1651
|
Chinnusamy V, Gong Z, Zhu JK. Nuclear RNA Export and Its Importance in Abiotic Stress Responses of Plants. Curr Top Microbiol Immunol 2008; 326:235-55. [DOI: 10.1007/978-3-540-76776-3_13] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
1652
|
Barakat A, Wall PK, Diloreto S, Depamphilis CW, Carlson JE. Conservation and divergence of microRNAs in Populus. BMC Genomics 2007; 8:481. [PMID: 18166134 PMCID: PMC2270843 DOI: 10.1186/1471-2164-8-481] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Accepted: 12/31/2007] [Indexed: 11/10/2022] Open
Abstract
Background MicroRNAs (miRNAs) are small RNAs (sRNA) ~21 nucleotides in length that negatively control gene expression by cleaving or inhibiting the translation of target gene transcripts. miRNAs have been extensively analyzed in Arabidopsis and rice and partially investigated in other non-model plant species. To date, 109 and 62 miRNA families have been identified in Arabidopsis and rice respectively. However, only 33 miRNAs have been identified from the genome of the model tree species (Populus trichocarpa), of which 11 are Populus specific. The low number of miRNA families previously identified in Populus, compared with the number of families identified in Arabidopsis and rice, suggests that many miRNAs still remain to be discovered in Populus. In this study, we analyzed expressed small RNAs from leaves and vegetative buds of Populus using high throughput pyrosequencing. Results Analysis of almost eighty thousand small RNA reads allowed us to identify 123 new sequences belonging to previously identified miRNA families as well as 48 new miRNA families that could be Populus-specific. Comparison of the organization of miRNA families in Populus, Arabidopsis and rice showed that miRNA family sizes were generally expanded in Populus. The putative targets of non-conserved miRNA include both previously identified targets as well as several new putative target genes involved in development, resistance to stress, and other cellular processes. Moreover, almost half of the genes predicted to be targeted by non-conserved miRNAs appear to be Populus-specific. Comparative analyses showed that genes targeted by conserved and non-conserved miRNAs are biased mainly towards development, electron transport and signal transduction processes. Similar results were found for non-conserved miRNAs from Arabidopsis. Conclusion Our results suggest that while there is a conserved set of miRNAs among plant species, a large fraction of miRNAs vary among species. The non-conserved miRNAs may regulate cellular, physiological or developmental processes specific to the taxa that produce them, as appears likely to be the case for those miRNAs that have only been observed in Populus. Non-conserved and conserved miRNAs seem to target genes with similar biological functions indicating that similar selection pressures are acting on both types of miRNAs. The expansion in the number of most conserved miRNAs in Populus relative to Arabidopsis, may be linked to the recent genome duplication in Populus, the slow evolution of the Populus genome, or to differences in the selection pressure on duplicated miRNAs in these species.
Collapse
Affiliation(s)
- Abdelali Barakat
- Department of Biology, Institute of Molecular Evolutionary Genetics, and The Huck Institutes of the Life Sciences, 403 Life Sciences Building, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | |
Collapse
|
1653
|
Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M, Fitzgerald LM, Vezzulli S, Reid J, Malacarne G, Iliev D, Coppola G, Wardell B, Micheletti D, Macalma T, Facci M, Mitchell JT, Perazzolli M, Eldredge G, Gatto P, Oyzerski R, Moretto M, Gutin N, Stefanini M, Chen Y, Segala C, Davenport C, Demattè L, Mraz A, Battilana J, Stormo K, Costa F, Tao Q, Si-Ammour A, Harkins T, Lackey A, Perbost C, Taillon B, Stella A, Solovyev V, Fawcett JA, Sterck L, Vandepoele K, Grando SM, Toppo S, Moser C, Lanchbury J, Bogden R, Skolnick M, Sgaramella V, Bhatnagar SK, Fontana P, Gutin A, Van de Peer Y, Salamini F, Viola R. A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One 2007; 2:e1326. [PMID: 18094749 PMCID: PMC2147077 DOI: 10.1371/journal.pone.0001326] [Citation(s) in RCA: 590] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Accepted: 11/21/2007] [Indexed: 01/11/2023] Open
Abstract
Background Worldwide, grapes and their derived products have a large market. The cultivated grape species Vitis vinifera has potential to become a model for fruit trees genetics. Like many plant species, it is highly heterozygous, which is an additional challenge to modern whole genome shotgun sequencing. In this paper a high quality draft genome sequence of a cultivated clone of V. vinifera Pinot Noir is presented. Principal Findings We estimate the genome size of V. vinifera to be 504.6 Mb. Genomic sequences corresponding to 477.1 Mb were assembled in 2,093 metacontigs and 435.1 Mb were anchored to the 19 linkage groups (LGs). The number of predicted genes is 29,585, of which 96.1% were assigned to LGs. This assembly of the grape genome provides candidate genes implicated in traits relevant to grapevine cultivation, such as those influencing wine quality, via secondary metabolites, and those connected with the extreme susceptibility of grape to pathogens. Single nucleotide polymorphism (SNP) distribution was consistent with a diffuse haplotype structure across the genome. Of around 2,000,000 SNPs, 1,751,176 were mapped to chromosomes and one or more of them were identified in 86.7% of anchored genes. The relative age of grape duplicated genes was estimated and this made possible to reveal a relatively recent Vitis-specific large scale duplication event concerning at least 10 chromosomes (duplication not reported before). Conclusions Sanger shotgun sequencing and highly efficient sequencing by synthesis (SBS), together with dedicated assembly programs, resolved a complex heterozygous genome. A consensus sequence of the genome and a set of mapped marker loci were generated. Homologous chromosomes of Pinot Noir differ by 11.2% of their DNA (hemizygous DNA plus chromosomal gaps). SNP markers are offered as a tool with the potential of introducing a new era in the molecular breeding of grape.
Collapse
|
1654
|
Tanaka T, Antonio BA, Kikuchi S, Matsumoto T, Nagamura Y, Numa H, Sakai H, Wu J, Itoh T, Sasaki T, Aono R, Fujii Y, Habara T, Harada E, Kanno M, Kawahara Y, Kawashima H, Kubooka H, Matsuya A, Nakaoka H, Saichi N, Sanbonmatsu R, Sato Y, Shinso Y, Suzuki M, Takeda JI, Tanino M, Todokoro F, Yamaguchi K, Yamamoto N, Yamasaki C, Imanishi T, Okido T, Tada M, Ikeo K, Tateno Y, Gojobori T, Lin YC, Wei FJ, Hsing YI, Zhao Q, Han B, Kramer MR, McCombie RW, Lonsdale D, O'Donovan CC, Whitfield EJ, Apweiler R, Koyanagi KO, Khurana JP, Raghuvanshi S, Singh NK, Tyagi AK, Haberer G, Fujisawa M, Hosokawa S, Ito Y, Ikawa H, Shibata M, Yamamoto M, Bruskiewich RM, Hoen DR, Bureau TE, Namiki N, Ohyanagi H, Sakai Y, Nobushima S, Sakata K, Barrero RA, Sato Y, Souvorov A, Smith-White B, Tatusova T, An S, An G, OOta S, Fuks G, Fuks G, Messing J, Christie KR, Lieberherr D, Kim H, Zuccolo A, Wing RA, Nobuta K, Green PJ, Lu C, Meyers BC, Chaparro C, Piegu B, Panaud O, Echeverria M. The Rice Annotation Project Database (RAP-DB): 2008 update. Nucleic Acids Res 2007; 36:D1028-33. [PMID: 18089549 PMCID: PMC2238920 DOI: 10.1093/nar/gkm978] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Rice Annotation Project Database (RAP-DB) was created to provide the genome sequence assembly of the International Rice Genome Sequencing Project (IRGSP), manually curated annotation of the sequence, and other genomics information that could be useful for comprehensive understanding of the rice biology. Since the last publication of the RAP-DB, the IRGSP genome has been revised and reassembled. In addition, a large number of rice-expressed sequence tags have been released, and functional genomics resources have been produced worldwide. Thus, we have thoroughly updated our genome annotation by manual curation of all the functional descriptions of rice genes. The latest version of the RAP-DB contains a variety of annotation data as follows: clone positions, structures and functions of 31 439 genes validated by cDNAs, RNA genes detected by massively parallel signature sequencing (MPSS) technology and sequence similarity, flanking sequences of mutant lines, transposable elements, etc. Other annotation data such as Gnomon can be displayed along with those of RAP for comparison. We have also developed a new keyword search system to allow the user to access useful information. The RAP-DB is available at: http://rapdb.dna.affrc.go.jp/ and http://rapdb.lab.nig.ac.jp/.
Collapse
Affiliation(s)
-
- National Institute of Agrobiological Sciences, Ibaraki 305-8602, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1655
|
Tagami Y, Inaba N, Kutsuna N, Kurihara Y, Watanabe Y. Specific enrichment of miRNAs in Arabidopsis thaliana infected with Tobacco mosaic virus. DNA Res 2007; 14:227-33. [PMID: 18056073 PMCID: PMC2779904 DOI: 10.1093/dnares/dsm022] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
RNA silencing is a broadly conserved machinery and is involved in many biological events. Small RNAs are key molecules in RNA silencing pathway that guide sequence-specific gene regulations and chromatin modifications. The silencing machinery works as an anti-viral defense in virus-infected plants. It is generally accepted that virus-specific small interfering (si) RNAs bind to the viral genome and trigger its cleavage. Previously, we have cloned and obtained sequences of small RNAs from Arabidopsis thaliana infected or uninfected with crucifer Tobacco mosaic virus. MicroRNAs (miRNAs) accumulated to a higher percentage of total small RNAs in the virus-infected plants. This was partly because the viral replication protein binds to the miRNA/miRNA* duplexes. In the present study, we mapped the sequences of small RNAs other than virus-derived siRNAs to the Arabidopsis genome and assigned each small RNA. It was demonstrated that only miRNAs increased as a result of viral infection. Furthermore, some newly identified miRNAs and miRNA candidates were found from the virus-infected plants despite a limited number of examined sequences. We propose that it is advantageous to use virus-infected plants as a source for cloning and identifying new miRNAs.
Collapse
Affiliation(s)
- Yuko Tagami
- 1Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
| | | | | | | | | |
Collapse
|
1656
|
Archak S, Nagaraju J. Computational prediction of rice (Oryza sativa) miRNA targets. GENOMICS, PROTEOMICS & BIOINFORMATICS 2007; 5:196-206. [PMID: 18267301 PMCID: PMC5054203 DOI: 10.1016/s1672-0229(08)60007-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Bioinformatic approaches have complemented experimental efforts to inventorize plant miRNA targets. We carried out global computational analysis of rice (Oryza sativa) transcriptome to generate a comprehensive list of putative miRNA targets. Our predictions (684 unique transcripts) showed that rice miRNAs mediate regulation of diverse functions including transcription (41%), catalysis (28%), binding (18%), and transporter activity (11%). Among the predicted targets, 61.7% hits were in coding regions and nearly 72% targets had a solitary miRNA hit. The study predicted more than 70 novel targets of 34 miRNAs putatively regulating functions like stress-response, catalysis, and binding. It was observed that more than half (55%) of the targets were conserved between O. sativa indica and O. sativa japonica. Members of 31 miRNA families were found to possess conserved targets between rice and at least one of other grass family members. About 44% of the unique targets were common between two dissimilar miRNA prediction algorithms. Such an extent of cross-species conservation and algorithmic consensus confers confidence in the list of rice miRNA targets predicted in this study.
Collapse
Affiliation(s)
| | - J. Nagaraju
- Laboratory of Molecular Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500076, India
| |
Collapse
|
1657
|
Abstract
MicroRNAs (miRNAs) are small RNA molecules that regulate gene expression post-transcriptionally. After the discovery of the first miRNA in the roundworm Caenorhabditis elegans, these short regulatory RNAs have been found to be an abundant class of RNAs in plants, animals, and DNA viruses. About 3% of human genes encode for miRNAs, and up to 30% of human protein coding genes may be regulated by miRNAs. MicroRNAs play a key role in diverse biological processes, including development, cell proliferation, differentiation, and apoptosis. Accordingly, altered miRNA expression is likely to contribute to human disease, including cancer. This review will summarize the emerging knowledge of the connections between human miRNA biology and different aspects of carcinogenesis. Various techniques available to investigate miRNAs will also be discussed.
Collapse
|
1658
|
Narsai R, Howell KA, Millar AH, O'Toole N, Small I, Whelan J. Genome-wide analysis of mRNA decay rates and their determinants in Arabidopsis thaliana. THE PLANT CELL 2007; 19:3418-36. [PMID: 18024567 PMCID: PMC2174890 DOI: 10.1105/tpc.107.055046] [Citation(s) in RCA: 250] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 10/17/2007] [Accepted: 10/21/2007] [Indexed: 05/19/2023]
Abstract
To gain a global view of mRNA decay in Arabidopsis thaliana, suspension cell cultures were treated with a transcriptional inhibitor, and microarrays were used to measure transcript abundance over time. The deduced mRNA half-lives varied widely, from minutes to >24 h. Three features of the transcript displayed a correlation with decay rates: (1) genes possessing at least one intron produce mRNA transcripts significantly more stable than those of intronless genes, and this was not related to overall length, sequence composition, or number of introns; (2) various sequence elements in the 3' untranslated region are enriched among short- and long-lived transcripts, and their multiple occurrence suggests combinatorial control of transcript decay; and (3) transcripts that are microRNA targets generally have short half-lives. The decay rate of transcripts correlated with subcellular localization and function of the encoded proteins. Analysis of transcript decay rates for genes encoding orthologous proteins between Arabidopsis, yeast, and humans indicated that yeast and humans had a higher percentage of transcripts with shorter half-lives and that the relative stability of transcripts from genes encoding proteins involved in cell cycle, transcription, translation, and energy metabolism is conserved. Comparison of decay rates with changes in transcript abundance under a variety of abiotic stresses reveal that a set of transcription factors are downregulated with similar kinetics to decay rates, suggesting that inhibition of their transcription is an important early response to abiotic stress.
Collapse
Affiliation(s)
- Reena Narsai
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Australia
| | | | | | | | | | | |
Collapse
|
1659
|
Nielsen CB, Shomron N, Sandberg R, Hornstein E, Kitzman J, Burge CB. Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. RNA (NEW YORK, N.Y.) 2007; 13:1894-910. [PMID: 17872505 PMCID: PMC2040081 DOI: 10.1261/rna.768207] [Citation(s) in RCA: 285] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Vertebrate mRNAs are frequently targeted for post-transcriptional repression by microRNAs (miRNAs) through mechanisms involving pairing of 3' UTR seed matches to bases at the 5' end of miRNAs. Through analysis of expression array data following miRNA or siRNA overexpression or inhibition, we found that mRNA fold change increases multiplicatively (i.e., log-additively) with seed match count and that a single 8 mer seed match mediates down-regulation comparable to two 7 mer seed matches. We identified several targeting determinants that enhance seed match-associated mRNA repression, including the presence of adenosine opposite miRNA base 1 and of adenosine or uridine opposite miRNA base 9, independent of complementarity to the siRNA/miRNA. Increased sequence conservation in the approximately 50 bases 5' and 3' of the seed match and increased AU content 3' of the seed match were each independently associated with increased mRNA down-regulation. All of these determinants are enriched in the vicinity of conserved miRNA seed matches, supporting their activity in endogenous miRNA targeting. Together, our results enable improved siRNA off-target prediction, allow integrated ranking of conserved and nonconserved miRNA targets, and show that targeting by endogenous and exogenous miRNAs/siRNAs involves similar or identical determinants.
Collapse
Affiliation(s)
- Cydney B Nielsen
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
1660
|
Martín R, Arenas C, Daròs JA, Covarrubias A, Reyes JL, Chua NH. Characterization of small RNAs derived from Citrus exocortis viroid (CEVd) in infected tomato plants. Virology 2007; 367:135-46. [PMID: 17559901 DOI: 10.1016/j.virol.2007.05.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 04/05/2007] [Accepted: 05/07/2007] [Indexed: 01/04/2023]
Abstract
In plants, RNA silencing provides an adaptive immune system that inactivates pathogenic nucleic acids, guided by 21-24-mer RNAs of pathogen origin. The characterization of pathogen-related small RNAs (sRNAs) is relevant to uncovering the strategies used by pathogens to evade host defense responses. Several groups have reported the detection of viroid-derived sRNAs during infections, although the origin of these sRNAs and their chemical characteristics were poorly understood. Here, we describe the in vivo cleavage of Citrus exocortis viroid (CEVd) RNA into sRNAs of 21-22 nt, that are phosphorylated at their 5'-end and methylated at 3'. Our studies suggested that the CEVd genomic RNA might be the predominant in vivo substrate for cleavage by Dicer-like enzyme(s), which preferentially targeted residues mainly located within the right-end domain of the viroid. Further analysis on the accumulation levels of specific miRNAs controlling major regulators of leaf development and the miRNA pathway and the levels of their target mRNAs provided evidence that the endogenous tomato miRNA pathway was not affected by CEVd infection.
Collapse
Affiliation(s)
- Raquel Martín
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230 York Ave. New York, NY10021, USA
| | | | | | | | | | | |
Collapse
|
1661
|
Hinas A, Reimegård J, Wagner EGH, Nellen W, Ambros VR, Söderbom F. The small RNA repertoire of Dictyostelium discoideum and its regulation by components of the RNAi pathway. Nucleic Acids Res 2007; 35:6714-26. [PMID: 17916577 PMCID: PMC2175303 DOI: 10.1093/nar/gkm707] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Small RNAs play crucial roles in regulation of gene expression in many eukaryotes. Here, we report the cloning and characterization of 18–26 nt RNAs in the social amoeba Dictyostelium discoideum. This survey uncovered developmentally regulated microRNA candidates whose biogenesis, at least in one case, is dependent on a Dicer homolog, DrnB. Furthermore, we identified a large number of 21 nt RNAs originating from the DIRS-1 retrotransposon, clusters of which have been suggested to constitute centromeres. Small RNAs from another retrotransposon, Skipper, were significantly up-regulated in strains depleted of the second Dicer-like protein, DrnA, and a putative RNA-dependent RNA polymerase, RrpC. In contrast, the expression of DIRS-1 small RNAs was not altered in any of the analyzed strains. This suggests the presence of multiple RNAi pathways in D. discoideum. In addition, we isolated several small RNAs with antisense complementarity to mRNAs. Three of these mRNAs are developmentally regulated. Interestingly, all three corresponding genes express longer antisense RNAs from which the small RNAs may originate. In at least one case, the longer antisense RNA is complementary to the spliced but not the unspliced pre-mRNA, indicating synthesis by an RNA-dependent RNA polymerase.
Collapse
Affiliation(s)
- Andrea Hinas
- Department of Molecular Biology, Biomedical Center, Swedish University of Agricultural Sciences, Box 590, SE-75124 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
1662
|
Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family. Proc Natl Acad Sci U S A 2007; 104:16371-6. [PMID: 17916625 DOI: 10.1073/pnas.0707653104] [Citation(s) in RCA: 226] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Currently, there are very few loss-of-function mutations in micro-RNA genes. Here, we characterize two members of the Arabidopsis MIR159 family, miR159a and miR159b, that are predicted to regulate the expression of a family of seven transcription factors that includes the two redundant GAMYB-like genes, MYB33 and MYB65. Using transfer DNA (T-DNA) insertional mutants, we show that a mir159ab double mutant has pleiotropic morphological defects, including altered growth habit, curled leaves, small siliques, and small seeds. Neither mir159a nor mir159b single mutants displayed any of these traits, indicating functional redundancy. By using reporter-gene constructs, it appears that MIR159a and MIR159b are transcribed almost exclusively in the cells in which MYB33 is repressed, as had been previously determined by comparison of MYB33 and mMYB33 (an miR159-resistant allele of MYB33) expression patterns. Consistent with these overlapping transcriptional domains, MYB33 and MYB65 expression levels were elevated throughout mir159ab plants. By contrast, the other five GAMYB-like family members are transcribed predominantly in tissues where miR159a and miR159b are absent, and consequently their expression levels are not markedly elevated in mir159ab. Additionally, mMYB33 transgenic plants can phenocopy the mir159ab phenotype, suggesting that its phenotype is explained by deregulated expression of the redundant gene pair MYB33 and MYB65. This prediction was confirmed; the pleiotropic developmental defects of mir159ab are suppressed through the combined mutations of MYB33 and MYB65, demonstrating the narrow and specific target range of miR159a and miR159b.
Collapse
|
1663
|
Mitarai N, Andersson AMC, Krishna S, Semsey S, Sneppen K. Efficient degradation and expression prioritization with small RNAs. Phys Biol 2007; 4:164-71. [PMID: 17928655 DOI: 10.1088/1478-3975/4/3/003] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We build a simple model for feedback systems involving small RNA (sRNA) molecules based on the iron metabolism system in the bacterium E. coli, and compare it with the corresponding system in H. pylori which uses purely transcriptional regulation. This reveals several unique features of sRNA-based regulation that could be exploited by cells. Firstly, we show that sRNA regulation can maintain a smaller turnover of target mRNAs than transcriptional regulation, without sacrificing the speed of response to external shocks. Secondly, we propose that a single sRNA can prioritize the usage of different target mRNAs. This suggests that sRNA regulation would be more common in more complex systems which need to co-regulate many mRNAs efficiently.
Collapse
Affiliation(s)
- Namiko Mitarai
- Niels Bohr Institute, Blegdamsvej 17, DK-2100, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
1664
|
Liu PP, Montgomery TA, Fahlgren N, Kasschau KD, Nonogaki H, Carrington JC. Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:133-46. [PMID: 17672844 DOI: 10.1111/j.1365-313x.2007.03218.x] [Citation(s) in RCA: 381] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
AUXIN RESPONSE FACTORS (ARFs) are transcription factors involved in auxin signal transduction during many stages of plant growth development. ARF10, ARF16 and ARF17 are targeted by microRNA160 (miR160) in Arabidopsis thaliana. Here, we show that negative regulation of ARF10 by miR160 plays important roles in seed germination and post-germination. Transgenic plants expressing an miR160-resistant form of ARF10, which has silent mutations in the miRNA target site (termed mARF10), exhibited developmental defects such as serrated leaves, curled stems, contorted flowers and twisted siliques. These phenotypes were not observed in wild-type plants or plants transformed with the targeted ARF10 gene. During sensu stricto germination and post-germination, mARF10 mutant seeds and plants were hypersensitive to ABA in a dose-dependent manner. ABA hypersensitivity was mimicked in wild-type plants by exogenous auxin. In contrast, overexpression of MIR160 (35S:MIR160) resulted in reduced sensitivity to ABA during germination. Transcriptome analysis of germinating ARF10 and mARF10 seeds indicated that typical ABA-responsive genes expressed during seed maturation were overexpressed in germinating mARF10 seeds. These results indicate that negative regulation of ARF10 by miR160 plays a critical role in seed germination and post-embryonic developmental programs, at least in part by mechanisms involving interactions between ARF10-dependent auxin and ABA pathways.
Collapse
Affiliation(s)
- Po-Pu Liu
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | | | |
Collapse
|
1665
|
Chinnusamy V, Zhu J, Zhu JK. Cold stress regulation of gene expression in plants. TRENDS IN PLANT SCIENCE 2007; 12:444-51. [PMID: 17855156 DOI: 10.1016/j.tplants.2007.07.002] [Citation(s) in RCA: 1062] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 07/30/2007] [Accepted: 07/31/2007] [Indexed: 05/17/2023]
Abstract
Cold stress adversely affects plant growth and development. Most temperate plants acquire freezing tolerance by a process called cold acclimation. Here, we focus on recent progress in transcriptional, post-transcriptional and post-translational regulation of gene expression that is critical for cold acclimation. Transcriptional regulation is mediated by the inducer of C-repeat binding factor (CBF) expression 1 (ICE1), the CBF transcriptional cascade and CBF-independent regulons during cold acclimation. ICE1 is negatively regulated by ubiquitination-mediated proteolysis and positively regulated by SUMO (small ubiquitin-related modifier) E3 ligase-catalyzed sumoylation. Post-transcriptional regulatory mechanisms, such as pre-mRNA splicing, mRNA export and small RNA-directed mRNA degradation, also play important roles in cold stress responses.
Collapse
|
1666
|
Jung HJ, Kang H. Expression and functional analyses of microRNA417 in Arabidopsis thaliana under stress conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2007; 45:805-11. [PMID: 17845858 DOI: 10.1016/j.plaphy.2007.07.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Accepted: 07/23/2007] [Indexed: 05/17/2023]
Abstract
MicroRNAs (miRNAs) are 20-25 nucleotides-long RNA transcripts that are capable of suppressing target gene expression by either mRNA cleavage or translational repression. Although many recent reports propose that miRNAs play diverse roles in growth, development, morphogenesis, and stress responses of plants, the biological roles of many miRNAs remain to be verified. Here, we investigated stress-responsive expression patterns and functional roles of miRNA417 in seed germination and seedling growth of Arabidopsis thaliana under various abiotic stress conditions. miRNA417 was expressed constantly throughout the entire growth stages and ubiquitously in all organs including stems, roots, leaves, and flowers. The expression of miRNA417 was regulated by salt stress, dehydration stress, or abscisic acid treatment. To examine the biological roles of miRNA417 in stress responses, the transgenic Arabidopsis plants that constitutively overexpress miRNA417 under the control of cauliflower mosaic virus 35S promoter were generated, and their phenotypes were analyzed under stress conditions. Results showed that seed germination of the transgenic plants was retarded compared with the wild-type plants in the presence of high salt or abscisic acid. These results imply that miRNA417 plays a role as a negative regulator of seed germination in Arabidopsis plants under salt stress conditions.
Collapse
Affiliation(s)
- Hyun Ju Jung
- Department of Plant Biotechnology, Agricultural Plant Stress Research Center and Biotechnology Research Institute, College of Agriculture and Life Sciences, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju 500-757, Republic of Korea
| | | |
Collapse
|
1667
|
Koscianska E, Baev V, Skreka K, Oikonomaki K, Rusinov V, Tabler M, Kalantidis K. Prediction and preliminary validation of oncogene regulation by miRNAs. BMC Mol Biol 2007; 8:79. [PMID: 17877811 PMCID: PMC2096627 DOI: 10.1186/1471-2199-8-79] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Accepted: 09/18/2007] [Indexed: 12/19/2022] Open
Abstract
Background MicroRNAs (miRNAs) are one of the most abundant groups of regulatory genes in multicellular organisms, playing important roles in many fundamental cellular processes. More than four hundred miRNAs have been identified in humans and the deregulation of miRNA expression has been also shown in many cancers. Despite the postulated involvement of miRNAs in tumourigenesis, there are only a few examples where an oncogene or a tumour suppressor has been identified as a miRNA target. Results Here, we present an in silico analysis of potential miRNA- oncogene interactions. Moreover, we have tested the validity of two possible interactions of miRNAs with genes related to cancer. We present evidence for the down-regulation of c-MYC, one of the most potent and frequently deregulated oncogenes, by let-7 miRNA, via the predicted binding site in the 3'UTR, and verify the suppression of BCL-2 by miR16. Conclusion In this work both bioinformatic and experimental approaches for the prediction and validation of possible targets for miRNAs have been used. A list of putative targets for different oncomirs, validation of which would be of special interest, is proposed and two such interactions have been experimentally validated.
Collapse
MESH Headings
- 3' Untranslated Regions/genetics
- Animals
- Base Sequence
- Cloning, Molecular/methods
- Computational Biology/methods
- Databases, Genetic
- Gene Expression Regulation, Neoplastic/genetics
- Gene Targeting/methods
- Genes, Tumor Suppressor/drug effects
- Genes, bcl-2/drug effects
- Genes, bcl-2/genetics
- Genes, myc/drug effects
- Genes, myc/genetics
- Humans
- MicroRNAs/genetics
- MicroRNAs/pharmacology
- Models, Genetic
- Molecular Sequence Data
- Oncogenes/drug effects
- Oncogenes/genetics
- Predictive Value of Tests
- RNA Interference
- Sequence Analysis, RNA/methods
Collapse
Affiliation(s)
- Edyta Koscianska
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Hellas, PO Box 1385, GR-71110, Heraklion/Crete, Greece
- Laboratory of Cancer Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Vesselin Baev
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Hellas, PO Box 1385, GR-71110, Heraklion/Crete, Greece
- Department of Plant Physiology and Molecular Biology, University of Plovdiv 24, Tsar Assen St, 4000 Plovdiv, Bulgaria
| | - Konstantinia Skreka
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Hellas, PO Box 1385, GR-71110, Heraklion/Crete, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Katerina Oikonomaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Hellas, PO Box 1385, GR-71110, Heraklion/Crete, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Ventsislav Rusinov
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Hellas, PO Box 1385, GR-71110, Heraklion/Crete, Greece
- Department of Plant Physiology and Molecular Biology, University of Plovdiv 24, Tsar Assen St, 4000 Plovdiv, Bulgaria
| | - Martin Tabler
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Hellas, PO Box 1385, GR-71110, Heraklion/Crete, Greece
| | - Kriton Kalantidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Hellas, PO Box 1385, GR-71110, Heraklion/Crete, Greece
| |
Collapse
|
1668
|
Wang S, Zhu QH, Guo X, Gui Y, Bao J, Helliwell C, Fan L. Molecular evolution and selection of a gene encoding two tandem microRNAs in rice. FEBS Lett 2007; 581:4789-93. [PMID: 17884044 DOI: 10.1016/j.febslet.2007.09.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 08/31/2007] [Accepted: 09/04/2007] [Indexed: 11/25/2022]
Abstract
It has been shown that overexpression of MIR156b/c resulted in a bushy phenotype in maize and rice. Our results indicated that the MIR156b/c locus was highly conserved among cereals, but not in dicots and that genome duplication events played an important role in the evolution of the miR156 family. Genetic diversity investigation at the locus indicated that only approximately 9% of nucleotide diversity observed in wild rice (O. rufigogon) was maintained in the cultivated rice and the neutral model was rejected (P<0.05) based on Tajima's D and Fu and Li's D( *) and F( *) tests. To our knowledge, this is the first example of miRNA gene to be targeted by both natural and domestication selection in plants.
Collapse
Affiliation(s)
- Sheng Wang
- Institute of Crop Science, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | | | | | |
Collapse
|
1669
|
Brosnan CA, Mitter N, Christie M, Smith NA, Waterhouse PM, Carroll BJ. Nuclear gene silencing directs reception of long-distance mRNA silencing in Arabidopsis. Proc Natl Acad Sci U S A 2007; 104:14741-6. [PMID: 17785412 PMCID: PMC1964546 DOI: 10.1073/pnas.0706701104] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2007] [Indexed: 11/18/2022] Open
Abstract
In plants, silencing of mRNA can be transmitted from cell to cell and also over longer distances from roots to shoots. To investigate the long-distance mechanism, WT and mutant shoots were grafted onto roots silenced for an mRNA. We show that three genes involved in a chromatin silencing pathway, NRPD1a encoding RNA polymerase IVa, RNA-dependent RNA polymerase 2 (RDR2), and DICER-like 3 (DCL3), are required for reception of long-distance mRNA silencing in the shoot. A mutant representing a fourth gene in the pathway, argonaute4 (ago4), was also partially compromised in the reception of silencing. This pathway produces 24-nt siRNAs and resulted in decapped RNA, a known substrate for amplification of dsRNA by RDR6. Activation of silencing in grafted shoots depended on RDR6, but no 24-nt siRNAs were detected in mutant rdr6 shoots, indicating that RDR6 also plays a role in initial signal perception. After amplification of decapped transcripts, DCL4 and DCL2 act hierarchically as they do in antiviral resistance to produce 21- and 22-nt siRNAs, respectively, and these guide mRNA degradation. Several dcl genotypes were also tested for their capacity to transmit the mobile silencing signal from the rootstock. dcl1-8 and a dcl2 dcl3 dcl4 triple mutant are compromised in micro-RNA and siRNA biogenesis, respectively, but were unaffected in signal transmission.
Collapse
Affiliation(s)
- C A Brosnan
- Australian Research Council Centre of Excellence for Integrative Legume Research, School of Molecular and Microbial Sciences, and School of Land, Crop, and Food Sciences, University of Queensland, St. Lucia QLD 4072, Australia
| | | | | | | | | | | |
Collapse
|
1670
|
Lu S, Sun YH, Amerson H, Chiang VL. MicroRNAs in loblolly pine (Pinus taeda L.) and their association with fusiform rust gall development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 51:1077-98. [PMID: 17635765 DOI: 10.1111/j.1365-313x.2007.03208.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
MicroRNAs (miRNAs) are endogenous small RNAs that can have large-scale regulatory effects on development and on stress responses in plants. The endemic rust fungus Cronartium quercuum f. sp. fusiforme causes fusiform rust disease in pines, resulting in the development of spindle-shaped galls (cankers) on branches or stems. This disease is the most destructive disease of pines in the southern USA. To test whether miRNAs play roles in fusiform rust gall development, we cloned and identified 26 miRNAs from stem xylem of loblolly pine (Pinus taeda), which belong to four conserved and seven loblolly pine-specific miRNA families. Forty-three targets for nine of these 11 families were experimentally validated in vivo. Sequence analysis suggested that the target cleavage site may be determined not only by the miRNA sequence but also by the target sequence. Members of three loblolly pine-specific miRNA families target a large number of non-protein coding transcripts, and one of these families could also initiate secondary phased production from its target of a putative trans-acting short interfering RNA (ta-siRNA). Expression of 10 of these 11 miRNA families was significantly repressed in the galled stem. PCR-based transcript quantification showed complex expression patterns of these miRNAs and their targets in the galled tissues and in tissues surrounding the gall. We further predict 82 plant disease-related transcripts that may also response to miRNA regulation in pine. These results reveal a new genetic basis for host-pathogen interactions in the development of fusiform rust gall.
Collapse
Affiliation(s)
- Shanfa Lu
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, College of Natural Resources, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | |
Collapse
|
1671
|
Barakat A, Wall K, Leebens-Mack J, Wang YJ, Carlson JE, Depamphilis CW. Large-scale identification of microRNAs from a basal eudicot (Eschscholzia californica) and conservation in flowering plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 51:991-1003. [PMID: 17635767 DOI: 10.1111/j.1365-313x.2007.03197.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
MicroRNAs (miRNAs) negatively control gene expression by cleaving or inhibiting the translation of mRNA of target genes, and as such, they play an important role in plant development. Of the 79 plant miRNA families discovered to date, most are from the fully sequenced plant genomes of Arabidopsis, Populus and rice. Here, we identified miRNAs from leaves, roots, stems and flowers at different developmental stages of the basal eudicot species Eschscholzia californica (California poppy) using cloning and capillary sequencing, as well as ultrahigh-throughput pyrosequencing using the recently introduced 454 sequencing method. In total, we identified a minimum of 173 unique miRNA sequences belonging to 28 miRNA families and seven trans-acting small interfering RNAs (ta-siRNAs) conserved in eudicot and monocot species. miR529 and miR537, which have not yet been reported in eudicot species, were detected in California poppy; loci encoding these miRNAs were also found in Arabidopsis and Populus. miR535, which occurs in the moss Physcomitrella patens, was also detected in California poppy, but not in other angiosperms. Several potential miRNA targets were found in cDNA sequences of California poppy. Predicted target genes include transcription factors but also genes implicated in various metabolic processes and in stress defense. Comparative analysis of miRNAs from plants of phylogenetically-critical basal lineages aid the study of the evolutionary gains and losses of miRNAs in plants as well as their conservation, and lead to discoveries about the miRNAs of even well-studied model organisms.
Collapse
Affiliation(s)
- Abdelali Barakat
- Department of Biology, Institute of Molecular Evolutionary Genetics, 403 Life Sciences Building, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | | | |
Collapse
|
1672
|
Bortolamiol D, Pazhouhandeh M, Marrocco K, Genschik P, Ziegler-Graff V. The Polerovirus F Box Protein P0 Targets ARGONAUTE1 to Suppress RNA Silencing. Curr Biol 2007; 17:1615-21. [PMID: 17869109 DOI: 10.1016/j.cub.2007.07.061] [Citation(s) in RCA: 221] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 07/31/2007] [Accepted: 07/31/2007] [Indexed: 11/20/2022]
Abstract
Plants employ post-transcriptional gene silencing (PTGS) as an antiviral defense response. In this mechanism, viral-derived small RNAs are incorporated into the RNA-induced silencing complex (RISC) to guide degradation of the corresponding viral RNAs. ARGONAUTE1 (AGO1) is a key component of RISC: it carries the RNA slicer activity. As a counter-defense, viruses have evolved various proteins that suppress PTGS. Recently, we showed that the Polerovirus P0 protein carries an F box motif required to form an SCF-like complex, which is also essential for P0's silencing suppressor function. Here, we investigate the molecular mechanism by which P0 impairs PTGS. First we show that P0's expression does not affect the biogenesis of primary siRNAs in an inverted repeat-PTGS assay, but it does affect their activity. Moreover, P0's expression in transformed Arabidopsis plants leads to various developmental abnormalities reminiscent of mutants affected in miRNA pathways, which is accompanied by enhanced levels of several miRNA-target transcripts, suggesting that P0 acts at the level of RISC. Interestingly, ectopic expression of P0 triggered AGO1 protein decay in planta. Finally, we provide evidence that P0 physically interacts with AGO1. Based on these results, we propose that P0 hijacks the host SCF machinery to modulate gene silencing by destabilizing AGO1.
Collapse
Affiliation(s)
- Diane Bortolamiol
- Institut de Biologie Moléculaire des Plantes du CNRS, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | | | | | | | | |
Collapse
|
1673
|
Fujioka Y, Utsumi M, Ohba Y, Watanabe Y. Location of a possible miRNA processing site in SmD3/SmB nuclear bodies in Arabidopsis. PLANT & CELL PHYSIOLOGY 2007; 48:1243-53. [PMID: 17675322 DOI: 10.1093/pcp/pcm099] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
There has been much recent research on the contribution of microRNA (miRNA) in plant organogenesis and hormone action. In plants, it has been reported that Dicer-like 1 (DCL1), HYPONASTIC LEAVES1 (HYL1) and SERRATE (SE) are involved in the production of miRNAs. The means by which miRNAs are processed and transported is not well understood in detail, however. In this study, we investigated the intracellular localization and intermolecular interaction of these molecules using imaging techniques, including bimolecular fluorescence complementation and fluorescence resonance energy transfer techniques, making use of various enhanced fluorescent proteins. We found that DCL1, HYL1 and SE formed bodies which localized in the nuclei. We were also able to locate the miRNA primary transcript using an MS2-tagged method on these bodies. It appears very likely that the observed DCL1-HYL1-SE nuclear body is involved in miRNA production. Co-expression of SmD3 or SmB proteins revealed the localization of DCL1-HYL1-SE complexes in the SmD3/SmB nuclear bodies.
Collapse
Affiliation(s)
- Yoichiro Fujioka
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Meguro, Tokyo, Japan
| | | | | | | |
Collapse
|
1674
|
Guo Q, Xiang A, Yang Q, Yang Z. Bioinformatic identification of microRNAs and their target genes from Solanum tuberosum expressed sequence tags. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s11434-007-0359-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
1675
|
Liu B, Chen Z, Song X, Liu C, Cui X, Zhao X, Fang J, Xu W, Zhang H, Wang X, Chu C, Deng X, Xue Y, Cao X. Oryza sativa dicer-like4 reveals a key role for small interfering RNA silencing in plant development. THE PLANT CELL 2007; 19:2705-18. [PMID: 17905898 PMCID: PMC2048709 DOI: 10.1105/tpc.107.052209] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 09/02/2007] [Accepted: 09/11/2007] [Indexed: 05/17/2023]
Abstract
MicroRNAs and small interfering RNAs (siRNAs) are two classes of small regulatory RNAs derived from different types of precursors and processed by distinct Dicer or Dicer-like (DCL) proteins. During evolution, four Arabidopsis thaliana DCLs and six rice (Oryza sativa) DCLs (Os DCLs) appear to have acquired specialized functions. The Arabidopsis DCLs are well characterized, but those in rice remain largely unstudied. Here, we show that both knockdown and loss of function of rice DCL4, the homolog of Arabidopsis DCL4, lead to vegetative growth abnormalities and severe developmental defects in spikelet identity. These phenotypic alterations appear to be distinct from those observed in Arabidopsis dcl4 mutants, which exhibit accelerated vegetative phase change. The difference in phenotype between rice and Arabidopsis dcl4 mutants suggests that siRNA processing by DCL4 has a broader role in rice development than in Arabidopsis. Biochemical and genetic analyses indicate that Os DCL4 is the major Dicer responsible for the 21-nucleotide siRNAs associated with inverted repeat transgenes and for trans-acting siRNA (ta-siRNA) from the endogenous TRANS-ACTING siRNA3 (TAS3) gene. We show that the biogenesis mechanism of TAS3 ta-siRNA is conserved but that putative direct targets of Os DCL4 appear to be differentially regulated between monocots and dicots. Our results reveal a critical role of Os DCL4-mediated ta-siRNA biogenesis in rice development.
Collapse
Affiliation(s)
- Bin Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1676
|
Palatnik JF, Wollmann H, Schommer C, Schwab R, Boisbouvier J, Rodriguez R, Warthmann N, Allen E, Dezulian T, Huson D, Carrington JC, Weigel D. Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319. Dev Cell 2007; 13:115-25. [PMID: 17609114 DOI: 10.1016/j.devcel.2007.04.012] [Citation(s) in RCA: 285] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 03/06/2007] [Accepted: 04/18/2007] [Indexed: 01/07/2023]
Abstract
Many microRNAs (miRNAs) are encoded by small gene families. In a third of all conserved Arabidopsis miRNA families, members vary at two or more nucleotide positions. We have focused on the related miR159 and miR319 families, which share sequence identity at 17 of 21 nucleotides, yet affect different developmental processes through distinct targets. MiR159 regulates MYB mRNAs, while miR319 predominantly acts on TCP mRNAs. In the case of miR319, MYB targeting plays at most a minor role because miR319 expression levels and domain limit its ability to affect MYB mRNAs. In contrast, in the case of miR159, the miRNA sequence prevents effective TCP targeting. We complement these observations by identifying nucleotide positions relevant for miRNA activity with mutants recovered from a suppressor screen. Together, our findings reveal that functional specialization of miR159 and miR319 is achieved through both expression and sequence differences.
Collapse
Affiliation(s)
- Javier F Palatnik
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1677
|
Ghosh Z, Chakrabarti J, Mallick B. miRNomics-The bioinformatics of microRNA genes. Biochem Biophys Res Commun 2007; 363:6-11. [PMID: 17714687 DOI: 10.1016/j.bbrc.2007.08.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Accepted: 08/03/2007] [Indexed: 12/26/2022]
Abstract
MicroRNAs (miRNAs) are tiny genetic rheostats in plants, animals, and viruses, regulating the expression of messenger RNAs by targeting transcripts for cleavage or translational repression. Their regulatory impact is even more pervasive as a potential therapeutic tool. Since inception, computational methods have been an invaluable tool complementing experimental approaches. Here, we outline miRNA-bioinformatics highlighting the biological and therapeutic repertoire of miRNAs, in silico prediction of miRNA genes and their targets, along with a glimpse of the bioinformatic challenges that lie ahead.
Collapse
Affiliation(s)
- Zhumur Ghosh
- Computational Biology Group, Indian Association for the Cultivation of Science, 2A & 2B, Raja S.C. Mullick Road, Jadavpur, Calcutta 700032, India
| | | | | |
Collapse
|
1678
|
Kutter C, Schöb H, Stadler M, Meins F, Si-Ammour A. MicroRNA-mediated regulation of stomatal development in Arabidopsis. THE PLANT CELL 2007; 19:2417-29. [PMID: 17704216 PMCID: PMC2002609 DOI: 10.1105/tpc.107.050377] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The proper number and distribution of stomata are essential for the efficient exchange of gases between the atmosphere and the aerial parts of plants. We show that the density and development of stomatal complexes on the epidermis of Arabidopsis thaliana leaves depend, in part, on the microRNA-mediated regulation of Agamous-like16 (AGL16), which is a member of the MADS box protein family. AGL16 mRNA is targeted for sequence-specific degradation by miR824, a recently evolved microRNA conserved in the Brassicaceae and encoded at a single genetic locus. Primary stomatal complexes can give rise to higher-order complexes derived from satellite meristemoids. Expression of a miR824-resistant AGL16 mRNA, but not the wild-type AGL16 mRNA, in transgenic plants increased the incidence of stomata in higher-order complexes. By contrast, reduced expression of AGL16 mRNA in the agl16-1 deficiency mutant and in transgenic lines overexpressing miR824 decreased the incidence of stomata in higher-order complexes. These findings and the nonoverlapping patterns of AGL16 mRNA and miR824 localization led us to propose that the miR824/AGL16 pathway functions in the satellite meristemoid lineage of stomatal development.
Collapse
Affiliation(s)
- Claudia Kutter
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | | | | | | | | |
Collapse
|
1679
|
Pilcher RLR, Moxon S, Pakseresht N, Moulton V, Manning K, Seymour G, Dalmay T. Identification of novel small RNAs in tomato (Solanum lycopersicum). PLANTA 2007; 226:709-17. [PMID: 17415587 DOI: 10.1007/s00425-007-0518-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 03/19/2007] [Indexed: 05/14/2023]
Abstract
To date, the majority of plant small RNAs (sRNA) have been identified in rice, poplar and Arabidopsis. To identify novel tomato sRNAs potentially involved in tomato specific processes such as fruit development and/or ripening, we cloned 4,018 sRNAs from tomato fruit tissue at the mature green stage. From this pool of sRNAs, we detected tomato homologues of nine known miRNAs, including miR482; a poplar miRNA not conserved in Arabidopsis or rice. We identified three novel putative miRNAs with flanking sequence that could be folded into a stem-loop precursor structure and which accumulated as 19-24nt RNA. One of these putative miRNAs (Put-miRNA3) exhibited significantly higher expression in fruit compared with leaf tissues, indicating a specific role in fruit development processes. We also identified nine sRNAs that accumulated as 19-24nt RNA species in tomato but genome sequence was not available for these loci. None of the nine sRNAs or three putative miRNAs possessed a homologue in Arabidopsis that had a precursor with a predicted stem-loop structure or that accumulated as a sRNA species, suggesting that the 12 sRNAs we have identified in tomato may have a species specific role in this model fruit species.
Collapse
|
1680
|
Easow G, Teleman AA, Cohen SM. Isolation of microRNA targets by miRNP immunopurification. RNA (NEW YORK, N.Y.) 2007; 13:1198-204. [PMID: 17592038 PMCID: PMC1924889 DOI: 10.1261/rna.563707] [Citation(s) in RCA: 224] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
microRNAs (miRNAs) serve as post-transcriptional regulators of gene expression, by guiding effector complexes (miRNPs) to target RNAs. Although considerable progress has been made in computational methods to identify miRNA targets, only a relatively limited assessment of their ability to function in vivo has been reported. Here we describe an alternative approach to miRNA target identification based on a biochemical method for purifying miRNP complexes with associated miRNAs and bound mRNA targets. Microarray analysis revealed a high degree of enrichment for miRNA complementary sites in the 3'UTRs of the miRNP-associated mRNAs. mRNAs specifically associated with an individual miRNA were identified by comparing the miRNP-associated mRNAs from wild-type flies and mutant flies lacking miR-1, and their regulation by the miRNA was validated. This approach provides a means to identify functional miRNA targets based on their physical interaction in vivo.
Collapse
Affiliation(s)
- George Easow
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|
1681
|
Kühn-Hölsken E, Dybkov O, Sander B, Lührmann R, Urlaub H. Improved identification of enriched peptide RNA cross-links from ribonucleoprotein particles (RNPs) by mass spectrometry. Nucleic Acids Res 2007; 35:e95. [PMID: 17652325 PMCID: PMC1976460 DOI: 10.1093/nar/gkm540] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Direct UV cross-linking combined with mass spectrometry (MS) is a powerful tool to identify hitherto non-characterized protein-RNA contact sites in native ribonucleoprotein particles (RNPs) such as the spliceosome. Identification of contact sites after cross-linking is restricted by: (i) the relatively low cross-linking yield and (ii) the amount of starting material available for cross-linking studies. Therefore, the most critical step in such analyses is the extensive purification of the cross-linked peptide-RNA heteroconjugates from the excess of non-crosslinked material before MS analysis. Here, we describe a strategy that combines small-scale reversed-phase liquid chromatography (RP-HPLC) of UV-irradiated and hydrolyzed RNPs, immobilized metal-ion affinity chromatography (IMAC) to enrich cross-linked species and their analysis by matrix-assisted laser desorption/ionisation (MALDI) MS(/MS). In cases where no MS/MS analysis can be performed, treatment of the enriched fractions with alkaline phosphatase leads to unambiguous identification of the cross-linked species. We demonstrate the feasibility of this strategy by MS analysis of enriched peptide-RNA cross-links from UV-irradiated reconstituted [15.5K-61K-U4atac snRNA] snRNPs and native U1 snRNPs. Applying our approach to a partial complex of U2 snRNP allowed us to identify the contact site between the U2 snRNP-specific protein p14/SF3b14a and the branch-site interacting region (BSiR) of U2 snRNA.
Collapse
MESH Headings
- Alkaline Phosphatase
- Amino Acid Sequence
- Binding Sites
- Chromatography, Affinity
- Chromatography, Liquid/methods
- Computational Biology
- Molecular Sequence Data
- Peptides/chemistry
- Peptides/isolation & purification
- RNA, Small Nuclear/chemistry
- RNA, Small Nuclear/isolation & purification
- Ribonucleoprotein, U1 Small Nuclear/chemistry
- Ribonucleoprotein, U1 Small Nuclear/radiation effects
- Ribonucleoprotein, U2 Small Nuclear/chemistry
- Ribonucleoprotein, U2 Small Nuclear/radiation effects
- Ribonucleoproteins, Small Nuclear/chemistry
- Ribonucleoproteins, Small Nuclear/radiation effects
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Ultraviolet Rays
Collapse
Affiliation(s)
- Eva Kühn-Hölsken
- Bioanalytical Mass Spectrometry Group and Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Olexandr Dybkov
- Bioanalytical Mass Spectrometry Group and Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Björn Sander
- Bioanalytical Mass Spectrometry Group and Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Reinhard Lührmann
- Bioanalytical Mass Spectrometry Group and Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group and Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
- *To whom correspondence should be addressed.+49 551 2011060+49 551 2011197
| |
Collapse
|
1682
|
Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, García JA, Paz-Ares J. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 2007; 39:1033-7. [PMID: 17643101 DOI: 10.1038/ng2079] [Citation(s) in RCA: 1398] [Impact Index Per Article: 77.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 05/22/2007] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNA) regulate key aspects of development and physiology in animals and plants. These regulatory RNAs act as guides of effector complexes to recognize specific mRNA sequences based on sequence complementarity, resulting in translational repression or site-specific cleavage. In plants, most miRNA targets are cleaved and show almost perfect complementarity with the miRNAs around the cleavage site. Here, we examined the non-protein coding gene IPS1 (INDUCED BY PHOSPHATE STARVATION 1) from Arabidopsis thaliana. IPS1 contains a motif with sequence complementarity to the phosphate (Pi) starvation-induced miRNA miR-399, but the pairing is interrupted by a mismatched loop at the expected miRNA cleavage site. We show that IPS1 RNA is not cleaved but instead sequesters miR-399. Thus, IPS1 overexpression results in increased accumulation of the miR-399 target PHO2 mRNA and, concomitantly, in reduced shoot Pi content. Engineering of IPS1 to be cleavable abolishes its inhibitory activity on miR-399. We coin the term 'target mimicry' to define this mechanism of inhibition of miRNA activity. Target mimicry can be generalized beyond the control of Pi homeostasis, as demonstrated using artificial target mimics.
Collapse
Affiliation(s)
- José Manuel Franco-Zorrilla
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1683
|
Bazzini AA, Hopp HE, Beachy RN, Asurmendi S. Infection and coaccumulation of tobacco mosaic virus proteins alter microRNA levels, correlating with symptom and plant development. Proc Natl Acad Sci U S A 2007; 104:12157-62. [PMID: 17615233 PMCID: PMC1924585 DOI: 10.1073/pnas.0705114104] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Indexed: 11/18/2022] Open
Abstract
Infections by plant virus generally cause disease symptoms by interfering with cellular processes. Here we demonstrated that infection of Nicotiana tabacum (N.t) by plant viruses representative of the Tobamoviridae, Potyviridae, and Potexviridae families altered accumulation of certain microRNAs (miRNAs). A correlation was observed between symptom severity and alteration in levels of miRNAs 156, 160, 164,166, 169, and 171 that is independent of viral posttranscriptional gene silencing suppressor activity. Hybrid transgenic plants that produced tobacco mosaic virus (TMV) movement protein (MP) plus coat protein (CP)(T42W) (a variant of CP) exhibited disease-like phenotypes, including abnormal plant development. Grafting studies with a plant line in which both transgenes are silenced confirmed that the disease-like phenotypes are due to the coexpression of CP and MP. In hybrid MPxCP(T42W) plants and TMV-infected plants, miRNAs 156, 164, 165, and 167 accumulated to higher levels compared with nontransgenic and noninfected tissues. Bimolecular fluorescence complementation assays revealed that MP interacts with CP(T42W) in vivo and leads to the hypothesis that complexes formed between MP and CP caused increases in miRNAs that result in disease symptoms. This work presents evidence that virus infection and viral proteins influence miRNA balance without affecting posttranscriptional gene silencing and contributes to the hypothesis that viruses exploit miRNA pathways during pathogenesis.
Collapse
Affiliation(s)
- A. A. Bazzini
- Instituto de Biotecnología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria Castelar, Las Cabañas y Los Reseros, B1712WAA Buenos Aires, Argentina; and
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132
| | - H. E. Hopp
- Instituto de Biotecnología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria Castelar, Las Cabañas y Los Reseros, B1712WAA Buenos Aires, Argentina; and
| | - R. N. Beachy
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132
| | - S. Asurmendi
- Instituto de Biotecnología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria Castelar, Las Cabañas y Los Reseros, B1712WAA Buenos Aires, Argentina; and
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132
| |
Collapse
|
1684
|
Wang L, Wang MB, Tu JX, Helliwell CA, Waterhouse PM, Dennis ES, Fu TD, Fan YL. Cloning and characterization of microRNAs from Brassica napus. FEBS Lett 2007; 581:3848-56. [PMID: 17659282 DOI: 10.1016/j.febslet.2007.07.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2007] [Revised: 07/03/2007] [Accepted: 07/04/2007] [Indexed: 01/02/2023]
Abstract
A library containing approximately 40,000 small RNA sequences was constructed for Brassica napus. Analysis of 3025 sequences obtained from this library resulted in the identification of 11 conserved miRNA families, which were validated by secondary structure prediction using surrounding sequences in the Brassica genome. Two 21 nt small RNA sequences reside within the arm of a pre-miRNA like stem-loop structure, making them likely candidates for novel non-conserved miRNAs in B. napus. Most of the conserved miRNAs were expressed at similar levels in a F1 hybrid B. napus line and its four double haploid progeny that showed marked variations in phenotypes, but many were differentially expressed between B. napus and Arabidopsis. The miR169 family was expressed at high levels in young leaves and stems, but was undetectable in roots and mature leaves, suggesting that miR169 expression is developmentally regulated in B. napus.
Collapse
Affiliation(s)
- Lei Wang
- Biotechnology Research Institute/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | | | | | | | | | | | | |
Collapse
|
1685
|
Sunkar R, Chinnusamy V, Zhu J, Zhu JK. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. TRENDS IN PLANT SCIENCE 2007; 12:301-9. [PMID: 17573231 DOI: 10.1016/j.tplants.2007.05.001] [Citation(s) in RCA: 530] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2006] [Revised: 04/12/2007] [Accepted: 05/31/2007] [Indexed: 05/15/2023]
Abstract
Abiotic stress is one of the primary causes of crop losses worldwide. Much progress has been made in unraveling the complex stress response mechanisms, particularly in the identification of stress responsive protein-coding genes. In addition to protein coding genes, recently discovered microRNAs (miRNAs) and endogenous small interfering RNAs (siRNAs) have emerged as important players in plant stress responses. Initial clues suggesting that small RNAs are involved in plant stress responses stem from studies showing stress regulation of miRNAs and endogenous siRNAs, as well as from target predictions for some miRNAs. Subsequent studies have demonstrated an important functional role for these small RNAs in abiotic stress responses. This review focuses on recent advances, with emphasis on integration of small RNAs in stress regulatory networks.
Collapse
Affiliation(s)
- Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, 246 Noble Research Center, Oklahoma State University, Stillwater, OK 74078, USA.
| | | | | | | |
Collapse
|
1686
|
Henz SR, Cumbie JS, Kasschau KD, Lohmann JU, Carrington JC, Weigel D, Schmid M. Distinct expression patterns of natural antisense transcripts in Arabidopsis. PLANT PHYSIOLOGY 2007; 144:1247-55. [PMID: 17496106 PMCID: PMC1914114 DOI: 10.1104/pp.107.100396] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
It has been shown that overlapping cis-natural antisense transcripts (cis-NATs) can form a regulatory circuit in which small RNAs derived from one transcript regulate stability of the other transcript, which manifests itself as anticorrelated expression. However, little is known about how widespread antagonistic expression of cis-NATs is. We have determined how frequently cis-NAT pairs, which make up 7.4% of annotated transcription units in the Arabidopsis (Arabidopsis thaliana) genome, show anticorrelated expression patterns. Indeed, global expression profiles of pairs of cis-NATs on average have significantly lower pairwise Pearson correlation coefficients than other pairs of neighboring genes whose transcripts do not overlap. However, anticorrelated expression that is greater than expected by chance is found in only a small number of cis-NAT pairs. The degree of anticorrelation does not depend on the length of the overlap or on the distance of the 5' ends of the transcripts. Consistent with earlier findings, cis-NATs do not exhibit an increased likelihood to give rise to small RNAs, as determined from available small RNA sequences and massively parallel signature sequencing tags. However, the overlapping regions of cis-NATs appeared to be enriched for small RNA loci compared to nonoverlapping regions. Furthermore, expression of cis-NATs was not disproportionately affected in various RNA-silencing mutants. Our results demonstrate that there is a trend toward anticorrelated expression of cis-NAT pairs in Arabidopsis, but currently available data do not produce a strong signature of small RNA-mediated silencing for this process.
Collapse
Affiliation(s)
- Stefan R Henz
- Max Planck Institute for Developmental Biology, Department of Molecular Biology, Tuebingen, Germany
| | | | | | | | | | | | | |
Collapse
|
1687
|
Affiliation(s)
- Pablo D Rabinowicz
- J. C. Venter Institute, 9712 Medical Center Drive, Rockville, Maryland 20850, USA.
| |
Collapse
|
1688
|
Cartolano M, Castillo R, Efremova N, Kuckenberg M, Zethof J, Gerats T, Schwarz-Sommer Z, Vandenbussche M. A conserved microRNA module exerts homeotic control over Petunia hybrida and Antirrhinum majus floral organ identity. Nat Genet 2007; 39:901-5. [PMID: 17589508 DOI: 10.1038/ng2056] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 05/09/2007] [Indexed: 11/09/2022]
Abstract
It is commonly thought that deep phylogenetic conservation of plant microRNAs (miRNAs) and their targets indicates conserved regulatory functions. We show that the blind (bl) mutant of Petunia hybrida and the fistulata (fis) mutant of Antirrhinum majus, which have similar homeotic phenotypes, are recessive alleles of two homologous miRNA-encoding genes. The BL and FIS genes control the spatial restriction of homeotic class C genes to the inner floral whorls, but their ubiquitous early floral expression patterns are in contradiction with a potential role in patterning C gene expression. We provide genetic evidence for the unexpected function of the MIRFIS and MIRBL genes in the center of the flower and propose a dynamic mechanism underlying their regulatory role. Notably, Arabidopsis thaliana, a more distantly related species, also contains this miRNA module but does not seem to use it to confine early C gene expression to the center of the flower.
Collapse
Affiliation(s)
- Maria Cartolano
- Max Planck Institut für Züchtungsforschung, Plant Molecular Genetics Department, Carl-von-Linne-Weg 10, 50829 Köln, Germany
| | | | | | | | | | | | | | | |
Collapse
|
1689
|
Ho T, Wang H, Pallett D, Dalmay T. Evidence for targeting common siRNA hotspots and GC preference by plant Dicer-like proteins. FEBS Lett 2007; 581:3267-72. [PMID: 17597620 DOI: 10.1016/j.febslet.2007.06.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 06/01/2007] [Accepted: 06/13/2007] [Indexed: 01/12/2023]
Abstract
Small interfering (si)RNAs isolated from Brassica juncea leaves infected by Turnip mosaic virus (TuMV) were characterized by cloning and sequencing. The TuMV siRNA population was dominated by 21 and 22-nt long species originated mainly from the same siRNA hotspots, indicating operational similarity between the plant Dicer-like (DCL) enzymes. Robust GC bias was observed for TuMV siRNAs versus the virus genome, indicating that DCL was more likely to target GC-rich regions. Furthermore, dicot micro-(mi)RNAs displayed higher GC% than their DCL1 substrate RNAs, implicating that the GC bias may be ancient, therefore may be important for the RNAi technology.
Collapse
Affiliation(s)
- Thien Ho
- NERC/Centre for Ecology and Hydrology Oxford, Oxford, UK.
| | | | | | | |
Collapse
|
1690
|
Poethig RS, Peragine A, Yoshikawa M, Hunter C, Willmann M, Wu G. The function of RNAi in plant development. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 71:165-70. [PMID: 17381293 DOI: 10.1101/sqb.2006.71.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The morphological phenotype of mutations in genes required for posttranscriptional gene silencing (PTGS) or RNA interference (RNAi) in Arabidopsis demonstrates that this process is critical for normal development. One way in which RNAi contributes to gene regulation is through its involvement in the biogenesis of trans-acting small interfering RNAs (siRNAs). These endogenous siRNAs are derived from noncoding transcripts that are cleaved by a microRNA (miRNA) and mediate the silencing of protein-coding transcripts. Some protein-coding genes are also subject to miRNA-initiated transitive silencing. Several developmentally important transcription factors regulated by these silencing mechanisms have been identified.
Collapse
Affiliation(s)
- R S Poethig
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018, USA
| | | | | | | | | | | |
Collapse
|
1691
|
Nogueira FT, Madi S, Chitwood DH, Juarez MT, Timmermans MC. Two small regulatory RNAs establish opposing fates of a developmental axis. Genes Dev 2007; 21:750-5. [PMID: 17403777 PMCID: PMC1838527 DOI: 10.1101/gad.1528607] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Small RNAs are important regulators of gene expression. In maize, adaxial/abaxial (dorsoventral) leaf polarity is established by an abaxial gradient of microRNA166 (miR166), which spatially restricts the expression domain of class III homeodomain leucine zipper (HD-ZIPIII) transcription factors that specify adaxial/upper fate. Here, we show that leafbladeless1 encodes a key component in the trans-acting small interfering RNA (ta-siRNA) biogenesis pathway that acts on the adaxial side of developing leaves and demarcates the domains of hd-zipIII and miR166 accumulation. Our findings indicate that tasiR-ARF, a ta-siRNA, and miR166 establish opposing domains along the adaxial-abaxial axis, thus revealing a novel mechanism of pattern formation.
Collapse
Affiliation(s)
| | - Shahinez Madi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Daniel H. Chitwood
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Watson School of Biological Sciences, Cold Spring Harbor, New York 11724, USA
| | | | - Marja C.P. Timmermans
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Watson School of Biological Sciences, Cold Spring Harbor, New York 11724, USA
- Corresponding author.E-MAIL ; FAX (516) 367-8369
| |
Collapse
|
1692
|
Axtell MJ, Snyder JA, Bartel DP. Common functions for diverse small RNAs of land plants. THE PLANT CELL 2007; 19:1750-69. [PMID: 17601824 PMCID: PMC1955733 DOI: 10.1105/tpc.107.051706] [Citation(s) in RCA: 304] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 06/06/2007] [Accepted: 06/08/2007] [Indexed: 05/16/2023]
Abstract
Endogenous small RNAs, including microRNAs (miRNAs) and short interfering RNAs (siRNAs), are critical components of plant gene regulation. Some abundant miRNAs involved in developmental control are conserved between anciently diverged plants, while many other less-abundant miRNAs appear to have recently emerged in the Arabidopsis thaliana lineage. Using large-scale sequencing of small RNAs, we extended the known diversity of miRNAs in basal plants to include 88 confidently annotated miRNA families in the moss Physcomitrella patens and 44 in the lycopod Selaginella moellendorffii. Cleavage of 29 targets directed by 14 distinct P. patens miRNA families and a trans-acting siRNA (ta-siRNA) was experimentally confirmed. Despite a core set of 12 miRNA families also expressed in angiosperms, weakly expressed and apparently lineage-specific miRNAs accounted for the majority of miRNA diversity in both species. Nevertheless, the molecular functions of several of these lineage-specific small RNAs matched those of angiosperms, despite dissimilarities in the small RNA sequences themselves, including small RNAs that mediated negative feedback regulation of the miRNA pathway and miR390-dependent ta-siRNAs that guided the cleavage of AUXIN RESPONSE FACTOR mRNAs. Diverse, lineage-specific, small RNAs can therefore perform common biological functions in plants.
Collapse
Affiliation(s)
- Michael J Axtell
- Department of Biology and Huck Institutes of the Life Sciences, Pensylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
1693
|
Atkins CA, Smith PMC. Translocation in legumes: assimilates, nutrients, and signaling molecules. PLANT PHYSIOLOGY 2007; 144:550-61. [PMID: 17556518 PMCID: PMC1914204 DOI: 10.1104/pp.107.098046] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Accepted: 04/03/2007] [Indexed: 05/15/2023]
Affiliation(s)
- Craig Anthony Atkins
- School of Plant Biology M090, University of Western Australia, Crawley, Western Australia 6009, Australia.
| | | |
Collapse
|
1694
|
Affiliation(s)
- Haruhiko Siomi
- Institute for Genome Research, University of Tokushima, 3-18-15 Kuramoto, Tokushima, 770-8503 Japan.
| | | |
Collapse
|
1695
|
Abstract
MicroRNAs (miRNAs) are important post-transcriptional regulators of their target genes in plants and animals. miRNAs are usually 20-24 nucleotides long. Despite their unusually small sizes, the evolutionary history of miRNA gene families seems to be similar to their protein-coding counterparts. In contrast to the small but abundant miRNA families in the animal genomes, plants have fewer but larger miRNA gene families. Members of plant miRNA gene families are often highly similar, suggesting recent expansion via tandem gene duplication and segmental duplication events. Although many miRNA genes are conserved across plant species, the same gene family varies significantly in size and genomic organization in different species, which may cause dosage effects and spatial and temporal differences in target gene regulations. In this review, we summarize the current progress in understanding the evolution of plant miRNA gene families.
Collapse
Affiliation(s)
- Aili Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences and The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing 100081, China
| | | |
Collapse
|
1696
|
Jung JH, Park CM. MIR166/165 genes exhibit dynamic expression patterns in regulating shoot apical meristem and floral development in Arabidopsis. PLANTA 2007; 225:1327-38. [PMID: 17109148 DOI: 10.1007/s00425-006-0439-1] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 10/26/2006] [Indexed: 05/04/2023]
Abstract
The miR166/165 group and its target genes regulate diverse aspects of plant development, including apical and lateral meristem formation, leaf polarity, and vascular development. We demonstrate here that MIR166/165 genes are dynamically controlled in regulating shoot apical meristem (SAM) and floral development in parallel to the WUSCHEL (WUS)-CLAVATA (CLV) pathway. Although miR166 and miR165 cleave same target mRNAs, individual MIR166/165 genes exhibit distinct expression domains in different plant tissues. The MIR166/165 expression is also temporarily regulated. Consistent with the dynamic expression patterns, an array of alterations in SAM activities and floral architectures was observed in the miR166/165-overproducing plants. In addition, when a MIR166a-overexpressing mutant was genetically crossed with mutants defective in the WUS-CLV pathway, the resultant crosses exhibited additive phenotypic effects, suggesting that the miR166/165-mediated signal exerts its role via a distinct signaling pathway.
Collapse
Affiliation(s)
- Jae-Hoon Jung
- Molecular Signaling Laboratory, Department of Chemistry, Seoul National University, Seoul, 151-742, South Korea
| | | |
Collapse
|
1697
|
Fang Y, Spector DL. Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants. Curr Biol 2007; 17:818-823. [PMID: 17442570 PMCID: PMC1950788 DOI: 10.1016/j.cub.2007.04.005] [Citation(s) in RCA: 326] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 03/22/2007] [Accepted: 04/04/2007] [Indexed: 10/23/2022]
Abstract
MicroRNAs (miRNAs) are important for regulating gene expression in muticellular organisms. MiRNA processing is a two-step process. In animal cells, the first step is nuclear and the second step cytoplasmic, whereas in plant cells, both steps occur in the nucleus via the enzyme Dicer-like1 (DCL1) and other proteins including the zinc-finger-domain protein Serrate (SE) and a double-stranded RNA (dsRNA) binding-domain protein, Hyponastic Leaves1 (HYL1). Furthermore, plant miRNAs are methylated by Hua Enhancer (HEN1) at their 3' ends and loaded onto Argonaute1 (AGO1). However, little is known about the cellular basis of miRNA biogenesis. Using live-cell imaging, we show here that DCL1 and HYL1 colocalize in discrete nuclear bodies in addition to being present in a low-level diffuse nucleoplasmic distribution. These bodies, which we refer to as nuclear dicing bodies (D-bodies), differ from Cajal bodies. A mutated DCL1 with impaired function in miRNA processing fails to target to D-bodies, and an introduced primary (pri)-miRNA transcript is recruited to D-bodies. Furthermore, bimolecular fluorescence complementation (BiFC) shows that DCL1, HYL1, and SE interact in D-bodies. On the basis of these data, we propose that D-bodies are crucial for orchestrating pri-miRNA processing and/or storage/assembly of miRNA-processing complexes in the nuclei of plant cells.
Collapse
Affiliation(s)
- Yuda Fang
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - David L. Spector
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
1698
|
Zhao T, Li G, Mi S, Li S, Hannon GJ, Wang XJ, Qi Y. A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev 2007; 21:1190-203. [PMID: 17470535 PMCID: PMC1865491 DOI: 10.1101/gad.1543507] [Citation(s) in RCA: 290] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Endogenous small RNAs function in RNA interference (RNAi) pathways to control gene expression through mRNA cleavage, translational repression, or chromatin modification. Plants and animals contain many microRNAs (miRNAs) that play vital roles in development, including helping to specify cell type and tissue identity. To date, no miRNAs have been reported in unicellular organisms. Here we show that Chlamydomonas reinhardtii, a unicellular green alga, encodes many miRNAs. We also show that a Chlamydomonas miRNA can direct the cleavage of its target mRNA in vivo and in vitro. We further show that the expression of some miRNAs/Candidates increases or decreases during Chlamydomonas gametogenesis. In addition to miRNAs, Chlamydomonas harbors other types of small RNAs including phased small interfering RNAs (siRNAs) that are reminiscent of plant trans-acting siRNAs, as well as siRNAs originating from protein-coding genes and transposons. Our findings suggest that the miRNA pathway and some siRNA pathways are ancient mechanisms of gene regulation that evolved prior to the emergence of multicellularity.
Collapse
Affiliation(s)
- Tao Zhao
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing 102206, China
| | - Guanglin Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shijun Mi
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing 102206, China
| | - Shan Li
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing 102206, China
| | - Gregory J. Hannon
- Cold Spring Harbor Laboratory, Watson School of Biological Sciences and Howard Hughes Medical Institute, Cold Spring Harbor, New York 11724, USA
| | - Xiu-Jie Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- E-MAIL ; FAX 86-10-64873428
| | - Yijun Qi
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing 102206, China
- Corresponding author.E-mail ; FAX 86-10-80727873
| |
Collapse
|
1699
|
Backofen R, Bernhart SH, Flamm C, Fried C, Fritzsch G, Hackermüller J, Hertel J, Hofacker IL, Missal K, Mosig A, Prohaska SJ, Rose D, Stadler PF, Tanzer A, Washietl S, Will S. RNAs everywhere: genome-wide annotation of structured RNAs. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2007; 308:1-25. [PMID: 17171697 DOI: 10.1002/jez.b.21130] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Starting with the discovery of microRNAs and the advent of genome-wide transcriptomics, non-protein-coding transcripts have moved from a fringe topic to a central field research in molecular biology. In this contribution we review the state of the art of "computational RNomics", i.e., the bioinformatics approaches to genome-wide RNA annotation. Instead of rehashing results from recently published surveys in detail, we focus here on the open problem in the field, namely (functional) annotation of the plethora of putative RNAs. A series of exploratory studies are used to provide non-trivial examples for the discussion of some of the difficulties.
Collapse
|
1700
|
Abstract
A recent Keystone Symposium on 'MicroRNAs and siRNAs: Biological Functions and Mechanisms' was organized by David Bartel and Shiv Grewal (and was held in conjunction with 'RNAi for Target Validation and as a Therapeutic', organized by Stephen Friend and John Maraganore). The 'MicroRNAs and siRNAs' meeting brought together scientists working on diverse biological aspects of small regulatory RNAs, including microRNAs, small interfering RNAs (siRNAs) and Piwi-interacting RNAs (piRNAs and rasiRNAs). Among the themes discussed were the diversity of small regulatory RNAs and their developmental functions, their biogenesis, the identification of their regulatory targets, their mechanisms of action, and their roles in the elaboration of multicellular complexity.
Collapse
|