated by the nonimage-forming visual system.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- 3,4-Dihydroxyphenylacetic Acid/metabolism
- Animals
- Blotting, Western/methods
- Circadian Rhythm/drug effects
- Circadian Rhythm/physiology
- Dopamine/metabolism
- Dopamine/pharmacology
- Dopamine Agonists/pharmacology
- Dose-Response Relationship, Drug
- Drug Interactions
- Excitatory Amino Acid Agonists/pharmacology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Immunohistochemistry/methods
- In Situ Hybridization/methods
- Kainic Acid/pharmacology
- Male
- Quinpirole/pharmacology
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred F344
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Retina/cytology
- Retinal Ganglion Cells/drug effects
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Rod Opsins/genetics
- Rod Opsins/metabolism
- Time Factors
Collapse
Affiliation(s)
- Katsuhiko Sakamoto
- Neuroscience Institute and NSF Center for Behavioural Neuroscience, Morehouse School of Medicine, 720, Westview Dr. SW, Atlanta, GA 30310-1495, USA
| | | | | | | | | | | |
Collapse
|
1543
|
Tu DC, Zhang D, Demas J, Slutsky EB, Provencio I, Holy TE, Van Gelder RN. Physiologic diversity and development of intrinsically photosensitive retinal ganglion cells. Neuron 2006; 48:987-99. [PMID: 16364902 DOI: 10.1016/j.neuron.2005.09.031] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 07/28/2005] [Accepted: 09/22/2005] [Indexed: 01/17/2023]
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) mediate numerous nonvisual phenomena, including entrainment of the circadian clock to light-dark cycles, pupillary light responsiveness, and light-regulated hormone release. We have applied multielectrode array recording to characterize murine ipRGCs. We find that all ipRGC photosensitivity is melanopsin dependent. At least three populations of ipRGCs are present in the postnatal day 8 (P8) murine retina: slow onset, sensitive, fast off (type I); slow onset, insensitive, slow off (type II); and rapid onset, sensitive, very slow off (type III). Recordings from adult rd/rd retinas reveal cells comparable to postnatal types II and III. Recordings from early postnatal retinas demonstrate intrinsic light responses from P0. Early light responses are transient and insensitive but by P6 show increased photosensitivity and persistence. These results demonstrate that ipRGCs are the first light-sensitive cells in the retina and suggest previously unappreciated diversity in this cell population.
Collapse
Affiliation(s)
- Daniel C Tu
- Department of Ophthalmology and Visual Sciences, Washington University Medical School, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
1544
|
Wong KY, Dunn FA, Berson DM. Photoreceptor adaptation in intrinsically photosensitive retinal ganglion cells. Neuron 2006; 48:1001-10. [PMID: 16364903 DOI: 10.1016/j.neuron.2005.11.016] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 10/13/2005] [Accepted: 11/08/2005] [Indexed: 01/28/2023]
Abstract
A rare type of mammalian retinal ganglion cell (RGC) expresses the photopigment melanopsin and is a photoreceptor. These intrinsically photosensitive RGCs (ipRGCs) drive circadian-clock resetting, pupillary constriction, and other non-image-forming photic responses. Both the light responses of ipRGCs and the behaviors they drive are remarkably sustained, raising the possibility that, unlike rods and cones, ipRGCs do not adjust their sensitivity according to lighting conditions ("adaptation"). We found, to the contrary, that ipRGC sensitivity is plastic, strongly influenced by lighting history. When exposed to a constant, bright background, the background-evoked response decayed, and responses to superimposed flashes grew in amplitude, indicating light adaptation. After extinction of a light-adapting background, sensitivity recovered progressively in darkness, indicating dark adaptation. Because these adjustments in sensitivity persisted when synapses were blocked, they constitute "photoreceptor adaptation" rather than "network adaptation." Implications for the mechanisms generating various non-image-forming visual responses are discussed.
Collapse
Affiliation(s)
- Kwoon Y Wong
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, USA.
| | | | | |
Collapse
|
1545
|
Wang T, Montell C. Rhodopsin formation in Drosophila is dependent on the PINTA retinoid-binding protein. J Neurosci 2006; 25:5187-94. [PMID: 15917458 PMCID: PMC6724816 DOI: 10.1523/jneurosci.0995-05.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Retinoids participate in many essential processes including the initial event in photoreception. 11-cis-retinal binds to opsin and undergoes a light-driven isomerization to all-trans-retinal. In mammals, the all-trans-retinal is converted to vitamin A (all-trans-retinol) and is transported to the retinal pigment epithelium (RPE), where along with dietary vitamin A, it is converted into 11-cis-retinal. Although this cycle has been studied extensively in mammals, many questions remain, including the specific roles of retinoid-binding proteins. Here, we establish the Drosophila visual system as a genetic model for characterizing retinoid-binding proteins. In a genetic screen for mutations that affect the biosynthesis of rhodopsin, we identified a novel CRAL-TRIO domain protein, prolonged depolarization afterpotential is not apparent (PINTA), which binds to all-trans-retinol. We demonstrate that PINTA functions subsequent to the production of vitamin A and is expressed and required in the retinal pigment cells. These results represent the first genetic evidence for a role for the retinal pigment cells in the visual response. Moreover, our data implicate Drosophila retinal pigment cells as functioning in the conversion of dietary all-trans-retinol to 11-cis-retinal and suggest that these cells are the closest invertebrate equivalent to the RPE.
Collapse
Affiliation(s)
- Tao Wang
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
1546
|
Reghunandanan V, Reghunandanan R. Neurotransmitters of the suprachiasmatic nuclei. J Circadian Rhythms 2006; 4:2. [PMID: 16480518 PMCID: PMC1402333 DOI: 10.1186/1740-3391-4-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Accepted: 02/16/2006] [Indexed: 12/04/2022] Open
Abstract
There has been extensive research in the recent past looking into the molecular basis and mechanisms of the biological clock, situated in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus. Neurotransmitters are a very important component of SCN function. Thorough knowledge of neurotransmitters is not only essential for the understanding of the clock but also for the successful manipulation of the clock with experimental chemicals and therapeutical drugs. This article reviews the current knowledge about neurotransmitters in the SCN, including neurotransmitters that have been identified only recently. An attempt was made to describe the neurotransmitters and hormonal/diffusible signals of the SCN efference, which are necessary for the master clock to exert its overt function. The expression of robust circadian rhythms depends on the integrity of the biological clock and on the integration of thousands of individual cellular clocks found in the clock. Neurotransmitters are required at all levels, at the input, in the clock itself, and in its efferent output for the normal function of the clock. The relationship between neurotransmitter function and gene expression is also discussed because clock gene transcription forms the molecular basis of the clock and its working.
Collapse
Affiliation(s)
- Vallath Reghunandanan
- Department of Basic Medical Science, Faculty of Medicine and Health Sciences, University of Malaysia, 93150 Kuching, Malaysia
| | - Rajalaxmy Reghunandanan
- Department of Basic Medical Science, Faculty of Medicine and Health Sciences, University of Malaysia, 93150 Kuching, Malaysia
| |
Collapse
|
1547
|
Michel S, Itri J, Han JH, Gniotczynski K, Colwell CS. Regulation of glutamatergic signalling by PACAP in the mammalian suprachiasmatic nucleus. BMC Neurosci 2006; 7:15. [PMID: 16483357 PMCID: PMC1388226 DOI: 10.1186/1471-2202-7-15] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Accepted: 02/16/2006] [Indexed: 02/01/2023] Open
Abstract
Background Previous studies indicate that light information reaches the suprachiasmatic nucleus (SCN) through a subpopulation of retinal ganglion cells that contain both glutamate and pituitary adenylyl cyclase activating peptide (PACAP). While the role of glutamate in this pathway has been well studied, the involvement of PACAP and its receptors are only beginning to be understood. Speculating that PACAP may function to modulate how neurons in the suprachiasmatic nucleus respond to glutamate, we used electrophysiological and calcium imaging tools to examine possible cellular interactions between these co-transmitters. Results Exogenous application of PACAP increased both the amplitude and frequency of spontaneous excitatory postsynaptic currents recorded from SCN neurons in a mouse brain slice preparation. PACAP also increased the magnitude of AMPA-evoked currents through a mechanism mediated by PAC1 receptors and the adenylyl cyclase-signalling cascade. This enhancement of excitatory currents was not limited to those evoked by AMPA as the magnitude of NMDA currents were also enhanced by application of PACAP. Furthermore, PACAP enhanced AMPA and NMDA evoked calcium transients while PACAP alone produced very little change in resting calcium in most mouse SCN neurons. Finally, in rat SCN neurons, exogenous PACAP enhanced AMPA evoked currents and calcium transients as well evoked robust calcium transients on its own. Conclusion The results reported here show that PACAP is a potent modulator of glutamatergic signalling within the SCN in the early night.
Collapse
Affiliation(s)
- Stephan Michel
- Department of Molecular Cell Biology, Laboratory for Neurophysiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Jason Itri
- Department of Psychiatry and Biobehavioral Sciences, University of California – Los Angeles, 760 Westwood Plaza, Los Angeles, California 90024-1759, USA
| | - Jung H Han
- Department of Psychiatry and Biobehavioral Sciences, University of California – Los Angeles, 760 Westwood Plaza, Los Angeles, California 90024-1759, USA
| | - Kathryn Gniotczynski
- Department of Psychiatry and Biobehavioral Sciences, University of California – Los Angeles, 760 Westwood Plaza, Los Angeles, California 90024-1759, USA
| | - Christopher S Colwell
- Department of Psychiatry and Biobehavioral Sciences, University of California – Los Angeles, 760 Westwood Plaza, Los Angeles, California 90024-1759, USA
| |
Collapse
|
1548
|
Abstract
A subset of melanopsin-expressing retinal ganglion cells has been identified to be directly photosensitive (pRGCs), modulating a range of behavioral and physiological responses to light. Recent expression studies of melanopsin have provided compelling evidence that melanopsin is the photopigment of the pRGCs. However, the mechanism by which melanopsin transduces light information remains an open question. This review discusses the signaling pathways that may underlie melanopsin-dependent phototransduction in native pRGCs, as well as the many exciting challenges ahead.
Collapse
Affiliation(s)
- Stuart Peirson
- Division of Neuroscience and Mental Health, Department of Cellular and Molecular Neuroscience, Faculty of Medicine, Charing Cross Hospital, Imperial College London, London W6 8RF, United Kingdom.
| | | |
Collapse
|
1549
|
Cajochen C, Jud C, Münch M, Kobialka S, Wirz-Justice A, Albrecht U. Evening exposure to blue light stimulates the expression of the clock genePER2in humans. Eur J Neurosci 2006; 23:1082-6. [PMID: 16519674 DOI: 10.1111/j.1460-9568.2006.04613.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We developed a non-invasive method to measure and quantify human circadian PER2 gene expression in oral mucosa samples and show that this gene oscillates in a circadian (= about a day) fashion. We also have the first evidence that induction of human PER2 expression is stimulated by exposing subjects to 2 h of light in the evening. This increase in PER2 expression was statistically significant in comparison to a non-light control condition only after light at 460 nm (blue) but not after light exposure at 550 nm (green). Our results indicate that the non-image-forming visual system is involved in human circadian gene expression. The demonstration of a functional circadian machinery in human buccal samples and its response to light opens the door for investigation of human circadian rhythms at the gene level and their associated disorders.
Collapse
Affiliation(s)
- Christian Cajochen
- Centre for Chronobiology, Psychiatric University Clinics, University of Basel, CH-4025 Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
1550
|
Jakobs TC, Libby RT, Ben Y, John SWM, Masland RH. Retinal ganglion cell degeneration is topological but not cell type specific in DBA/2J mice. ACTA ACUST UNITED AC 2006; 171:313-25. [PMID: 16247030 PMCID: PMC2171185 DOI: 10.1083/jcb.200506099] [Citation(s) in RCA: 310] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Using a variety of double and triple labeling techniques, we have reevaluated the death of retinal neurons in a mouse model of hereditary glaucoma. Cell-specific markers and total neuron counts revealed no cell loss in any retinal neurons other than the ganglion cells. Within the limits of our ability to define cell types, no group of ganglion cells was especially vulnerable or resistant to degeneration. Retrograde labeling and neurofilament staining showed that axonal atrophy, dendritic remodeling, and somal shrinkage (at least of the largest cell types) precedes ganglion cell death in this glaucoma model. Regions of cell death or survival radiated from the optic nerve head in fan-shaped sectors. Collectively, the data suggest axon damage at the optic nerve head as an early lesion, and damage to axon bundles would cause this pattern of degeneration. However, the architecture of the mouse eye seems to preclude a commonly postulated source of mechanical damage within the nerve head.
Collapse
Affiliation(s)
- Tatjana C Jakobs
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02114
| | | | | | | | | |
Collapse
|