1551
|
Abstract
Recent findings in colon cancer cells indicate that inhibition of the mitochondrial H+-adenosine triphosphate (ATP) synthase by the ATPase inhibitory factor 1 (IF1) promotes aerobic glycolysis and a reactive oxygen species (ROS)-mediated signal that enhances proliferation and cell survival. Herein, we have studied the expression, biological relevance, mechanism of regulation and potential clinical impact of IF1 in some prevalent human carcinomas. We show that IF1 is highly overexpressed in most (>90%) of the colon (n=64), lung (n=30), breast (n=129) and ovarian (n=10) carcinomas studied as assessed by different approaches in independent cohorts of cancer patients. The expression of IF1 in the corresponding normal tissues is negligible. By contrast, the endometrium, stomach and kidney show high expression of IF1 in the normal tissue revealing subtle differences by carcinogenesis. The overexpression of IF1 also promotes the activation of aerobic glycolysis and a concurrent ROS signal in mitochondria of the lung, breast and ovarian cancer cells mimicking the activity of oligomycin. IF1-mediated ROS signaling activates cell-type specific adaptive responses aimed at preventing death in these cell lines. Remarkably, regulation of IF1 expression in the colon, lung, breast and ovarian carcinomas is exerted at post-transcriptional levels. We demonstrate that IF1 is a short-lived protein (t1/2 ∼100 min) strongly implicating translation and/or protein stabilization as main drivers of metabolic reprogramming and cell survival in these human cancers. Analysis of tumor expression of IF1 in cohorts of breast and colon cancer patients revealed its relevance as a predictive marker for clinical outcome, emphasizing the high potential of IF1 as therapeutic target.
Collapse
|
1552
|
Neuroactive effects of cotinine on the hippocampus: behavioral and biochemical parameters. Neuropharmacology 2013; 71:292-8. [PMID: 23602986 DOI: 10.1016/j.neuropharm.2013.03.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 03/15/2013] [Accepted: 03/19/2013] [Indexed: 11/24/2022]
Abstract
The present work evaluated the effects of nicotine (NIC), cotinine (COT), mecamylamine (MEC), methyllycaconitine (MLA) and dihydro-beta-eritroidine (DHβE) on memory extinction and the following biochemical parameters of the hippocampus: lipid peroxidation (LPO), antioxidant capacity (AC) and the phosphorylation of Extracellular-Signal-Regulated Kinase (ERK 1/2). Young male rats that were implanted bilaterally with cannulae were submitted to memory extinction tests sessions, and their hippocampi were dissected for biochemical assays. The extinction of fear memory was significantly improved by both nicotine and its metabolite. Cotinine significantly increased LPO, while nicotine significantly decreased it. Antioxidant capacity was increased by all treatments. Our results showed that cotinine, unlike nicotine, may increase oxidative stress in the hippocampus, but this increase depends upon the dose used and happens without causing corresponding impairments in cognitive function. Cotinine also increased the phosphorylation of ERK 1/2 in a similar fashion as nicotine. Considering these results, it is plausible to wonder to what extent nicotine-attributed effects are really due to the actions of this alkaloid and whether they could be due instead to cotinine or to cotinine-nicotine interactions within the brain.
Collapse
|
1553
|
Irwin ME, Rivera-Del Valle N, Chandra J. Redox control of leukemia: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2013; 18:1349-83. [PMID: 22900756 PMCID: PMC3584825 DOI: 10.1089/ars.2011.4258] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reactive oxygen species (ROS) play both positive and negative roles in the proliferation and survival of a cell. This dual nature has been exploited by leukemia cells to promote growth, survival, and genomic instability-some of the hallmarks of the cancer phenotype. In addition to altered ROS levels, many antioxidants are dysregulated in leukemia cells. Together, the production of ROS and the expression and activity of antioxidant enzymes make up the primary redox control of leukemia cells. By manipulating this system, leukemia cells gain proliferative and survival advantages, even in the face of therapeutic insults. Standard treatment options have improved leukemia patient survival rates in recent years, although relapse and the development of resistance are persistent challenges. Therapies targeting the redox environment show promise for these cases. This review highlights the molecular mechanisms that control the redox milieu of leukemia cells. In particular, ROS production by the mitochondrial electron transport chain, NADPH oxidase, xanthine oxidoreductase, and cytochrome P450 will be addressed. Expression and activation of antioxidant enzymes such as superoxide dismutase, catalase, heme oxygenase, glutathione, thioredoxin, and peroxiredoxin are perturbed in leukemia cells, and the functional consequences of these molecular alterations will be described. Lastly, we delve into how these pathways can be potentially exploited therapeutically to improve treatment regimens and promote better outcomes for leukemia patients.
Collapse
Affiliation(s)
- Mary E Irwin
- Department of Pediatrics Research, Children's Cancer Hospital, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
1554
|
Oleic, linoleic and linolenic acids increase ros production by fibroblasts via NADPH oxidase activation. PLoS One 2013; 8:e58626. [PMID: 23579616 PMCID: PMC3620266 DOI: 10.1371/journal.pone.0058626] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/05/2013] [Indexed: 12/13/2022] Open
Abstract
The effect of oleic, linoleic and γ-linolenic acids on ROS production by 3T3 Swiss and Rat 1 fibroblasts was investigated. Using lucigenin-amplified chemiluminescence, a dose-dependent increase in extracellular superoxide levels was observed during the treatment of fibroblasts with oleic, linoleic and γ-linolenic acids. ROS production was dependent on the addition of β-NADH or NADPH to the medium. Diphenyleneiodonium inhibited the effect of oleic, linoleic and γ-linolenic acids on fibroblast superoxide release by 79%, 92% and 82%, respectively. Increased levels of p47phox phosphorylation due to fatty acid treatment were detected by Western blotting analyses of fibroblast proteins. Increased p47phox mRNA expression was observed using real-time PCR. The rank order for the fatty acid stimulation of the fibroblast oxidative burst was as follows: γ-linolenic > linoleic > oleic. In conclusion, oleic, linoleic and γ-linolenic acids stimulated ROS production via activation of the NADPH oxidase enzyme complex in fibroblasts.
Collapse
|
1555
|
Stasko SA, Hardin BJ, Smith JD, Moylan JS, Reid MB. TNF signals via neuronal-type nitric oxide synthase and reactive oxygen species to depress specific force of skeletal muscle. J Appl Physiol (1985) 2013; 114:1629-36. [PMID: 23558387 DOI: 10.1152/japplphysiol.00871.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
TNF promotes skeletal muscle weakness, in part, by depressing specific force of muscle fibers. This is a rapid, receptor-mediated response, in which TNF stimulates cellular oxidant production, causing myofilament dysfunction. The oxidants appear to include nitric oxide (NO); otherwise, the redox mechanisms that underlie this response remain undefined. The current study tested the hypotheses that 1) TNF signals via neuronal-type NO synthase (nNOS) to depress specific force, and 2) muscle-derived reactive oxygen species (ROS) are essential co-mediators of this response. Mouse diaphragm fiber bundles were studied using live cell assays. TNF exposure increased general oxidant activity (P < 0.05; 2',7'-dichlorodihydrofluorescein diacetate assay) and NO activity (P < 0.05; 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate assay) and depressed specific force across the full range of stimulus frequencies (1-300 Hz; P < 0.05). These responses were abolished by pretreatment with N(ω)-nitro-L-arginine methyl ester (L-NAME; a nonspecific inhibitor of NOS activity), confirming NO involvement. Genetic nNOS deficiency replicated L-NAME effects on TNF-treated muscle, diminishing NO activity (-80%; P < 0.05) and preventing the decrement in specific force (P < 0.05). Comparable protection was achieved by selective depletion of muscle-derived ROS. Pretreatment with either SOD (degrades superoxide anion) or catalase (degrades hydrogen peroxide) depressed oxidant activity in TNF-treated muscle and abolished the decrement in specific force. These findings indicate that TNF signals via nNOS to depress contractile function, a response that requires ROS and NO as obligate co-mediators.
Collapse
Affiliation(s)
- Shawn A Stasko
- Department of Physiology and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky 40356-0298, USA
| | | | | | | | | |
Collapse
|
1556
|
Abstract
Mitochondria have long been considered as crucial organelles, primarily for their roles in biosynthetic reactions such as ATP synthesis. However, it is becoming increasingly apparent that mitochondria are intimately involved in cell signalling pathways. Mitochondria perform various signalling functions, serving as platforms to initiate cell signalling, as well as acting as transducers and effectors in multiple processes. Here, we discuss the active roles that mitochondria have in cell death signalling, innate immunity and autophagy. Common themes of mitochondrial regulation emerge from these diverse but interconnected processes. These include: the outer mitochondrial membrane serving as a major signalling platform, and regulation of cell signalling through mitochondrial dynamics and by mitochondrial metabolites, including ATP and reactive oxygen species. Importantly, defects in mitochondrial control of cell signalling and in the regulation of mitochondrial homeostasis might underpin many diseases, in particular age-related pathologies.
Collapse
Affiliation(s)
- Stephen W G Tait
- Institute of Cancer Sciences, CR-UK Beatson Labs, University of Glasgow, Switchback Road, Glasgow, UK
| | | |
Collapse
|
1557
|
Collins Y, Chouchani ET, James AM, Menger KE, Cochemé HM, Murphy MP. Mitochondrial redox signalling at a glance. J Cell Sci 2013; 125:801-6. [PMID: 22448036 DOI: 10.1242/jcs.098475] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Yvonne Collins
- MRC Mitochondrial Biology Unit, Wellcome Trust-MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | | | | | | | | | | |
Collapse
|
1558
|
Panieri E, Gogvadze V, Norberg E, Venkatesh R, Orrenius S, Zhivotovsky B. Reactive oxygen species generated in different compartments induce cell death, survival, or senescence. Free Radic Biol Med 2013; 57:176-87. [PMID: 23295411 DOI: 10.1016/j.freeradbiomed.2012.12.024] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/02/2012] [Accepted: 12/28/2012] [Indexed: 12/11/2022]
Abstract
Although reactive oxygen species (ROS) are well-established mediators of oxidative damage and cell demise, the mechanisms by which they trigger specific cell death modalities and the temporal/spatial requirements underlying this phenomenon are largely unknown. Yet, it is well established that most anticancer therapies depend on ROS production for efficient tumor eradication. Using several non-small-cell lung cancer cell lines, we have dissected how the site of ROS production and accumulation in various cell compartments affect cell fate. We demonstrate that high levels of exogenously generated H2O2 induce extensive DNA damage, ATP depletion, and severe cytotoxicity. Although these effects were independent of caspase activity, they could-at least in part-be prevented by RIP1 kinase inhibition. In contrast, low levels of exogenously produced H2O2 triggered a modest drop in ATP level, delayed toxicity, G2/M arrest, and cell senescence. Mitochondrially produced H2O2 induced a reversible ATP drop without affecting cell viability. Instead, the cells accumulated in the G1/S phase of the cell cycle and became senescent. Concomitant inhibition of glycolysis was found to markedly sensitize cells to death in the presence of otherwise nontoxic concentrations of H2O2, presumably by the inhibition of ATP-restoring mechanisms. Combined, our data provide evidence that ROS might dictate different cellular consequences depending on their overall concentration at steady-state levels and on their site of generation.
Collapse
Affiliation(s)
- Emiliano Panieri
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
1559
|
Roe ND, Ren J. Oxidative activation of Ca(2+)/calmodulin-activated kinase II mediates ER stress-induced cardiac dysfunction and apoptosis. Am J Physiol Heart Circ Physiol 2013; 304:H828-39. [PMID: 23316062 PMCID: PMC3602775 DOI: 10.1152/ajpheart.00752.2012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/20/2012] [Indexed: 12/23/2022]
Abstract
Endoplasmic reticulum (ER) stress elicits oxidative stress and intracellular Ca(2+) derangement via activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). This study was designed to examine the role of CaMKII in ER stress-induced cardiac dysfunction and apoptosis as well as the effect of antioxidant catalase. Wild-type FVB and transgenic mice with cardiac-specific overexpression of catalase were challenged with the ER stress inducer tunicamycin (3 mg/kg ip for 48 h). Presence of ER stress was verified using the ER stress protein markers immunoglobulin binding protein (BiP) and C/EBP homologous protein (CHOP), the effect of which was unaffected by catalase overexpression. Echocardiographic assessment revealed that tunicamycin elicited cardiac remodeling (enlarged end-systolic diameter without affecting diastolic and ventricular wall thickness), depressed fractional shortening, ejection fraction, and cardiomyocyte contractile capacity, intracellular Ca(2+) mishandling, accumulation of reactive oxygen species (superoxide production and NADPH oxidase p47phox level), CaMKII oxidation, and apoptosis (evidenced by Bax, Bcl-2/Bax ratio, and TUNEL staining), the effects of which were obliterated by catalase. Interestingly, tunicamycin-induced cardiomyocyte mechanical anomalies and cell death were ablated by the CaMKII inhibitor KN93, in a manner reminiscent of catalase. These data favored a permissive role of oxidative stress and CaMKII activation in ER stress-induced cardiac dysfunction and cell death. Our data further revealed the therapeutic potential of antioxidant or CaMKII inhibition in cardiac pathological conditions associated with ER stress. This research shows for the first time that contractile dysfunction caused by ER stress is a result of the oxidative activation of the CaMKII pathway.
Collapse
Affiliation(s)
- Nathan D Roe
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, School of Pharmacy, Laramie, WY 82071, USA
| | | |
Collapse
|
1560
|
Wang K, Zhang T, Dong Q, Nice EC, Huang C, Wei Y. Redox homeostasis: the linchpin in stem cell self-renewal and differentiation. Cell Death Dis 2013; 4:e537. [PMID: 23492768 PMCID: PMC3613828 DOI: 10.1038/cddis.2013.50] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Stem cells are characterized by their unique ability of self-renewal to maintain the so-called stem cell pool. Over the past decades, reactive oxygen species (ROS) have been recognized as toxic aerobic metabolism byproducts that are harmful to stem cells, leading to DNA damage, senescence or cell death. Recently, a growing body of literature has shown that stem cells reside in redox niches with low ROS levels. The balance of Redox homeostasis facilitates stem cell self-renewal by an intricate network. Thus, to fully decipher the underlying molecular mechanisms involved in the maintenance of stem cell self-renewal, it is critical to address the important role of redox homeostasis in the regulation of self-renewal and differentiation of stem cells. In this regard, we will discuss the regulatory mechanisms involved in the subtly orchestrated balance of redox status in stem cells by scavenger antioxidant enzyme systems that are well monitored by the hypoxia niches and crucial redox regulators including forkhead homeobox type O family (FoxOs), apurinic/apyrimidinic (AP) endonuclease1/redox factor-1 (APE1/Ref-1), nuclear factor erythroid-2-related factor 2 (Nrf2) and ataxia telangiectasia mutated (ATM). We will also introduce several pivotal ROS-sensitive molecules, such as hypoxia-inducible factors, p38 mitogen-activated protein kinase (p38) and p53, involved in the redox-regulated stem cell self-renewal. Specifically, all the aforementioned molecules can act as ‘redox sensors' by virtue of redox modifications of their cysteine residues, which are critically important in the control of protein function. Given the importance of redox homeostasis in the regulation of stem cell self-renewal, understanding the underlying molecular mechanisms involved will provide important new insights into stem cell biology.
Collapse
Affiliation(s)
- Kui Wang
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | | | | | | | | | | |
Collapse
|
1561
|
Engelman R, Weisman-Shomer P, Ziv T, Xu J, Arnér ESJ, Benhar M. Multilevel regulation of 2-Cys peroxiredoxin reaction cycle by S-nitrosylation. J Biol Chem 2013; 288:11312-24. [PMID: 23479738 DOI: 10.1074/jbc.m112.433755] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
S-nitrosothiols (SNOs), formed by nitric oxide (NO)-mediated S-nitrosylation, and hydrogen peroxide (H2O2), a prominent reactive oxygen species, are implicated in diverse physiological and pathological processes. Recent research has shown that the cellular action and metabolism of SNOs and H2O2 involve overlapping, thiol-based mechanisms, but how these reactive species may affect each other's fate and function is not well understood. In this study we investigated how NO/SNO may affect the redox cycle of mammalian peroxiredoxin-1 (Prx1), a representative of the 2-Cys Prxs, a group of thioredoxin (Trx)-dependent peroxidases. We found that, both in a cell-free system and in cells, NO/SNO donors such as S-nitrosocysteine and S-nitrosoglutathione readily induced the S-nitrosylation of Prx1, causing structural and functional alterations. In particular, nitrosylation promoted disulfide formation involving the pair of catalytic cysteines (Cys-52 and Cys-173) and disrupted the oligomeric structure of Prx1, leading to loss of peroxidase activity. A highly potent inhibition of the peroxidase catalytic reaction by NO/SNO was seen in assays employing the coupled Prx-Trx system. In this setting, S-nitrosocysteine (10 μM) effectively blocked the Trx-mediated regeneration of oxidized Prx1. This effect appeared to be due to both competition between S-nitrosocysteine and Prx1 for the Trx system and direct modulation by S-nitrosocysteine of Trx reductase activity. Our findings that NO/SNO target both Prx and Trx reductase may have implications for understanding the impact of nitrosylation on cellular redox homeostasis.
Collapse
Affiliation(s)
- Rotem Engelman
- Department of Biochemistry, Rappaport Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | |
Collapse
|
1562
|
Treiber N, Maity P, Singh K, Ferchiu F, Wlaschek M, Scharffetter-Kochanek K. The role of manganese superoxide dismutase in skin aging. DERMATO-ENDOCRINOLOGY 2013; 4:232-5. [PMID: 23467724 PMCID: PMC3583882 DOI: 10.4161/derm.21819] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The free radical theory of aging postulates that the production of mitochondrial reactive oxygen species is the major determinant of aging and lifespan. The skin represents an excellent and accessible model organ to study aging that is characterized by atrophy, wrinkle formation, reduced tensile strength and impaired wound healing. Oxidative stress as a consequence of an imbalance in prooxidants and antioxidants with increased ROS concentrations has been demonstrated in the aged skin in vitro and in vivo, suggesting the important role of the antioxidant balance. Here we will summarize recent data on the role of the mitochondrial superoxide dismutase 2 in skin aging.
Collapse
Affiliation(s)
- Nicolai Treiber
- Department of Dermatology and Allergic Diseases; University of Ulm; Ulm, Germany
| | | | | | | | | | | |
Collapse
|
1563
|
Patel R, Gao M, Ahmad I, Fleming J, Singh LB, Rai TS, McKie AB, Seywright M, Barnetson RJ, Edwards J, Sansom OJ, Leung HY. Sprouty2, PTEN, and PP2A interact to regulate prostate cancer progression. J Clin Invest 2013; 123:1157-75. [PMID: 23434594 PMCID: PMC3582117 DOI: 10.1172/jci63672] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 01/03/2013] [Indexed: 12/16/2022] Open
Abstract
Concurrent activation of RAS/ERK and PI3K/AKT pathways is implicated in prostate cancer progression. The negative regulators of these pathways, including sprouty2 (SPRY2), protein phosphatase 2A (PP2A), and phosphatase and tensin homolog (PTEN), are commonly inactivated in prostate cancer. The molecular basis of cooperation between these genetic alterations is unknown. Here, we show that SPRY2 deficiency alone triggers activation of AKT and ERK, but this is insufficient to drive tumorigenesis. In addition to AKT and ERK activation, SPRY2 loss also activates a PP2A-dependent tumor suppressor checkpoint. Mechanistically, the PP2A-mediated growth arrest depends on GSK3β and is ultimately mediated by nuclear PTEN. In murine prostate cancer models, Pten haploinsufficiency synergized with Spry2 deficiency to drive tumorigenesis, including metastasis. Together, these results show that loss of Pten cooperates with Spry2 deficiency by bypassing a novel tumor suppressor checkpoint. Furthermore, loss of SPRY2 expression correlates strongly with loss of PTEN and/or PP2A subunits in human prostate cancer. This underlines the cooperation between SPRY2 deficiency and PTEN or PP2A inactivation in promoting tumorigenesis. Overall, we propose SPRY2, PTEN, and PP2A status as an important determinant of prostate cancer progression. Characterization of this trio may facilitate patient stratification for targeted therapies and chemopreventive interventions.
Collapse
Affiliation(s)
- Rachana Patel
- The Beatson Institute for Cancer Research, Glasgow, United Kingdom.
Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.
School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom.
Department of Pathology, National Health Service, Glasgow, United Kingdom
| | - Meiling Gao
- The Beatson Institute for Cancer Research, Glasgow, United Kingdom.
Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.
School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom.
Department of Pathology, National Health Service, Glasgow, United Kingdom
| | - Imran Ahmad
- The Beatson Institute for Cancer Research, Glasgow, United Kingdom.
Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.
School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom.
Department of Pathology, National Health Service, Glasgow, United Kingdom
| | - Janis Fleming
- The Beatson Institute for Cancer Research, Glasgow, United Kingdom.
Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.
School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom.
Department of Pathology, National Health Service, Glasgow, United Kingdom
| | - Lukram B. Singh
- The Beatson Institute for Cancer Research, Glasgow, United Kingdom.
Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.
School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom.
Department of Pathology, National Health Service, Glasgow, United Kingdom
| | - Taranjit Singh Rai
- The Beatson Institute for Cancer Research, Glasgow, United Kingdom.
Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.
School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom.
Department of Pathology, National Health Service, Glasgow, United Kingdom
| | - Arthur B. McKie
- The Beatson Institute for Cancer Research, Glasgow, United Kingdom.
Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.
School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom.
Department of Pathology, National Health Service, Glasgow, United Kingdom
| | - Morag Seywright
- The Beatson Institute for Cancer Research, Glasgow, United Kingdom.
Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.
School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom.
Department of Pathology, National Health Service, Glasgow, United Kingdom
| | - Robert J. Barnetson
- The Beatson Institute for Cancer Research, Glasgow, United Kingdom.
Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.
School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom.
Department of Pathology, National Health Service, Glasgow, United Kingdom
| | - Joanne Edwards
- The Beatson Institute for Cancer Research, Glasgow, United Kingdom.
Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.
School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom.
Department of Pathology, National Health Service, Glasgow, United Kingdom
| | - Owen J. Sansom
- The Beatson Institute for Cancer Research, Glasgow, United Kingdom.
Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.
School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom.
Department of Pathology, National Health Service, Glasgow, United Kingdom
| | - Hing Y. Leung
- The Beatson Institute for Cancer Research, Glasgow, United Kingdom.
Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.
School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom.
Department of Pathology, National Health Service, Glasgow, United Kingdom
| |
Collapse
|
1564
|
Cai Z, Yan LJ. Protein Oxidative Modifications: Beneficial Roles in Disease and Health. JOURNAL OF BIOCHEMICAL AND PHARMACOLOGICAL RESEARCH 2013; 1:15-26. [PMID: 23662248 PMCID: PMC3646577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Protein oxidative modifications, also known as protein oxidation, are a major class of protein posttranslational modifications. They are caused by reactions between protein amino acid residues and reactive oxygen species (ROS) or reactive nitrogen species (RNS) and can be classified into two categories: irreversible modifications and reversible modifications. Protein oxidation has been often associated with functional decline of the target proteins, which are thought to contribute to normal aging and age-related pathogenesis. However, it has now been recognized that protein oxidative modifications can also play beneficial roles in disease and health. This review summarizes and highlights certain positive roles of protein oxidative modifications that have been documented in the literature. Covered oxidatively modified protein adducts include carbonylation, 3-nitrotyrosine, s-sulfenation, s-nitrosylation, s-glutathionylation, and disulfide formation. All of which have been widely analyzed in numerous experimental systems associated with redox stress conditions. The authors believe that selected protein targets, when modified in a reversible manner in prophylactic approaches such as preconditioning or ischemic tolerance, may provide potential promise in maintaining health and fighting disease.
Collapse
Affiliation(s)
- Zhiyou Cai
- Department of Neurology, Lu'an People's Hospital, the Lu'an Affiliated Hospital of Anhui Medical University, Lu'an, Anhui Province, China, 237005
| | - Liang-Jun Yan
- Department of Pharmacology and Neuroscience and Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
1565
|
Weyemi U, Redon CE, Parekh PR, Dupuy C, Bonner WM. NADPH Oxidases NOXs and DUOXs as putative targets for cancer therapy. Anticancer Agents Med Chem 2013; 13:502-514. [PMID: 22931418 PMCID: PMC6365101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 07/03/2012] [Accepted: 07/23/2012] [Indexed: 06/01/2023]
Abstract
Reactive oxygen species (ROS) form a class of molecules with both positive and negative impacts on cellular health. Negatively, ROS may react with cellular constituents including proteins, lipids, and DNA to generate an array of oxidative lesions. These lesions may compromise genome stability which is critical for long-term cellular homeostasis and healthy progeny. Paradoxically, ROS also function as strong signalling molecules that mediate various growth-related responses, so their presence is also essential for cellular metabolism. While ROS are generated in an unregulated manner by physical stresses such as exposure to ionizing radiation and biochemical malfunctions such as mitochondrial leakage, cells also contain the NADPH oxidases NOXs and DUOXs, which specifically generate ROS in a wide variety of tissues. While the NOXs/DUOXs may be involved in maintaining optimal cellular redox levels, there is also accumulating evidence that NADPH oxidases-derived ROS may elevate the risk for genomic instability and cancer. Cancer cells may produce high levels of ROS, and in some cases, the source of these ROS has been linked to NOX/DUOX deregulation as reported for prostate cancer (NOX1 and NOX5), melanoma and glioblastoma (NOX4) among others. In addition, recent studies reveal that targeting NADPH oxidases with NOXs inhibitors may impair tumor growth in vivo; indicating that these proteins may be useful targets in future clinical strategies to fight cancer. This review provides an overview of the current knowledge concerning these enzymes, their roles in cancer, and their potential as targets in future cancer therapies.
Collapse
Affiliation(s)
- Urbain Weyemi
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
1566
|
Lee MS, Moon KY, Bae DJ, Park MK, Jang AS. The effects of pycnogenol on antioxidant enzymes in a mouse model of ozone exposure. Korean J Intern Med 2013; 28:216-23. [PMID: 23526176 PMCID: PMC3604612 DOI: 10.3904/kjim.2013.28.2.216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 11/15/2012] [Accepted: 11/20/2012] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND/AIMS Ozone is an environmentally reactive oxidant, and pycnogenol is a mixture of flavonoid compounds extracted from pine tree bark that have antioxidant activity. We investigated the effects of pycnogenol on reactive nitrogen species, antioxidant responses, and airway responsiveness in BALB/c mice exposed to ozone. METHODS Antioxidant levels were determined using high performance liquid chromatography with electrochemical detection. Nitric oxide (NO) metabolites in bronchoalveolar lavage (BAL) fluid from BALB/c mice in filtered air and 2 ppm ozone with pycnogenol pretreatment before ozone exposure (n = 6) were quantified colorimetrically using the Griess reaction. RESULTS Uric acid and ascorbic acid concentrations were significantly higher in BAL fluid following pretreatment with pycnogenol, whereas γ-tocopherol concentrations were higher in the ozone exposed group but were similar in the ozone and pycnogenol pretreatment groups. Retinol and γ-tocopherol concentrations tended to increase in the ozone exposure group but were similar in the ozone and pycnogenol pretreatment groups following ozone exposure. Malonylaldehyde concentrations increased in the ozone exposure group but were similar in the ozone and pycnogenol plus ozone groups. The nitrite and total NO metabolite concentrations in BAL fluid, which parallel the in vivo generation of NO in the airways, were significantly greater in the ozone exposed group than the group exposed to filtered air, but decreased with pycnogenol pretreatment. CONCLUSIONS Pycnogenol may increase levels of antioxidant enzymes and decrease levels of nitrogen species, suggesting that antioxidants minimize the effects of acute ozone exposure via a protective mechanism.
Collapse
Affiliation(s)
- Min-Sung Lee
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Kuk-Young Moon
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Da-Jeong Bae
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Moo-Kyun Park
- Department of Otolaryngology, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - An-Soo Jang
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| |
Collapse
|
1567
|
Li X, Fang P, Mai J, Choi ET, Wang H, Yang XF. Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol 2013; 6:19. [PMID: 23442817 PMCID: PMC3599349 DOI: 10.1186/1756-8722-6-19] [Citation(s) in RCA: 545] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 02/20/2013] [Indexed: 12/13/2022] Open
Abstract
There are multiple sources of reactive oxygen species (ROS) in the cell. As a major site of ROS production, mitochondria have drawn considerable interest because it was recently discovered that mitochondrial ROS (mtROS) directly stimulate the production of proinflammatory cytokines and pathological conditions as diverse as malignancies, autoimmune diseases, and cardiovascular diseases all share common phenotype of increased mtROS production above basal levels. Several excellent reviews on this topic have been published, but ever-changing new discoveries mandated a more up-to-date and comprehensive review on this topic. Therefore, we update recent understanding of how mitochondria generate and regulate the production of mtROS and the function of mtROS both in physiological and pathological conditions. In addition, we describe newly developed methods to probe or scavenge mtROS and compare these methods in detail. Thorough understanding of this topic and the application of mtROS-targeting drugs in the research is significant towards development of better therapies to combat inflammatory diseases and inflammatory malignancies.
Collapse
Affiliation(s)
- Xinyuan Li
- Cardiovascular Research Center, Department of Pharmacology and Thrombosis Research Center, Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | | | | | | | | | | |
Collapse
|
1568
|
Abstract
In 1988, the gene responsible for the autosomal recessive disease ataxia- telangiectasia (A-T) was localized to 11q22.3-23.1. It was eventually cloned in 1995. Many independent laboratories have since demonstrated that in replicating cells, ataxia telangiectasia mutated (ATM) is predominantly a nuclear protein that is involved in the early recognition and response to double-stranded DNA breaks. ATM is a high-molecular-weight PI3K-family kinase. ATM also plays many important cytoplasmic roles where it phosphorylates hundreds of protein substrates that activate and coordinate cell-signaling pathways involved in cell-cycle checkpoints, nuclear localization, gene transcription and expression, the response to oxidative stress, apoptosis, nonsense-mediated decay, and others. Appreciating these roles helps to provide new insights into the diverse clinical phenotypes exhibited by A-T patients-children and adults alike-which include neurodegeneration, high cancer risk, adverse reactions to radiation and chemotherapy, pulmonary failure, immunodeficiency, glucose transporter aberrations, insulin-resistant diabetogenic responses, and distinct chromosomal and chromatin changes. An exciting recent development is the ATM-dependent pathology encountered in mitochondria, leading to inefficient respiration and energy metabolism and the excessive generation of free radicals that themselves create life-threatening DNA lesions that must be repaired within minutes to minimize individual cell losses.
Collapse
|
1569
|
Oxidative stress and HPV carcinogenesis. Viruses 2013; 5:708-31. [PMID: 23403708 PMCID: PMC3640522 DOI: 10.3390/v5020708] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 01/22/2013] [Accepted: 02/05/2013] [Indexed: 02/06/2023] Open
Abstract
Extensive experimental work has conclusively demonstrated that infection with certain types of human papillomaviruses, the so-called high-risk human papillomavirus (HR-HPV), represent a most powerful human carcinogen. However, neoplastic growth is a rare and inappropriate outcome in the natural history of HPV, and a number of other events have to concur in order to induce the viral infection into the (very rare) neoplastic transformation. From this perspective, a number of putative viral, host, and environmental co-factors have been proposed as potential candidates. Among them oxidative stress (OS) is an interesting candidate, yet comparatively underexplored. OS is a constant threat to aerobic organisms being generated during mitochondrial oxidative phosphorylation, as well as during inflammation, infections, ionizing irradiation, UV exposure, mechanical and chemical stresses. Epithelial tissues, the elective target for HPV infection, are heavily exposed to all named sources of OS. Two different types of cooperative mechanisms are presumed to occur between OS and HPV: I) The OS genotoxic activity and the HPV-induced genomic instability concur independently to the generation of the molecular damage necessary for the emergence of neoplastic clones. This first mode is merely a particular form of co-carcinogenesis; and II) OS specifically interacts with one or more molecular stages of neoplastic initiation and/or progression induced by the HPV infection. This manuscript was designed to summarize available data on this latter hypothesis. Experimental data and indirect evidences on promoting the activity of OS in viral infection and viral integration will be reviewed. The anti-apoptotic and pro-angiogenetic role of NO (nitric oxide) and iNOS (inducible nitric oxide synthase) will be discussed together with the OS/HPV cooperation in inducing cancer metabolism adaptation. Unexplored/underexplored aspects of the OS interplay with the HPV-driven carcinogenesis will be highlighted. The aim of this paper is to stimulate new areas of study and innovative approaches.
Collapse
|
1570
|
Barnett BP, Handa JT. Retinal microenvironment imbalance in dry age-related macular degeneration: a mini-review. Gerontology 2013; 59:297-306. [PMID: 23406680 DOI: 10.1159/000346169] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 11/29/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD) is the leading cause of blindness in the western world. To prevent what will certainly be a tremendous health and economic burden, effective therapeutics for AMD are urgently needed. To develop these agents in a timely fashion, the molecular pathways that cause disease progression must be elucidated. OBJECTIVE To briefly describe the clinical features of AMD, and review the current understanding of the molecular basis of AMD. METHODS A literature review. RESULTS The discussion will primarily focus on the interplay of oxidative stress and complement dysregulation and the resulting chronic proinflammatory state thought to be central in AMD pathogenesis. CONCLUSIONS Oxidative stress and complement dysregulation play a substantive role in the development of AMD.
Collapse
Affiliation(s)
- Brad P Barnett
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | | |
Collapse
|
1571
|
Hamanaka RB, Glasauer A, Hoover P, Yang S, Blatt H, Mullen AR, Getsios S, Gottardi CJ, DeBerardinis RJ, Lavker RM, Chandel NS. Mitochondrial reactive oxygen species promote epidermal differentiation and hair follicle development. Sci Signal 2013; 6:ra8. [PMID: 23386745 DOI: 10.1126/scisignal.2003638] [Citation(s) in RCA: 246] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Proper regulation of keratinocyte differentiation within the epidermis and follicular epithelium is essential for maintenance of epidermal barrier function and hair growth. The signaling intermediates that regulate the morphological and genetic changes associated with epidermal and follicular differentiation remain poorly understood. We tested the hypothesis that reactive oxygen species (ROS) generated by mitochondria are an important regulator of epidermal differentiation by generating mice with a keratinocyte-specific deficiency in mitochondrial transcription factor A (TFAM), which is required for the transcription of mitochondrial genes encoding electron transport chain subunits. Ablation of TFAM in keratinocytes impaired epidermal differentiation and hair follicle growth and resulted in death 2 weeks after birth. TFAM-deficient keratinocytes failed to generate mitochondria-derived ROS, a deficiency that prevented the transmission of Notch and β-catenin signals essential for epidermal differentiation and hair follicle development, respectively. In vitro keratinocyte differentiation was inhibited in the presence of antioxidants, and the decreased differentiation marker abundance in TFAM-deficient keratinocytes was partly rescued by application of exogenous hydrogen peroxide. These findings indicate that mitochondria-generated ROS are critical mediators of cellular differentiation and tissue morphogenesis.
Collapse
Affiliation(s)
- Robert B Hamanaka
- Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1572
|
New tricks from an old dog: mitochondrial redox signaling in cellular inflammation. Semin Immunol 2013; 24:384-92. [PMID: 23391428 DOI: 10.1016/j.smim.2013.01.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 01/17/2013] [Indexed: 01/15/2023]
Abstract
Reactive oxygen species (ROS) such as superoxide (O(2)(-)) and hydrogen peroxide (H(2)O(2)) have long been implicated as pro-inflammatory, yet the sources of ROS and the molecular mechanisms by which they enhance inflammation have been less clear. Recent advances in the understanding of the molecular basis of inflammation mediated by the innate immune system have allowed these issues to be revisited. Although the Nox2 NADPH oxidases generate the bulk of ROS for antimicrobial host defense, recent studies have found that NADPH oxidase-dependent ROS production can actually dampen macrophage inflammatory responses to sterile pro-inflammatory stimuli. Instead, production of mitochondrial ROS has emerged as an important factor in both host defense and sterile inflammation. Excess mitochondrial ROS can be generated by either damage to the respiratory chain or by alterations of mitochondrial function such as those that increase membrane potential and reduce respiratory electron carriers. In autoinflammatory diseases, where key components of innate immune responses are activated by genetic mutations or environmental stimuli, inflammation has been found to be particularly sensitive to inhibition of mitochondrial ROS production. These findings have highlighted mitochondrial ROS as a novel generator of pro-inflammatory ROS and a potential therapeutic target in inflammatory diseases.
Collapse
|
1573
|
Odell ID, Wallace SS, Pederson DS. Rules of engagement for base excision repair in chromatin. J Cell Physiol 2013; 228:258-66. [PMID: 22718094 DOI: 10.1002/jcp.24134] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Most of the DNA in eukaryotes is packaged in tandemly arrayed nucleosomes that, together with numerous DNA- and nucleosome-associated enzymes and regulatory factors, make up chromatin. Chromatin modifying and remodeling agents help regulate access to selected DNA segments in chromatin, thereby facilitating transcription and DNA replication and repair. Studies of nucleotide excision repair (NER), single strand break repair (SSBR), and the homology-directed repair (HDR), and non-homologous end-joining (NHEJ) double strand break repair pathways have led to an "access-repair-restore" paradigm, in which chromatin in the vicinity of damaged DNA is disrupted, thereby enabling efficient repair and the subsequent repackaging of DNA into nucleosomes. When damage is extensive, these repair processes are accompanied by cell cycle checkpoint activation, which provides cells with sufficient time to either complete the repair or initiate apoptosis. It is not clear, however, if base excision repair (BER) of the ~20,000 or more oxidative DNA damages that occur daily in each nucleated human cell can be viewed through this same lens. Until recently, we did not know if BER requires or is accompanied by nucleosome disruption, and it is not yet clear that anything short of overwhelming oxidative damage (resulting in the shunting of DNA substrates into other repair pathways) results in checkpoint activation. This review highlights studies of how oxidatively damaged DNA in nucleosomes is discovered and repaired, and offers a working model of events associated with BER in chromatin that we hope will have heuristic value.
Collapse
Affiliation(s)
- Ian D Odell
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405, USA
| | | | | |
Collapse
|
1574
|
Hendriks G, van de Water B, Schoonen W, Vrieling H. Cellular-signaling pathways unveil the carcinogenic potential of chemicals. J Appl Toxicol 2013; 33:399-409. [DOI: 10.1002/jat.2845] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 10/29/2012] [Accepted: 10/29/2012] [Indexed: 12/17/2022]
Affiliation(s)
- Giel Hendriks
- Department of Toxicogenetics; Leiden University Medical Center; PO Box 9600; 2300; RC; Leiden; The Netherlands
| | - Bob van de Water
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research; Leiden University; PO Box 9502; 2300; RA; Leiden; The Netherlands
| | | | - Harry Vrieling
- Department of Toxicogenetics; Leiden University Medical Center; PO Box 9600; 2300; RC; Leiden; The Netherlands
| |
Collapse
|
1575
|
Chung HS, Wang SB, Venkatraman V, Murray CI, Van Eyk JE. Cysteine oxidative posttranslational modifications: emerging regulation in the cardiovascular system. Circ Res 2013; 112:382-92. [PMID: 23329793 PMCID: PMC4340704 DOI: 10.1161/circresaha.112.268680] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 10/05/2012] [Indexed: 12/22/2022]
Abstract
In the cardiovascular system, changes in oxidative balance can affect many aspects of cellular physiology through redox-signaling. Depending on the magnitude, fluctuations in the cell's production of reactive oxygen and nitrogen species can regulate normal metabolic processes, activate protective mechanisms, or be cytotoxic. Reactive oxygen and nitrogen species can have many effects including the posttranslational modification of proteins at critical cysteine thiols. A subset can act as redox-switches, which elicit functional effects in response to changes in oxidative state. Although the general concepts of redox-signaling have been established, the identity and function of many regulatory switches remains unclear. Characterizing the effects of individual modifications is the key to understand how the cell interprets oxidative signals under physiological and pathological conditions. Here, we review the various cysteine oxidative posttranslational modifications and their ability to function as redox-switches that regulate the cell's response to oxidative stimuli. In addition, we discuss how these modifications have the potential to influence other posttranslational modifications' signaling pathways though cross-talk. Finally, we review the increasing number of tools being developed to identify and quantify the various cysteine oxidative posttranslational modifications and how this will advance our understanding of redox-regulation.
Collapse
Affiliation(s)
- Heaseung S Chung
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
1576
|
Putker M, Madl T, Vos HR, de Ruiter H, Visscher M, van den Berg MCW, Kaplan M, Korswagen HC, Boelens R, Vermeulen M, Burgering BMT, Dansen TB. Redox-dependent control of FOXO/DAF-16 by transportin-1. Mol Cell 2013; 49:730-42. [PMID: 23333309 DOI: 10.1016/j.molcel.2012.12.014] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 10/07/2012] [Accepted: 12/14/2012] [Indexed: 11/19/2022]
Abstract
Forkhead box O (FOXO; DAF-16 in worms) transcription factors, which are of vital importance in cell-cycle control, stress resistance, tumor suppression, and organismal lifespan, are largely regulated through nucleo-cytoplasmic shuttling. Insulin signaling keeps FOXO/DAF-16 cytoplasmic, and hence transcriptionally inactive. Conversely, as in loss of insulin signaling, reactive oxygen species (ROS) can activate FOXO/DAF-16 through nuclear accumulation. How ROS regulate the nuclear translocation of FOXO/DAF-16 is largely unknown. Cysteine oxidation can stabilize protein-protein interactions through the formation of disulfide-bridges when cells encounter ROS. Using a proteome-wide screen that identifies ROS-induced mixed disulfide-dependent complexes, we discovered several interaction partners of FOXO4, one of which is the nuclear import receptor transportin-1. We show that disulfide formation with transportin-1 is required for nuclear localization and the activation of FOXO4/DAF-16 induced by ROS, but not by the loss of insulin signaling. This molecular mechanism for nuclear shuttling is conserved in C. elegans and directly connects redox signaling to the longevity protein FOXO/DAF-16.
Collapse
Affiliation(s)
- Marrit Putker
- Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1577
|
Acetonic and Methanolic Extracts of Heterotheca inuloides, and Quercetin, Decrease CCl(4)-Oxidative Stress in Several Rat Tissues. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:659165. [PMID: 23365610 PMCID: PMC3556438 DOI: 10.1155/2013/659165] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/07/2012] [Accepted: 12/12/2012] [Indexed: 12/29/2022]
Abstract
The present study was designed to test the hypothesis that the acetonic and methanolic extracts of H. inuloides prevent carbon tetrachloride-(CCl4) induced oxidative stress in vital tissues. Pretreatment with both H. inuloides extracts or quercetin attenuated the increase in serum activity of alkaline phosphatase (ALP), total bilirubin (BB), creatinine (CRE), and creatine kinase (CK), and impeded the decrease of γ-globulin (γ-GLOB) and albumin (ALB) observed in CCl4-induced tissue injury. The protective effect was confirmed by histological analysis with hematoxylin-eosin and periodic acid/Schiff's reagent. Level of lipid peroxidation was higher in the organs of rats exposed to CCl4 than in those of the animals treated with Heterohteca extracts or quercetin, and these showed levels similar to the untreated group. Pretreatment of animals with either of the extracts or quercetin also prevented the increase of 4-hydroxynonenal and 3-nitrotyrosine. Pretreatment with the plant extracts or quercetin attenuated CCl4 toxic effects on the activity of several antioxidant enzymes. The present results strongly suggest that the chemopreventive effect of the extracts used and quercetin, against CCl4 toxicity, is associated with their antioxidant properties and corroborated previous results obtained in liver tissue.
Collapse
|
1578
|
Le A, Rajeshkumar NV, Maitra A, Dang CV. Conceptual framework for cutting the pancreatic cancer fuel supply. Clin Cancer Res 2013; 18:4285-90. [PMID: 22896695 DOI: 10.1158/1078-0432.ccr-12-0041] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma (a.k.a. pancreatic cancer) remains one of the most feared and clinically challenging diseases to treat despite continual improvements in therapies. The genetic landscape of pancreatic cancer shows near ubiquitous activating mutations of KRAS, and recurrent inactivating mutations of CDKN2A, SMAD4, and TP53. To date, attempts to develop agents to target KRAS to specifically kill cancer cells have been disappointing. In this regard, an understanding of cellular metabolic derangements in pancreatic cancer could lead to novel therapeutic approaches. Like other cancers, pancreatic cancer cells rely on fuel sources for homeostasis and proliferation; as such, interrupting the use of two major nutrients, glucose and glutamine, may provide new therapeutic avenues. In addition, KRAS-mutant pancreatic cancers have been documented to depend on autophagy, and the inhibition of autophagy in the preclinical setting has shown promise. Herein, the conceptual framework for blocking the pancreatic fuel supply is reviewed.
Collapse
Affiliation(s)
- Anne Le
- Departments of Pathology and Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
1579
|
Haldar SM, Stamler JS. S-nitrosylation: integrator of cardiovascular performance and oxygen delivery. J Clin Invest 2013; 123:101-10. [PMID: 23281416 DOI: 10.1172/jci62854] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Delivery of oxygen to tissues is the primary function of the cardiovascular system. NO, a gasotransmitter that signals predominantly through protein S-nitrosylation to form S-nitrosothiols (SNOs) in target proteins, operates coordinately with oxygen in mammalian cellular systems. From this perspective, SNO-based signaling may have evolved as a major transducer of the cellular oxygen-sensing machinery that underlies global cardiovascular function. Here we review mechanisms that regulate S-nitrosylation in the context of its essential role in "systems-level" control of oxygen sensing, delivery, and utilization in the cardiovascular system, and we highlight examples of aberrant S-nitrosylation that may lead to altered oxygen homeostasis in cardiovascular diseases. Thus, through a bird's-eye view of S-nitrosylation in the cardiovascular system, we provide a conceptual framework that may be broadly applicable to the functioning of other cellular systems and physiological processes and that illuminates new therapeutic promise in cardiovascular medicine.
Collapse
Affiliation(s)
- Saptarsi M Haldar
- Department of Medicine and Cardiovascular Division, Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, Cleveland, Ohio, USA.
| | | |
Collapse
|
1580
|
Chi YH, Paeng SK, Kim MJ, Hwang GY, Melencion SMB, Oh HT, Lee SY. Redox-dependent functional switching of plant proteins accompanying with their structural changes. FRONTIERS IN PLANT SCIENCE 2013; 4:277. [PMID: 23898340 PMCID: PMC3724125 DOI: 10.3389/fpls.2013.00277] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/08/2013] [Indexed: 05/21/2023]
Abstract
Reactive oxygen species (ROS) can be generated during the course of normal aerobic metabolism or when an organism is exposed to a variety of stress conditions. It can cause a widespread damage to intracellular macromolecules and play a causal role in many degenerative diseases. Like other aerobic organisms plants are also equipped with a wide range of antioxidant redox proteins, such as superoxide dismutase, catalase, glutaredoxin, thioredoxin (Trx), Trx reductase, protein disulfide reductase, and other kinds of peroxidases that are usually significant in preventing harmful effects of ROS. To defend plant cells in response to stimuli, a part of redox proteins have shown to play multiple functions through the post-translational modification with a redox-dependent manner. For the alternative switching of their cellular functions, the redox proteins change their protein structures from low molecular weight to high molecular weight (HMW) protein complexes depending on the external stress. The HMW proteins are reported to act as molecular chaperone, which enable the plants to enhance their stress tolerance. In addition, some transcription factors and co-activators have function responding to environmental stresses by redox-dependent structural changes. This review describes the molecular mechanism and physiological significance of the redox proteins, transcription factors and co-activators to protect the plants from environmental stresses through the redox-dependent structural and functional switching of the plant redox proteins.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sang Yeol Lee
- *Correspondence: Sang Yeol Lee, Division of Applied Life Sciences, Gyeongsang National University, Jinjudaero 501, Jinju 660-701, Korea e-mail:
| |
Collapse
|
1581
|
Wetie AGN, Sokolowska I, Woods AG, Darie CC. Identification of Post-Translational Modifications by Mass Spectrometry. Aust J Chem 2013. [DOI: 10.1071/ch13144] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins are the effector molecules of many cellular and biological processes and are thus very dynamic and flexible. Regulation of protein activity, structure, stability, and turnover is in part controlled by their post-translational modifications (PTMs). Common PTMs of proteins include phosphorylation, glycosylation, methylation, ubiquitination, acetylation, and oxidation. Understanding the biology of protein PTMs can help elucidate the mechanisms of many pathological conditions and provide opportunities for prevention, diagnostics, and treatment of these disorders. Prior to the era of proteomics, it was standard to use chemistry methods for the identification of protein modifications. With advancements in proteomic technologies, mass spectrometry has become the method of choice for the analysis of protein PTMs. In this brief review, we will highlight the biochemistry of PTMs with an emphasis on mass spectrometry.
Collapse
|
1582
|
Li J, Li L, Liu X, Li R, Yang X. Single-wall carbon nanotube-induced airway hyperresponsiveness in rats and a postulated mechanism of action. RSC Adv 2013. [DOI: 10.1039/c3ra44168g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
1583
|
Kulathu Y, Garcia FJ, Mevissen TE, Busch M, Arnaudo N, Carroll KS, Barford D, Komander D. Regulation of A20 and other OTU deubiquitinases by reversible oxidation. Nat Commun 2013; 4:1569. [PMID: 23463012 PMCID: PMC4176832 DOI: 10.1038/ncomms2567] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/28/2013] [Indexed: 12/23/2022] Open
Abstract
Protein ubiquitination is a highly versatile post-translational modification that regulates as diverse processes as protein degradation and kinase activation. Deubiquitinases hydrolyse ubiquitin modifications from proteins and are hence key regulators of the ubiquitin system. Ovarian tumour deubiquitinases comprise a family of fourteen human enzymes, many of which regulate cellular signalling pathways. Ovarian tumour deubiquitinases are cysteine proteases that cleave polyubiquitin chains in vitro and in cells, but little is currently known about their regulation. Here we show that ovarian tumour deubiquitinases are susceptible to reversible oxidation of the catalytic cysteine residue. High-resolution crystal structures of the catalytic domain of A20 in four different oxidation states reveal that the reversible form of A20 oxidation is a cysteine sulphenic acid intermediate, which is stabilised by the architecture of the catalytic centre. Using chemical tools to detect sulphenic acid intermediates, we show that many ovarian tumour deubiquitinases undergo reversible oxidation upon treatment with H2O2, revealing a new mechanism to regulate deubiquitinase activity.
Collapse
Affiliation(s)
- Yogesh Kulathu
- Division of Protein and Nucleic Acids Chemistry, MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK
| | - Francisco J. Garcia
- Department of Chemistry, The Scripps Research Institute, Scripps Florida 120 Scripps Way, Jupiter, FL 33458, USA
| | - Tycho E.T. Mevissen
- Division of Protein and Nucleic Acids Chemistry, MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK
| | - Martin Busch
- Division of Protein and Nucleic Acids Chemistry, MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK
| | - Nadia Arnaudo
- Division of Protein and Nucleic Acids Chemistry, MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK
| | - Kate S. Carroll
- Department of Chemistry, The Scripps Research Institute, Scripps Florida 120 Scripps Way, Jupiter, FL 33458, USA
| | - David Barford
- Division of Structural Biology, Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - David Komander
- Division of Protein and Nucleic Acids Chemistry, MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK
| |
Collapse
|
1584
|
Urao N, Ushio-Fukai M. Redox regulation of stem/progenitor cells and bone marrow niche. Free Radic Biol Med 2013; 54:26-39. [PMID: 23085514 PMCID: PMC3637653 DOI: 10.1016/j.freeradbiomed.2012.10.532] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 10/02/2012] [Accepted: 10/05/2012] [Indexed: 01/19/2023]
Abstract
Bone marrow (BM)-derived stem and progenitor cell functions including self-renewal, differentiation, survival, migration, proliferation, and mobilization are regulated by unique cell-intrinsic and -extrinsic signals provided by their microenvironment, also termed the "niche." Reactive oxygen species (ROS), especially hydrogen peroxide (H(2)O(2)), play important roles in regulating stem and progenitor cell functions in various physiologic and pathologic responses. The low level of H(2)O(2) in quiescent hematopoietic stem cells (HSCs) contributes to maintaining their "stemness," whereas a higher level of H(2)O(2) within HSCs or their niche promotes differentiation, proliferation, migration, and survival of HSCs or stem/progenitor cells. Major sources of ROS are NADPH oxidase and mitochondria. In response to ischemic injury, ROS derived from NADPH oxidase are increased in the BM microenvironment, which is required for hypoxia and hypoxia-inducible factor-1α expression and expansion throughout the BM. This, in turn, promotes progenitor cell expansion and mobilization from BM, leading to reparative neovascularization and tissue repair. In pathophysiological states such as aging, atherosclerosis, heart failure, hypertension, and diabetes, excess amounts of ROS create an inflammatory and oxidative microenvironment, which induces cell damage and apoptosis of stem and progenitor cells. Understanding the molecular mechanisms of how ROS regulate the functions of stem and progenitor cells and their niche in physiological and pathological conditions will lead to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Norifumi Urao
- Department of Pharmacology, Center for Lung and Vascular Biology, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | |
Collapse
|
1585
|
Hurd TR, Leblanc MG, Jones LN, DeGennaro M, Lehmann R. Genetic modifier screens to identify components of a redox-regulated cell adhesion and migration pathway. Methods Enzymol 2013; 528:197-215. [PMID: 23849867 DOI: 10.1016/b978-0-12-405881-1.00012-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Under normal physiological conditions, cells use oxidants, particularly H2O2, for signal transduction during processes such as proliferation and migration. Though recent progress has been made in determining the precise role H2O2 plays in these processes, many gaps still remain. To further understand this, we describe the use of a dominant enhancer screen to identify novel components of a redox-regulated cell migration and adhesion pathway in Drosophila melanogaster. Here, we discuss our methodology and progress as well as the benefits and limitations of applying such an approach to study redox-regulated pathways. Depending on the nature of these pathways, unbiased genetic modifier screens may prove a productive way to identify novel redox-regulated signaling components.
Collapse
Affiliation(s)
- Thomas Ryan Hurd
- Department of Cell Biology, HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, USA.
| | | | | | | | | |
Collapse
|
1586
|
Aller I, Rouhier N, Meyer AJ. Development of roGFP2-derived redox probes for measurement of the glutathione redox potential in the cytosol of severely glutathione-deficient rml1 seedlings. FRONTIERS IN PLANT SCIENCE 2013; 4:506. [PMID: 24379821 PMCID: PMC3863748 DOI: 10.3389/fpls.2013.00506] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/26/2013] [Indexed: 05/05/2023]
Abstract
Glutathione is important for detoxification, as a cofactor in biochemical reactions and as a thiol-redox buffer. The cytosolic glutathione buffer is normally highly reduced with glutathione redox potentials (E GSH ) of more negative than -310 mV. Maintenance of such negative redox potential is achieved through continuous reduction of glutathione disulfide by glutathione reductase (GR). Deviations from steady state glutathione redox homeostasis have been discussed as a possible mean to alter the activity of redox-sensitive proteins through switching of critical thiol residues. To better understand such signaling mechanisms it is essential to be able to measure E GSH over a wide range from highly negative redox potentials down to potentials found in mutants that show already severe phenotypes. With the advent of redox-sensitive GFPs (roGFPs), understanding the in vivo dynamics of the thiol-based redox buffer system became within reach. The original roGFP versions, roGFP1 and roGFP2, however, have midpoint potentials between -280 and -290 mV rendering them fully oxidized in the ER and almost fully reduced in the cytosol, plastids, mitochondria, and peroxisomes. To extend the range of suitable probes we have engineered a roGFP2 derivative, roGFP2-iL, with a midpoint potential of about -238 mV. This value is within the range of redox potentials reported for homologous roGFP1-iX probes, albeit with different excitation properties. To allow rapid and specific equilibration with the glutathione pool, fusion constructs with human glutaredoxin 1 (GRX1) were generated and characterized in vitro. GRX1-roGFP2-iL proved to be suitable for in vivo redox potential measurements and extends the range of E GSH values that can be measured in vivo with roGFP2-based probes from about -320 mV for GRX1-roGFP2 down to about -210 mV for GRX1-roGFP2-iL. Using both probes in the cytosol of severely glutathione-deficient rml1 seedlings revealed an E GSH of about -260 mV in this mutant.
Collapse
Affiliation(s)
- Isabel Aller
- INRES-Chemical Signalling, University of BonnBonn, Germany
| | - Nicolas Rouhier
- Interactions Arbres Microorganismes, IFR 110 EFABA, Faculté des sciences, Université de Lorraine, UMR 1136 Université de Lorraine/INRAVandoeuvre lès-Nancy, France
| | - Andreas J. Meyer
- INRES-Chemical Signalling, University of BonnBonn, Germany
- *Correspondence: Andreas J. Meyer, INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany e-mail:
| |
Collapse
|
1587
|
Grompone G, Martorell P, Llopis S, González N, Genovés S, Mulet AP, Fernández-Calero T, Tiscornia I, Bollati-Fogolín M, Chambaud I, Foligné B, Montserrat A, Ramón D. Anti-inflammatory Lactobacillus rhamnosus CNCM I-3690 strain protects against oxidative stress and increases lifespan in Caenorhabditis elegans. PLoS One 2012; 7:e52493. [PMID: 23300685 PMCID: PMC3530454 DOI: 10.1371/journal.pone.0052493] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 11/19/2012] [Indexed: 01/15/2023] Open
Abstract
Numerous studies have shown that resistance to oxidative stress is crucial to stay healthy and to reduce the adverse effects of aging. Accordingly, nutritional interventions using antioxidant food-grade compounds or food products are currently an interesting option to help improve health and quality of life in the elderly. Live lactic acid bacteria (LAB) administered in food, such as probiotics, may be good antioxidant candidates. Nevertheless, information about LAB-induced oxidative stress protection is scarce. To identify and characterize new potential antioxidant probiotic strains, we have developed a new functional screening method using the nematode Caenorhabditis elegans as host. C. elegans were fed on different LAB strains (78 in total) and nematode viability was assessed after oxidative stress (3 mM and 5 mM H(2)O(2)). One strain, identified as Lactobacillus rhamnosus CNCM I-3690, protected worms by increasing their viability by 30% and, also, increased average worm lifespan by 20%. Moreover, transcriptomic analysis of C. elegans fed with this strain showed that increased lifespan is correlated with differential expression of the DAF-16/insulin-like pathway, which is highly conserved in humans. This strain also had a clear anti-inflammatory profile when co-cultured with HT-29 cells, stimulated by pro-inflammatory cytokines, and co-culture systems with HT-29 cells and DC in the presence of LPS. Finally, this Lactobacillus strain reduced inflammation in a murine model of colitis. This work suggests that C. elegans is a fast, predictive and convenient screening tool to identify new potential antioxidant probiotic strains for subsequent use in humans.
Collapse
|
1588
|
Oxidative stress contributes to endothelial dysfunction in mouse models of hereditary hemorrhagic telangiectasia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:686972. [PMID: 23320130 PMCID: PMC3540964 DOI: 10.1155/2012/686972] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 11/30/2012] [Indexed: 11/17/2022]
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a vascular dysplasia caused by mutations in endoglin (ENG; HHT1) or activin receptor-like kinase (ALK1; HHT2) genes, coding for transforming growth factor-β (TGF-β) superfamily receptors. We demonstrated previously that endoglin and ALK1 interact with endothelial NO synthase (eNOS) and affect its activation. Endothelial cells deficient in endoglin or ALK1 proteins show eNOS uncoupling, reduced NO, and increased reactive oxygen species (ROS) production. In this study, we measured NO and H2O2 levels in several organs of adult Eng and Alk1 heterozygous mice, to ascertain whether decreased NO and increased ROS production is a generalized manifestation of HHT. A significant reduction in NO and increase in ROS production were found in several organs, known to be affected in patients. ROS overproduction in mutant mice was attributed to eNOS, as it was L-NAME inhibitable. Mitochondrial ROS contribution, blocked by antimycin, was highest in liver while NADPH oxidase, inhibited by apocynin, was a major source of ROS in the other tissues. However, there was no difference in antimycin- and apocynin-inhibitable ROS production between mutant and control mice. Our results indicate that eNOS-derived ROS contributes to endothelial dysfunction and likely predisposes to disease manifestations in several organs of HHT patients.
Collapse
|
1589
|
Distelmaier F, Valsecchi F, Forkink M, van Emst-de Vries S, Swarts HG, Rodenburg RJT, Verwiel ETP, Smeitink JAM, Willems PHGM, Koopman WJH. Trolox-sensitive reactive oxygen species regulate mitochondrial morphology, oxidative phosphorylation and cytosolic calcium handling in healthy cells. Antioxid Redox Signal 2012; 17:1657-69. [PMID: 22559215 PMCID: PMC3474189 DOI: 10.1089/ars.2011.4294] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AIMS Cell regulation by signaling reactive oxygen species (sROS) is often incorrectly studied through extracellular oxidant addition. Here, we used the membrane-permeable antioxidant Trolox to examine the role of sROS in mitochondrial morphology, oxidative phosphorylation (OXPHOS), and cytosolic calcium (Ca(2+)) handling in healthy human skin fibroblasts. RESULTS AND INNOVATION Trolox treatment reduced the levels of 5-(and-6)-chloromethyl-2',7'-dichlorodihydro-fluorescein (CM-H(2)DCF) oxidizing ROS, lowered cellular lipid peroxidation, and induced a less oxidized mitochondrial thiol redox state. This was paralleled by increased glutathione- and mitofusin-dependent mitochondrial filamentation, increased expression of fully assembled mitochondrial complex I, elevated activity of citrate synthase and OXPHOS enzymes, and a higher cellular O(2) consumption. In contrast, Trolox did not alter hydroethidium oxidation, cytosolic thiol redox state, mitochondrial NAD(P)H levels, or mitochondrial membrane potential. Whole genome expression profiling revealed that Trolox did not trigger significant changes in gene expression, suggesting that Trolox acts downstream of this process. Cytosolic Ca(2+) transients, induced by the hormone bradykinin, were of a higher amplitude and decayed faster in Trolox-treated cells. These effects were dose-dependently antagonized by hydrogen peroxide. CONCLUSIONS Our findings suggest that Trolox-sensitive sROS are upstream regulators of mitochondrial mitofusin levels, morphology, and function in healthy human skin fibroblasts. This information not only facilitates the interpretation of antioxidant effects in cell models (of oxidative-stress), but also contributes to a better understanding of ROS-related human pathologies, including mitochondrial disorders.
Collapse
Affiliation(s)
- Felix Distelmaier
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1590
|
Truong TH, Carroll KS. Redox regulation of epidermal growth factor receptor signaling through cysteine oxidation. Biochemistry 2012. [PMID: 23186290 DOI: 10.1021/bi301441e] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epidermal growth factor receptor (EGFR) exemplifies the family of receptor tyrosine kinases that mediate numerous cellular processes, including growth, proliferation, and differentiation. Moreover, gene amplification and EGFR mutations have been identified in a number of human malignancies, making this receptor an important target for the development of anticancer drugs. In addition to ligand-dependent activation and concomitant tyrosine phosphorylation, EGFR stimulation results in the localized generation of H(2)O(2) by NADPH-dependent oxidases. In turn, H(2)O(2) functions as a secondary messenger to regulate intracellular signaling cascades, largely through the modification of specific cysteine residues within redox-sensitive protein targets, including Cys797 in the EGFR active site. In this review, we highlight recent advances in our understanding of the mechanisms that underlie redox regulation of EGFR signaling and how these discoveries may form the basis for the development of new therapeutic strategies for targeting this and other H(2)O(2)-modulated pathways.
Collapse
Affiliation(s)
- Thu H Truong
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
1591
|
Zhang DX, Yan H, Hu JY, Zhang JP, Teng M, Tong DL, Xiang F, Zhang Q, Fang YD, Liang GP, Huang YS. Identification of mitochondria translation elongation factor Tu as a contributor to oxidative damage of postburn myocardium. J Proteomics 2012; 77:469-79. [DOI: 10.1016/j.jprot.2012.09.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 09/19/2012] [Accepted: 09/22/2012] [Indexed: 12/30/2022]
|
1592
|
Kasson TMD, Barry BA. Reactive oxygen and oxidative stress: N-formyl kynurenine in photosystem II and non-photosynthetic proteins. PHOTOSYNTHESIS RESEARCH 2012; 114:97-110. [PMID: 23161228 DOI: 10.1007/s11120-012-9784-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 10/31/2012] [Indexed: 06/01/2023]
Abstract
While light is the essential driving force for photosynthetic carbon fixation, high light intensities are toxic to photosynthetic organisms. Prolonged exposure to high light results in damage to the photosynthetic membrane proteins and suboptimal activity, a phenomenon called photoinhibition. The primary target for inactivation is the photosystem II (PSII) reaction center. PSII catalyzes the light-induced oxidation of water at the oxygen-evolving complex. Reactive oxygen species (ROS) are generated under photoinhibitory conditions and induce oxidative post translational modifications of amino acid side chains. Specific modification of tryptophan residues to N-formylkynurenine (NFK) occurs in the CP43 and D1 core polypeptides of PSII. The NFK modification has also been detected in other proteins, such as mitochondrial respiratory enzymes, and is formed by a non-random, ROS-targeted mechanism. NFK has been shown to accumulate in PSII during conditions of high light stress in vitro. This review provides a summary of what is known about the generation and function of NFK in PSII and other proteins. Currently, the role of ROS in photoinhibition is under debate. Furthermore, the triggers for the degradation and accelerated turnover of PSII subunits, which occur under high light, are not yet identified. Owing to its unique optical and Raman signal, NFK provides a new marker to use in the identification of ROS generation sites in PSII and other proteins. Also, the speculative hypothesis that NFK, and other oxidative modifications of tryptophan, play a role in the PSII damage and repair cycle is discussed. NFK may have a similar function during oxidative stress in other biologic systems.
Collapse
Affiliation(s)
- Tina M Dreaden Kasson
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | |
Collapse
|
1593
|
High efficiency versus maximal performance--the cause of oxidative stress in eukaryotes: a hypothesis. Mitochondrion 2012. [PMID: 23178790 DOI: 10.1016/j.mito.2012.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Degenerative diseases are in part based on elevated production of ROS (reactive oxygen species) in mitochondria, mainly during stress and excessive work under stress (strenuous exercise). The production of ROS increases with increasing mitochondrial membrane potential (ΔΨ(m)). A mechanism is described which is suggested to keep ΔΨ(m) at low values under normal conditions thus preventing ROS formation, but is switched off under stress and excessive work to maximize the rate of ATP synthesis, accompanied by decreased efficiency. Low ΔΨ(m) and low ROS production are suggested to occur by inhibition of respiration at high [ATP]/[ADP] ratios. The nucleotides interact with phosphorylated cytochrome c oxidase (COX), representing the step with the highest flux-control coefficient of mitochondrial respiration. At stress and excessive work neural signals are suggested to dephosphorylate the enzyme and abolish the control of COX activity (respiration) by the [ATP]/[ADP] ratio with consequent increase of ΔΨ(m) and ROS production. The control of COX by the [ATP]/[ADP] ratio, in addition, is proposed to increase the efficiency of ATP production via a third proton pumping pathway, identified in eukaryotic but not in prokaryotic COX. We conclude that 'oxidative stress' occurs when the control of COX activity by the [ATP]/[ADP] ratio is switched off via neural signals.
Collapse
|
1594
|
Kennedy LH, Sutter CH, Leon Carrion S, Tran QT, Bodreddigari S, Kensicki E, Mohney RP, Sutter TR. 2,3,7,8-Tetrachlorodibenzo-p-dioxin-mediated production of reactive oxygen species is an essential step in the mechanism of action to accelerate human keratinocyte differentiation. Toxicol Sci 2012; 132:235-49. [PMID: 23152189 DOI: 10.1093/toxsci/kfs325] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Chloracne is commonly observed in humans exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD); yet, the mechanism of toxicity is not well understood. Using normal human epidermal keratinocytes, we investigated the mechanism of TCDD-mediated enhancement of epidermal differentiation by integrating functional genomic, metabolomic, and biochemical analyses. TCDD increased the expression of 40% of the genes of the epidermal differentiation complex found on chromosome 1q21 and 75% of the genes required for de novo ceramide biosynthesis. Lipid analysis demonstrated that eight of the nine classes of ceramides were increased by TCDD, altering the ratio of ceramides to free fatty acids. TCDD decreased the expression of the glucose transporter, SLC2A1, and most of the glycolytic transcripts, followed by decreases in glycolytic intermediates, including pyruvate. NADH and Krebs cycle intermediates were decreased, whereas NAD(+) was increased. Mitochondrial glutathione (GSH) reductase activity and the GSH/glutathione disulfide ratio were decreased by TCDD, ultimately leading to mitochondrial dysfunction, characterized by decreased inner mitochondrial membrane potential and ATP production, and increased production of the reactive oxygen species (ROS), hydrogen peroxide. Aryl hydrocarbon receptor (AHR) antagonists blocked the response of many transcripts to TCDD, and the endpoints of decreased ATP production and differentiation, suggesting regulation by the AHR. Cotreatment of cells with chemical antioxidants or the enzyme catalase blocked the TCDD-mediated acceleration of keratinocyte cornified envelope formation, an endpoint of terminal differentiation. Thus, TCDD-mediated ROS production is a critical step in the mechanism of this chemical to accelerate keratinocyte differentiation.
Collapse
|
1595
|
Higuchi M, Dusting GJ, Peshavariya H, Jiang F, Hsiao STF, Chan EC, Liu GS. Differentiation of human adipose-derived stem cells into fat involves reactive oxygen species and Forkhead box O1 mediated upregulation of antioxidant enzymes. Stem Cells Dev 2012; 22:878-88. [PMID: 23025577 DOI: 10.1089/scd.2012.0306] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Both reactive oxygen species (ROS) and Forkhead box O (FOXO) family transcription factors are involved in the regulation of adipogenic differentiation of preadipocytes and stem cells. While FOXO has a pivotal role in maintaining cellular redox homeostasis, the interactions between ROS and FOXO during adipogenesis are not clear. Here we examined how ROS and FOXO regulate adipogenesis in human adipose-derived stem cells (hASC). The identity of isolated cells was confirmed by their surface marker expression pattern typical for human mesenchymal stem cells (positive for CD29, CD44, CD73, CD90, and CD105, negative for CD45 and CD31). Using a standard adipogenic cocktail consisting of insulin, dexamethasone, indomethacin, and 3-Isobutyl-1-methylanxthine (IDII), adipogenesis was induced in hASC, which was accompanied by ROS generation. Scavenging ROS production with N-acetyl-L-cysteine or EUK-8, a catalytic mimetic of superoxide dismutase (SOD) and catalase, inhibited IDII-induced adipogenesis. We then mimicked IDII-induced oxidative stress through a lentiviral overexpression of Nox4 and an exogenous application of hydrogen peroxide in hASC and both manipulations significantly enhanced adipogenesis without changing the adipogenic differentiation rate. These data suggest that ROS promoted lipid accumulation in hASC undergoing adipogenesis. Antioxidant enzymes, including SOD2, catalase, and glutathione peroxidase were upregulated by IDII during adipogenesis, and these effects were blunted by FOXO1 silencing, which also suppressed significantly IDII-induced adipogenesis. Our findings demonstrated a balance of ROS generation and endogenous antioxidants in cells undergoing adipogenesis. Approaches targeting ROS and/or FOXO1 in adipocytes may bring new strategies to prevent and treat obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Masayoshi Higuchi
- Centre for Eye Research Australia, East Melbourne, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
1596
|
Kallenborn-Gerhardt W, Schröder K, Geisslinger G, Schmidtko A. NOXious signaling in pain processing. Pharmacol Ther 2012; 137:309-17. [PMID: 23146925 DOI: 10.1016/j.pharmthera.2012.11.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 10/26/2012] [Indexed: 12/14/2022]
Abstract
Chronic pain affects millions of people and often causes major health problems. Accumulating evidence indicates that the production of reactive oxygen species (ROS), such as superoxide anion or hydrogen peroxide, is increased in the nociceptive system during chronic inflammatory and neuropathic pain, and that ROS can act as specific signaling molecules in pain processing. Reduction of ROS levels by administration of scavengers or antioxidant compounds attenuated the nociceptive behavior in various animal models of chronic pain. However, the sources of increased ROS production during chronic pain and the role of ROS in pain processing are poorly understood. Current work revealed pain-relevant functions of the Nox family of NADPH oxidases, a group of electron-transporting transmembrane enzymes whose sole function seems to be the generation of ROS. In particular, significant expression of the Nox family members Nox1, Nox2, and Nox4 in various cells of the nociceptive system has been discovered. Studies using knockout mice suggest that these Nox enzymes specifically contribute to distinct signaling pathways in chronic inflammatory and/or neuropathic pain states. Accordingly, targeting Nox1, Nox2, and Nox4 could be a novel strategy for the treatment of chronic pain. Currently selective inhibitors of Nox enzymes are being developed. Here, we introduce the distinct roles of Nox enzymes in pain processing, we summarize recent findings in the understanding of ROS-dependent signaling pathways in the nociceptive system, and we discuss potential analgesic properties of currently available Nox inhibitors.
Collapse
Affiliation(s)
- Wiebke Kallenborn-Gerhardt
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Johann Wolfgang Goethe-Universität, 60590 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
1597
|
Liu GS, Chan EC, Higuchi M, Dusting GJ, Jiang F. Redox mechanisms in regulation of adipocyte differentiation: beyond a general stress response. Cells 2012; 1:976-93. [PMID: 24710538 PMCID: PMC3901142 DOI: 10.3390/cells1040976] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 10/26/2012] [Accepted: 10/31/2012] [Indexed: 02/07/2023] Open
Abstract
In this review, we summarize advances in our understanding of redox-sensitive mechanisms that regulate adipogenesis. Current evidence indicates that reactive oxygen species may act to promote both the initiation of adipocyte lineage commitment of precursor or stem cells, and the terminal differentiation of preadipocytes to mature adipose cells. These can involve redox regulation of pathways mediated by receptor tyrosine kinases, peroxisome proliferator-activated receptor γ (PPARγ), PPARγ coactivator 1α (PGC-1α), AMP-activated protein kinase (AMPK), and CCAAT/enhancer binding protein β (C/EBPβ). However, the precise roles of ROS in adipogenesis in vivo remain controversial. More studies are needed to delineate the roles of reactive oxygen species and redox signaling mechanisms, which could be either positive or negative, in the pathogenesis of obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Guei-Sheung Liu
- Centre for Eye Research Australia, University of Melbourne, Victoria 3002, Australia.
| | - Elsa C Chan
- Centre for Eye Research Australia, University of Melbourne, Victoria 3002, Australia.
| | - Masayoshi Higuchi
- Centre for Eye Research Australia, University of Melbourne, Victoria 3002, Australia.
| | - Gregory J Dusting
- Centre for Eye Research Australia, University of Melbourne, Victoria 3002, Australia.
| | - Fan Jiang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250-012, Shandong, China.
| |
Collapse
|
1598
|
Tsunoda S, Kawano N, Miyado K, Kimura N, Fujii J. Impaired Fertilizing Ability of Superoxide Dismutase 1-Deficient Mouse Sperm During In Vitro Fertilization1. Biol Reprod 2012; 87:121. [DOI: 10.1095/biolreprod.112.102129] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
1599
|
Quinlan CL, Treberg JR, Perevoshchikova IV, Orr AL, Brand MD. Native rates of superoxide production from multiple sites in isolated mitochondria measured using endogenous reporters. Free Radic Biol Med 2012; 53:1807-17. [PMID: 22940066 PMCID: PMC3472107 DOI: 10.1016/j.freeradbiomed.2012.08.015] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 07/30/2012] [Accepted: 08/08/2012] [Indexed: 12/22/2022]
Abstract
Individual sites of superoxide production in the mitochondrial respiratory chain have previously been defined and partially characterized using specific inhibitors, but the native contribution of each site to total superoxide production in the absence of inhibitors is unknown. We estimated rates of superoxide production (measured as H(2)O(2)) at various sites in rat muscle mitochondria using specific endogenous reporters. The rate of superoxide production by the complex I flavin (site I(F)) was calibrated to the reduction state of endogenous NAD(P)H. Similarly, the rate of superoxide production by the complex III site of quinol oxidation (site III(Qo)) was calibrated to the reduction state of endogenous cytochrome b(566). We then measured the endogenous reporters in mitochondria oxidizing NADH-generating substrates, without added respiratory inhibitors, with and without ATP synthesis. We used the calibrated reporters to calculate the rates of superoxide production from sites I(F) and III(Qo). The calculated rates of superoxide production accounted for much of the measured overall rates. During ATP synthesis, site I(F) was the dominant superoxide producer. Under nonphosphorylating conditions, overall rates were higher, and sites I(F) and III(Qo) and unidentified sites (perhaps the complex I site of quinone reduction, site I(Q)) all made substantial contributions to measured H(2)O(2) production.
Collapse
Affiliation(s)
- Casey L. Quinlan
- The Buck Institute for Research on Aging, Novato, California 94945
| | - Jason R. Treberg
- The Buck Institute for Research on Aging, Novato, California 94945
| | | | - Adam L. Orr
- The Buck Institute for Research on Aging, Novato, California 94945
| | - Martin D. Brand
- The Buck Institute for Research on Aging, Novato, California 94945
| |
Collapse
|
1600
|
Chen Y, Thompson DC, Koppaka V, Jester JV, Vasiliou V. Ocular aldehyde dehydrogenases: protection against ultraviolet damage and maintenance of transparency for vision. Prog Retin Eye Res 2012; 33:28-39. [PMID: 23098688 DOI: 10.1016/j.preteyeres.2012.10.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 01/02/2023]
Abstract
Aldehyde dehydrogenase (ALDH) enzymes catalyze the NAD(P)(+)-dependent oxidation of a wide variety of endogenous and exogenous aldehydes to their corresponding acids. Some members of the ALDH superfamily of enzymes are abundantly expressed in the mammalian cornea and lens in a taxon-specific manner. Considered to be corneal and lens crystallins, they confer protective and transparent properties upon these ocular tissues. ALDH3A1 is highly expressed in the cornea of most mammals, with the exception of rabbit that expresses exclusively ALDH1A1 in the cornea. ALDH1A1 is present in both the cornea and lens of several animal species. As a result of their catalytic and non-catalytic functions, ALDH3A1 and ALDH1A1 proteins protect inner ocular tissues from ultraviolet radiation and reactive oxygen-induced damage. In addition, these corneal crystallins contribute to cellular transparency in corneal stromal keratocytes, supporting a structural role of these ALDH proteins. A putative regulatory function of ALDH3A1 on corneal cell proliferation has also been proposed. Finally, the three retinaldehyde dehydrogenases cooperatively mediate retinoic acid signaling during the eye development.
Collapse
Affiliation(s)
- Ying Chen
- Department of Pharmaceutical Sciences, Molecular Toxicology and Environmental Health Sciences Program, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO 80045, USA
| | | | | | | | | |
Collapse
|