1901
|
Natural Killer-Dendritic Cell Interactions in Liver Cancer: Implications for Immunotherapy. Cancers (Basel) 2021; 13:cancers13092184. [PMID: 34062821 PMCID: PMC8124166 DOI: 10.3390/cancers13092184] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The reciprocal crosstalk between dendritic cells (DCs) and natural killer (NK) cells plays a pivotal role in regulating immune defense against viruses and tumors. The Th-cell polarizing ability, cytokine-producing capacity, chemokine expression, and migration of DCs are regulated by activated NK cells. Conversely, the effector functions including lysis and cytokine production, proliferation, and migration of NK cells are influenced by close interactions with activated DCs. In this review, we explore the impact of DC–NK cell crosstalk and its therapeutic potential in immune control of liver malignances. Abstract Natural killer (NK) and dendritic cells (DCs) are innate immune cells that play a crucial role in anti-tumor immunity. NK cells kill tumor cells through direct cytotoxicity and cytokine secretion. DCs are needed for the activation of adaptive immune responses against tumor cells. Both NK cells and DCs are subdivided in several subsets endowed with specialized effector functions. Crosstalk between NK cells and DCs leads to the reciprocal control of their activation and polarization of immune responses. In this review, we describe the role of NK cells and DCs in liver cancer, focusing on the mechanisms involved in their reciprocal control and activation. In this context, intrahepatic NK cells and DCs present unique immunological features, due to the constant exposure to non-self-circulating antigens. These interactions might play a fundamental role in the pathology of primary liver cancer, namely hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). Additionally, the implications of these immune changes are relevant from the perspective of improving the cancer immunotherapy strategies in HCC and ICC patients.
Collapse
|
1902
|
Cui K, Hu S, Mei X, Cheng M. Innate Immune Cells in the Esophageal Tumor Microenvironment. Front Immunol 2021; 12:654731. [PMID: 33995371 PMCID: PMC8113860 DOI: 10.3389/fimmu.2021.654731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/13/2021] [Indexed: 01/10/2023] Open
Abstract
Esophageal cancer (EC) is one of the most common mucosa-associated tumors, and is characterized by aggressiveness, poor prognosis, and unfavorable patient survival rates. As an organ directly exposed to the risk of foodborne infection, the esophageal mucosa harbors distinct populations of innate immune cells, which play vital roles in both maintenance of esophageal homeostasis and immune defense and surveillance during mucosal anti-infection and anti-tumor responses. In this review, we highlight recent progress in research into innate immune cells in the microenvironment of EC, including lymphatic lineages, such as natural killer and γδT cells, and myeloid lineages, including macrophages, dendritic cells, neutrophils, myeloid-derived suppressor cells, mast cells and eosinophils. Further, putative innate immune cellular and molecular mechanisms involved in tumor occurrence and progression are discussed, to highlight potential directions for the development of new biomarkers and effective intervention targets, which can hopefully be applied in long-term multilevel clinical EC treatment. Fully understanding the innate immunological mechanisms involved in esophageal mucosa carcinogenesis is of great significance for clinical immunotherapy and prognosis prediction for patients with EC.
Collapse
Affiliation(s)
- Kele Cui
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China
- Cancer Immunotherapy Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shouxin Hu
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China
- Cancer Immunotherapy Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xinyu Mei
- Department of Thoracic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Min Cheng
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China
- Cancer Immunotherapy Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
1903
|
Januszyk P, Januszyk K, Wierzbik-Strońska M, Boroń D, Grabarek B. Analysis of the Differences in the Expression of mRNAs and miRNAs Associated with Drug Resistance in Endometrial Cancer Cells Treated with Salinomycin. Curr Pharm Biotechnol 2021; 22:541-548. [DOI: 10.2174/1389201021666200629151008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/26/2020] [Accepted: 05/29/2020] [Indexed: 01/03/2023]
Abstract
Background:
It is important to understand the molecular mechanisms involved in cancer
drug resistance and to study the activity of new drugs, e.g. salinomycin.
Objective:
The purpose of the study was to analyze changes in the expression of genes associated with drug resistance in the
Ishikawa endometrial cancer cell line when treated with salinomycin. In addition, changes in the level of miRNA potentially
regulating these mRNAs were evaluated.
Materials and Methods:
Endometrial cancer cells were treated with 1 μM of salinomycin for 12, 24
and 48 hours periods. Untreated cells were a control culture. The molecular analysis consists of mRNA
and miRNA microarray analysis and the RTqPCR technique.
Results:
The following was observed about the number of mRNAs differentiating the cell culture exposed
to the drug compared to a control culture: H-12 vs. C - 9 mRNAs, H_24 vs. C - 6 mRNAs, and
H_48 vs. C - 1 mRNA. It was noted that 4 of the 9 differentiating mRNAs were characteristic for 12
hours of exposure to salinomycin and they correspond to the following genes: TUFT1, ABCB1,
MTMR11, and MX2. After 24 hours, 2 mRNAs were characteristic for this time of incubation cells
with salinomycin: TUFT1 and MYD88 and after 48 hours, SLC30A5 could also be observed.
Discussion:
The highest differences in expression were indicated for TUFT1, MTMR11, and SLC30A5.
The highest influence probability was determined between TUFT1 and hsa- miR-3188 (FC + 2.48),
MTMR11and has-miR-16 (FC -1.74), and between SLC30A5 and hsa-miR-30d (FC -2.01).
Conclusions:
Salinomycin induces changes in the activity of mRNA and miRNA participating in drug
resistance; however, the observed changes in character are the expected result of anti-cancer treatment.
Collapse
Affiliation(s)
- Piotr Januszyk
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Krakow, Poland
| | - Krzysztof Januszyk
- Faculty of Health Science, Public Higher Medical Professional School in Opole, Poland
| | - Magdalena Wierzbik-Strońska
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology in Katowice, Zabrze, Poland
| | - Dariusz Boroń
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology in Katowice, Zabrze, Poland
| | - Beniamin Grabarek
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology in Katowice, Zabrze, Poland
| |
Collapse
|
1904
|
Chen L, He M, Zhang M, Sun Q, Zeng S, Zhao H, Yang H, Liu M, Ren S, Meng X, Xu H. The Role of non-coding RNAs in colorectal cancer, with a focus on its autophagy. Pharmacol Ther 2021; 226:107868. [PMID: 33901505 DOI: 10.1016/j.pharmthera.2021.107868] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is one of malignant afflictions burdening people worldwide, mainly caused by shortages of effective medical intervention and poorly mechanistic understanding of the pathogenesis of CRC. Non-coding RNAs (ncRNAs) are a type of heterogeneous transcripts without the capability of coding protein, but have the potency of regulating protein-coding gene expression. Autophagy is an evolutionarily conserved catabolic process in which cytoplasmic contents are delivered to cellular lysosomes for degradation, resulting in the turnover of cellular components and producing energy for cell functions. A growing body of evidence reveals that ncRNAs, autophagy, and the crosstalks of ncRNAs and autophagy play intricate roles in the initiation, progression, metastasis, recurrence and therapeutic resistance of CRC, which confer ncRNAs and autophagy to serve as clinical biomarkers and therapeutic targets for CRC. In this review, we sought to delineate the complicated roles of ncRNAs, mainly including miRNAs, lncRNAs and circRNAs, in the pathogenesis of CRC, particularly focus on the regulatory role of ncRNAs in CRC-related autophagy, attempting to shed light on the complex pathological mechanisms, involving ncRNAs and autophagy, responsible for CRC tumorigenesis and development, so as to underpin the ncRNAs- and autophagy-based therapeutic strategies for CRC in clinical setting.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Man He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Meng Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiang Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sha Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hui Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Han Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Maolun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
1905
|
Cocco C, Morandi F, Airoldi I. Immune Checkpoints in Pediatric Solid Tumors: Targetable Pathways for Advanced Therapeutic Purposes. Cells 2021; 10:927. [PMID: 33920505 PMCID: PMC8074115 DOI: 10.3390/cells10040927] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) represents a complex network between tumor cells and a variety of components including immune, stromal and vascular endothelial cells as well as the extracellular matrix. A wide panel of signals and interactions here take place, resulting in a bi-directional modulation of cellular functions. Many stimuli, on one hand, induce tumor growth and the spread of metastatic cells and, on the other hand, contribute to the establishment of an immunosuppressive environment. The latter feature is achieved by soothing immune effector cells, mainly cytotoxic T lymphocytes and B and NK cells, and/or through expansion of regulatory cell populations, including regulatory T and B cells, tumor-associated macrophages and myeloid-derived suppressor cells. In this context, immune checkpoints (IC) are key players in the control of T cell activation and anti-cancer activities, leading to the inhibition of tumor cell lysis and of pro-inflammatory cytokine production. Thus, these pathways represent promising targets for the development of effective and innovative therapies both in adults and children. Here, we address the role of different cell populations homing the TME and of well-known and recently characterized IC in the context of pediatric solid tumors. We also discuss preclinical and clinical data available using IC inhibitors alone, in combination with each other or administered with standard therapies.
Collapse
Affiliation(s)
| | | | - Irma Airoldi
- Laboratorio Cellule Staminali Post-Natali e Terapie Cellulari, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genova, Italy; (C.C.); (F.M.)
| |
Collapse
|
1906
|
Qian H, Lei T, Hu Y, Lei P. Expression of Lipid-Metabolism Genes Is Correlated With Immune Microenvironment and Predicts Prognosis in Osteosarcoma. Front Cell Dev Biol 2021; 9:673827. [PMID: 33937273 PMCID: PMC8085431 DOI: 10.3389/fcell.2021.673827] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 03/30/2021] [Indexed: 12/29/2022] Open
Abstract
Objectives Osteosarcoma was the most popular primary malignant tumor in children and adolescent, and the 5-year survival of osteosarcoma patients gained no substantial improvement over the past 35 years. This study aims to explore the role of lipid metabolism in the development and diagnosis of osteosarcoma. Methods Clinical information and corresponding RNA data of osteosarcoma patients were downloaded from TRGET and GEO databases. Consensus clustering was performed to identify new molecular subgroups. ESTIMATE, TIMER and ssGSEA analyses were applied to determinate the tumor immune microenvironment (TIME) and immune status of the identified subgroups. Functional analyses including GO, KEGG, GSVA and GSEA analyses were conducted to elucidate the underlying mechanisms. Prognostic risk model was constructed using LASSO algorithm and multivariate Cox regression analysis. Results Two molecular subgroups with significantly different survival were identified. Better prognosis was associated with high immune score, low tumor purity, high abundance of immune infiltrating cells and relatively high immune status. GO and KEGG analyses revealed that the DEGs between the two subgroups were mainly enriched in immune- and bone remodeling-associated pathways. GSVA and GSEA analyses indicated that, lipid catabolism downregulation and lipid hydroxylation upregulation may impede the bone remodeling and development of immune system. Risk model based on lipid metabolism related genes (LMRGs) showed potent potential for survival prediction in osteosarcoma. Nomogram integrating risk model and clinical characteristics could predict the prognosis of osteosarcoma patients accurately. Conclusion Expression of lipid-metabolism genes is correlated with immune microenvironment of osteosarcoma patients and could be applied to predict the prognosis of in osteosarcoma accurately.
Collapse
Affiliation(s)
- Hu Qian
- Department of Orthopeadic Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Ting Lei
- Department of Orthopeadic Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Yihe Hu
- Department of Orthopeadic Surgery, Xiangya Hospital Central South University, Changsha, China.,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China.,Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Pengfei Lei
- Department of Orthopeadic Surgery, Xiangya Hospital Central South University, Changsha, China.,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China
| |
Collapse
|
1907
|
Yue J, Wu Y, Qiu L, Zhao R, Jiang M, Zhang H. LncRNAs link cancer stemness to therapy resistance. Am J Cancer Res 2021; 11:1051-1068. [PMID: 33948345 PMCID: PMC8085841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023] Open
Abstract
Cancer stem cells (CSCs) are a cellular subpopulation accelerating cancer cell growth, invasion and metastasis and survival. After chemoradiotherapy, CSCs are enriched because of their survival advantages and lead to tumor relapse and metastasis. Elimination of CSCs is critically important for the radical treatment of human cancers. Long non-coding RNAs (lncRNAs) are a group of RNAs longer than 200 nucleotides and have no protein-coding potential. Aberrant expressions of lncRNAs are associated with human diseases including cancer. LncRNAs function as cancer biomarkers, prognostic factors and therapeutic targets. They induce cancer stemness by chromatin modification, transcriptional regulation or post-transcriptional regulation of target genes as a sponge or through assembling a scaffold complex. Several factors caused aberrant expressions of lncRNAs in CSCs such as genes mutations, epigenetic alteration and environmental stimuli. Targeting of lncRNAs has been demonstrated to significantly reverse the chemoradioresistance of CSCs. In this review, we have summarized the progress of studies regarding lncRNAs-mediated therapy resistance of CSCs and clarified the molecular mechanisms. Furthermore, we have for the first time analyzed the influences of lncRNAs on cell metabolism and emphasized the effect of tumor microenvironment on lncRNAs functions in CSCs. Overall, the thorough understanding of the association of lncRNAs and CSCs would contribute to the reversal of therapy resistance.
Collapse
Affiliation(s)
- Jing Yue
- Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of MedicineHangzhou 310002, China
| | - Yueguang Wu
- Department of Surgical Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of MedicineHangzhou 310002, China
| | - Liqing Qiu
- Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of MedicineHangzhou 310002, China
| | - Ruping Zhao
- Department of Radiation Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of MedicineHangzhou 310002, China
| | - Mingfeng Jiang
- Department of Clinical Laboratory, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of MedicineHangzhou 310002, China
| | - Hongfang Zhang
- Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of MedicineHangzhou 310002, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of MedicineHangzhou 310006, China
| |
Collapse
|
1908
|
Cao S, Tang J, Huang Y, Li G, Li Z, Cai W, Yuan Y, Liu J, Huang X, Zhang H. The Road of Solid Tumor Survival: From Drug-Induced Endoplasmic Reticulum Stress to Drug Resistance. Front Mol Biosci 2021; 8:620514. [PMID: 33928116 PMCID: PMC8076597 DOI: 10.3389/fmolb.2021.620514] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/12/2021] [Indexed: 12/24/2022] Open
Abstract
Endoplasmic reticulum stress (ERS), which refers to a series of adaptive responses to the disruption of endoplasmic reticulum (ER) homeostasis, occurs when cells are treated by drugs or undergo microenvironmental changes that cause the accumulation of unfolded/misfolded proteins. ERS is one of the key responses during the drug treatment of solid tumors. Drugs induce ERS by reactive oxygen species (ROS) accumulation and Ca2+ overload. The unfolded protein response (UPR) is one of ERS. Studies have indicated that the mechanism of ERS-mediated drug resistance is primarily associated with UPR, which has three main sensors (PERK, IRE1α, and ATF6). ERS-mediated drug resistance in solid tumor cells is both intrinsic and extrinsic. Intrinsic ERS in the solid tumor cells, the signal pathway of UPR-mediated drug resistance, includes apoptosis inhibition signal pathway, protective autophagy signal pathway, ABC transporter signal pathway, Wnt/β-Catenin signal pathway, and noncoding RNA. Among them, apoptosis inhibition is one of the major causes of drug resistance. Drugs activate ERS and its downstream antiapoptotic proteins, which leads to drug resistance. Protective autophagy promotes the survival of solid tumor cells by devouring the damaged organelles and other materials and providing new energy for the cells. ERS induces protective autophagy by promoting the expression of autophagy-related genes, such as Beclin-1 and ATG5–ATG12. ABC transporters pump drugs out of the cell, which reduces the drug-induced apoptosis effect and leads to drug resistance. In addition, the Wnt/β-catenin signal pathway is also involved in the drug resistance of solid tumor cells. Furthermore, noncoding RNA regulates the ERS-mediated survival and death of solid tumor cells. Extrinsic ERS in the solid tumor cells, such as ERS in immune cells of the tumor microenvironment (TME), also plays a crucial role in drug resistance by triggering immunosuppression. In immune system cells, ERS in dendritic cells (DCs) and myeloid-derived suppressor cells (MDSCs) influences the antitumor function of normal T cells, which results in immunosuppression. Meanwhile, ERS in T cells can also cause impaired functioning and apoptosis, leading to immunosuppression. In this review, we highlight the core molecular mechanism of drug-induced ERS involved in drug resistance, thereby providing a new strategy for solid tumor treatment.
Collapse
Affiliation(s)
- Shulong Cao
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Jingyi Tang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Yichun Huang
- Clinical Medical College, Hubei University of Science and Technology, Xianning, China
| | - Gaofeng Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Zhuoya Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Wenqi Cai
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Yuning Yuan
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Junlong Liu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Xuqun Huang
- Edong Healthcare Group, Department of Medical Oncology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
| | - Haiyuan Zhang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| |
Collapse
|
1909
|
Cui G, Geng L, Zhu L, Lin Z, Liu X, Miao Z, Jiang J, Feng X, Wei F. CFP is a prognostic biomarker and correlated with immune infiltrates in Gastric Cancer and Lung Cancer. J Cancer 2021; 12:3378-3390. [PMID: 33976747 PMCID: PMC8100816 DOI: 10.7150/jca.50832] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 03/21/2021] [Indexed: 01/06/2023] Open
Abstract
Complement factor properdin (CFP), encodes plasma glycoprotein, is a critical gene that regulates the complement pathway of the innate immune system. However, correlations of CFP in cancers remain unclear. In this study, the expression pattern and prognostic value of CFP in pan-cancer were analyzed via the Oncomine, PrognoScan, GEPIA and Kaplan-Meier plotters. In addition, we used immunohistochemical staining to validate CFP expression in clinical tissue samples. Finally, we evaluated the correlations between CFP and cancer immune infiltrates particularly in stomach adenocarcinoma (STAD) and lung adenocarcinoma (LUAD) by using GEPIA and TIMER databases. The results of database analysis and immunohistochemistry showed that the expression level of CFP in STAD and LUAD was lower than that in normal tissues. Low expression level of CFP was associated with poorer overall survival (OS), first progression (FP), post progression survival (PPS) and was detrimental to the prognosis of STAD and LUAD, specifically in stage 3, stage T3, stage N2 and N3 of STAD (P<0.05). Moreover, expression of CFP had significant positive correlations with the infiltration levels of CD8+ T cells, CD4+ T cells, macrophages, neutrophils and dendritic cells (DCs) in STAD and LUAD. Furthermore, gene markers of infiltrating immune cells exhibited different CFP-related immune infiltration patterns such as tumor-associated-macrophages (TAMs). These results suggest that CFP can serve as a prognostic biomarker for determining prognosis and immune infiltration in STAD and LUAD.
Collapse
Affiliation(s)
- Guoliang Cui
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.,Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China.,The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, Jiangsu, China
| | - Le Geng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.,Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Li Zhu
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, Jiangsu, China
| | - Zhenyan Lin
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.,Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Xuan Liu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.,Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Zhengyue Miao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.,Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Jintao Jiang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.,Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Xiaoke Feng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.,Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Fei Wei
- Department of Physiology, School of medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| |
Collapse
|
1910
|
Chen Q, Li Y, Liu Y, Xu W, Zhu X. Exosomal Non-coding RNAs-Mediated Crosstalk in the Tumor Microenvironment. Front Cell Dev Biol 2021; 9:646864. [PMID: 33912560 PMCID: PMC8072401 DOI: 10.3389/fcell.2021.646864] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/15/2021] [Indexed: 01/18/2023] Open
Abstract
Exosomes are secreted by different types of cells in tumor microenvironment (TME) and participate in multiple biological processes of tumors. Non-coding RNAs (ncRNAs) enveloped in exosomes and released to the TME are shown to be involved in tumorigenesis and development, as well as act as important intracellular communication mediators. However, the understanding on the exact regulatory functions and substrates of exosomal RNA is still at an early stage. In this review, we provided an overview on recent studies on exosomes mediating the modulation of both tumor cells and immune cells, then summarized the exosomal ncRNAs [such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs)] secreted by tumor cells and stromal cells that exhibited potential capabilities to regulate tumor cell growth, progression, metastasis, drug resistance, and immune response. Our review may hopefully inspire a deeper understanding on the ncRNAs’ function as useful biomarkers for the diagnosis, prognosis, and as novel targets therapy for cancer.
Collapse
Affiliation(s)
- Qi Chen
- Department of Oncology and Central Laboratory, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.,International Genome Center, Jiangsu University, Zhenjiang, China
| | - Yuefeng Li
- Affiliated People Hospital of Jiangsu University, Zhenjiang, China
| | - Yueqin Liu
- Department of Oncology and Central Laboratory, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wenlin Xu
- Department of Oncology and Central Laboratory, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaolan Zhu
- Department of Oncology and Central Laboratory, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Reproduction Medicine Center, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.,International Genome Center, Jiangsu University, Zhenjiang, China
| |
Collapse
|
1911
|
Jonasch E, Walker CL, Rathmell WK. Clear cell renal cell carcinoma ontogeny and mechanisms of lethality. Nat Rev Nephrol 2021; 17:245-261. [PMID: 33144689 PMCID: PMC8172121 DOI: 10.1038/s41581-020-00359-2] [Citation(s) in RCA: 359] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
The molecular features that define clear cell renal cell carcinoma (ccRCC) initiation and progression are being increasingly defined. The TRACERx Renal studies and others that have described the interaction between tumour genomics and remodelling of the tumour microenvironment provide important new insights into the molecular drivers underlying ccRCC ontogeny and progression. Our understanding of common genomic and chromosomal copy number abnormalities in ccRCC, including chromosome 3p loss, provides a mechanistic framework with which to organize these abnormalities into those that drive tumour initiation events, those that drive tumour progression and those that confer lethality. Truncal mutations in ccRCC, including those in VHL, SET2, PBRM1 and BAP1, may engender genomic instability and promote defects in DNA repair pathways. The molecular features that arise from these defects enable categorization of ccRCC into clinically and therapeutically relevant subtypes. Consideration of the interaction of these subtypes with the tumour microenvironment reveals that specific mutations seem to modulate immune cell populations in ccRCC tumours. These findings present opportunities for disease prevention, early detection, prognostication and treatment.
Collapse
Affiliation(s)
- Eric Jonasch
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Cheryl Lyn Walker
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - W Kimryn Rathmell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
1912
|
Huang Q, Liang X, Ren T, Huang Y, Zhang H, Yu Y, Chen C, Wang W, Niu J, Lou J, Guo W. The role of tumor-associated macrophages in osteosarcoma progression - therapeutic implications. Cell Oncol (Dordr) 2021; 44:525-539. [PMID: 33788151 DOI: 10.1007/s13402-021-00598-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Osteosarcoma (OS) is the most common primary malignant bone tumor. Compared with previous treatment modalities, such as amputation, more recent comprehensive treatment modalities based on neoadjuvant chemotherapy combined with limb salvage surgery have improved the survival rates of patients. Osteosarcoma treatment has, however, not further improved in recent years. Therefore, attention has shifted to the tumor microenvironment (TME) in which osteosarcoma cells are embedded. Therapeutic targets in the TME may be key to improving osteosarcoma treatment. Tumor-associated macrophages (TAMs) are the most common immune cells within the TME. TAMs in osteosarcoma may account for over 50% of the immune cells, and may play important roles in tumorigenesis, angiogenesis, immunosuppression, drug resistance and metastasis. Knowledge on the role of TAMs in the development, progression and treatment of osteosarcoma is gradually improving, although different or even opposing opinions still remain. CONCLUSIONS TAMs may participate in the malignant progression of osteosarcoma through self-polarization, the promotion of blood vessel and lymphatic vessel formation, immunosuppression, and drug resistance. Besides, various immune checkpoint proteins expressed on the surface of TAMs, such as PD-1 and CD47, provide the possibility of the application of immune checkpoint inhibitors. Several clinical trials have been carried out and/or are in progress. Mifamotide and the immune checkpoint inhibitor Camrelizumab were both found to be effective in prolonging progression-free survival. Thus, TAMs may serve as attractive therapeutic targets. Targeting TAMs as a complementary therapy is expected to improve the prognosis of osteosarcoma. Further efforts may be made to identify potential beneficiaries of TAM-targeted therapies.
Collapse
Affiliation(s)
- Qingshan Huang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Xin Liang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Tingting Ren
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Yi Huang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Hongliang Zhang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Yiyang Yu
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Chenglong Chen
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Wei Wang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Jianfang Niu
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Jingbing Lou
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China. .,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China.
| |
Collapse
|
1913
|
Cardoso AP, Pinto ML, Castro F, Costa ÂM, Marques-Magalhães Â, Canha-Borges A, Cruz T, Velho S, Oliveira MJ. The immunosuppressive and pro-tumor functions of CCL18 at the tumor microenvironment. Cytokine Growth Factor Rev 2021; 60:107-119. [PMID: 33863622 DOI: 10.1016/j.cytogfr.2021.03.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/20/2021] [Accepted: 03/27/2021] [Indexed: 02/07/2023]
Abstract
Chemokines are essential mediators of immune cell trafficking. In a tumor microenvironment context, chemotactic cytokines are known to regulate the migration, positioning and interaction of different cell subsets with both anti- and pro-tumor functions. Additionally, chemokines have critical roles regarding non-immune cells, highlighting their importance in tumor growth and progression. CCL18 is a primate-specific chemokine produced by macrophages and dendritic cells. This chemokine presents both constitutive and inducible expression. It is mainly associated with a tolerogenic response and involved in maintaining homeostasis of the immune system under physiological conditions. Recently, CCL18 has been noticed as an important component of the complex chemokine system involved in the biology of tumors. This chemokine induces T regulatory cell differentiation and recruitment to the tumor milieu, with subsequent induction of a pro-tumor (M2-like) macrophage phenotype. CCL18 is also directly involved in cancer cell-invasion, migration, epithelial-to-mesenchymal transition and angiogenesis stimulation, pinpointing an important role in the promotion of cancer progression. Interestingly, this chemokine is highly expressed in tumor tissues, particularly at the invasive front of more advanced stages (e.g. colorectal cancer), and high levels are detected in the serum of patients, correlating with poor prognosis. Despite the promising role of CCL18 as a biomarker and/or therapeutic target to hamper disease progression, its pleiotropic functions in a context of cancer are still poorly explored. The scarce knowledge concerning the receptors for this chemokine, together with the insufficient insight on the downstream signaling pathways, have impaired the selection of this molecule as an immediate target for translational research. In this Review, we will discuss recent findings concerning the role of CCL18 in cancer, integrate recently disclosed molecular mechanisms and compile data from current clinical studies.
Collapse
Affiliation(s)
- Ana Patrícia Cardoso
- i3S, Institute for Research and Innovation in Health, University of Porto, Portugal; INEB, Institute of Biomedical Engineering, University of Porto, Portugal.
| | | | - Flávia Castro
- i3S, Institute for Research and Innovation in Health, University of Porto, Portugal; INEB, Institute of Biomedical Engineering, University of Porto, Portugal
| | - Ângela Margarida Costa
- i3S, Institute for Research and Innovation in Health, University of Porto, Portugal; INEB, Institute of Biomedical Engineering, University of Porto, Portugal
| | - Ângela Marques-Magalhães
- i3S, Institute for Research and Innovation in Health, University of Porto, Portugal; INEB, Institute of Biomedical Engineering, University of Porto, Portugal; ICBAS, Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| | - Ana Canha-Borges
- i3S, Institute for Research and Innovation in Health, University of Porto, Portugal; INEB, Institute of Biomedical Engineering, University of Porto, Portugal
| | - Tânia Cruz
- i3S, Institute for Research and Innovation in Health, University of Porto, Portugal; INEB, Institute of Biomedical Engineering, University of Porto, Portugal
| | - Sérgia Velho
- i3S, Institute for Research and Innovation in Health, University of Porto, Portugal; IPATIMUP, Institute of Pathology and Molecular Immunology, University of Porto, Portugal
| | - Maria José Oliveira
- i3S, Institute for Research and Innovation in Health, University of Porto, Portugal; INEB, Institute of Biomedical Engineering, University of Porto, Portugal; ICBAS, Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal; Department of Pathology and Oncology, Faculty of Medicine, University of Porto, Portugal
| |
Collapse
|
1914
|
Pihlstrøm N, Jin Y, Nenseth Z, Kuzu OF, Saatcioglu F. STAMP2 Expression Mediated by Cytokines Attenuates Their Growth-Limiting Effects in Prostate Cancer Cells. Cancers (Basel) 2021; 13:cancers13071579. [PMID: 33808059 PMCID: PMC8036285 DOI: 10.3390/cancers13071579] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 01/22/2023] Open
Abstract
Simple Summary Prostate cancer (PCa) is the most common non-skin cancer and one of the leading causes of cancer death in men. Despite significant developments in therapy options with improved survival, no curative treatment is currently available. We have previously identified six transmembrane protein of prostate 2 (STAMP2) as an important factor for PCa growth and survival. We now show that STAMP2 expression is regulated by inflammatory signaling, which has recently been implicated in PCa. Two proinflammatory cytokines, interleukin 6 and interleukin 1 beta, synergize with each other to induce STAMP2 expression. Interestingly, STAMP2 knockdown increased the sensitivity of PCa cells to cytokine treatment. Thus, STAMP2 that acts as a survival factor in PCa, is both independently and synergistically regulated by inflammatory signaling that may affect disease progression. Abstract Inflammatory events and dysregulated cytokine expression are implicated in prostate cancer (PCa), but the underlying molecular mechanisms are poorly understood at present. We have previously identified six transmembrane protein of the prostate 2 (STAMP2, also known as STEAP4) as an androgen-regulated gene, as well as a key regulator of PCa growth and survival. STAMP2 is also regulated by, and participates in, inflammatory signaling in other tissues and pathologies. Here, we show that the proinflammatory cytokines interleukin 6 (IL-6) and Interleukin 1 beta (IL-1β) significantly increase and strongly synergize in promoting STAMP2 expression in PCa cells. The two cytokines increase androgen-induced STAMP2 expression, but not expression of other known androgen target genes, suggesting a unique interplay of androgens and cytokines in regulating STAMP2 expression. Interestingly, STAMP2 knockdown significantly increased the ability of IL-6 and IL-1β to inhibit PCa cell growth in vitro. These results suggest that STAMP2 may represent a unique node through which inflammatory events mediate their effects on PCa growth and survival.
Collapse
Affiliation(s)
- Nicklas Pihlstrøm
- Department of Biosciences, University of Oslo, 0315 Oslo, Norway; (N.P.); (Y.J.); (Z.N.)
| | - Yang Jin
- Department of Biosciences, University of Oslo, 0315 Oslo, Norway; (N.P.); (Y.J.); (Z.N.)
| | - Zeynep Nenseth
- Department of Biosciences, University of Oslo, 0315 Oslo, Norway; (N.P.); (Y.J.); (Z.N.)
| | - Omer F. Kuzu
- Department of Biosciences, University of Oslo, 0315 Oslo, Norway; (N.P.); (Y.J.); (Z.N.)
- Correspondence: (O.F.K.); (F.S.); Tel.: +47-22-854-569 (F.S.); Fax: +47-22-857-207 (F.S.)
| | - Fahri Saatcioglu
- Department of Biosciences, University of Oslo, 0315 Oslo, Norway; (N.P.); (Y.J.); (Z.N.)
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, 0188 Oslo, Norway
- Correspondence: (O.F.K.); (F.S.); Tel.: +47-22-854-569 (F.S.); Fax: +47-22-857-207 (F.S.)
| |
Collapse
|
1915
|
Zharinov GM, Khalchitsky SE, Loktionov A, Sogoyan MV, Khutoryanskaya YV, Neklasova NY, Bogomolov OA, Smirnov IV, Samoilovich MP, Skakun VN, Vissarionov SV, Anisimov VN. The presence of polymorphisms in genes controlling neurotransmitter metabolism and disease prognosis in patients with prostate cancer: a possible link with schizophrenia. Oncotarget 2021; 12:698-707. [PMID: 33868590 PMCID: PMC8021032 DOI: 10.18632/oncotarget.27921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/08/2021] [Indexed: 01/08/2023] Open
Abstract
Polymorphisms of neurotransmitter metabolism genes were studied in patients with prostate cancer (PC) characterized by either reduced or extended serum prostate-specific antigen doubling time (PSADT) corresponding to unfavorable and favorable disease prognosis respectively. The ‘unfavorable prognosis’ group (40 cases) was defined by PSADT ≤ 2 months, whereas patients in the ‘favorable prognosis’ group (67 cases) had PSADT ≥ 30 months. The following gene polymorphisms known to be associated with neuropsychiatric disorders were investigated: a) the STin2 VNTR in the serotonin transporter SLC6A4 gene; b) the 30-bp VNTR in the monoamine oxidase A MAOA gene; c) the Val158Met polymorphism in the catechol-ortho-methyltransferase COMT gene; d) the promoter region C-521T polymorphism and the 48 VNTR in the third exon of the dopamine receptor DRD4 gene. The STin2 12R/10R variant of the SLC6A4 gene (OR = 2.278; 95% CI = 0.953–5.444) and the -521T/T homozygosity of the DRD4 gene (OR = 1.579; 95% CI = 0.663–3.761) tended to be overrepresented in PC patients with unfavorable disease prognosis. These gene variants are regarded as protective against schizophrenia, and the observed trend may be directly related to a reduced PC risk described for schizophrenia patients. These results warrant further investigation of the potential role of neurotransmitter metabolism gene polymorphisms in PC pathogenesis.
Collapse
Affiliation(s)
- Gennady M Zharinov
- A.M. Granov Russian Research Center for Radiology and Surgical Technologies of the Ministry of Health of the Russian Federation, Pesochny, St. Petersburg, 197758, Russia.,These authors contributed equally to this work
| | - Sergei E Khalchitsky
- H. Turner National Medical Research Center for Children's Orthopedics and Trauma Surgery of the Ministry of Health of the Russian Federation, Pushkin, St. Petersburg, 196603, Russia.,These authors contributed equally to this work
| | - Alexandre Loktionov
- DiagNodus Ltd, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| | - Marina V Sogoyan
- H. Turner National Medical Research Center for Children's Orthopedics and Trauma Surgery of the Ministry of Health of the Russian Federation, Pushkin, St. Petersburg, 196603, Russia
| | - Yulia V Khutoryanskaya
- St. Petersburg State Pediatric Medical University of the Ministry of Health of the Russian Federation, St. Petersburg, 194100, Russia
| | - Natalia Yu Neklasova
- A.M. Granov Russian Research Center for Radiology and Surgical Technologies of the Ministry of Health of the Russian Federation, Pesochny, St. Petersburg, 197758, Russia
| | - Oleg A Bogomolov
- A.M. Granov Russian Research Center for Radiology and Surgical Technologies of the Ministry of Health of the Russian Federation, Pesochny, St. Petersburg, 197758, Russia
| | - Ilya V Smirnov
- A.M. Granov Russian Research Center for Radiology and Surgical Technologies of the Ministry of Health of the Russian Federation, Pesochny, St. Petersburg, 197758, Russia
| | - Marina P Samoilovich
- A.M. Granov Russian Research Center for Radiology and Surgical Technologies of the Ministry of Health of the Russian Federation, Pesochny, St. Petersburg, 197758, Russia
| | - Vladimir N Skakun
- Yaroslav-the-Wise Novgorod State University of the Ministry of Science and Higher Education of the Russian Federation, Veliky Novgorod, 173003, Russia
| | - Sergei V Vissarionov
- H. Turner National Medical Research Center for Children's Orthopedics and Trauma Surgery of the Ministry of Health of the Russian Federation, Pushkin, St. Petersburg, 196603, Russia
| | - Vladimir N Anisimov
- N.N. Petrov National Medical Research Center of Oncology, Pesochny, St. Petersburg, 197758, Russia
| |
Collapse
|
1916
|
Wang Y, Wang J, Yang C, Wang Y, Liu J, Shi Z, Chen Y, Feng Y, Ma X, Qiao S. A study of the correlation between M2 macrophages and lymph node metastasis of colorectal carcinoma. World J Surg Oncol 2021; 19:91. [PMID: 33781288 PMCID: PMC8008636 DOI: 10.1186/s12957-021-02195-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Abstract
Background Lymph node metastasis is a major prognostic sign of colorectal carcinoma and an important indicator for individualized treatment. M2 macrophages play a key role in carcinogenesis and tumor development by enhancing invasiveness and promoting lymph node metastasis. The purpose of this study was to investigate the effect of CD163-positive M2 macrophages on lymph node metastasis in colorectal carcinoma. Methods Postoperative lymph node tissues were obtained from 120 patients with colorectal carcinoma who underwent radical surgery in the First Affiliated Hospital of Jinzhou Medical University between December 2019 and May 2020. We detected the expression of the CD163 protein in lymph nodes using immunohistochemistry. Furthermore, the relationships between M2 macrophages identified by expression of CD163 and lymph node metastasis were analyzed using the independent sample t-test and Chi-square test. Results M2 macrophages were increased in metastatic lymph nodes and non-metastatic lymph nodes adjacent to the cancer. The M2 macrophage count was higher in patients with macro-metastases than in patients with micro-metastases. Conclusions The presence of M2 macrophages represents an important indicator for lymph node metastasis in colorectal carcinoma and may be a potential marker for its prediction. Thus, M2 macrophage localization might offer a new target for the comprehensive treatment of colorectal carcinoma.
Collapse
Affiliation(s)
- Yanping Wang
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, No. 2, The Fifth Section of Renmin Street, Guta, Jinzhou, 121000, Liaoning, People's Republic of China
| | - Jikun Wang
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, People's Republic of China
| | - Chunyu Yang
- Department of Pathology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, People's Republic of China
| | - Yue Wang
- Department of Pathology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, People's Republic of China
| | - Jinhao Liu
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, No. 2, The Fifth Section of Renmin Street, Guta, Jinzhou, 121000, Liaoning, People's Republic of China
| | - Zuoxiu Shi
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, No. 2, The Fifth Section of Renmin Street, Guta, Jinzhou, 121000, Liaoning, People's Republic of China
| | - Yanlei Chen
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, No. 2, The Fifth Section of Renmin Street, Guta, Jinzhou, 121000, Liaoning, People's Republic of China
| | - Yang Feng
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, No. 2, The Fifth Section of Renmin Street, Guta, Jinzhou, 121000, Liaoning, People's Republic of China
| | - Xueqian Ma
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, No. 2, The Fifth Section of Renmin Street, Guta, Jinzhou, 121000, Liaoning, People's Republic of China
| | - Shifeng Qiao
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, No. 2, The Fifth Section of Renmin Street, Guta, Jinzhou, 121000, Liaoning, People's Republic of China.
| |
Collapse
|
1917
|
The Role of CXCL16 in the Pathogenesis of Cancer and Other Diseases. Int J Mol Sci 2021; 22:ijms22073490. [PMID: 33800554 PMCID: PMC8036711 DOI: 10.3390/ijms22073490] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/15/2022] Open
Abstract
CXCL16 is a chemotactic cytokine belonging to the α-chemokine subfamily. It plays a significant role in the progression of cancer, as well as the course of atherosclerosis, renal fibrosis, and non-alcoholic fatty liver disease (NAFLD). Since there has been no review paper discussing the importance of this chemokine in various diseases, we have collected all available knowledge about CXCL16 in this review. In the first part of the paper, we discuss background information about CXCL16 and its receptor, CXCR6. Next, we focus on the importance of CXCL16 in a variety of diseases, with an emphasis on cancer. We discuss the role of CXCL16 in tumor cell proliferation, migration, invasion, and metastasis. Next, we describe the role of CXCL16 in the tumor microenvironment, including involvement in angiogenesis, and its significance in tumor-associated cells (cancer associated fibroblasts (CAF), microglia, tumor-associated macrophages (TAM), tumor-associated neutrophils (TAN), mesenchymal stem cells (MSC), myeloid suppressor cells (MDSC), and regulatory T cells (Treg)). Finally, we focus on the antitumor properties of CXCL16, which are mainly caused by natural killer T (NKT) cells. At the end of the article, we summarize the importance of CXCL16 in cancer therapy.
Collapse
|
1918
|
Wang X, Zhong L, Zhao Y. Oncolytic adenovirus: A tool for reversing the tumor microenvironment and promoting cancer treatment (Review). Oncol Rep 2021; 45:49. [PMID: 33760203 PMCID: PMC7934214 DOI: 10.3892/or.2021.8000] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Immunogene therapy can enhance the antitumor immune effect by introducing genes encoding co‑stimulation molecules, cytokines, chemokines and tumor‑associated antigens into treatment cells or human cells through genetic engineering techniques. Oncolytic viruses can specifically target tumor cells and replicate indefinitely until they kill tumor cells. If combined with immunogene therapy, oncolytic viruses can play a more powerful antitumor role. The high pressure, hypoxia and acidity in the tumor microenvironment (TME) provide suitable conditions for tumor cells to survive. To maximize the potency of oncolytic viruses, various methods are being developed to promote the reversal of the TME, thereby maximizing transmission of replication and immunogenicity. The aim of the present review was to discuss the basic mechanisms underlying the effects of oncolytic adenoviruses on the TME, and suggest how to combine the modification of the adenovirus with the TME to further combat malignant tumors.
Collapse
Affiliation(s)
- Xiaoxi Wang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Liping Zhong
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yongxiang Zhao
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
1919
|
Lei ZN, Teng QX, Gupta P, Zhang W, Narayanan S, Yang DH, Wurpel JND, Fan YF, Chen ZS. Cabozantinib Reverses Topotecan Resistance in Human Non-Small Cell Lung Cancer NCI-H460/TPT10 Cell Line and Tumor Xenograft Model. Front Cell Dev Biol 2021; 9:640957. [PMID: 33829017 PMCID: PMC8019832 DOI: 10.3389/fcell.2021.640957] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/02/2021] [Indexed: 12/24/2022] Open
Abstract
Cabozantinib (CBZ) is a small molecule tyrosine kinase receptor inhibitor, which could also inhibit the ABCG2 transporter function. Therefore, CBZ could re-sensitize cancer cells that are resistant to ABCG2 substrate drugs including topotecan (TPT). However, its reversal effect against TPT resistance has not been tested in a TPT-induced resistant cancer model. In this study, a new TPT selected human non-small cell lung cancer (NSCLC)-resistant cell model NCI-H460/TPT10 with ABCG2 overexpression and its parental NCI-H460 cells were utilized to investigate the role of CBZ in drug resistance. The in vitro study showed that CBZ, at a non-toxic concentration, could re-sensitize NCI-H460/TPT10 cells to TPT by restoring intracellular TPT accumulation via inhibiting ABCG2 function. In addition, the increased cytotoxicity by co-administration of CBZ and TPT may be contributed by the synergistic effect on downregulating ABCG2 expression in NCI-H460/TPT10 cells. To further verify the applicability of the NCI-H460/TPT10 cell line to test multidrug resistance (MDR) reversal agents in vivo and to evaluate the in vivo efficacy of CBZ on reversing TPT resistance, a tumor xenograft mouse model was established by implanting NCI-H460 and NCI-H460/TPT10 into nude mice. The NCI-H460/TPT10 xenograft tumors treated with the combination of TPT and CBZ dramatically reduced in size compared to tumors treated with TPT or CBZ alone. The TPT-resistant phenotype of NCI-H460/TPT10 cell line and the reversal capability of CBZ in NCI-H460/TPT10 cells could be extended from in vitro cell model to in vivo xenograft model. Collectively, CBZ is considered to be a potential approach in overcoming ABCG2-mediated MDR in NSCLC. The established NCI-H460/TPT10 xenograft model could be a sound clinically relevant resource for future drug screening to eradicate ABCG2-mediated MDR in NSCLC.
Collapse
Affiliation(s)
- Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Pranav Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Wei Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States.,Institute of Plastic Surgery, Weifang Medical University, Weifang, China
| | - Silpa Narayanan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - John N D Wurpel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Ying-Fang Fan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States.,Department of Hepatobiliary Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| |
Collapse
|
1920
|
Graney PL, Tavakol DN, Chramiec A, Ronaldson-Bouchard K, Vunjak-Novakovic G. Engineered models of tumor metastasis with immune cell contributions. iScience 2021; 24:102179. [PMID: 33718831 PMCID: PMC7921600 DOI: 10.1016/j.isci.2021.102179] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Most cancer deaths are due to tumor metastasis rather than the primary tumor. Metastasis is a highly complex and dynamic process that requires orchestration of signaling between the tumor, its local environment, distant tissue sites, and immune system. Animal models of cancer metastasis provide the necessary systemic environment but lack control over factors that regulate cancer progression and often do not recapitulate the properties of human cancers. Bioengineered "organs-on-a-chip" that incorporate the primary tumor, metastatic tissue targets, and microfluidic perfusion are now emerging as quantitative human models of tumor metastasis. The ability of these systems to model tumor metastasis in individualized, patient-specific settings makes them uniquely suitable for studies of cancer biology and developmental testing of new treatments. In this review, we focus on human multi-organ platforms that incorporate circulating and tissue-resident immune cells in studies of tumor metastasis.
Collapse
|
1921
|
Wang G, Zhang M, Cheng M, Wang X, Li K, Chen J, Chen Z, Chen S, Chen J, Xiong G, Xu X, Wang C, Chen D. Tumor microenvironment in head and neck squamous cell carcinoma: Functions and regulatory mechanisms. Cancer Lett 2021; 507:55-69. [PMID: 33741424 DOI: 10.1016/j.canlet.2021.03.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023]
Abstract
The tumor microenvironment has been recently reported to play a pivotal role in sustaining tumor cells survival and protecting them from immunotherapy and chemotherapy-induced death. It remains largely unknown how the specific signaling pathway exerts the tumor microenvironment in head and neck squamous cell carcinoma though previous studies have elucidated the regulatory mechanisms involve in tumor immune microenvironment, stromal cells, tumor angiogenesis and cancer stem cell. These components are responsible for tumor progression as well as anti-cancer therapy resistance, leading to rapid tumor growth and treatment failure. In this review, we focus on discussing the interaction between tumor cells and the surrounding components for better understanding of anti-cancer treatment ineffectiveness and its underlying molecular mechanisms.
Collapse
Affiliation(s)
- Ganping Wang
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ming Zhang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510030, China
| | - Maosheng Cheng
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaochen Wang
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Kang Li
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jianwen Chen
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhi Chen
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuang Chen
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jie Chen
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Gan Xiong
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510030, China
| | - Xiuyun Xu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510030, China
| | - Cheng Wang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510030, China
| | - Demeng Chen
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
1922
|
Kimura S, Noguchi H, Nanbu U, Nakayama T. Macrophage CCL22 expression promotes lymphangiogenesis in patients with tongue squamous cell carcinoma via IL-4/STAT6 in the tumor microenvironment. Oncol Lett 2021; 21:383. [PMID: 33777206 PMCID: PMC7988704 DOI: 10.3892/ol.2021.12644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/15/2021] [Indexed: 01/04/2023] Open
Abstract
The C-C motif chemokine ligand 22 (CCL22) chemokine is produced by M2-like tumor-associated macrophages (TAMs) in the tumor microenvironment. Chemokine C-C motif receptor 4 (CCR4), the CCL22 receptor, on T helper2 (Th2) cells leads to a Th2 cytokine-dominant environment. In our previous study, lymph node metastasis was the main predictor of tongue squamous cell carcinoma (SCC) via CCL22. Therefore, the present study aimed to investigate the effects of CCL22 and a Th2 cytokine-predominant tumor microenvironment on vascular endothelial growth factor (VEGF)-C expression and lymphangiogenesis. The post-operative courses of 110 patients with early-stage tongue SCC with a histopathological diagnosis based on the 8th TNM classification were followed up (mean/median follow-up time, 47.1/42.0 months) from surgery until death or the last follow-up visit, and subsequent lymph node relapse was assessed. Lymphangiogenesis and the immunohistochemical expression of several markers (CCL22, CCR4 and VEGF-C) were evaluated. The Kaplan-Meier method was used to plot lymph node relapse-free survival and overall survival curves, which were compared using the log-rank test. In vitro, the association between CCL22 and VEGF-C by interleukin (IL)-4/signal transducer and activator of transcription 6 (STAT6) stimulation was examined. Lymphangiogenesis was significantly associated with lymph node relapse (P<0.001) and a CCL22+ macrophage ratio (P<0.001). CCL22+ TAMs were positive for VEGF-C and surrounded by CCR4+ cells. Additionally, VEGF-C expression was increased in IL-4/STAT6-stimulated macrophages. In addition, the STAT6 signaling pathway was activated in the SCC cells in the deeply invaded part of the tumor along with the aggregated macrophages. In conclusion, TAM CCL22 expression led to lymph node relapse via VEGF-C expression within the tumor microenvironment and the IL-4/STAT6 signaling pathway in early stage tongue SCC. Additionally, the worst pattern of invasion and depth of invasion were revealed to be useful parameters for lymph node relapse in patients with tongue SCC. The present study suggested that CCL22 contributed to the role of M2-like differentiated TAMs in prognosis and lymph node relapse via IL-4/STAT6 and VEGF. The IL-4/STAT6 signaling pathway may be a new molecular target for tongue SCC.
Collapse
Affiliation(s)
- Satoshi Kimura
- Department of Clinical Pathology, Kitakyushu City Yahata Hospital, Kitakyushu, Fukuoka 805-8534, Japan.,Department of Pathology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Hirotsugu Noguchi
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Uki Nanbu
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Toshiyuki Nakayama
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| |
Collapse
|
1923
|
Investigating T Cell Immunity in Cancer: Achievements and Prospects. Int J Mol Sci 2021; 22:ijms22062907. [PMID: 33809369 PMCID: PMC7999898 DOI: 10.3390/ijms22062907] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 12/21/2022] Open
Abstract
T cells play a key role in tumour surveillance, both identifying and eliminating transformed cells. However, as tumours become established they form their own suppressive microenvironments capable of shutting down T cell function, and allowing tumours to persist and grow. To further understand the tumour microenvironment, including the interplay between different immune cells and their role in anti-tumour immune responses, a number of studies from mouse models to clinical trials have been performed. In this review, we examine mechanisms utilized by tumour cells to reduce their visibility to CD8+ Cytotoxic T lymphocytes (CTL), as well as therapeutic strategies trialled to overcome these tumour-evasion mechanisms. Next, we summarize recent advances in approaches to enhance CAR T cell activity and persistence over the past 10 years, including bispecific CAR T cell design and early evidence of efficacy. Lastly, we examine mechanisms of T cell infiltration and tumour regression, and discuss the strengths and weaknesses of different strategies to investigate T cell function in murine tumour models.
Collapse
|
1924
|
Adekoya TO, Smith N, Thomas AJ, Lane TS, Burnette N, Rivers EJ, Li Y, Chen XL, Richardson RM. Host versus cell-dependent effects of β-arrestin 1 expression in prostate tumorigenesis. Carcinogenesis 2021; 42:772-783. [PMID: 33710266 DOI: 10.1093/carcin/bgab021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 11/14/2022] Open
Abstract
Prostate cancer (PCa) constitutes a serious health challenge and remains one of the main causes of cancer-related death among men. The more aggressive form of the disease has been attributed to androgen independence, resulting in a lack of response to androgen deprivation therapy and sustained activation of other growth pathways. The scaffold proteins β-arrestin 1 and 2 (βarr1 and βarr2), which are known to mediate G protein-coupled receptor desensitization and internalization, were also shown to modulate prostate tumorigenesis. βarr1 is significantly overexpressed (>4-fold) in PCa cells relative to βarr2. In this study, we investigated the effect of βarr1 overexpression in PCa development and progression using the mouse and human PCa cell xenografts, and autochthonous transgenic adenocarcinoma of the mouse prostate (TRAMP) models deficient in β-arrestin depletion of βarr1 in TRAMP mice (TRAMP/βarr1-/-) increased PCa growth and decreased overall survival relative to control TRAMP or TRAMP/βarr2-/- animals. Prostate tissues from TRAMP/βarr1-/- tumors displayed an increase in androgen receptor (AR) expression, whereas overexpression of βarr1 in TRAMP-C1 (TRAMP-C1-βarr1-GFP) which derived from TRAMP decreased AR expression, cell proliferation and tumor growth in nude mice xenografts, relative to control TRAMP-C1-GFP. Knockdown of βarr1 expression in human MDA PCa 2b cells (MDA PCa 2b-βarr1-/-) also decreased AR expression cell proliferation and tumor growth relative to control (MDA PCa 2b-Sham) cells. Interestingly, both TRAMP-C1-βarr1-GFP and MDA PCa 2b-βarr1-/- xenografts showed a decrease in AKT phosphorylation but an increase in MAPK activation. Altogether, the data indicate that the effect of βarr1 in modulating AR signaling to regulate PCa aggressiveness is cell and host autonomous.
Collapse
Affiliation(s)
- Timothy O Adekoya
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Nikia Smith
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Ariel J Thomas
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Tonya S Lane
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Nija Burnette
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Elizabeth J Rivers
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Yahui Li
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Xiaoxin L Chen
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA
| | - Ricardo M Richardson
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA
| |
Collapse
|
1925
|
Ham IH, Lee D, Hur H. Cancer-Associated Fibroblast-Induced Resistance to Chemotherapy and Radiotherapy in Gastrointestinal Cancers. Cancers (Basel) 2021; 13:1172. [PMID: 33803229 PMCID: PMC7963167 DOI: 10.3390/cancers13051172] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 12/24/2022] Open
Abstract
In the past few decades, the role of cancer-associated fibroblasts (CAFs) in resistance to therapies for gastrointestinal (GI) cancers has emerged. Clinical studies focusing on GI cancers have revealed that the high expression of CAF-related molecules within tumors is significantly correlated with unfavorable therapeutic outcomes; however, the exact mechanisms whereby CAFs enhance resistance to chemotherapy and radiotherapy in GI cancers remain unclear. The cells of origin of CAFs in GI cancers include normal resident fibroblasts, mesenchymal stem cells, endothelial cells, pericytes, and even epithelial cells. CAFs accumulated within GI cancers produce cytokines, chemokines, and growth factors involved in resistance to therapies. CAF-derived exosomes can be engaged in stroma-related resistance to treatments, and several non-coding RNAs, such as miR-92a, miR-106b, CCAL, and H19, are present in CAF-derived exosomes and transferred to GI cancer cells. The CAF-induced desmoplastic reaction interferes with drug delivery to GI cancer cells, evoking resistance to chemotherapy. However, due to the heterogeneity of CAFs in GI cancers, identifying the exact mechanism underlying CAF-induced resistance may be difficult. Recent advancements in single-cell "omics" technologies could offer clues for revealing the specific subtypes and biomarkers related to resistance.
Collapse
Affiliation(s)
- In-Hye Ham
- Department of Surgery, Ajou University School of Medicine, Suwon 16499, Korea; (I.-H.H.); (D.L.)
- Infamm-aging Translational Research Center, Ajou University School of Medicine, Suwon 16499, Korea
| | - Dagyeong Lee
- Department of Surgery, Ajou University School of Medicine, Suwon 16499, Korea; (I.-H.H.); (D.L.)
- Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
| | - Hoon Hur
- Department of Surgery, Ajou University School of Medicine, Suwon 16499, Korea; (I.-H.H.); (D.L.)
- Infamm-aging Translational Research Center, Ajou University School of Medicine, Suwon 16499, Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
| |
Collapse
|
1926
|
Kong S, Ding L, Fan C, Li Y, Wang C, Wang K, Xu W, Shi X, Wu Q, Wang F. Global analysis of lysine acetylome reveals the potential role of CCL18 in non-small cell lung cancer. Proteomics 2021; 21:e2000144. [PMID: 33570763 DOI: 10.1002/pmic.202000144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 11/07/2022]
Abstract
C-C motif chemokine 18 (CCL18) belongs to the chemokine CC family and is predominantly secreted by M2-tumor-associated macrophages. It has been reported to be associated with various diseases and malignancies. Previous studies showed that CCL18 promotes metastasis by activating downstream kinases. However, it remains unknown whether CCL18 regulates post-translational modifications, other than phosphorylation, during tumorigenesis. Here, we demonstrate that CCL18 is up-regulated in non-small cell lung cancer (NSCLC) and is involved in regulating the lysine acetylome in A549 cells. Using the combination of SILAC labeling and high-efficiency acetylation enrichment methods, we identified 1372 lysine acetylation (Kac) sites on 796 proteins in CCL18-treated A549 cells. Among the identified Kac sites, 147 from 126 proteins were down-regulated and seven from five proteins were up-regulated with fold changes more than two and the p-value less than 0.05. Bioinformatics analysis further showed that the proteins with down-regulated acetylation play critical roles in glycolysis, oxidative phosphorylation, tricarboxylic acid cycle, and pentose phosphate pathway in A549 cells. These results suggest that CCL18 may be involved in the development of NSCLC by regulating acetylation of the proteins in many fundamental cellular processes, especially the metabolic reprogramming of tumor cells.
Collapse
Affiliation(s)
- Shuai Kong
- Department of Biology, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Lu Ding
- Department of Biology, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Chenkun Fan
- Department of Biology, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yun Li
- Department of Clinical Laboratory, Anhui Provincial Hospital, Anhui Medical University, Hefei, 23001, China
| | - Chi Wang
- Department of Clinical Laboratory, Anhui Provincial Hospital, Anhui Medical University, Hefei, 23001, China
| | - Ke Wang
- Department of Biology, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Weilong Xu
- Department of Biology, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xuanming Shi
- Department of Biochemistry, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Quan Wu
- Department of Clinical Laboratory, Anhui Provincial Hospital, Anhui Medical University, Hefei, 23001, China
| | - Fengsong Wang
- Department of Biology, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
1927
|
Gonzalez-Valdivieso J, Girotti A, Schneider J, Arias FJ. Advanced nanomedicine and cancer: Challenges and opportunities in clinical translation. Int J Pharm 2021; 599:120438. [PMID: 33662472 DOI: 10.1016/j.ijpharm.2021.120438] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/15/2021] [Accepted: 02/23/2021] [Indexed: 01/03/2023]
Abstract
Cancer has reached pandemic dimensions in the whole world. Although current medicine offers multiple treatment options against cancer, novel therapeutic strategies are needed due to the low specificity of chemotherapeutic drugs, undesired side effects and the presence of different incurable types of cancer. Among these new strategies, nanomedicine arises as an encouraging approach towards personalized medicine with high potential for present and future cancer patients. Therefore, nanomedicine aims to develop novel tools with wide potential in cancer treatment, imaging or even theranostic purposes. Even though numerous preclinical studies have been published with successful preliminary results, promising nanosystems have to face multiple obstacles before adoption in clinical practice as safe options for patients with cancer. In this MiniReview, we provide a short overview on the latest advances in current nanomedicine approaches, challenges and promising strategies towards more accurate cancer treatment.
Collapse
Affiliation(s)
- Juan Gonzalez-Valdivieso
- Smart Biodevices for NanoMed Group, University of Valladolid, LUCIA Building, 47011 Valladolid, Spain.
| | - Alessandra Girotti
- BIOFORGE Research Group (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, LUCIA Building, 47011 Valladolid, Spain
| | - Jose Schneider
- Smart Biodevices for NanoMed Group, University of Valladolid, LUCIA Building, 47011 Valladolid, Spain; Department of Obstetrics & Gynecology, University of Valladolid, School of Medicine, 47005 Valladolid, Spain
| | - Francisco Javier Arias
- Smart Biodevices for NanoMed Group, University of Valladolid, LUCIA Building, 47011 Valladolid, Spain
| |
Collapse
|
1928
|
Zhang WJ. Effect of P2X purinergic receptors in tumor progression and as a potential target for anti-tumor therapy. Purinergic Signal 2021; 17:151-162. [PMID: 33420658 PMCID: PMC7954979 DOI: 10.1007/s11302-020-09761-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
The development of tumors is a complex pathological process involving multiple factors, multiple steps, and multiple genes. Their prevention and treatment have always been a difficult problem at present. A large number of studies have proved that the tumor microenvironment plays an important role in the progression of tumors. The tumor microenvironment is the place where tumor cells depend for survival, and it plays an important role in regulating the growth, proliferation, apoptosis, migration, and invasion of tumor cells. P2X purinergic receptors, which depend on the ATP ion channel, can be activated by ATP in the tumor microenvironment, and by mediating tumor cells and related cells (such as immune cells) in the tumor microenvironment. They play an important regulatory role on the effects of the skeleton, membrane fluidity, and intracellular molecular metabolism of tumor cells. Therefore, here, we outlined the biological characteristics of P2X purinergic receptors, described the effect of tumor microenvironment on tumor progression, and discussed the effect of ATP on tumor. Moreover, we explored the role of P2X purinergic receptors in the development of tumors and anti-tumor therapy. These data indicate that P2X purinergic receptors may be used as another potential pharmacological target for tumor prevention and treatment.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, 343000, Jiangxi, China.
| |
Collapse
|
1929
|
Liu Q, Hao Y, Du R, Hu D, Xie J, Zhang J, Deng G, Liang N, Tian T, Käsmann L, Rades D, Rim CH, Hu P, Zhang J. Radiotherapy programs neutrophils to an antitumor phenotype by inducing mesenchymal-epithelial transition. Transl Lung Cancer Res 2021; 10:1424-1443. [PMID: 33889520 PMCID: PMC8044478 DOI: 10.21037/tlcr-21-152] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Neutrophils can play a pro-tumor or anti-tumor role depending on the tumor microenvironment. The effects of concurrent treatment with granulocyte colony-stimulating factor (G-CSF) and radiotherapy (RT) on neutrophils have not yet to be described. Methods Hypofractionated radiation of 8 Gy ×3 fractions was administered with or without recombinant G-CSF to Lewis lung carcinoma tumor-bearing C57BL/6 model mice. The activation status of cytotoxic T cells in the mice was measured, along with the levels of tumor-associated neutrophils, cytotoxic T cells, and Treg cells. Tumor growth, survival, cytokine expression, and signaling pathways underlying anti-tumor effects of tumor-associated neutrophils after treatment were also studied. To ascertain the effects of concurrent RT and G-CSF on tumor-associated neutrophils, neutrophil depletion was performed. Results RT affected early neutrophil infiltration, which is the first-line immune response. Subsequently, enhanced accumulation of lymphocytes, particularly CD8 cytotoxic T cells, was observed. Notably, lymphocytic infiltration was inhibited by neutrophil depletion but enhanced by G-CSF treatment. RT generated persistent DNA damage, as evidenced by an accumulation of phosphorylation of histone H2AX (γH2AX), and subsequently triggered inflammatory chemokine secretion. The chemokines CXCL1, CXCL2, and CCL5 were upregulated in both radiation-treated cells and the corresponding supernatants. Neutrophils that were newly recruited after RT improved radiosensitivity by inhibiting epithelial-mesenchymal transition via the reactive oxygen species-mediated PI3K/Akt/Snail signaling pathway, and G-CSF treatment enhanced this effect. Conclusions The results of this study suggest that RT activates neutrophil recruitment and polarizes newly recruited neutrophils toward an antitumor phenotype, which is enhanced by the concurrent administration of G-CSF. Mesenchymal-epithelial transition induced by reactive oxygen species accumulation plays a major role in this process. Thus, the polarization of tumor-associated neutrophils might play a role in future cancer immunotherapies.
Collapse
Affiliation(s)
- Qiqi Liu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shandong Lung Cancer Institute, Jinan, China
| | - Yuying Hao
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,Shandong Lung Cancer Institute, Jinan, China.,Department of Radiation Oncology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Rui Du
- Division of Oncology, Department of Graduate, Weifang Medical College, Weifang, China
| | - Dan Hu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,Department of Physiology, Jeonbuk National University Medical School, Jeonju 54907, Jeollabuk-do, Korea
| | - Jian Xie
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,Shandong Lung Cancer Institute, Jinan, China
| | - Jingxin Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
| | - Guodong Deng
- Department of Chemical Etiology and Carcinogenesis, Cancer Institute, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ning Liang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,Shandong Lung Cancer Institute, Jinan, China
| | - Tiantian Tian
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,Shandong Lung Cancer Institute, Jinan, China
| | - Lukas Käsmann
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Dirk Rades
- Department of Radiation Oncology, University of Lübeck, Lübeck, Germany
| | - Chai Hong Rim
- Department of Radiation Oncology, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Pingping Hu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,Shandong Lung Cancer Institute, Jinan, China
| | - Jiandong Zhang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,Shandong Lung Cancer Institute, Jinan, China
| |
Collapse
|
1930
|
Li J, Yang P, Chen F, Tan Y, Huang C, Shen H, Peng C, Feng Y, Sun Y. Hypoxic colorectal cancer-derived extracellular vesicles deliver microRNA-361-3p to facilitate cell proliferation by targeting TRAF3 via the noncanonical NF-κB pathways. Clin Transl Med 2021; 11:e349. [PMID: 33784010 PMCID: PMC7967919 DOI: 10.1002/ctm2.349] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Hypoxic tumour microenvironment (TME) is a key regulator in cancer progression. However, the communications between hypoxic cells and other components in TME during colorectal cancer (CRC) progression via extracellular vesicles (EVs) remain unclear. METHODS High-throughput sequencing was employed to detect aberrantly expressed microRNAs (miRNAs) in hypoxic EVs. Quantitative real-time PCR was used to confirm and screen preliminarily candidate miRNAs. The effects of EVs derived from hypoxia (<1% O2 ) and miR-361-3p on CRC growth were assessed using CCK-8 assays, colony formation assays, EdU assays, flow cytometric assays and mouse xenograft. Then, the specific mechanisms of miR-361-3p were investigated by RNA immunoprecipitation, luciferase reporter assay, Western blot, chromatin immunoprecipitation, immunohistochemistry and rescue experiments. RESULTS The level of miR-361-3p expression was remarkably elevated in hypoxic EVs and can be transferred to CRC cells. Functional experiments exhibited that hypoxic EVs facilitated cell growth and suppressed cell apoptosis by transferring miR-361-3p of CRC. Hypoxia-inducible factor-1α induced the elevation of miR-361-3p levels in hypoxic EVs. Upregulated miR-361-3p in CRC inhibited cell apoptosis and facilitated cell growth by directly targeting TNF receptor-associated factor 3, which consequently activated the noncanonical NF-κB pathway. Moreover, the high expression of circulating exosomal miR-361-3p was correlated to worse prognosis of CRC patients. CONCLUSIONS Altogether, the abnormality of exosomal miR-361-3p derived from hypoxia acts vital roles in the regulation of CRC growth and apoptosis and can be an emerging prognostic biomarker and a therapeutic target for CRC patients.
Collapse
Affiliation(s)
- Jie Li
- Department of Colorectal SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Peng Yang
- Department of Colorectal SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Fangyu Chen
- Department of Radiation OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yuqian Tan
- Department of Colorectal SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Changzhi Huang
- Department of Colorectal SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Hengyang Shen
- Department of Colorectal SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Chaofan Peng
- Department of Colorectal SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yifei Feng
- Department of Colorectal SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yueming Sun
- Department of Colorectal SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
1931
|
CD38 and Regulation of the Immune Response Cells in Cancer. JOURNAL OF ONCOLOGY 2021; 2021:6630295. [PMID: 33727923 PMCID: PMC7936891 DOI: 10.1155/2021/6630295] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/26/2022]
Abstract
Cancer is a leading cause of death worldwide. Understanding the functional mechanisms associated with metabolic reprogramming, which is a typical feature of cancer cells, is key to effective therapy. CD38, primarily a NAD + glycohydrolase and ADPR cyclase, is a multifunctional transmembrane protein whose abnormal overexpression in a variety of tumor types is associated with cancer progression. It is linked to VEGFR2 mediated angiogenesis and immune suppression as it favors the recruitment of suppressive immune cells like Tregs and myeloid-derived suppressor cells, thus helping immune escape. CD38 is expressed in M1 macrophages and in neutrophil and T cell-mediated immune response and is associated with IFNγ-mediated suppressor activity of immune responses. Targeting CD38 with anti-CD38 monoclonal antibodies in hematological malignancies has shown excellent results. Bearing that in mind, targeting CD38 in other nonhematological cancer types, especially carcinomas, which are of epithelial origin with specific anti-CD38 antibodies alone or in combination with immunomodulatory drugs, is an interesting option that deserves profound consideration.
Collapse
|
1932
|
Peng X, He Y, Huang J, Tao Y, Liu S. Metabolism of Dendritic Cells in Tumor Microenvironment: For Immunotherapy. Front Immunol 2021; 12:613492. [PMID: 33732237 PMCID: PMC7959811 DOI: 10.3389/fimmu.2021.613492] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are a type of an antigen-presenting cell which undertake a job on capturing antigens coming from pathogens or tumors and presenting to T cells for immune response. The metabolism of DCs controls its development, polarization, and maturation processes and provides energy support for its functions. However, the immune activity of DCs in tumor microenvironment (TME) is inhibited generally. Abnormal metabolism of tumor cells causes metabolic changes in TME, such as hyperglycolysis, lactate and lipid accumulation, acidification, tryptophan deprivation, which limit the function of DCs and lead to the occurrence of tumor immune escape. Combined metabolic regulation with immunotherapy can strengthen the ability of antigen-presentation and T cell activation of DCs, improve the existing anti-tumor therapy, and overcome the defects of DC-related therapies in the current stage, which has great potential in oncology therapy. Therefore, we reviewed the glucose, lipid, and amino acid metabolism of DCs, as well as the metabolic changes after being affected by TME. Together with the potential metabolic targets of DCs, possible anti-tumor therapeutic pathways were summarized.
Collapse
Affiliation(s)
- Xin Peng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Youe He
- Department of Translational Medicine, Cancer Biological Treatment Center, Xiangya Hospital, Central South University, Changsha, China.,Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, China
| | - Jun Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis of Ministry of Health, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Shuang Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, China.,Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
1933
|
Organoid and Spheroid Tumor Models: Techniques and Applications. Cancers (Basel) 2021; 13:cancers13040874. [PMID: 33669619 PMCID: PMC7922036 DOI: 10.3390/cancers13040874] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/05/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Cell cultures can be carried out in three dimensions (3D). Organoids and spheroids are different 3D cell culture models that can be cultured with different techniques. These 3D cell culture units established from a patient tumor have several similarities to the original tumor tissue and possess several advantages in conducting basic and clinical cancer research. Organoids prepared from a patient tissue can be preserved in a living biobank. Testing chemo-, radio- and immuno-therapies on these organoids has the potential to predict the patient responses and these models have incredible promise for personalized medicine. This review presents different organoid models, the techniques to prepare them and recent advances in their applications. Abstract Techniques to develop three-dimensional cell culture models are rapidly expanding to bridge the gap between conventional cell culture and animal models. Organoid and spheroid cultures have distinct and overlapping purposes and differ in cellular sources and protocol for establishment. Spheroids are of lower complexity structurally but are simple and popular models for drug screening. Organoids histologically and genetically resemble the original tumor from which they were derived. Ease of generation, ability for long-term culture and cryopreservation make organoids suitable for a wide range of applications. Organoids-on-chip models combine organoid methods with powerful designing and fabrication of micro-chip technology. Organoid-chip models can emulate the dynamic microenvironment of tumor pathophysiology as well as tissue–tissue interactions. In this review, we outline different tumor spheroid and organoid models and techniques to establish them. We also discuss the recent advances and applications of tumor organoids with an emphasis on tumor modeling, drug screening, personalized medicine and immunotherapy.
Collapse
|
1934
|
Grzywa TM, Justyniarska M, Nowis D, Golab J. Tumor Immune Evasion Induced by Dysregulation of Erythroid Progenitor Cells Development. Cancers (Basel) 2021; 13:870. [PMID: 33669537 PMCID: PMC7922079 DOI: 10.3390/cancers13040870] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer cells harness normal cells to facilitate tumor growth and metastasis. Within this complex network of interactions, the establishment and maintenance of immune evasion mechanisms are crucial for cancer progression. The escape from the immune surveillance results from multiple independent mechanisms. Recent studies revealed that besides well-described myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs) or regulatory T-cells (Tregs), erythroid progenitor cells (EPCs) play an important role in the regulation of immune response and tumor progression. EPCs are immature erythroid cells that differentiate into oxygen-transporting red blood cells. They expand in the extramedullary sites, including the spleen, as well as infiltrate tumors. EPCs in cancer produce reactive oxygen species (ROS), transforming growth factor β (TGF-β), interleukin-10 (IL-10) and express programmed death-ligand 1 (PD-L1) and potently suppress T-cells. Thus, EPCs regulate antitumor, antiviral, and antimicrobial immunity, leading to immune suppression. Moreover, EPCs promote tumor growth by the secretion of growth factors, including artemin. The expansion of EPCs in cancer is an effect of the dysregulation of erythropoiesis, leading to the differentiation arrest and enrichment of early-stage EPCs. Therefore, anemia treatment, targeting ineffective erythropoiesis, and the promotion of EPC differentiation are promising strategies to reduce cancer-induced immunosuppression and the tumor-promoting effects of EPCs.
Collapse
Affiliation(s)
- Tomasz M. Grzywa
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (T.M.G.); (M.J.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
- Laboratory of Experimental Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Magdalena Justyniarska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (T.M.G.); (M.J.)
| | - Dominika Nowis
- Laboratory of Experimental Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Jakub Golab
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (T.M.G.); (M.J.)
| |
Collapse
|
1935
|
Kulesa PM, Kasemeier-Kulesa JC, Morrison JA, McLennan R, McKinney MC, Bailey C. Modelling Cell Invasion: A Review of What JD Murray and the Embryo Can Teach Us. Bull Math Biol 2021; 83:26. [PMID: 33594536 DOI: 10.1007/s11538-021-00859-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/08/2021] [Indexed: 12/11/2022]
Abstract
Cell invasion and cell plasticity are critical to human development but are also striking features of cancer metastasis. By distributing a multipotent cell type from a place of birth to distal locations, the vertebrate embryo builds organs. In comparison, metastatic tumor cells often acquire a de-differentiated phenotype and migrate away from a primary site to inhabit new microenvironments, disrupting normal organ function. Countless observations of both embryonic cell migration and tumor metastasis have demonstrated complex cell signaling and interactive behaviors that have long confounded scientist and clinician alike. James D. Murray realized the important role of mathematics in biology and developed a unique strategy to address complex biological questions such as these. His work offers a practical template for constructing clear, logical, direct and verifiable models that help to explain complex cell behaviors and direct new experiments. His pioneering work at the interface of development and cancer made significant contributions to glioblastoma cancer and embryonic pattern formation using often simple models with tremendous predictive potential. Here, we provide a brief overview of advances in cell invasion and cell plasticity using the embryonic neural crest and its ancestral relationship to aggressive cancers that put into current context the timeless aspects of his work.
Collapse
Affiliation(s)
- Paul M Kulesa
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA. .,Department of Anatomy and Cell Biology, School of Medicine, University of Kansas, Kansas City, KS, 66160, USA.
| | | | - Jason A Morrison
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Rebecca McLennan
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | | | - Caleb Bailey
- Department of Biology, Brigham Young University-Idaho, Rexburg, ID, 83460, USA
| |
Collapse
|
1936
|
Bouzidi L, Triki H, Charfi S, Kridis WB, Derbel M, Ayadi L, Sellami-Boudawara T, Cherif B. Prognostic Value of Natural Killer Cells Besides Tumor-Infiltrating Lymphocytes in Breast Cancer Tissues. Clin Breast Cancer 2021; 21:e738-e747. [PMID: 33727019 DOI: 10.1016/j.clbc.2021.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/06/2021] [Accepted: 02/10/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Each subgroup of immune cells has a different prognostic role in breast cancer; however, the prognostic impact of tumor-infiltrating natural killer cells (TINKs) is still not well established. Our aim was to assess the prognostic impact of natural killer (NK) cells in breast carcinomas. MATERIALS AND METHODS NK cells infiltration were assessed by immunohistochemistry (IHC). Statistical analyses were performed to evaluate the correlation of NK cells with clinical-pathological features and outcome. RESULTS CD56 IHC was realized in 126 patients. NK cells infiltration showed significant and positive association with tumor high Scarff-Bloom-Richardson (SBR) grade. NK cells were significantly associated with HER2-positive breast cancer and triple-negative breast cancer subtypes. Analyses showed significant and inverse correlation with progesterone and estrogen receptors expression status. High NK cells were significantly related to high Ki-67 labeling index. Our data showed that high NK cells infiltrate was significantly associated with tumor-infiltrating lymphocytes in breast cancer tissues. At a median follow-up of 5.5 years, high CD56 expression (≥ 5 cells/10 high power field) was associated significantly with a good overall survival and with good disease-free survival. CONCLUSION In this study, we assessed the important prognostic role of TINKs in breast carcinomas, which seems to be evident despite its association with aggressive pathological features. Thus evaluation of NK cells can be standardized and integrated in daily routine.
Collapse
Affiliation(s)
- Lobna Bouzidi
- Department of Pathology and Research Laboratory LR18SP10, University Hospital Habib Bourguiba, Sfax, Tunisia; Medical School of Sfax, University of Sfax, Sfax, Tunisia.
| | - Hana Triki
- Laboratory of Molecular and Cellular Screening Processes LR15CBS07, Centre de Biotechnologie de Sfax, University of Sfax, Sfax, Tunisia
| | - Slim Charfi
- Department of Pathology and Research Laboratory LR18SP10, University Hospital Habib Bourguiba, Sfax, Tunisia; Medical School of Sfax, University of Sfax, Sfax, Tunisia
| | - Wala Ben Kridis
- Medical School of Sfax, University of Sfax, Sfax, Tunisia; Department of Medical Oncology, University Hospital Habib Bourguiba, Sfax, Tunisia
| | - Mohamed Derbel
- Medical School of Sfax, University of Sfax, Sfax, Tunisia; Department of Gynecology and Obstetrics, University Hospital Hedi Chaker, Sfax, Tunisia
| | - Lobna Ayadi
- Department of Pathology and Research Laboratory LR18SP10, University Hospital Habib Bourguiba, Sfax, Tunisia; Medical School of Sfax, University of Sfax, Sfax, Tunisia
| | - Tahya Sellami-Boudawara
- Department of Pathology and Research Laboratory LR18SP10, University Hospital Habib Bourguiba, Sfax, Tunisia; Medical School of Sfax, University of Sfax, Sfax, Tunisia
| | - Boutheina Cherif
- Laboratory of Molecular and Cellular Screening Processes LR15CBS07, Centre de Biotechnologie de Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
1937
|
Peng M, Wei G, Zhang Y, Li H, Lai Y, Guo Y, Chen Y, Liu L, Xiao H, Guan H, Li Y. Single-cell transcriptomic landscape reveals the differences in cell differentiation and immune microenvironment of papillary thyroid carcinoma between genders. Cell Biosci 2021; 11:39. [PMID: 33588924 PMCID: PMC7885238 DOI: 10.1186/s13578-021-00549-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/30/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC) is the main pathological type of thyroid carcinoma (TC). Gender is a prominent background parameter for patients with PTC. Here, we aimed to delineate the differences in cell clusters and immune microenvironment in relation to gender in PTC. METHODS We generated 6720, 14,666, and 33,373 single-cell transcriptomes that were pooled from the tissues of four male patients with PTC, seven female patients with PTC, and three patients with nodular goiter, respectively. We performed single-cell RNA-sequencing (scRNA-seq) based on BD Rhapsody and characterized the first single-cell transcriptomic landscape of PTC involving gender. The differential cell clusters and their gene profiles were identified and analyzed via a multi-resolution network in male and female patients. The interactions of fibroblasts and endothelial cells with malignant epithelial cells and the difference in the immune infiltration of B and T lymphocytes according to gender were assessed. RESULTS Malignant epithelial cells were divided into two distinct subsets in male and female patients with PTC. Moreover, significant differences involving inferred copy-number variations (CNVs), gene profiles, and cell differentiation were detected between male and female patients. Regarding the interactions of fibroblasts and endothelial cells with malignant epithelial cells, members of the human leukocyte antigen (HLA) family and their receptors were considered as typical in female patients with PTC, while transforming growth factor beta 1 (TGFB1) and its receptors were typical of male patients with PTC. The characteristics of B cells, including cell clusters, cell differentiation, and dominant gene sets, were significantly different between genders. CONCLUSIONS Our data revealed the detailed differences in cell clusters and immune microenvironment in PTC according to gender at the single-cell level, which provided new insights into the understanding of the impact of gender on PTC.
Collapse
Affiliation(s)
- Miaoguan Peng
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangdong, 510080, Guangzhou, China
| | - Guohong Wei
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangdong, 510080, Guangzhou, China
| | - Yunjian Zhang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangdong, 510080, Guangzhou, China
| | - Hai Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangdong, 510080, Guangzhou, China
| | - Yingrong Lai
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangdong, 510080, Guangzhou, China
| | - Yan Guo
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangdong, 510080, Guangzhou, China
| | - Yuxin Chen
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangdong, 510080, Guangzhou, China
| | - Liehua Liu
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangdong, 510080, Guangzhou, China
| | - Haipeng Xiao
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangdong, 510080, Guangzhou, China
| | - Hongyu Guan
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangdong, 510080, Guangzhou, China.
| | - Yanbing Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangdong, 510080, Guangzhou, China.
| |
Collapse
|
1938
|
Abstract
The IL-17 family is an evolutionarily old cytokine family consisting of six members (IL-17A through IL-17F). IL-17 family cytokines signal through heterodimeric receptors that include the shared IL-17RA subunit, which is widely expressed throughout the body on both hematopoietic and nonhematopoietic cells. The founding family member, IL-17A, is usually referred to as IL-17 and has received the most attention for proinflammatory roles in autoimmune diseases like psoriasis. However, IL-17 is associated with a wide array of diseases with perhaps surprisingly variable pathologies. This review focuses on recent advances in the roles of IL-17 during health and in disease pathogenesis. To decipher the functions of IL-17 in diverse disease processes it is useful to first consider the physiological functions that IL-17 contributes to health. We then discuss how these beneficial functions can be diverted toward pathogenic amplification of deleterious pathways driving chronic disease.
Collapse
Affiliation(s)
- Saikat Majumder
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pennsylvania 15261, USA; ,
| | - Mandy J McGeachy
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pennsylvania 15261, USA; ,
| |
Collapse
|
1939
|
Saccorhiza polyschides used to synthesize gold and silver nanoparticles with enhanced antiproliferative and immunostimulant activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111960. [PMID: 33812588 DOI: 10.1016/j.msec.2021.111960] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Over the last years, there has been an increasing trend towards the use of environmentally friendly processes to synthesize nanomaterials. In the case of nanomedicine, the use of bionanofactories with associated biological properties, such as seaweed, has emerged as a promising field of work due to the possibility they open for both the preservation of those properties in the nanomaterials synthesized and/or the reduction of their toxicity. In the present study, gold (Au@SP) and silver (Ag@SP) nanoparticles were synthesized using an aqueous extract of Saccorhiza polyschides (SP). Several techniques showed that the nanoparticles formed were spherical and stable, with mean diameters of 14 ± 2 nm for Au@SP and 15 ± 3 nm for Ag@SP. The composition of the biomolecules in the extract and the nanoparticles were also analyzed. The analyses performed indicate that the extract acts as a protective medium, with the particles embedded in it preventing aggregation and coalescence. Au@SP and Ag@SP showed superior immunostimulant and antiproliferative activity on immune and tumor cells, respectively, to that of the SP extract. Moreover, the nanoparticles were able to modulate the release of reactive oxygen species depending on the concentration. Hence, both nanoparticles have a significant therapeutic potential for the treatment of cancer or in immunostimulant therapy.
Collapse
|
1940
|
Wang Y, Qiu L, Chen Y, Zhang X, Yang P, Xu F. Screening and Identification of Four Prognostic Genes Related to Immune Infiltration and G-Protein Coupled Receptors Pathway in Lung Adenocarcinoma. Front Oncol 2021; 10:622251. [PMID: 33628734 PMCID: PMC7897677 DOI: 10.3389/fonc.2020.622251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD) is a common malignant tumor with the highest morbidity and mortality worldwide. The degree of tumor immune infiltration and clinical prognosis depend on immune-related genes, but their interaction with the tumor immune microenvironment, the specific mechanism driving immune infiltration and their prognostic value are still not very clear. Therefore, the aim of this work was focused on the elucidation of these unclear aspects. Methods TCGA LUAD samples were divided into three immune infiltration subtypes according to the single sample gene set enrichment analysis (ssGSEA), in which the associated gene modules and hub genes were screened by weighted correlation network analysis (WGCNA). Four key genes related to immune infiltration were found and screened by differential expression analysis, univariate prognostic analysis, and Lasso-COX regression, and their PPI network was constructed. Finally, a Nomogram model based on the four genes and tumor stages was constructed and confirmed in two GEO data sets. Results Among the three subtypes—high, medium, and low immune infiltration subtype—the survival rate of the patients in the high one was higher than the rate in the other two subtypes. The four key genes related to LUAD immune infiltration subtypes were CD69, KLRB1, PLCB2, and P2RY13. The PPI network revealed that the downstream genes of the G-protein coupled receptors (GPCRs) pathway were activated by these four genes through the S1PR1. The risk score signature based on these four genes could distinguish high and low-risk LUAD patients with different prognosis. The Nomogram constructed by risk score and clinical tumor stage showed a good ability to predict the survival rate of LUAD patients. The universality and robustness of the Nomogram was confirmed by two GEO datasets. Conclusions The prognosis of LUAD patients could be predicted by the constructed risk score signature based on the four genes, making this score a potential independent biomarker. The screening, identification, and analysis of these four genes could contribute to the understanding of GPCRs and LUAD immune infiltration, thus guiding the formulation of more effective immunotherapeutic strategies.
Collapse
Affiliation(s)
- Yan Wang
- Department of Emergency Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Liwei Qiu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yu Chen
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Xia Zhang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Peng Yang
- Department of Emergency Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Feng Xu
- Department of Emergency Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
1941
|
Clinical Implications of Exosomal PD-L1 in Cancer Immunotherapy. J Immunol Res 2021; 2021:8839978. [PMID: 33628854 PMCID: PMC7886511 DOI: 10.1155/2021/8839978] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/07/2021] [Accepted: 01/29/2021] [Indexed: 02/08/2023] Open
Abstract
Inhibiting the programmed cell death ligand-1 (PD-L1)/programmed cell death receptor-1 (PD-1) signaling axis reinvigorates the antitumor immune response with remarkable clinical efficacy. Yet, low response rates limit the benefits of immunotherapy to a minority of patients. Recent studies have explored the importance of PD-L1 as a transmembrane protein in exosomes and have revealed exosomal PD-L1 as a mechanism of tumor immune escape and immunotherapy resistance. Exosomal PD-L1 suppresses T cell effector function, induces systemic immunosuppression, and transfers functional PD-L1 across the tumor microenvironment (TME). Because of its significant contribution to immune escape, exosomal PD-L1 has been proposed as a biomarker to predict immunotherapy response and to assess therapeutic efficacy. In this review, we summarize the immunological mechanisms of exosomal PD-L1, focusing on the factors that lead to exosome biogenesis and release. Next, we review the effect of exosomal PD-L1 on T cell function and its role across the TME. In addition, we discuss the latest findings on the use of exosomal PD-L1 as a biomarker for cancer immunotherapy. Throughout this review, we propose exosomal PD-L1 as a critical mediator of tumor progression and highlight the clinical implications that follow for immuno-oncology, discussing the potential to target exosomes to advance cancer treatment.
Collapse
|
1942
|
Adolphe C, Xue A, Fard AT, Genovesi LA, Yang J, Wainwright BJ. Genetic and functional interaction network analysis reveals global enrichment of regulatory T cell genes influencing basal cell carcinoma susceptibility. Genome Med 2021; 13:19. [PMID: 33549134 PMCID: PMC7866769 DOI: 10.1186/s13073-021-00827-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/07/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Basal cell carcinoma (BCC) of the skin is the most common form of human cancer, with more than 90% of tumours presenting with clear genetic activation of the Hedgehog pathway. However, polygenic risk factors affecting mechanisms such as DNA repair and cell cycle checkpoints or which modulate the tumour microenvironment or host immune system play significant roles in determining whether genetic mutations culminate in BCC development. We set out to define background genetic factors that play a role in influencing BCC susceptibility via promoting or suppressing the effects of oncogenic drivers of BCC. METHODS We performed genome-wide association studies (GWAS) on 17,416 cases and 375,455 controls. We subsequently performed statistical analysis by integrating data from population-based genetic studies of multi-omics data, including blood- and skin-specific expression quantitative trait loci and methylation quantitative trait loci, thereby defining a list of functionally relevant candidate BCC susceptibility genes from our GWAS loci. We also constructed a local GWAS functional interaction network (consisting of GWAS nearest genes) and another functional interaction network, consisting specifically of candidate BCC susceptibility genes. RESULTS A total of 71 GWAS loci and 46 functional candidate BCC susceptibility genes were identified. Increased risk of BCC was associated with the decreased expression of 26 susceptibility genes and increased expression of 20 susceptibility genes. Pathway analysis of the functional candidate gene regulatory network revealed strong enrichment for cell cycle, cell death, and immune regulation processes, with a global enrichment of genes and proteins linked to TReg cell biology. CONCLUSIONS Our genome-wide association analyses and functional interaction network analysis reveal an enrichment of risk variants that function in an immunosuppressive regulatory network, likely hindering cancer immune surveillance and effective antitumour immunity.
Collapse
Affiliation(s)
- Christelle Adolphe
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, QLD, 4102, Australia
| | - Angli Xue
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Atefeh Taherian Fard
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Laura A Genovesi
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, QLD, 4102, Australia
| | - Jian Yang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.
- School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China.
| | - Brandon J Wainwright
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
1943
|
Colombo E, Cattaneo MG. Multicellular 3D Models to Study Tumour-Stroma Interactions. Int J Mol Sci 2021; 22:ijms22041633. [PMID: 33562840 PMCID: PMC7915117 DOI: 10.3390/ijms22041633] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
Two-dimensional (2D) cell cultures have been the standard for many different applications, ranging from basic research to stem cell and cancer research to regenerative medicine, for most of the past century. Hence, almost all of our knowledge about fundamental biological processes has been provided by primary and established cell lines cultured in 2D monolayer. However, cells in tissues and organs do not exist as single entities, and life in multicellular organisms relies on the coordination of several cellular activities, which depend on cell–cell communication across different cell types and tissues. In addition, cells are embedded within a complex non-cellular structure known as the extracellular matrix (ECM), which anchors them in a three-dimensional (3D) formation. Likewise, tumour cells interact with their surrounding matrix and tissue, and the physical and biochemical properties of this microenvironment regulate cancer differentiation, proliferation, invasion, and metastasis. 2D models are unable to mimic the complex and dynamic interactions of the tumour microenvironment (TME) and ignore spatial cell–ECM and cell–cell interactions. Thus, multicellular 3D models are excellent tools to recapitulate in vitro the spatial dimension, cellular heterogeneity, and molecular networks of the TME. This review summarizes the biological significance of the cell–ECM and cell–cell interactions in the onset and progression of tumours and focuses on the requirement for these interactions to build up representative in vitro models for the study of the pathophysiology of cancer and for the design of more clinically relevant treatments.
Collapse
|
1944
|
Kim SI, Cassella CR, Byrne KT. Tumor Burden and Immunotherapy: Impact on Immune Infiltration and Therapeutic Outcomes. Front Immunol 2021; 11:629722. [PMID: 33597954 PMCID: PMC7882695 DOI: 10.3389/fimmu.2020.629722] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022] Open
Abstract
Cancer immunotherapy has revolutionized the treatment landscape in medical oncology, but its efficacy has been variable across patients. Biomarkers to predict such differential response to immunotherapy include cytotoxic T lymphocyte infiltration, tumor mutational burden, and microsatellite instability. A growing number of studies also suggest that baseline tumor burden, or tumor size, predicts response to immunotherapy. In this review, we discuss the changes in immune profile and therapeutic responses that occur with increasing tumor size. We also overview therapeutic approaches to reduce tumor burden and favorably modulate the immune microenvironment of larger tumors.
Collapse
Affiliation(s)
- Samuel I Kim
- Program in Biochemistry, College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Christopher R Cassella
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Katelyn T Byrne
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
1945
|
Ando H, Eshima K, Ishida T. Neutralization of Acidic Tumor Microenvironment (TME) with Daily Oral Dosing of Sodium Potassium Citrate (K/Na Citrate) Increases Therapeutic Effect of Anti-cancer Agent in Pancreatic Cancer Xenograft Mice Model. Biol Pharm Bull 2021; 44:266-270. [PMID: 33518679 DOI: 10.1248/bpb.b20-00825] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Extracellular pH (pHe) of tumor cells is characteristic of tumor microenvironment (TME). Acidic TME impairs the responses of tumors to some anti-cancer chemotherapies. In this study, we showed that daily oral dosing of sodium potassium citrate (K/Na citrate) increased blood HCO3- concentrations, corresponding to increase of HCO3- concentrations and pHs in urine, and neutralized the tumor pHe. Neutralization of acidic TME by alkaline substance like HCO3-, an active metabolite of K/Na citrate, well potentiated the therapeutic effect of anticancer agent TS-1®, an orally active 5-fuluoro-uracil derivative, in Panc-1 pancreatic cancer-xenograft murine model. Neutralization of acidic TME by using an alkaline K/Na citrate is a smart approach for enhancement of the therapeutic effects of anticancer agents for pancreatic cancer in the end stage.
Collapse
Affiliation(s)
- Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | | | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| |
Collapse
|
1946
|
Min AKT, Mimura K, Nakajima S, Okayama H, Saito K, Sakamoto W, Fujita S, Endo H, Saito M, Saze Z, Momma T, Ohki S, Kono K. Therapeutic potential of anti-VEGF receptor 2 therapy targeting for M2-tumor-associated macrophages in colorectal cancer. Cancer Immunol Immunother 2021; 70:289-298. [PMID: 32705303 PMCID: PMC10991089 DOI: 10.1007/s00262-020-02676-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Although immunotherapy with immune checkpoint inhibitors (ICIs) has become a standard therapeutic strategy in colorectal cancer (CRC) exhibiting microsatellite instability-high, limited patients benefit from this new approach. To increase the efficacy of ICIs in CRC patients, it is crucial to control the function of immunosuppressive cells in the tumor microenvironment. M2-tumor-associated macrophages (TAMs) are key immunosuppressive cells and promote tumor growth, angiogenesis, and epithelial-mesenchymal transition. In the present study, we focused on the VEGF signaling pathway in M2-TAMs to control their inhibitory function. METHODS We evaluated the population of M2-TAMs, the VEGF receptor 2 (VEGFR2) expression on M2-TAMs, and the correlation between HIF-1α-positive cells and VEGFR2 expression levels on M2-TAMs in CRC using the analysis of The Cancer Genome Atlas colorectal adenocarcinoma dataset (n = 592), the flow cytometry of freshly resected surgical specimens of CRC (n = 20), and the immunofluorescence staining of formalin-fixed paraffin-embedded whole tissue samples of CRC (n = 20). Furthermore, we performed a functional assay of M2 macrophages through the VEGF/VEGFR2 signaling pathway in vitro. RESULTS The population of M2-TAMs and their VEGFR2 expression significantly increased in the tumor compared to the normal mucosa in the CRC patients. HIF1-α-positive cells significantly correlated with the VEGFR2 expression level of M2-TAMs. M2 macrophages induced by cytokines in vitro produced TGF-β1 through the VEGF/VEGFR2 signaling pathway. CONCLUSIONS Our results suggest that anti-VEGFR2 therapy may have therapeutic potential to control the immune inhibitory functions of M2-TAMs in CRC, resulting in enhanced efficacy of immunotherapy with ICIs.
Collapse
Affiliation(s)
- Aung Kyi Thar Min
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Kosaku Mimura
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan.
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan.
| | - Shotaro Nakajima
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Hirokazu Okayama
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Katsuharu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Wataru Sakamoto
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Shotaro Fujita
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Hisahito Endo
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Motonobu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Zenichiro Saze
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Tomoyuki Momma
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Shinji Ohki
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Koji Kono
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| |
Collapse
|
1947
|
Zhang Y, Yang H, Zhao J, Wan P, Hu Y, Lv K, Hu Y, Yang X, Ma M. Activation of MAT2A-RIP1 signaling axis reprograms monocytes in gastric cancer. J Immunother Cancer 2021; 9:e001364. [PMID: 33593829 PMCID: PMC7888314 DOI: 10.1136/jitc-2020-001364] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The activation of tumor-associated macrophages (TAMs) facilitates the progression of gastric cancer (GC). Cell metabolism reprogramming has been shown to play a vital role in the polarization of TAMs. However, the role of methionine metabolism in function of TAMs remains to be explored. METHODS Monocytes/macrophages were isolated from peripheral blood, tumor tissues or normal tissues from healthy donors or patients with GC. The role of methionine metabolism in the activation of TAMs was evaluated with both in vivo analyses and in vitro experiments. Pharmacological inhibition of the methionine cycle and modulation of key metabolic genes was employed, where molecular and biological analyses were performed. RESULTS TAMs have increased methionine cycle activity that are mainly attributed to elevated methionine adenosyltransferase II alpha (MAT2A) levels. MAT2A modulates the activation and maintenance of the phenotype of TAMs and mediates the upregulation of RIP1 by increasing the histone H3K4 methylation (H3K4me3) at its promoter regions. CONCLUSIONS Our data cast light on a novel mechanism by which methionine metabolism regulates the anti-inflammatory functions of monocytes in GC. MAT2A might be a potential therapeutic target for cancer cells as well as TAMs in GC.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu, China
- Department of Gastroenterology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Hui Yang
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu, China
- Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Jun Zhao
- Department of General Surgery, Yijishan Hospital, The First Aflliated Hospital of Wannan Medical College, Wuhu, China
| | - Ping Wan
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ye Hu
- State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Lv
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu, China
- Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - YiRen Hu
- Department of General Surgery, Wenzhou No. 3 Clinical Institute of Wenzhou Medical University,Wenzhou People's Hospital, Wenzhou, China
| | - Xi Yang
- Shanghai Institute of Head Trauma, Shanghai, China
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Mingzhe Ma
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu, China
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
1948
|
Constitutively Activated DAP12 Induces Functional Anti-Tumor Activation and Maturation of Human Monocyte-Derived DC. Int J Mol Sci 2021; 22:ijms22031241. [PMID: 33513928 PMCID: PMC7865632 DOI: 10.3390/ijms22031241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 01/07/2023] Open
Abstract
Dendritic cells (DCs) are professional antigen presenting cells with a great capacity for cross-presentation of exogenous antigens from which robust anti-tumor immune responses ensue. However, this function is not always available and requires DCs to first be primed to induce their maturation. In particular, in the field of DC vaccine design, currently available methodologies have been limited in eliciting a sustained anti-tumor immune response. Mechanistically, part of the maturation response is influenced by the presence of stimulatory receptors relying on ITAM-containing activating adaptor molecules like DAP12, that modulates their function. We hypothesize that activating DAP12 in DC could force their maturation and enhance their potential anti-tumor activity for therapeutic intervention. For this purpose, we developed constitutively active DAP12 mutants that can promote activation of monocyte-derived DC. Here we demonstrate its ability to induce the maturation and activation of monocyte-derived DCs which enhances migration, and T cell stimulation in vitro using primary human cells. Moreover, constitutively active DAP12 stimulates a strong immune response in a murine melanoma model leading to a reduction of tumor burden. This provides proof-of-concept for investigating the pre-activation of antigen presenting cells to enhance the effectiveness of anti-tumor immunotherapies.
Collapse
|
1949
|
Serum CXCL5 level is associated with tumor progression in penile cancer. Biosci Rep 2021; 41:227614. [PMID: 33458757 PMCID: PMC7843497 DOI: 10.1042/bsr20202133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 12/01/2022] Open
Abstract
Chemokine (C-X-C motif) ligand 5 is an important regulator of tumor progression in many cancers, and could serve as potential serum cancer biomarker. Our initial analysis identified CXCL5 as a cancer-related gene highly expressed in PC. Patients with PC exhibited markedly higher preoperative serum CXCL5 levels compared with that in healthy individuals (P<0.001). The area under the curve (AUC) was 0.880 with the sensitivity of 84.0%, and specificity of 80.4% to distinguish PC. Serum CXCL5 levels were also significantly decreased following tumor resection in patients with PC (P=0.001). Preoperative serum CXCL5 level was significantly associated with clinicopathological characteristics including T stage (P=0.001), nodal status (P<0.001), and pelvic lymph node metastasis (P=0.018). Cox regression analysis showed that serum CXCL5 level could serve as an independent prognostic factor for disease-free survival with a HR of 6.363 (95% CI: 2.185–18.531, P=0.001). CXCL5 and its receptor CXCR2 exhibited correlated expression pattern in PC tissues. Differential CXCL5 expression was observed in normal penile tissues, PC cell lines, and their culture supernatants. Furthermore, knockdown of CXCL5 or CXCR2 expression markedly suppressed malignant phenotypes (cell proliferation, clonogenesis, apoptosis escape, migration, and invasion), attenuated STAT3 and AKT signaling, and reduced MMP2/9 secretion in PC cell lines. In conclusion, our findings revealed that serum CXCL5 level might serve as a potential diagnostic and prognostic cancer biomarker for penile cancer. Autocrine CXCL5/CXCR2 signaling might activate multiple downstream oncogenic signaling pathways (STAT3, AKT, MMP2/9) to promote malignant progression of PC, which may warrant further investigation in the future.
Collapse
|
1950
|
Deregulated Immune Pathway Associated with Palbociclib Resistance in Preclinical Breast Cancer Models: Integrative Genomics and Transcriptomics. Genes (Basel) 2021; 12:genes12020159. [PMID: 33504001 PMCID: PMC7912104 DOI: 10.3390/genes12020159] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/07/2021] [Accepted: 01/21/2021] [Indexed: 12/22/2022] Open
Abstract
Recently, cyclin-dependent kinase (CDK) 4/6 inhibitors have been widely used to treat advanced hormone receptor-positive breast cancer. Despite promising clinical outcomes, almost all patients eventually acquire resistance to CDK4/6 inhibitors. Here, we screened genes associated with palbociclib resistance through genomics and transcriptomics in preclinical breast cancer models. Palbociclib-resistant cells were generated by exposing hormone receptor-positive breast cancer cell lines to palbociclib. Whole-exome sequencing (WES) and a mRNA microarray were performed to compare the genomic and transcriptomic landscape between both palbociclib-sensitive and resistant cells. Microarray analysis revealed 651 differentially expressed genes (DEGs), while WES revealed 107 clinically significant mutated genes. Furthermore, pathway analysis of both DEGs and mutated genes revealed immune pathway deregulation in palbociclib-resistant cells. Notably, DEG annotation revealed activation of type I interferon pathway, activation of immune checkpoint inhibitory pathway, and suppression of immune checkpoint stimulatory pathway in palbociclib-resistant cells. Moreover, mutations in NCOR1, MUC4, and MUC16 genes found in palbociclib-resistant cells were annotated to be related to the immune pathway. In conclusion, our genomics and transcriptomics analysis using preclinical model, revealed that deregulated immune pathway is an additional mechanism of CDK4/6 inhibitor resistance besides the activation of cyclin E-CDK2 pathway and loss of RB, etc. Further studies are warranted to evaluate whether immune pathways may be a therapeutic target to overcome CDK4/6 inhibitor resistance.
Collapse
|