1901
|
Dickins RA, McJunkin K, Hernando E, Premsrirut PK, Krizhanovsky V, Burgess DJ, Kim SY, Cordon-Cardo C, Zender L, Hannon GJ, Lowe SW. Tissue-specific and reversible RNA interference in transgenic mice. Nat Genet 2007; 39:914-21. [PMID: 17572676 PMCID: PMC4595852 DOI: 10.1038/ng2045] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 04/20/2007] [Indexed: 12/14/2022]
Abstract
Genetically engineered mice provide powerful tools for understanding mammalian gene function. These models traditionally rely on gene overexpression from transgenes or targeted, irreversible gene mutation. By adapting the tetracycline (tet)-responsive system previously used for gene overexpression, we have developed a simple transgenic system to reversibly control endogenous gene expression using RNA interference (RNAi) in mice. Transgenic mice harboring a tet-responsive RNA polymerase II promoter driving a microRNA-based short hairpin RNA targeting the tumor suppressor Trp53 reversibly express short hairpin RNA when crossed with existing mouse strains expressing general or tissue-specific 'tet-on' or 'tet-off' transactivators. Reversible Trp53 knockdown can be achieved in several tissues, and restoring Trp53 expression in lymphomas whose development is promoted by Trp53 knockdown leads to tumor regression. By leaving the target gene unaltered, this approach permits tissue-specific, reversible regulation of endogenous gene expression in vivo, with potential broad application in basic biology and drug target validation.
Collapse
Affiliation(s)
- Ross A Dickins
- Howard Hughes Medical Institute, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1902
|
|
1903
|
He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, Jackson AL, Linsley PS, Chen C, Lowe SW, Cleary MA, Hannon GJ. A microRNA component of the p53 tumour suppressor network. Nature 2007; 447:1130-4. [PMID: 17554337 PMCID: PMC4590999 DOI: 10.1038/nature05939] [Citation(s) in RCA: 2091] [Impact Index Per Article: 116.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2007] [Accepted: 05/17/2007] [Indexed: 12/11/2022]
Abstract
A global decrease in microRNA (miRNA) levels is often observed in human cancers, indicating that small RNAs may have an intrinsic function in tumour suppression. To identify miRNA components of tumour suppressor pathways, we compared miRNA expression profiles of wild-type and p53-deficient cells. Here we describe a family of miRNAs, miR-34a-c, whose expression reflected p53 status. Genes encoding miRNAs in the miR-34 family are direct transcriptional targets of p53, whose induction by DNA damage and oncogenic stress depends on p53 both in vitro and in vivo. Ectopic expression of miR-34 induces cell cycle arrest in both primary and tumour-derived cell lines, which is consistent with the observed ability of miR-34 to downregulate a programme of genes promoting cell cycle progression. The p53 network suppresses tumour formation through the coordinated activation of multiple transcriptional targets, and miR-34 may act in concert with other effectors to inhibit inappropriate cell proliferation.
Collapse
Affiliation(s)
- Lin He
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1904
|
Prevarskaya N, Zhang L, Barritt G. TRP channels in cancer. Biochim Biophys Acta Mol Basis Dis 2007; 1772:937-46. [PMID: 17616360 DOI: 10.1016/j.bbadis.2007.05.006] [Citation(s) in RCA: 245] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 05/25/2007] [Indexed: 01/09/2023]
Abstract
The progression of cells from a normal differentiated state in which rates of proliferation and apoptosis are balanced to a tumorigenic and metastatic state involves the accumulation of mutations in multiple key signalling proteins and the evolution and clonal selection of more aggressive cell phenotypes. These events are associated with changes in the expression of numerous other proteins. This process of tumorigenesis involves the altered expression of one or more TRP proteins, depending on the nature of the cancer. The most clearly described changes are those involving TRPM8, TRPV6 and TRPM1. Expression of TRPM8 is substantially increased in androgen-dependent prostate cancer cells, but is decreased in androgen independent and metastatic prostate cancer. TRPM8 expression is regulated, in part, by androgens, most likely through androgen response elements in the TRPM8 promoter region. TRPM8 channels are involved in the regulation of cell proliferation and apoptosis. Expression of TRPV6 is also increased in prostate cancer and in a number of other cancers. In contrast to TRPM8, expression of TRPV6 is not directly regulated by androgens. TRPM1 is highly expressed in early stage melanomas but its expression declines with increases in the degree of aggressiveness of the melanoma. The expression of TRPV1, TRPC1, TRPC6, TRPM4, and TRPM5 is also increased in some cancers. The level of expression of TRPM8 and TRPV6 in prostate cancer, and of TRPM1 in melanomas, potentially provides a good prognostic marker for predicting the course of the cancer in individuals. The Drosophila melanogaster, TRPL, and the TRPV1 and TRPM8 proteins, have been used to try to develop strategies to selectively kill cancer cells by activating Ca(2+) and Na(+) entry, producing a sustained increase in the cytoplasmic concentration of these ions, and subsequent cell death by apoptosis and necrosis. TRPV1 is expressed in neurones involved in sensing cancer pain, and is a potential target for pharmacological inhibition of cancer pain in bone metastases, pancreatic cancer and most likely in other cancers. Further studies are required to assess which other TRP proteins are associated with the development and progression of cancer, what roles TRP proteins play in this process, and to develop further knowledge of TRP proteins as targets for pharmaceutical intervention and targeting in cancer.
Collapse
Affiliation(s)
- Natalia Prevarskaya
- Inserm, U800, Equipe Labellisee par la Ligue Contre le Cancer, Villeneuve d'Ascq F-59650, France
| | | | | |
Collapse
|
1905
|
Yu D, Carroll M, Thomas-Tikhonenko A. p53 status dictates responses of B lymphomas to monotherapy with proteasome inhibitors. Blood 2007; 109:4936-43. [PMID: 17284530 PMCID: PMC1885530 DOI: 10.1182/blood-2006-10-050294] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Accepted: 02/01/2007] [Indexed: 12/20/2022] Open
Abstract
The proapoptotic function of p53 is thought to underlie most anticancer modalities and is also activated in response to oncogenic insults, such as overexpression of the Myc oncoprotein. Here we generated tractable B lymphomas using retroviral transduction of the MYC oncogene into hematopoietic cells with 2 knock-in alleles encoding a fusion between p53 and 4-hydroxytamoxifen (4OHT) receptor (p53ER(TAM)). In these polyclonal tumors, Myc is the only oncogenic lesion, and p53ER(TAM) status can be rapidly toggled between "off" and "on" with 4OHT, provided that the Trp53 promoter has been independently activated. Although 4OHT can trigger widespread apoptosis and overt tumor regression even in the absence of DNA-damaging agents, in tumors with high levels of Mdm2 these responses are blunted. However, cotreatment with proteasome inhibitors fully restores therapeutic effects in vivo. Similarly, human Burkitt lymphomas with wild-type p53 and overexpression of Hdm2 are highly sensitive to proteasome inhibitors, unless p53 levels are reduced using the HPV-E6 ubiquitin ligase. Therefore, proteasome inhibitors could be highly effective as a monotherapy against Myc-induced lymphomas, with no need for adjuvant chemotherapy or radiation therapy. On the other hand, their efficacy is crucially dependent on the wild-type p53 status of the tumor, placing important restrictions on patient selection.
Collapse
Affiliation(s)
- Duonan Yu
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
1906
|
Beraza N, Trautwein C. Restoration of p53 function: a new therapeutic strategy to induce tumor regression? Hepatology 2007; 45:1578-9. [PMID: 17538933 DOI: 10.1002/hep.21789] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although cancer arises from a combination of mutations in oncogenes and tumour suppressor genes, the extent to which tumour suppressor gene loss is required for maintaining established tumours is poorly understood. p53 is an important tumour suppressor that acts to restrict proliferation in response to DNA damage or deregulation of mitogenic oncogenes, by leading to the induction of various cell cycle checkpoints, apoptosis or cellular senescence. Consequently, p53 mutations increase cell proliferation and survival, and in some settings promote genomic instability and resistance to certain chemotherapies. To determine the consequences of reactivating the p53 pathway in tumours, we used RNA interference (RNAi) to conditionally regulate endogenous p53 expression in a mosaic mouse model of liver carcinoma. We show that even brief reactivation of endogenous p53 in p53-deficient tumours can produce complete tumour regressions. The primary response to p53 was not apoptosis, but instead involved the induction of a cellular senescence program that was associated with differentiation and the upregulation of inflammatory cytokines. This program, although producing only cell cycle arrest in vitro, also triggered an innate immune response that targeted the tumour cells in vivo, thereby contributing to tumour clearance. Our study indicates that p53 loss can be required for the maintenance of aggressive carcinomas, and illustrates how the cellular senescence program can act together with the innate immune system to potently limit tumour growth.
Collapse
Affiliation(s)
- Naiara Beraza
- Department of Internal Medicine III, University Hospital Aachen (RWTH), Aachen, Germany
| | | |
Collapse
|
1907
|
|
1908
|
Feldser DM, Greider. CW. Short telomeres limit tumor progression in vivo by inducing senescence. Cancer Cell 2007; 11:461-9. [PMID: 17433785 PMCID: PMC1945093 DOI: 10.1016/j.ccr.2007.02.026] [Citation(s) in RCA: 227] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2006] [Revised: 02/02/2007] [Accepted: 02/26/2007] [Indexed: 01/01/2023]
Abstract
Telomere maintenance is critical for cancer progression. To examine mechanisms of tumor suppression induced by short telomeres, we crossed mice deficient for the RNA component of telomerase, mTR(-/-), with Emu-myc transgenic mice, an established model of Burkitt's lymphoma. Short telomeres suppressed tumor formation in Emu-myc transgenic animals. Expression of Bcl2 blocked apoptosis in tumor cells, but surprisingly, mice with short telomeres were still resistant to tumor formation. Staining for markers of cellular senescence showed that pretumor cells induced senescence in response to short telomeres. Loss of p53 abrogated the short telomere response. This study provides in vivo evidence for the existence of a p53-mediated senescence mechanism in response to short telomeres that suppresses tumorigenesis.
Collapse
|
1909
|
Adams PD. Remodeling of chromatin structure in senescent cells and its potential impact on tumor suppression and aging. Gene 2007; 397:84-93. [PMID: 17544228 PMCID: PMC2755200 DOI: 10.1016/j.gene.2007.04.020] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 04/09/2007] [Indexed: 11/18/2022]
Abstract
Cellular senescence is an important tumor suppression process, and a possible contributor to tissue aging. Senescence is accompanied by extensive changes in chromatin structure. In particular, many senescent cells accumulate specialized domains of facultative heterochromatin, called Senescence-Associated Heterochromatin Foci (SAHF), which are thought to repress expression of proliferation-promoting genes, thereby contributing to senescence-associated proliferation arrest. This article reviews our current understanding of the structure, assembly and function of these SAHF at a cellular level. The possible contribution of SAHF to tumor suppression and tissue aging is also critically discussed.
Collapse
Affiliation(s)
- Peter D Adams
- W446, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
1910
|
Gudkov AV, Komarova EA. Dangerous habits of a security guard: the two faces of p53 as a drug target. Hum Mol Genet 2007; 16 Spec No 1:R67-72. [PMID: 17613549 DOI: 10.1093/hmg/ddm052] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Being most well-known tumor suppressor that is inactivated in tumors more frequently than any other gene, p53 has been recently recognized as a major player in a variety of pathologies caused by acute stresses of tissues that is responsible for massive cell loss from apoptosis. This created a controversial situation when effective treatment of acute pathology requires inhibition of a major cancer preventive factor that has been traditionally viewed as a target for therapeutic activation. Here we briefly review specific aspects of this problem and discuss the ways of its pharmacological resolution based on detailed knowledge of molecular mechanisms of p53 regulation and activity.
Collapse
Affiliation(s)
- Andrei V Gudkov
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| | | |
Collapse
|
1911
|
Iiizumi M, Mohinta S, Bandyopadhyay S, Watabe K. Tumor-endothelial cell interactions: therapeutic potential. Microvasc Res 2007; 74:114-20. [PMID: 17498748 DOI: 10.1016/j.mvr.2007.04.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 04/02/2007] [Accepted: 04/04/2007] [Indexed: 12/30/2022]
Abstract
Metastasis is the primary cause of death in cancer patients. However, the molecular mechanism of the metastatic process is poorly understood because it involves multiple steps with a high degree of complexity. A critical step for successful establishment of secondary colonization is the hematogenous dissemination of malignant cells. During this process, the attachment of cancer cells to the endothelial cells on microvasculature is considered to be an essential step and many adhesion molecules as well as chemokines have been found to be involved in this process. This interaction of cancer-endothelial cell is considered not only to determine the physical site of metastasis, but also to provide the necessary anchorage to facilitate tumor cell extravasation. However, recent evidence indicates that this interaction also serves as a host defense mechanism and hinders the process of metastasis. The tumor metastases suppressor gene, KAI1, has been known to block metastatic process without affecting the primary tumor growth, and this protein has been found to be able to bind to the chemokine receptor, Duffy antigen receptor for chemokines (DARC), which is expressed on endothelial cells. Importantly, this interaction markedly induces senescence of tumor cells. This novel finding is not only significant in the context of molecular dissection of metastatic process but also in the therapeutic implication to develop drugs inhibiting metastasis.
Collapse
Affiliation(s)
- Megumi Iiizumi
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, 801 N. Rutledge St., P.O. Box 19626, Springfield, IL 62794-9626, USA
| | | | | | | |
Collapse
|
1912
|
Abstract
Most malignant tumors disrupt the p53 signaling pathway in order to grow and survive. Although many genes in addition to p53 are mutated in tumors, recent studies by Ventura et al. (2007) and Xue et al. (2007) suggest that restoring p53 function alone is sufficient to cause regression of several different tumor types in mice and thus might represent a potent therapeutic strategy to treat certain human cancers. Martins et al. (2006) also demonstrate that restoration of p53 activity results in tumor regression but add the sobering caveat that tumors may be able to quickly generate resistance by finding other ways to disrupt the p53 pathway.
Collapse
Affiliation(s)
- Michael B Kastan
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
1913
|
|
1914
|
Fuster JJ, Sanz-González SM, Moll UM, Andrés V. Classic and novel roles of p53: prospects for anticancer therapy. Trends Mol Med 2007; 13:192-9. [PMID: 17383232 DOI: 10.1016/j.molmed.2007.03.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 02/15/2007] [Accepted: 03/15/2007] [Indexed: 02/06/2023]
Abstract
The tumor suppressor p53 is a transcription factor that is frequently inactivated in human tumors. Therefore, restoring its function has been considered an attractive approach to restrain cancer. Typically, p53-dependent growth arrest, senescence and apoptosis of tumor cells have been attributed to transcriptional activity of nuclear p53. Notably, wild-type p53 gain-of-function enhances cancer resistance in the mouse, but it also accelerates aging in some models, possibly due to altered p53 activity. Therefore, the emerging evidence of mitochondrial transcription-independent activities of p53 has raised high expectations. Here, we review new developments in transcription-dependent and transcription-independent p53 functions, recent advances in targeting p53 for cancer treatment and the pitfalls of moving from the laboratory research to the clinical setting.
Collapse
Affiliation(s)
- José J Fuster
- Vascular Biology Unit, Instituto de Biomedicina de Valencia (IBV-CSIC), Spanish Council for Scientific Research, 46010 Valencia, Spain
| | | | | | | |
Collapse
|
1915
|
Research Highlights. Nat Biotechnol 2007. [DOI: 10.1038/nbt0307-307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
1916
|
|
1917
|
Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L, Newman J, Reczek EE, Weissleder R, Jacks T. Restoration of p53 function leads to tumour regression in vivo. Nature 2007; 445:661-5. [PMID: 17251932 DOI: 10.1038/nature05541] [Citation(s) in RCA: 1383] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 12/13/2006] [Indexed: 02/07/2023]
Abstract
Tumorigenesis is a multi-step process that requires activation of oncogenes and inactivation of tumour suppressor genes. Mouse models of human cancers have recently demonstrated that continuous expression of a dominantly acting oncogene (for example, Hras, Kras and Myc) is often required for tumour maintenance; this phenotype is referred to as oncogene addiction. This concept has received clinical validation by the development of active anticancer drugs that specifically inhibit the function of oncoproteins such as BCR-ABL, c-KIT and EGFR. Identifying additional gene mutations that are required for tumour maintenance may therefore yield clinically useful targets for new cancer therapies. Although loss of p53 function is a common feature of human cancers, it is not known whether sustained inactivation of this or other tumour suppressor pathways is required for tumour maintenance. To explore this issue, we developed a Cre-loxP-based strategy to temporally control tumour suppressor gene expression in vivo. Here we show that restoring endogenous p53 expression leads to regression of autochthonous lymphomas and sarcomas in mice without affecting normal tissues. The mechanism responsible for tumour regression is dependent on the tumour type, with the main consequence of p53 restoration being apoptosis in lymphomas and suppression of cell growth with features of cellular senescence in sarcomas. These results support efforts to treat human cancers by way of pharmacological reactivation of p53.
Collapse
Affiliation(s)
- Andrea Ventura
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1918
|
Abstract
Defects in programmed cell death or apoptosis are major hallmarks of cancer contributing to tumorigenesis, tumor progression, and therapy resistance. In the past decade, many of the pathways leading to apoptosis, as well as the molecular mechanisms blocking the death of tumor cells, have been elucidated. This detailed knowledge of the core apoptosis machinery is now being exploited for translation into novel cancer therapies in order to restore apoptosis induction in tumor cells. Strategies include activation of proapoptotic mediators such as death receptors, tumor protein p53, and second mitochondria-derived activator of caspases (SMAC)/DIABLO as well as inhibition of endogenous apoptosis inhibitors such as IAPs (inhibitor of apoptosis proteins) and BCL-2 (B-cell chronic lymphoid leukemia/lymphoma) proteins. Several approaches employing gene therapy and antisense strategies, recombinant biologics, or classic organic and combinatorial chemistry, have advanced into clinical trials or are already approved. This review looks at recent developments in apoptosis-based cancer therapies and highlights some very promising advances in drug design.
Collapse
Affiliation(s)
- Ute Fischer
- Institute of Molecular Medicine, Heinrich-Heine University, Düsseldorf, Germany.
| | | | | |
Collapse
|
1919
|
p14ARF upregulation of p53 and enhanced effects of 5-fluorouracil in pancreatic cancer. Chin Med J (Engl) 2003; 4:e791. [PMID: 24008735 PMCID: PMC3789167 DOI: 10.1038/cddis.2013.307] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 07/12/2013] [Accepted: 07/15/2013] [Indexed: 12/16/2022] Open
Abstract
Gemcitabine is a chemotherapeutic that is widely used for the treatment of a variety of haematological malignancies and has become the standard chemotherapy for the treatment of advanced pancreatic cancer. Combinational gemcitabine regimes (e.g.with doxorubicin) are being tested in clinical trials to treat a variety of cancers, including colon cancer. The limited success of these trials has prompted us to pursue a better understanding of gemcitabine's mechanism of cell killing, which could dramatically improve the therapeutic potential of this agent. For comparison, we included gamma irradiation that triggers robust cell cycle arrest and Cr(VI), which is a highly toxic chemical that induces a robust p53-dependent apoptotic response. Gemcitabine induced a potent p53-dependent apoptosis that correlated with the accumulation of pro-apoptotic proteins such as PUMA and Bax. This is accompanied by a drastic reduction in p2l and 14-3-3σ protein levels, thereby significantly sensitizing the cells to apoptosis. In vitro and in vivo studies demonstrated that gemcitabine required PUMA transcription to instigate an apoptotic programme. This was in contrast to Cr(VI)-induced apoptosis that required Bax and was independent of transcription. An examination of clinical colon and pancreatic cancer tissues shows higher p53, p21, 14-3-3σ and Bax expression compared with matched normal tissues, yet there is a near absence of PUMA protein. This may explain why gemcitabine shows only limited efficacy in the treatment of these cancers. Our results raise the possibility that targeting the Bax-dependent cell death pathway, rather than the PUMA pathway, could result in significantly improved patient outcome and prognosis for these cancers.
Collapse
|