151
|
Gao Y, Li H, Qiu L, Yuan H, Fan Q, Niu Z, Xing L, Li M, Yuan D. Efficacy and safety of anti-programmed death-1 antibody-based combination therapy in advanced or metastatic gastric or gastroesophageal junction cancer in Chinese patients: A real-world study. Sci Prog 2024; 107:368504241272703. [PMID: 39166262 PMCID: PMC11339938 DOI: 10.1177/00368504241272703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
PURPOSE Programmed death-1 antibody plus chemotherapy has gained approval for the treatment for (human epidermal growth factor receptor 2 negative locally advanced or metastatic gastric or gastroesophageal junction cancer. This study aims to analyze the efficacy and safety of anti-programmed death-1 antibody combined with chemo- or anti-angiogenesis therapy in Chinese patients with advanced or metastatic gastric or gastroesophageal junction cancer in a real-world setting. METHODS In total, 122 patients treated with anti-programmed death-1 antibody-based combination therapy between April 2019 and December 2021 were encompassed. Clinical outcomes and safety profile were measured and analyzed. RESULTS In the whole cohort, median overall survival was 17.2 months, median progression-free survival was 10.9 months, and median duration of response was 9.4 months. Notably, in the first-line patients, the median overall survival was not reached, median progression-free survival was 14.8 months, objective response rate was 68.4%. In the second-line group, median overall survival, median progression-free survival, median duration of response, and objective response rate were 10.9 months, 5.9 months, 4.5 months, and 41.5%, respectively. Treatment-related adverse events of any grade were observed in 28.2% of the overall cohort, primarily affecting the hematological and liver function. Grade 3 or 4 adverse events were mainly characterized by increased levels of aspartate aminotransferase, alanine aminotransferase, along with decreased lymphocyte and white blood cells, as well as anemia. CONCLUSIONS Patients in our cohort experienced a clinical benefit from anti-programmed death-1 antibody-combined treatment in first-line treatment settings, with acceptable treatment-related adverse events. The benefit of anti-programmed death-1 antibody combined with chemo- or anti-angiogenesis treatment to the second-line patients should be further confirmed by large multi-center randomized, controlled clinical trials.
Collapse
Affiliation(s)
- Yifan Gao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Haoqian Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Lei Qiu
- Department of Gastroenterology Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Hongtu Yuan
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Qing Fan
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zuoxing Niu
- Department of Gastroenterology Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ligang Xing
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Dandan Yuan
- Department of Gastroenterology Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
152
|
Liu P, Wu J, Chen L, Wu Z, Wu Y, Zhang G, Yu B, Zhang B, Wei N, Shi J, Zhang C, Lei L, Yu S, Lai J, Guo Z, Zheng Y, Jing Z, Jiang H, Wang T, Zhou J, Wu Y, Sun C, Shen J, Zhang J, Wu Z. Water-filtered infrared A radiation hyperthermia combined with immunotherapy for advanced gastrointestinal tumours. Cancer Med 2024; 13:e70024. [PMID: 39049187 PMCID: PMC11269209 DOI: 10.1002/cam4.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/18/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024] Open
Abstract
This study pioneered the use of WIRA whole-body infrared hyperthermia combined with ICI therapy to treat GIT and verified the feasibility and safety of HIT. The final results showed a DCR of 55.6%, with a median PFS of 53.5 days, median OS of 134 days, and an irAE incidence of 22.2%. Therefore, we believe that HIT can exert multiple synergistic sensitisation effects, thereby providing clinical benefits to patients with advanced GITs, increasing overall safety, and improving patients' QOL.
Collapse
Affiliation(s)
- Pengyuan Liu
- Department of Oncology, Zhejiang HospitalHangzhouChina
| | - Jing Wu
- Department of Oncology, Zhejiang HospitalHangzhouChina
| | - Liting Chen
- Department of Oncology, Zhejiang HospitalHangzhouChina
| | - Zhenhai Wu
- Department of Oncology, Zhejiang HospitalHangzhouChina
| | - Yufei Wu
- ACS (International) School of SingaporeSingapore
| | - Ganlu Zhang
- Department of Oncology, Zhejiang HospitalHangzhouChina
| | - Bingqi Yu
- Department of Oncology, Zhejiang HospitalHangzhouChina
| | - Beibei Zhang
- Department of Oncology, Zhejiang HospitalHangzhouChina
| | - Nan Wei
- Department of Oncology, Zhejiang HospitalHangzhouChina
| | - Jinan Shi
- Department of Oncology, Zhejiang HospitalHangzhouChina
| | | | - Lan Lei
- Department of Oncology, Zhejiang HospitalHangzhouChina
| | - Shuhuan Yu
- Department of Oncology, Zhejiang HospitalHangzhouChina
| | - Jianjun Lai
- Department of Oncology, Zhejiang HospitalHangzhouChina
| | - Zhen Guo
- Department of Oncology, Zhejiang HospitalHangzhouChina
| | - Yuli Zheng
- Department of Oncology, Zhejiang HospitalHangzhouChina
| | - Zhao Jing
- Department of Oncology, Zhejiang HospitalHangzhouChina
| | - Hao Jiang
- Department of Oncology, Zhejiang HospitalHangzhouChina
| | | | - Jueyi Zhou
- Department of OncologyLishui People's HospitalLishuiChina
| | - Yajun Wu
- TCM Dispensary, Zhejiang HospitalHangzhouChina
| | - Chuan Sun
- Geriatrics Institute of Zhejiang ProvinceDepartment of Geriatrics, Zhejiang HospitalHangzhouChina
| | - Jie Shen
- Department of Medical Oncology, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jian Zhang
- Department of Gastrointestinal Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Zhibing Wu
- Department of Oncology, Zhejiang HospitalHangzhouChina
- Department of Radiation Oncology, Affiliated Zhejiang HospitalZhejiang University School of MedicineHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| |
Collapse
|
153
|
He Z, Yang H, Chen Q, Chen YPP, Qin H, He W, Chen Z. Role of TAP1 in the identification of immune-hot tumor microenvironment and its prognostic significance for immunotherapeutic efficacy in gastric carcinoma. J Gastrointest Oncol 2024; 15:890-907. [PMID: 38989426 PMCID: PMC11231864 DOI: 10.21037/jgo-24-28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/19/2024] [Indexed: 07/12/2024] Open
Abstract
Background Gastric cancer (GC), a multifaceted gastrointestinal malignancy, is the fourth most prevalent contributor to cancer-related fatalities globally. As a member of the ATP-binding cassette (ABC) family, transporter associated with antigen processing 1 (TAP1) is crucial for conveying antigen peptides from the cytoplasm to the lumen of the endoplasmic reticulum and subsequently loading them onto the major histocompatibility complex (MHC) class I molecules. Recent studies have established the biological significance of TAP1 in upholding tumor survival and facilitating immune evasion by remodeling the tumor microenvironment (TME) and orchestrating immune infiltration. The study was conducted to elucidate the association of TAP1 expression with immunological characteristics, and sought to exploit the value of TAP1 as a biomarker reflecting the inflamed TME and immunotherapeutic response. Methods RNA-sequencing profiles and clinical annotations were obtained from The Cancer Genome Atlas-stomach adenocarcinoma (TCGA-STAD) cohort and Gene Expression Omnibus (GEO) portal. Preprocessing was conducting using the limma package. Weighted gene co-expression network analysis (WGCNA) was used to identify gene modules and TAP1 co-expressed genes (CEGs) based on correlation patterns. Consensus clustering and silhouette analysis determined the optimal number of TAP1-related groups. Gene expression profiles were integrated and classified using the pamr package. The Estimation of STromal and Immune cells in MAlignant Tumors using Expression data (ESTIMATE) algorithm and single-sample gene set enrichment analysis (ssGSEA) were used to evaluate immunological characteristics. Differential expression analysis was conducted using the limma package. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed. Single-cell RNA sequencing (scRNA-seq) datasets were analyzed using the Seurat toolkit to characterize cell types. Results Within this investigation, no significant differences in TAP1 expression were observed among patients exhibiting various clinicopathological features, indicating that TAP1 expression was not specific to molecular subtypes. Subsequent analysis revealed a positive correlation between TAP1 and diverse immunological traits, encompassing immunomodulators, tumor-infiltrating immune cells, as well as immune checkpoints across multiple datasets. Besides, within a GC immunotherapy cohort, individuals displaying high TAP1 expression demonstrated an increased likelihood of achieving complete remission (CR) post-treatment, suggesting heightened sensitivity to immunotherapy. In the clinical cohort, TAP1 overexpression in GC patients was positively correlated with CD8. Conclusions TAP1 appears linked to an inflamed TME and serves as a prospective biomarker for discerning immunological attributes and gauging immunotherapeutic responses in GC, particularly in identifying immune-reactive tumors.
Collapse
Affiliation(s)
- Zehua He
- Department of General Surgery, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, China
| | - Hong Yang
- Department of Anesthesia Surgery Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qingfeng Chen
- School of Computer, Electronic and Information, Guangxi University, Nanning, China
| | - Yi-Ping Phoebe Chen
- Department of Computer Science and Information Technology, La Trobe University, Melbourne, Australia
| | - Huabo Qin
- Department of General Surgery, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, China
| | - Wanrong He
- Department of Computer Science and Information Technology, La Trobe University, Melbourne, Australia
| | - Zhihui Chen
- Department of General Surgery, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, China
- Department of Gastrointestinal Surgery Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
154
|
Xu Q, Xue S, Zhang Y, Li J, Qian P, Zhang Y, Feng L. Identification and validation of Cystatin A as a novel promising therapeutic target for gastric cancer. J Gastrointest Oncol 2024; 15:873-889. [PMID: 38989439 PMCID: PMC11231850 DOI: 10.21037/jgo-23-941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024] Open
Abstract
Background The effect of pharmacological treatment of gastric cancer (GC) is limited, thus, it holds significant scientific importance to thoroughly investigate the molecular mechanisms underlying GC development and identify novel molecules capable of substantially extending patients' survival. This study utilized bioinformatics techniques to identify 11 genes associated with recurrence-free survival (RFS) in GC patients and investigated the potential biological functions of these genes through single-cell transcriptomic analysis. Subsequently, a single gene Cystatin A (CSTA) was selected for further analysis to explore its impact on signaling pathways and treatment. Methods Differentially expressed genes (DEGs) were identified and overlapped in the analysis of RFS to identify potential prognostic genes for GC patients, based on data from the Cancer Genome Atlas-stomach adenocarcinoma (TCGA-STAD) and GSE54129. Subsequently, a prognostic model based on RFS in GC patients was established. Single-cell sequencing data were employed to explore the potential functions of these model genes. CSTA, one of the RFS-related genes, was further investigated using immunohistochemistry (IHC), Cell Counting Kit 8 (CCK-8), transwell, scratch, colony formation assays, flow cytometry, and Western blotting methods. Results Through bioinformatics analysis, we identified 23 RFS-related genes in GC. Using the least absolute shrinkage and selection operator (LASSO)-Cox method, an RFS prognostic model was developed which pinpointed 11 GC prognosis-related (GPR) genes as significant factors influencing RFS in GC patients. The single-cell analysis revealed their potential role in affecting differentiation and maturation of pre-fibroblasts thereby impacting RFS in GC patients. CSTA exhibited low expression levels in GC tissues. Overexpression of CSTA promoted apoptosis in GC cells through the caspase-dependent apoptotic pathway and enhanced their response to cisplatin via this same pathway. Conclusions The 11 GPR genes are primarily enriched within a specific type of stromal cell exhibiting heightened communication, metabolism, and differentiation levels. The gene signature of these stromal cells has implications for patient prognosis. Additionally, CSTA, a gene related to prognosis, has been shown to influence apoptosis levels in GC cells.
Collapse
Affiliation(s)
- Qingyu Xu
- Endoscopy Center, Minhang Hospital Affiliated to Fudan University, Shanghai, China
| | - Shuai Xue
- Endoscopy Center, Minhang Hospital Affiliated to Fudan University, Shanghai, China
| | - Yaqiong Zhang
- Endoscopy Center, Minhang Hospital Affiliated to Fudan University, Shanghai, China
| | - Jian Li
- Endoscopy Center, Minhang Hospital Affiliated to Fudan University, Shanghai, China
| | - Peiyu Qian
- Endoscopy Center, Minhang Hospital Affiliated to Fudan University, Shanghai, China
| | - Yanyan Zhang
- Endoscopy Center, Minhang Hospital Affiliated to Fudan University, Shanghai, China
| | - Li Feng
- Endoscopy Center, Minhang Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
155
|
Ye B, Li Z, Wang Q. A novel artificial intelligence network to assess the prognosis of gastrointestinal cancer to immunotherapy based on genetic mutation features. Front Immunol 2024; 15:1428529. [PMID: 38994371 PMCID: PMC11236566 DOI: 10.3389/fimmu.2024.1428529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/14/2024] [Indexed: 07/13/2024] Open
Abstract
Background Immune checkpoint inhibitors (ICIs) have revolutionized gastrointestinal cancer treatment, yet the absence of reliable biomarkers hampers precise patient response prediction. Methods We developed and validated a genomic mutation signature (GMS) employing a novel artificial intelligence network to forecast the prognosis of gastrointestinal cancer patients undergoing ICIs therapy. Subsequently, we explored the underlying immune landscapes across different subtypes using multiomics data. Finally, UMI-77 was pinpointed through the analysis of drug sensitization data from the Genomics of Drug Sensitivity in Cancer (GDSC) database. The sensitivity of UMI-77 to the AGS and MKN45 cell lines was evaluated using the cell counting kit-8 (CCK8) assay and the plate clone formation assay. Results Using the artificial intelligence network, we developed the GMS that independently predicts the prognosis of gastrointestinal cancer patients. The GMS demonstrated consistent performance across three public cohorts and exhibited high sensitivity and specificity for 6, 12, and 24-month overall survival (OS) in receiver operating characteristic (ROC) curve analysis. It outperformed conventional clinical and molecular features. Low-risk samples showed a higher presence of cytolytic immune cells and enhanced immunogenic potential compared to high-risk samples. Additionally, we identified the small molecule compound UMI-77. The half-maximal inhibitory concentration (IC50) of UMI-77 was inversely related to the GMS. Notably, the AGS cell line, classified as high-risk, displayed greater sensitivity to UMI-77, whereas the MKN45 cell line, classified as low-risk, showed less sensitivity. Conclusion The GMS developed here can reliably predict survival benefit for gastrointestinal cancer patients on ICIs therapy.
Collapse
Affiliation(s)
- Bicheng Ye
- School of Clinical Medicine, Yangzhou Polytechnic College, Yangzhou, China
| | - Zhongyan Li
- Department of Geriatric Medicine, Huai'an Hospital Affiliated to Yangzhou University (The Fifth People's Hospital of Huai'an), Huai'an, China
| | - Qiqi Wang
- Department of Gastroenterology, Wenzhou Central Hospital, Wenzhou, China
- Department of Gastroenterology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, China
- Department of Gastroenterology, The Second Afliated Hospital of Shanghai University, Wenzhou, China
| |
Collapse
|
156
|
Li Y, Jin H, Li Q, Shi L, Mao Y, Zhao L. The role of RNA methylation in tumor immunity and its potential in immunotherapy. Mol Cancer 2024; 23:130. [PMID: 38902779 PMCID: PMC11188252 DOI: 10.1186/s12943-024-02041-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 06/10/2024] [Indexed: 06/22/2024] Open
Abstract
RNA methylation, a prevalent post-transcriptional modification, has garnered considerable attention in research circles. It exerts regulatory control over diverse biological functions by modulating RNA splicing, translation, transport, and stability. Notably, studies have illuminated the substantial impact of RNA methylation on tumor immunity. The primary types of RNA methylation encompass N6-methyladenosine (m6A), 5-methylcytosine (m5C), N1-methyladenosine (m1A), and N7-methylguanosine (m7G), and 3-methylcytidine (m3C). Compelling evidence underscores the involvement of RNA methylation in regulating the tumor microenvironment (TME). By affecting RNA translation and stability through the "writers", "erasers" and "readers", RNA methylation exerts influence over the dysregulation of immune cells and immune factors. Consequently, RNA methylation plays a pivotal role in modulating tumor immunity and mediating various biological behaviors, encompassing proliferation, invasion, metastasis, etc. In this review, we discussed the mechanisms and functions of several RNA methylations, providing a comprehensive overview of their biological roles and underlying mechanisms within the tumor microenvironment and among immunocytes. By exploring how these RNA modifications mediate tumor immune evasion, we also examine their potential applications in immunotherapy. This review aims to provide novel insights and strategies for identifying novel targets in RNA methylation and advancing cancer immunotherapy efficacy.
Collapse
Affiliation(s)
- Yan Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Haoer Jin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qingling Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Liangrong Shi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yitao Mao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Luqing Zhao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
157
|
Masetti M, Al-Batran SE, Goetze TO, Thuss-Patience P, Knorrenschild JR, Goekkurt E, Folprecht G, Ettrich TJ, Lindig U, Luley KB, Pink D, Dechow T, Sookthai D, Junge S, Loose M, Pauligk C, Lorenzen S. Efficacy of ramucirumab combination chemotherapy as second-line treatment in patients with advanced adenocarcinoma of the stomach or gastroesophageal junction after exposure to checkpoint inhibitors and chemotherapy as first-line therapy. Int J Cancer 2024; 154:2142-2150. [PMID: 38447003 DOI: 10.1002/ijc.34894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/20/2023] [Accepted: 01/12/2024] [Indexed: 03/08/2024]
Abstract
FOLFOX plus nivolumab represents a standard of care for first-line therapy of advanced gastroesophageal cancer (aGEC) with positive PD-L1 expression. The efficacy of second-line VEGFR-2 inhibition with ramucirumab (RAM) plus chemotherapy after progression to immunochemotherapy remains unclear. Medical records of patients with aGEC enrolled in the randomized phase II AIO-STO-0417 trial after treatment failure to first-line FOLFOX plus nivolumab and ipilimumab were retrospectively analyzed. Patients were divided into two groups based on second-line therapy: RAM plus chemotherapy (RAM group) or treatment without RAM (control group). Eighty three patients were included. In the overall population, progression-free survival (PFS) in the RAM group was superior to the control (4.5 vs 2.9 months). Responders (CR/PR) to first-line immunochemotherapy receiving RAM containing second-line therapy had prolonged OS from start of first-line therapy (28.9 vs 16.5 months), as well as second-line OS (9.6 vs 7.5 months), PFS (5.6 vs 2.9 months) and DCR (53% vs 29%) compared to the control. PD-L1 CPS ≥1 was 42% and 44% for the RAM and the control, respectively. Patients with CPS ≥1 in the RAM group showed better tumor control (ORR 25% vs 10%) and improved survival (total OS 11.5 vs 8.0 months; second-line OS 6.5 vs 3.9 months; PFS 4.5 vs 1.6 months) compared to the control. Prior exposure to first-line FOLFOX plus dual checkpoint inhibition followed by RAM plus chemotherapy shows favorable response and survival rates especially in patients with initial response and positive PD-L1 expression and has the potential to advance the treatment paradigm in aGEC.
Collapse
Affiliation(s)
- Michael Masetti
- Klinikum rechts der Isar, Technische Universität München, Klinik für Innere Medizin III, Munich, Germany
| | - Salah-Eddin Al-Batran
- Institut für Klinische Krebsforschung IKF am Krankenhaus Nordwest, Frankfurt, Germany and Krankenhaus Nordwest, University Cancer Center Frankfurt, Frankfurt, Germany
| | - Thorsten O Goetze
- Institut für Klinische Krebsforschung IKF am Krankenhaus Nordwest, Frankfurt, Germany and Krankenhaus Nordwest, University Cancer Center Frankfurt, Frankfurt, Germany
| | - Peter Thuss-Patience
- Medizinische Klinik mit Schwerpunkt Hämatologie, Onkologie und Tumorimmunologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Eray Goekkurt
- Haematologisch-Onkologische Praxis Eppendorf, Universitäres Cancer Center Hamburg (UCCH), Hamburg, Germany
| | - Gunnar Folprecht
- Medizinische Klinik I, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | | | - Udo Lindig
- Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Kim Barbara Luley
- UKSH Campus Lübeck, Klinik für Hämatologie und Onkologie, Lübeck, Germany
| | - Daniel Pink
- Klinik und Poliklinik für Innere Medizin C, Hämatologie und Onkologie, Transplantationszentrum, Palliativmedizin, Universität Greifswald and Klinik für Hämatologie, Onkologie und Palliativmedizin-Sarkomzentrum, HELIOS Klinikum Bad Saarow, Bad Saarow, Germany
| | | | - Disorn Sookthai
- Institut für Klinische Krebsforschung IKF am Krankenhaus Nordwest, Frankfurt, Germany
| | - Sabine Junge
- Institut für Klinische Krebsforschung IKF am Krankenhaus Nordwest, Frankfurt, Germany
| | - Maria Loose
- Institut für Klinische Krebsforschung IKF am Krankenhaus Nordwest, Frankfurt, Germany
| | - Claudia Pauligk
- Institut für Klinische Krebsforschung IKF am Krankenhaus Nordwest, Frankfurt, Germany
| | - Sylvie Lorenzen
- Klinikum rechts der Isar, Technische Universität München, Klinik für Innere Medizin III, Munich, Germany
| |
Collapse
|
158
|
Zeng Z, Zhu Q. Progress and prospects of biomarker-based targeted therapy and immune checkpoint inhibitors in advanced gastric cancer. Front Oncol 2024; 14:1382183. [PMID: 38947886 PMCID: PMC11211377 DOI: 10.3389/fonc.2024.1382183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/24/2024] [Indexed: 07/02/2024] Open
Abstract
Gastric cancer and gastroesophageal junction cancer represent the leading cause of tumor-related death worldwide. Although advances in immunotherapy and molecular targeted therapy have expanded treatment options, they have not significantly altered the prognosis for patients with unresectable or metastatic gastric cancer. A minority of patients, particularly those with PD-L1-positive, HER-2-positive, or MSI-high tumors, may benefit more from immune checkpoint inhibitors and/or HER-2-directed therapies in advanced stages. However, for those lacking specific targets and unique molecular features, conventional chemotherapy remains the only recommended effective and durable regimen. In this review, we summarize the roles of various signaling pathways and further investigate the available targets. Then, the current results of phase II/III clinical trials in advanced gastric cancer, along with the superiorities and limitations of the existing biomarkers, are specifically discussed. Finally, we will offer our insights in precision treatment pattern when encountering the substantial challenges.
Collapse
Affiliation(s)
| | - Qing Zhu
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
159
|
Duan Y, Li J, Zhou S, Bi F. Effectiveness of PD-1 inhibitor-based first-line therapy in Chinese patients with metastatic gastric cancer: a retrospective real-world study. Front Immunol 2024; 15:1370860. [PMID: 38933261 PMCID: PMC11199409 DOI: 10.3389/fimmu.2024.1370860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Objective Programmed cell death protein-1 (PD-1) inhibitor-based therapy has demonstrated promising results in metastatic gastric cancer (MGC). However, the previous researches are mostly clinical trials and have reached various conclusions. Our objective is to investigate the efficacy of PD-1 inhibitor-based treatment as first-line therapy for MGC, utilizing real-world data from China, and further analyze predictive biomarkers for efficacy. Methods This retrospective study comprised 105 patients diagnosed with MGC who underwent various PD-1 inhibitor-based treatments as first-line therapy at West China Hospital of Sichuan University from January 2018 to December 2022. Patient characteristics, treatment regimens, and tumor responses were extracted. We also conducted univariate and multivariate analyses to assess the relationship between clinical features and treatment outcomes. Additionally, we evaluated the predictive efficacy of several commonly used biomarkers for PD-1 inhibitor treatments. Results Overall, after 28.0 months of follow-up among the 105 patients included in our study, the objective response rate (ORR) was 30.5%, and the disease control rate (DCR) was 89.5% post-treatment, with two individuals (1.9%) achieving complete response (CR). The median progression-free survival (mPFS) was 9.0 months, and the median overall survival (mOS) was 22.0 months. According to both univariate and multivariate analyses, favorable OS was associated with patients having Eastern Cooperative Oncology Group performance status (ECOG PS) of 0-1. Additionally, normal baseline levels of carcinoembryonic antigen (CEA), as well as the combination of PD-1 inhibitors with chemotherapy and trastuzumab in patients with human epidermal growth factor receptor 2 (HER2)-positive MGC, independently predicted longer PFS and OS. However, microsatellite instability/mismatch repair (MSI/MMR) status and Epstein-Barr virus (EBV) infection status were not significantly correlated with PFS or OS extension. Conclusion As the first-line treatment, PD-1 inhibitors, either as monotherapy or in combination therapy, are promising to prolong survival for patients with metastatic gastric cancer. Additionally, baseline level of CEA is a potential predictive biomarker for identifying patients mostly responsive to PD-1 inhibitors.
Collapse
Affiliation(s)
| | | | | | - Feng Bi
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
160
|
Yan SY, Fan JG. Application of immune checkpoint inhibitors and microsatellite instability in gastric cancer. World J Gastroenterol 2024; 30:2734-2739. [PMID: 38899328 PMCID: PMC11185298 DOI: 10.3748/wjg.v30.i21.2734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/18/2024] [Accepted: 05/16/2024] [Indexed: 06/03/2024] Open
Abstract
In this editorial we comment on the article by Li published in the recent issue of the World Journal of Gastroenterology. We focus specifically on the application of immune checkpoint inhibitors (ICIs) and microsatellite instability (MSI) in gastric cancer (GC). The four pillars of GC management have long been considered, including surgery, chemotherapy, radiotherapy and targeted therapy. However, immunotherapy has recently emerged as a "fifth pillar", and its use is rapidly expanding. There are four principal strategies for tumor immunotherapy: ICIs, tumor vaccines, adoptive immunotherapy and nonspecific immunomodulators. Of them, ICIs are the most advanced and widespread type of cancer immunotherapy for GC. Recent breakthrough results for ICIs have paved the way to a new era of cancer immunotherapy. In particular, inhibition of the PD-1/PD-L1 axis with ICIs, including nivolumab and pembrolizumab, has emerged as a novel treatment strategy for advanced GC. Unfortunately, these therapies are sometimes associated with often subtle, potentially fatal immune-related adverse events (irAEs), including dermatitis, diarrhea, colitis, endocrinopathy, hepatotoxicity, neuropathy and pneumonitis. We must be aware of these irAEs and improve the detection of these processes to prevent inappropriate discharges, emergency department revisits, and downstream complications. Recent studies have revealed that MSI-high or mismatch- repair-deficient tumors, regardless of their primary site, have a promising response to ICIs. So, it is important to detect MSI before applying ICIs for treatment of GC.
Collapse
Affiliation(s)
- Shi-Yan Yan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
161
|
Zhou KI, Hanks BA, Strickler JH. Management of Microsatellite Instability High (MSI-H) Gastroesophageal Adenocarcinoma. J Gastrointest Cancer 2024; 55:483-496. [PMID: 38133871 PMCID: PMC11186732 DOI: 10.1007/s12029-023-01003-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Gastroesophageal cancer is a major cause of cancer-related mortality worldwide. Treatment of both early stage and advanced disease remains highly reliant on cytotoxic chemotherapy. About 4-24% of gastroesophageal cancers are microsatellite instability high (MSI-H). The MSI-H subtype is associated with favorable prognosis, resistance to cytotoxic chemotherapy, and sensitivity to immune checkpoint inhibitors (ICI). Recent studies have demonstrated promising activity of ICIs in the MSI-H subtype, resulting in fundamental changes in the management of MSI-H gastroesophageal adenocarcinoma. PURPOSE In this review, we discuss the prevalence, characteristics, prognosis, and management of MSI-H gastroesophageal adenocarcinoma, with a focus on recent and ongoing studies that have changed the landscape of treatment for the MSI-H subtype. We also discuss current challenges in the management of resectable and advanced MSI-H gastroesophageal cancer, including the need for more accurate biomarkers of response to ICI therapy.
Collapse
Affiliation(s)
- Katherine I Zhou
- Division of Medical Oncology, Department of Medicine, Duke University, Durham, NC, USA
| | - Brent A Hanks
- Division of Medical Oncology, Department of Medicine, Duke University, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - John H Strickler
- Division of Medical Oncology, Department of Medicine, Duke University, Durham, NC, USA.
| |
Collapse
|
162
|
Jazieh K, Yoon H, Zhu M. Advances in Immunotherapy in Esophagogastric Cancer. Hematol Oncol Clin North Am 2024; 38:599-616. [PMID: 38493074 DOI: 10.1016/j.hoc.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Immune checkpoint inhibitors are rapidly transforming the care of patients with esophagogastric cancer. Particularly, anti-PD-1 therapy has demonstrated promising efficacy in metastatic and resectable disease. In this review, the authors discuss landmark clinical trials, highlight challenges and opportunities in this field, and propose potential directions for future work.
Collapse
Affiliation(s)
- Khalid Jazieh
- Division of Medical Oncology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA.
| | - Harry Yoon
- Division of Medical Oncology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| | - Mojun Zhu
- Division of Medical Oncology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| |
Collapse
|
163
|
Lan C, Lu H, Zhou L, Liao K, Liu J, Xie Z, Liang H, Zou G, Yang T, Xu Q, Huang X. Long-term survival outcomes and immune checkpoint inhibitor retreatment in patients with advanced cervical cancer treated with camrelizumab plus apatinib in the phase II CLAP study. Cancer Commun (Lond) 2024; 44:654-669. [PMID: 38741375 PMCID: PMC11194449 DOI: 10.1002/cac2.12547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/19/2024] [Accepted: 04/19/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Camrelizumab plus apatinib have demonstrated robust antitumor activity and safety in patients with advanced cervical cancer (CLAP study; NCT03816553). We herein present the updated long-term results of the CLAP study and explore potential biomarkers for survival. The outcomes of patients who underwent immune checkpoint inhibitor (ICI) retreatment were also reported. METHODS In this phase II trial, eligible patients received camrelizumab 200 mg intravenously every two weeks and apatinib 250 mg orally once daily in 4-week cycles for up to two years. Treatment was continued until disease progression, unacceptable toxicity, or withdrawal of consent. RESULTS Between January 21 and August 1, 2019, a total of 45 patients were enrolled. Data were analyzed as of July 31, 2023, representing > 48 months since treatment initiation for all patients. Nine (20.0%) patients completed the 2-year study. The median duration of response (DOR) was 16.6 months, and 45.0% of patients achieved a DOR of ≥ 24 months. The 12-month progression-free survival (PFS) rate was 40.7% (95% confidence interval [CI], 25.2-55.6), with an 18-month PFS rate of 37.8% (95% CI, 22.7-52.8). The median overall survival (OS) was 20.3 months (95% CI, 9.3-36.9), and the 24-month OS rate was 47.8% (95% CI, 31.7-62.3). Age > 50 years, programmed death-ligand 1 (PD-L1) combined positive score (CPS) ≥ 1 (versus [vs.] < 1), CPS ≥ 10 (vs. < 1), high tumor mutational burden, and PIK3CA mutations were associated with improved PFS (hazard ratio [HR] < 1) and longer OS (HR < 1). Eight patients who initially responded in the CLAP trial but later experienced disease progression were retreated with ICIs. Among them, 2 (25.0%) achieved a partial response, while 5 (62.5%) had stable disease. Notably, four patients who received retreatment with ICIs survived for more than 45 months. No new safety signals were identified in the present study. CONCLUSION Long-term survival follow-up data demonstrated that camrelizumab plus apatinib has robust, sustained, and durable efficacy in patients with advanced cervical cancer who progress after first-line platinum-based chemotherapy. No new safety signals were noted with long-term treatment.
Collapse
Affiliation(s)
- Chunyan Lan
- Department of Gynecologic OncologySun Yat‐sen University Cancer CentreGuangzhouGuangdongP. R. China
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Centre for Cancer MedicineGuangzhouGuangdongP. R. China
| | - Huaiwu Lu
- Department of Gynecologic OncologySun Yat‐sen Memorial HospitalGuangzhouGuangdongP. R. China
| | - Lin Zhou
- Department of Gynecologic OncologySun Yat‐sen University Cancer CentreGuangzhouGuangdongP. R. China
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Centre for Cancer MedicineGuangzhouGuangdongP. R. China
| | - Kunlun Liao
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Centre for Cancer MedicineGuangzhouGuangdongP. R. China
- Clinical Research Daytime Treatment CenterSun Yat‐sen University Cancer CentreGuangzhouGuangdongP. R. China
| | - Junxiu Liu
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongP. R. China
| | - Zhiwen Xie
- Department of Gynecologic OncologySun Yat‐sen University Cancer CentreGuangzhouGuangdongP. R. China
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Centre for Cancer MedicineGuangzhouGuangdongP. R. China
| | - Haixi Liang
- Department of Gynecologic OncologySun Yat‐sen University Cancer CentreGuangzhouGuangdongP. R. China
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Centre for Cancer MedicineGuangzhouGuangdongP. R. China
| | - Guorong Zou
- Cancer Institute of PanyuPanyu Central HospitalGuangzhouGuangdongP. R. China
| | - Ting Yang
- Medical AffairsJiangsu Hengrui Pharmaceuticals Co., LtdShanghaiP. R. China
| | - Qin Xu
- Department of GynecologyClinical Oncology School of Fujian Medical UniversityFujian Cancer HospitalFuzhouFujianP. R. China
| | - Xin Huang
- Department of Gynecologic OncologySun Yat‐sen University Cancer CentreGuangzhouGuangdongP. R. China
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Centre for Cancer MedicineGuangzhouGuangdongP. R. China
| |
Collapse
|
164
|
Mullen JT. Top Gastric Cancer Articles from 2022 and 2023 to Inform Your Cancer Practice. Ann Surg Oncol 2024; 31:3978-3983. [PMID: 38388931 DOI: 10.1245/s10434-024-15072-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND The multimodality management of patients with gastroesophageal cancers is rapidly evolving, with the introduction of new therapies against potential molecular targets paving the way to personalized medicine for patients with both resectable and metastatic disease. Over the past 2 years, several important studies evaluating these new targeted therapies, as well as minimally invasive surgical approaches to gastric cancer, have been published. METHODS This review article summarizes the top studies published in gastric cancer over the past 2 years that are fundamentally changing our practice approach to gastric cancer patients. RESULTS First, the long-term safety and efficacy of laparoscopic distal gastrectomy as compared with open gastrectomy for locally advanced gastric cancer was confirmed with the publication of the 5-year outcomes of the CLASS-01 and KLASS-02 randomized clinical trials. In addition, several important studies of perioperative immunotherapy for patients with resectable gastric or gastroesophageal junction cancers are ongoing, and in 2022, an interim analysis of the DANTE trial and the final results of the GERCOR NEONIPIGA study were reported. Lastly, the KEYNOTE-859 and SPOTLIGHT trials address an unmet need for additional targeted therapies for patients with previously untreated, human epidermal growth factor receptor-2 (HER2)-negative, unresectable or metastatic gastroesophageal cancers, incorporating immune checkpoint inhibitors and targeting Claudin-18 isoform 2 (CLDN18.2) with the monoclonal antibody zolbetuximab, respectively. CONCLUSIONS This article summarizes the findings and implications of several important studies published over the past 2 years that are fundamentally changing the way we treat patients with gastroesophageal cancer.
Collapse
Affiliation(s)
- John T Mullen
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
165
|
Zhang W, Wang X, Dong J, Wang K, Jiang W, Fan C, Liu H, Fan L, Zhao L, Li G. Single-cell analysis uncovers high-proliferative tumour cell subtypes and their interactions in the microenvironment of gastric cancer. J Cell Mol Med 2024; 28:e18373. [PMID: 38894657 PMCID: PMC11187953 DOI: 10.1111/jcmm.18373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 06/21/2024] Open
Abstract
Gastric cancer (GC) remains a prominent malignancy that poses a significant threat to human well-being worldwide. Despite advancements in chemotherapy and immunotherapy, which have effectively augmented patient survival rates, the mortality rate associated with GC remains distressingly high. This can be attributed to the elevated proliferation and invasive nature exhibited by GC. Our current understanding of the drivers behind GC cell proliferation remains limited. Hence, in order to reveal the molecular biological mechanism behind the swift advancement of GC, we employed single-cell RNA-sequencing (scRNA-seq) to characterize the tumour microenvironment in this study. The scRNA-seq data of 27 patients were acquired from the Gene Expression Omnibus database. Differential gene analysis, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes and Gene Set Enrichment Analysis were employed to investigate 38 samples. The copy number variation level exhibited by GC cells was determined using InferCNV. The CytoTRACE, Monocle and Slingshot analysis were used to discern the cellular stemness and developmental trajectory of GC cells. The CellChat package was utilized for the analysis of intercellular communication crosstalk. Moreover, the findings of the data analysis were validated through cellular functional tests conducted on the AGS cell line and SGC-7901 cell line. Finally, this study constructed a risk scoring model to evaluate the differences of different risk scores in clinical characteristics, immune infiltration, immune checkpoints, functional enrichment, tumour mutation burden and drug sensitivity. Within the microenvironment of GC, we identified the presence of 8 cell subsets, encompassing NK_T cells, B_Plasma cells, epithelial cells, myeloid cells, endothelial cells, mast cells, fibroblasts, pericytes. By delving deeper into the characterization of GC cells, we identified 6 specific tumour cell subtypes: C0 PSCA+ tumour cells, C1 CLDN7+ tumour cells, C2 UBE2C+ tumour cells, C3 MUC6+ tumour cells, C4 CHGA+ tumour cells and C5 MUC2+ tumour cells. Notably, the C2 UBE2C+ tumour cells demonstrated a close association with cell mitosis and the cell cycle, exhibiting robust proliferative capabilities. Our findings were fortified through enrichment analysis, pseudotime analysis and cell communication analysis. Meanwhile, knockdown of the transcription factor CREB3, which is highly active in UBE2C+ tumour cells, significantly impedes the proliferation, migration and invasion of GC cells. And the prognostic score model constructed with CREB3-related genes showcased commendable clinical predictive capacity, thus providing valuable guidance for patients' prognosis and clinical treatment decisions. We have identified a highly proliferative cellular subgroup C2 UBE2C+ tumour cells in GC for the first time. The employment of a risk score model, which is based on genes associated with UBE2C expression, exhibits remarkable proficiency in predicting the prognosis of GC patients. In our investigation, we observed that the knockdown of the transcription factor CREB3 led to a marked reduction in cellular proliferation, migration and invasion in GC cell line models. Implementing a stratified treatment approach guided by this model represents a judicious and promising methodology.
Collapse
Affiliation(s)
- Wenjia Zhang
- Department of Respiratory Medicine, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Xiaojing Wang
- Department of Rheumatology and Immunology, Tongren Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Jiaxing Dong
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Kai Wang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of MedicineTongji UniversityShanghaiChina
| | - Wanju Jiang
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Chenchen Fan
- Department of Respiratory Medicine, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Haitao Liu
- Department of Respiratory Medicine, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Lihong Fan
- Department of Respiratory Medicine, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Lei Zhao
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of MedicineTongji UniversityShanghaiChina
| | - Guoshu Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
166
|
Angelico G, Attanasio G, Colarossi L, Colarossi C, Montalbano M, Aiello E, Di Vendra F, Mare M, Orsi N, Memeo L. ARID1A Mutations in Gastric Cancer: A Review with Focus on Clinicopathological Features, Molecular Background and Diagnostic Interpretation. Cancers (Basel) 2024; 16:2062. [PMID: 38893181 PMCID: PMC11171396 DOI: 10.3390/cancers16112062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
AT-rich interaction domain 1 (ARID1A) is a pivotal gene with a significant role in gastrointestinal tumors which encodes a protein referred to as BAF250a or SMARCF1, an integral component of the SWI/SNF (SWItch/sucrose non-fermentable) chromatin remodeling complex. This complex is instrumental in regulating gene expression by modifying the structure of chromatin to affect the accessibility of DNA. Mutations in ARID1A have been identified in various gastrointestinal cancers, including colorectal, gastric, and pancreatic cancers. These mutations have the potential to disrupt normal SWI/SNF complex function, resulting in aberrant gene expression and potentially contributing to the initiation and progression of these malignancies. ARID1A mutations are relatively common in gastric cancer, particularly in specific adenocarcinoma subtypes. Moreover, such mutations are more frequently observed in specific molecular subtypes, such as microsatellite stable (MSS) cancers and those with a diffuse histological subtype. Understanding the presence and implications of ARID1A mutations in GC is of paramount importance for tailoring personalized treatment strategies and assessing prognosis, particularly given their potential in predicting patient response to novel treatment strategies including immunotherapy, poly(ADP) ribose polymerase (PARP) inhibitors, mammalian target of rapamycin (mTOR) inhibitors, and enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) inhibitors.
Collapse
Affiliation(s)
- Giuseppe Angelico
- Department of Medicine and Surgery, Kore University of Enna, 94100 Enna, Italy;
| | - Giulio Attanasio
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, Anatomic Pathology, University of Catania, 95123 Catania, Italy;
| | - Lorenzo Colarossi
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Catania, Italy; (L.C.); (C.C.); (E.A.)
| | - Cristina Colarossi
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Catania, Italy; (L.C.); (C.C.); (E.A.)
| | - Matteo Montalbano
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Catania, Italy; (L.C.); (C.C.); (E.A.)
- PhD Program in Precision Medicine, University of Palermo, 90144 Palermo, Italy
| | - Eleonora Aiello
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Catania, Italy; (L.C.); (C.C.); (E.A.)
| | - Federica Di Vendra
- Department of Chemical, Biological and Environmental Chemistry, University of Messina, 98122 Messina, Italy
| | - Marzia Mare
- Medical Oncology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, 95029 Catania, Italy
| | - Nicolas Orsi
- Leeds Institute of Medical Research, St James’s University Hospital, The University of Leeds, Leeds LS9 7TF, UK;
| | - Lorenzo Memeo
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Catania, Italy; (L.C.); (C.C.); (E.A.)
| |
Collapse
|
167
|
Khan B, Qahwaji RM, Alfaifi MS, Mobashir M. Nivolumab and Ipilimumab Acting as Tormentors of Advanced Tumors by Unleashing Immune Cells and Associated Collateral Damage. Pharmaceutics 2024; 16:732. [PMID: 38931856 PMCID: PMC11207028 DOI: 10.3390/pharmaceutics16060732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 06/28/2024] Open
Abstract
Combining immune checkpoint inhibitors, specifically nivolumab (anti-PD-1) and ipilimumab (anti-CTLA-4), holds substantial promise in revolutionizing cancer treatment. This review explores the transformative impact of these combinations, emphasizing their potential for enhancing therapeutic outcomes across various cancers. Immune checkpoint proteins, such as PD1 and CTLA4, play a pivotal role in modulating immune responses. Blocking these checkpoints unleashes anticancer activity, and the synergy observed when combining multiple checkpoint inhibitors underscores their potential for enhanced efficacy. Nivolumab and ipilimumab harness the host's immune system to target cancer cells, presenting a powerful approach to prevent tumor development. Despite their efficacy, immune checkpoint inhibitors are accompanied by a distinct set of adverse effects, particularly immune-related adverse effects affecting various organs. Understanding these challenges is crucial for optimizing treatment strategies and ensuring patient well-being. Ongoing clinical trials are actively exploring the combination of checkpoint inhibitory therapies, aiming to decipher their synergistic effects and efficacy against diverse cancer types. This review discusses the mechanisms, adverse effects, and various clinical trials involving nivolumab and ipilimumab across different cancers, emphasizing their transformative impact on cancer treatment.
Collapse
Affiliation(s)
- Bushra Khan
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Rowaid M. Qahwaji
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 22233, Saudi Arabia;
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mashael S. Alfaifi
- Department of Epidemiology, Faculty of Public Health and Health Informatics, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Mohammad Mobashir
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Solnavägen 9, 171 65 Solna, Sweden
| |
Collapse
|
168
|
Giuliano A, Pimentel PAB, Horta RS. Checkpoint Inhibitors in Dogs: Are We There Yet? Cancers (Basel) 2024; 16:2003. [PMID: 38893123 PMCID: PMC11171034 DOI: 10.3390/cancers16112003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Immune checkpoint inhibitors (ICI) have revolutionised cancer treatment in people. Immune checkpoints are important regulators of the body's reaction to immunological stimuli. The most studied immune checkpoint molecules are programmed death (PD-1) with its ligand (PD-L1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) with its ligands CD80 (B7-1) and CD86 (B7-2). Certain tumours can evade immunosurveillance by activating these immunological checkpoint targets. These proteins are often upregulated in cancer cells and tumour-infiltrating lymphocytes, allowing cancer cells to evade immune surveillance and promote tumour growth. By blocking inhibitory checkpoints, ICI can help restore the immune system to effectively fight cancer. Several studies have investigated the expression of these and other immune checkpoints in human cancers and have shown their potential as therapeutic targets. In recent years, there has been growing interest in studying the expression of immune checkpoints in dogs with cancer, and a few small clinical trials with ICI have already been performed on these species. Emerging studies in veterinary oncology are centred around developing and validating canine-targeted antibodies. Among ICIs, anti-PD-1 and anti-PD-L1 treatments stand out as the most promising, mirroring the success in human medicine over the past decade. Nevertheless, the efficacy of caninized antibodies remains suboptimal, especially for canine oral melanoma. To enhance the utilisation of ICIs, the identification of predictive biomarkers for treatment response and the thorough screening of individual tumours are crucial. Such endeavours hold promise for advancing personalised medicine within veterinary practice, thereby improving treatment outcomes. This article aims to review the current research literature about the expression of immune checkpoints in canine cancer and the current results of ICI treatment in dogs.
Collapse
Affiliation(s)
- Antonio Giuliano
- Department of Veterinary Clinical Science, Jockey Club College of Veterinary Medicine, City University of Hong Kong, Hong Kong, China
- Veterinary Medical Centre, City University of Hong Kong, Hong Kong, China
| | - Pedro A. B. Pimentel
- Department of Veterinary Medicine and Surgery, Veterinary School, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil;
| | - Rodrigo S. Horta
- Department of Veterinary Medicine and Surgery, Veterinary School, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil;
| |
Collapse
|
169
|
Gervaso L, Ciardiello D, Oliveira RA, Borghesani M, Guidi L, Benini L, Algeri L, Spada F, Zampino MG, Cella CA, Fazio N. Immunotherapy in the neoadjuvant treatment of gastrointestinal tumors: is the time ripe? J Immunother Cancer 2024; 12:e008027. [PMID: 38782539 PMCID: PMC11116869 DOI: 10.1136/jitc-2023-008027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 05/25/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) revolutionized the management of mismatch repair-deficient (dMMR)/microsatellite instability-high (MSI-H) gastrointestinal (GI) cancers. Based on notable results observed in the metastatic setting, several clinical trials investigated ICIs as neoadjuvant treatment (NAT) for localized dMMR/MSI-H GI cancers, achieving striking results in terms of clinical and pathological responses and creating the opportunity to spare patients from neoadjuvant chemotherapy and/or radiotherapy and even surgical resection. Nevertheless, these impressive findings are mainly derived from small proof of concept phase II studies and there are still several open questions to address. Moreover, dMMR/MSI-H represents a limited subgroup accounting for less than 10% of GI cancers. Consequently, many efforts have been produced to investigate neoadjuvant ICIs also in mismatch repair-proficient/microsatellite stable (MSS) cancers, considering the potential synergistic effect in combining immune-targeted agents with standard therapies such as chemo and/or radiotherapy. However, results for combining ICIs to the standard of care in the unselected population are still unsatisfactory, without improvements in event-free survival in esophago-gastric adenocarcinoma for the addition of pembrolizumab to chemotherapy, and sometimes limited benefit in patients with locally advanced rectal cancer. Therefore, a major challenge will be to identify among the heterogenous spectrum of this disease, those patients that could take advantage of neoadjuvant immunotherapy and deliver the most effective treatment. In this review we discuss the rationale of NAT in GI malignancies, summarize the available evidence regarding the completed trials that evaluated this treatment strategy in both MSI-H and MSS tumors. Finally, we discuss ongoing studies and future perspectives to render neoadjuvant immunotherapy another arrow in the quiver for the treatment of locally advanced GI tumors.
Collapse
Affiliation(s)
- Lorenzo Gervaso
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, IEO IRCCS, European Institute of Oncology, Milano, Italy
- Molecular Medicine Program, University of Pavia, Pavia, Lombardia, Italy
| | - Davide Ciardiello
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, IEO IRCCS, European Institute of Oncology, Milano, Italy
| | | | - Michele Borghesani
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, IEO IRCCS, European Institute of Oncology, Milano, Italy
| | - Lorenzo Guidi
- Division of New Drugs and Early Drug Development for Innovative Therapies, IEO IRCCS, European Institute of Oncology, Milano, Italy
| | - Lavinia Benini
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, IEO IRCCS, European Institute of Oncology, Milano, Italy
| | - Laura Algeri
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, IEO IRCCS, European Institute of Oncology, Milano, Italy
| | - Francesca Spada
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, IEO IRCCS, European Institute of Oncology, Milano, Italy
| | - Maria Giulia Zampino
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, IEO IRCCS, European Institute of Oncology, Milano, Italy
| | - Chiara Alessandra Cella
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, IEO IRCCS, European Institute of Oncology, Milano, Italy
| | - Nicola Fazio
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, IEO IRCCS, European Institute of Oncology, Milano, Italy
| |
Collapse
|
170
|
Yang H, Li Q, Chen X, Weng M, Huang Y, Chen Q, Liu X, Huang H, Feng Y, Zhou H, Zhang M, Pei W, Li X, Fu Q, Zhu L, Wang Y, Kong X, Lv K, Zhang Y, Sun Y, Ma M. Targeting SOX13 inhibits assembly of respiratory chain supercomplexes to overcome ferroptosis resistance in gastric cancer. Nat Commun 2024; 15:4296. [PMID: 38769295 PMCID: PMC11106335 DOI: 10.1038/s41467-024-48307-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 04/26/2024] [Indexed: 05/22/2024] Open
Abstract
Therapeutic resistance represents a bottleneck to treatment in advanced gastric cancer (GC). Ferroptosis is an iron-dependent form of non-apoptotic cell death and is associated with anti-cancer therapeutic efficacy. Further investigations are required to clarify the underlying mechanisms. Ferroptosis-resistant GC cell lines are constructed. Dysregulated mRNAs between ferroptosis-resistant and parental cell lines are identified. The expression of SOX13/SCAF1 is manipulated in GC cell lines where relevant biological and molecular analyses are performed. Molecular docking and computational screening are performed to screen potential inhibitors of SOX13. We show that SOX13 boosts protein remodeling of electron transport chain (ETC) complexes by directly transactivating SCAF1. This leads to increased supercomplexes (SCs) assembly, mitochondrial respiration, mitochondrial energetics and chemo- and immune-resistance. Zanamivir, reverts the ferroptosis-resistant phenotype via directly targeting SOX13 and promoting TRIM25-mediated ubiquitination and degradation of SOX13. Here we show, SOX13/SCAF1 are important in ferroptosis-resistance, and targeting SOX13 with zanamivir has therapeutic potential.
Collapse
Affiliation(s)
- Hui Yang
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Qingqing Li
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
- Research Center of Health Big Data Mining and Applications, School of Medical Information, Wannan Medical College, Wuhu, Anhui, China
| | - Xingxing Chen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Mingzhe Weng
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yakai Huang
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qiwen Chen
- Minimally Invasive Therapy Center, Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaocen Liu
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
- Department of Nuclear Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, Anhui, China
| | - Haoyu Huang
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, Anhui, China
- Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Wuhu, Anhui, China
| | - Yanhuizhi Feng
- Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Hanyu Zhou
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, Anhui, China
- Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Wuhu, Anhui, China
| | - Mengying Zhang
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, Anhui, China
- Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Wuhu, Anhui, China
| | - Weiya Pei
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, Anhui, China
- Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Wuhu, Anhui, China
| | - Xueqin Li
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, Anhui, China
- Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Wuhu, Anhui, China
| | - Qingsheng Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Liangyu Zhu
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, Anhui, China
| | - Yingying Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Xiang Kong
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, Anhui, China
- Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Wuhu, Anhui, China
| | - Kun Lv
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China.
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China.
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, Anhui, China.
- Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Wuhu, Anhui, China.
| | - Yan Zhang
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China.
- Department of Gastroenterology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China.
| | - Yangbai Sun
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Mingzhe Ma
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
| |
Collapse
|
171
|
Wang Z, Li X, Hu J, Guo X, Gao B, Zhu B. Bibliometric and visual analysis of esophagogastric junction cancer research from 2002 to 2021. Medicine (Baltimore) 2024; 103:e38100. [PMID: 38758908 PMCID: PMC11098202 DOI: 10.1097/md.0000000000038100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/11/2024] [Indexed: 05/19/2024] Open
Abstract
Numerous studies related to esophagogastric junction cancer (EGC) have been published, and bibliometric analysis of these publications may be able to identify research hotspots and frontiers of EGC. Studies published on EGC between 2002 and 2021 were retrieved from the Web of Science Core Collection. The collaboration network of countries/regions, institutions, authors, co-citation network of journals, co-occurrence network, and overlay visualization of keywords were analyzed using the VOSviewer software. Cluster and timeline analyses of references were performed using the CiteSpace software. A total of 5109 English articles were published across 691 journals by authors affiliated with 4727 institutions from 81 countries/regions. The annual number of publications related to EGC research has exhibited an increasing trend. The United States, China, and Japan emerged as the top 3 prolific countries/regions. Institutions in the United States, Japan, and South Korea exhibited significant collaboration with one another. Diseases of the Esophagus was the most prolific journal, and Annals of Surgical Oncology, World Journal of Gastroenterology, and Gastric Cancer had also published more than 100 studies. Jaffer A Ajani was the most productive author while David Cunningham ranked the first in terms of total citations and average citations per article. Barrett's esophagus, gastroesophageal reflux disease, Helicobacter pylori, and obesity were common topics in earlier research, and recent years had seen a shift towards the topics of immunotherapy, targeted therapy, and neoadjuvant chemotherapy. In conclusion, growing attention is paid to EGC research, especially in terms of immunotherapy, targeted therapy, and neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Zhuoyin Wang
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xinming Li
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jili Hu
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xu Guo
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Bulang Gao
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Bin Zhu
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
172
|
Wang J, Lin J, Wang R, Tong T, Zhao Y. Immunotherapy combined with apatinib in the treatment of advanced or metastatic gastric/gastroesophageal tumors: a systematic review and meta-analysis. BMC Cancer 2024; 24:603. [PMID: 38760737 PMCID: PMC11102247 DOI: 10.1186/s12885-024-12340-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Immunotherapy or apatinib alone has been used as third-line adjuvant therapy for advanced or metastatic gastric/gastroesophageal junction (G/GEJ) tumors, but the efficacy of combining them with each other for the treatment of patients with advanced or metastatic G/GEJ is unknown; therefore, we further evaluated the efficacy and safety of immunotherapy combined with apatinib in patients with advanced or metastatic G/GEJ. METHODS The main search was conducted on published databases: Embase, Cochrane library, PubMed.The search was conducted from the establishment of the database to December 2023.Clinical trials with patients with advanced or metastatic G/GEJ and immunotherapy combined with apatinib as the study variable were collected. Review Manager 5.4 software as well as stata 15.0 software were used for meta-analysis. RESULTS A total of 651 patients from 19 articles were included in this meta-analysis. In the included studies, immunotherapy combined with apatinib had a complete response (CR) of 0.03 (95% CI: 0.00 -0.06), partial response (PR) of 0.34 (95% CI: 0.19-0.49), stable disease (SD) of 0.43 (95% CI: 0.32-0.55), objective response rate (ORR) was 0.36 (95% CI: 0.23-0.48), disease control rate (DCR) was 0.80 (95% CI: 0.74-0.86), and median progression-free survival (PFS) was 4.29 (95% CI: 4.05-4.52), median Overall survival (OS) was 8.79 (95% CI: 7.92-9.66), and the incidence of grade ≥ 3 TRAEs was 0.34 (95% CI: 0:19-0.49). PR, ORR, DCR, median PFS and median OS were significantly higher in the immunotherapy and apatinib combination chemotherapy group (IAC) than in the immunotherapy combination apatinib group (IA). And the difference was not significant in the incidence of SD and grade ≥ 3 TRAEs. CONCLUSION This meta-analysis shows that immunotherapy combined with apatinib is safe and effective in the treatment of advanced or metastatic G/GEJ, where IAC can be a recommended adjuvant treatment option for patients with advanced or metastatic G/GEJ. However, more large multicenter randomized studies are urgently needed to reveal the long-term outcomes of immunotherapy combined with apatinib treatment.
Collapse
Affiliation(s)
- Jincheng Wang
- Department of Thoracic Surgery, the Second Hospital of Jilin University, Changchun City, China
| | - Jie Lin
- Department of Hepatobiliary and Pancreatic Surgery, the Second Hospital of Jilin University, Changchun City, 130000, Jilin, China
| | - Ruimin Wang
- Department of Operating Room, The Second Hospital of Jilin University, Changchun City, 130041, Jilin, China
| | - Ti Tong
- Department of Thoracic Surgery, the Second Hospital of Jilin University, Changchun City, China
| | - Yinghao Zhao
- Department of Thoracic Surgery, the Second Hospital of Jilin University, Changchun City, China.
| |
Collapse
|
173
|
Kim HM, Kim KJ, Lee K, Yoon MJ, Choih J, Hong TJ, Cho EJ, Jung HJ, Kim J, Park JS, Na HY, Heo YS, Park CG, Park H, Han S, Bae D. GNUV201, a novel human/mouse cross-reactive and low pH-selective anti-PD-1 monoclonal antibody for cancer immunotherapy. BMC Immunol 2024; 25:29. [PMID: 38730320 PMCID: PMC11088064 DOI: 10.1186/s12865-024-00609-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/13/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Several PD-1 antibodies approved as anti-cancer therapies work by blocking the interaction of PD-1 with its ligand PD-L1, thus restoring anti-cancer T cell activities. These PD-1 antibodies lack inter-species cross-reactivity, necessitating surrogate antibodies for preclinical studies, which may limit the predictability and translatability of the studies. RESULTS To overcome this limitation, we have developed an inter-species cross-reactive PD-1 antibody, GNUV201, by utilizing an enhanced diversity mouse platform (SHINE MOUSE™). GNUV201 equally binds to human PD-1 and mouse PD-1, equally inhibits the binding of human PD-1/PD-L1 and mouse PD-1/PD-L1, and effectively suppresses tumor growth in syngeneic mouse models. The epitope of GNUV201 mapped to the "FG loop" of hPD-1, distinct from those of Keytruda® ("C'D loop") and Opdivo® (N-term). Notably, the structural feature where the protruding epitope loop fits into GNUV201's binding pocket supports the enhanced binding affinity due to slower dissociation (8.7 times slower than Keytruda®). Furthermore, GNUV201 shows a stronger binding affinity at pH 6.0 (5.6 times strong than at pH 7.4), which mimics the hypoxic and acidic tumor microenvironment (TME). This phenomenon is not observed with marketed antibodies (Keytruda®, Opdivo®), implying that GNUV201 achieves more selective binding to and better occupancy on PD-1 in the TME. CONCLUSIONS In summary, GNUV201 exhibited enhanced affinity for PD-1 with slow dissociation and preferential binding in TME-mimicking low pH. Human/monkey/mouse inter-species cross-reactivity of GNUV201 could enable more predictable and translatable efficacy and toxicity preclinical studies. These results suggest that GNUV201 could be an ideal antibody candidate for anti-cancer drug development.
Collapse
MESH Headings
- Animals
- Humans
- Programmed Cell Death 1 Receptor/immunology
- Programmed Cell Death 1 Receptor/metabolism
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Mice
- Cross Reactions/immunology
- Immunotherapy/methods
- Hydrogen-Ion Concentration
- Neoplasms/immunology
- Neoplasms/therapy
- B7-H1 Antigen/immunology
- B7-H1 Antigen/metabolism
- B7-H1 Antigen/antagonists & inhibitors
- Cell Line, Tumor
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Immune Checkpoint Inhibitors/pharmacology
- Epitopes/immunology
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacology
- Mice, Inbred C57BL
- Female
Collapse
Affiliation(s)
- Hae-Mi Kim
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
| | - Kyoung-Jin Kim
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
| | - Kwanghyun Lee
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
| | - Myeong Jin Yoon
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
| | - Jenny Choih
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
- Genuv US Subsidiary, CIC, 1 Broadway, Cambridge, MA, USA
| | - Tae-Joon Hong
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
| | - Eun Ji Cho
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
| | - Hak-Jun Jung
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
| | - Jayoung Kim
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
| | - Ji Soo Park
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 PLUS/FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye Young Na
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Seok Heo
- Department of Chemistry, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, Seoul, 05029, Republic of Korea
| | - Chae Gyu Park
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Heungrok Park
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
| | - Sungho Han
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
- Genuv US Subsidiary, CIC, 1 Broadway, Cambridge, MA, USA
| | - Donggoo Bae
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea.
| |
Collapse
|
174
|
Liu X, Li X, Zhu C, Ji L. Effective control of postoperative recurrence of pregnancy-related gastric cancer using anti-PD-1 as a monotherapy: a case report. Front Oncol 2024; 14:1321149. [PMID: 38800370 PMCID: PMC11116784 DOI: 10.3389/fonc.2024.1321149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Pregnancy-related gastric cancer is characterized by a refractory nature and poor prognosis; few gastric cancer cases during pregnancy achieved acceptable outcomes by using anti-PD-1 as a monotherapy. A 32-year-old pregnant female patient was admitted to the emergency department of the obstetrics and gynecology department and eventually diagnosed with gastric cancer. Radical surgery for gastric cancer was conducted after the termination of pregnancy. At 1-year postoperative follow-up, tumor recurrence was revealed. This patient has achieved a decrease in tumor burden after receiving anti-PD-1 as a monotherapy. This case documents tumor response to PD-1 monotherapy in pregnancy-related gastric cancer and highlights the potential for future use in specific clinical scenarios.
Collapse
Affiliation(s)
| | | | | | - Linhua Ji
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
175
|
Shalata W, Maimon Rabinovich N, Agbarya A, Yakobson A, Dudnik Y, Abu Jama A, Cohen AY, Shalata S, Abu Hamed A, Ilan Ber T, Machluf O, Shoham Levin G, Meirovitz A. Efficacy of Pembrolizumab vs. Nivolumab Plus Ipilimumab in Metastatic NSCLC in Relation to PD-L1 and TMB Status. Cancers (Basel) 2024; 16:1825. [PMID: 38791905 PMCID: PMC11119071 DOI: 10.3390/cancers16101825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The efficacy of immune checkpoint inhibitor (ICI) therapy concerning programmed death ligand 1 (PD-L1) status is well established in patients diagnosed with non-small cell lung cancer (NSCLC). However, there remains a paucity of evidence regarding the efficacy concerning tumor mutational burden (TMB) in both clinical trials and real-world data (RWD). In the current article, clinicopathological and molecular epidemiological data were meticulously collected, and treatment modalities were meticulously recorded. The final analysis included a study population of 194 patients. Median age was 67 years (range 37-86), with the majority being male (71.13%), and 85.71% of patients were either current or former smokers at diagnosis. Adenocarcinoma accounted for most diagnoses (71.65%), followed by squamous cell carcinoma (24.23%). In terms of PD-L1 status, 42.78% had an expression level below 1%, 28.35% had an expression between 1-49%, and 28.87% had an expression above 50%. The TMB ranged from 0 to 75, with a median of 10.31 (range 0-75) for PD-L1 expression below 1%, with a median of 9.73 (range 0.95-39.63) for PD-L1 expression between 1-49%, and a median of 9.72 (range 0.95-48) for PD-L1 expression above 50%. Corresponding to patients with low PDL-1 less than 1% and low TMB (0-5), the median overall survival (mOS) was 16 (p = 0.18), and 15 months (p = 0.22), patients with medium PDL-1 (1-49%) and medium TMB (5-10), the mOS was 15 (p = 0.18) and 16 months (p = 0.22), patients with high PDL-1 (>50) and high TMB (>10), the mOS was 24 (p = 0.18) and 21 (p = 0.22) months. This study represents the largest academic RWD dataset concerning PD-L1 and TMB status in patients with locally advanced and metastatic NSCLC.
Collapse
Affiliation(s)
- Walid Shalata
- The Legacy Heritage Cancer Center and Dr. Larry Norton Institute, Soroka Medical Center, Beer-Sheva 84105, Israel
- Medical School for International Health, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | - Abed Agbarya
- Oncology Department, Bnai Zion Medical Center, Haifa 31048, Israel
| | - Alexander Yakobson
- The Legacy Heritage Cancer Center and Dr. Larry Norton Institute, Soroka Medical Center, Beer-Sheva 84105, Israel
- Medical School for International Health, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Yulia Dudnik
- The Legacy Heritage Cancer Center and Dr. Larry Norton Institute, Soroka Medical Center, Beer-Sheva 84105, Israel
- Medical School for International Health, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Ashraf Abu Jama
- The Legacy Heritage Cancer Center and Dr. Larry Norton Institute, Soroka Medical Center, Beer-Sheva 84105, Israel
- Medical School for International Health, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Ahron Yehonatan Cohen
- The Legacy Heritage Cancer Center and Dr. Larry Norton Institute, Soroka Medical Center, Beer-Sheva 84105, Israel
- Medical School for International Health, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Sondos Shalata
- Nutrition Unit, Galilee Medical Center, Nahariya 22000, Israel;
| | - Ahmad Abu Hamed
- The Legacy Heritage Cancer Center and Dr. Larry Norton Institute, Soroka Medical Center, Beer-Sheva 84105, Israel
| | | | | | | | - Amichay Meirovitz
- The Legacy Heritage Cancer Center and Dr. Larry Norton Institute, Soroka Medical Center, Beer-Sheva 84105, Israel
- Medical School for International Health, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
176
|
Wang S, Zhang W, Wu X, Zhu Z, Chen Y, Liu W, Xu J, Chen L, Zhuang C. Comprehensive analysis of T-cell regulatory factors and tumor immune microenvironment in stomach adenocarcinoma. BMC Cancer 2024; 24:570. [PMID: 38714987 PMCID: PMC11077837 DOI: 10.1186/s12885-024-12302-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most prevalent malignant tumors worldwide and is associated with high morbidity and mortality rates. However, the specific biomarkers used to predict the postoperative prognosis of patients with gastric cancer remain unknown. Recent research has shown that the tumor microenvironment (TME) has an increasingly positive effect on anti-tumor activity. This study aims to build signatures to study the effect of certain genes on gastric cancer. METHODS Expression profiles of 37 T cell-related genes and their TME characteristics were comprehensively analyzed. A risk signature was constructed and validated based on the screened T cell-related genes, and the roles of hub genes in GC were experimentally validated. RESULTS A novel T cell-related gene signature was constructed based on CD5, ABCA8, SERPINE2, ESM1, SERPINA5, and NMU. The high-risk group indicated lower overall survival (OS), poorer immune efficacy, and higher drug resistance, with SERPINE2 promoting GC cell proliferation, according to experiments. SERPINE2 and CXCL12 were significantly correlated, indicating poor OS via the Youjiang cohort. CONCLUSIONS This study identified T cell-related genes in patients with stomach adenocarcinoma (STAD) for prognosis estimation and proposed potential immunotherapeutic targets for STAD.
Collapse
Affiliation(s)
- Shuchang Wang
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Weifeng Zhang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xinrui Wu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Zhu Zhu
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, China
| | - Yuanbiao Chen
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Wangrui Liu
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Junnfei Xu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Li Chen
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Department of Nursing, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Chun Zhuang
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
177
|
Wang JB, Gao YX, Ye YH, Zheng QL, Luo HY, Wang SH, Zhang T, Jin QW, Zheng CH, Li P, Lin JX, Chen QY, Cao LL, Yang YH, Huang CM, Xie JW. Comprehensive multi-omics analysis of pyroptosis for optimizing neoadjuvant immunotherapy in patients with gastric cancer. Theranostics 2024; 14:2915-2933. [PMID: 38773976 PMCID: PMC11103507 DOI: 10.7150/thno.93124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/20/2024] [Indexed: 05/24/2024] Open
Abstract
Background: Pyroptosis plays a crucial role in immune responses. However, the effects of pyroptosis on tumor microenvironment remodeling and immunotherapy in gastric cancer (GC) remain unclear. Patients and Methods: Large-sample GEO data (GSE15459, GSE54129, and GSE62254) were used to explore the immunoregulatory roles of pyroptosis. TCGA cohort was used to elucidate multiple molecular events associated with pyroptosis, and a pyroptosis risk score (PRS) was constructed. The prognostic performance of the PRS was validated using postoperative GC samples from three public databases (n=925) and four independent Chinese medical cohorts (n=978). Single-cell sequencing and multiplex immunofluorescence were used to elucidate the immune cell infiltration landscape associated with PRS. Patients with GC who received neoadjuvant immunotherapy (n=48) and those with GC who received neoadjuvant chemotherapy (n=49) were enrolled to explore the value of PRS in neoadjuvant immunotherapy. Results: GC pyroptosis participates in immune activation in the tumor microenvironment and plays a powerful role in immune regulation. PRS, composed of four pyroptosis-related differentially expressed genes (BATF2, PTPRJ, RGS1, and VCAN), is a reliable and independent biomarker for GC. PRSlow is associated with an activated pyroptosis pathway and greater infiltration of anti-tumor immune cells, including more effector and CD4+ T cells, and with the polarization of tumor-associated macrophages in the tumor center. Importantly, PRSlow marks the effectiveness of neoadjuvant immunotherapy and enables screening of GC patients with combined positive score ≥1 who benefit from neoadjuvant immunotherapy. Conclusion: Our study demonstrated that pyroptosis activates immune processes in the tumor microenvironment. A low PRS correlates with enhanced infiltration of anti-tumor immune cells at the tumor site, increased pyroptotic activity, and improved patient outcomes. The constructed PRS can be used as an effective quantitative tool for pyroptosis analysis to guide more effective immunotherapeutic strategies for patients with GC.
Collapse
Affiliation(s)
- Jia-Bin Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumour Microbiology, Fujian Medical University, Fuzhou, China
| | - You-Xin Gao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumour Microbiology, Fujian Medical University, Fuzhou, China
| | - Yin-Hua Ye
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumour Microbiology, Fujian Medical University, Fuzhou, China
| | - Qiao-Ling Zheng
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hua-You Luo
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shuan-Hu Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Tao Zhang
- Department of Gastrosurgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Qin-Wen Jin
- Department of Gastrointestinal Surgery, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Chao-Hui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumour Microbiology, Fujian Medical University, Fuzhou, China
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumour Microbiology, Fujian Medical University, Fuzhou, China
| | - Jian-Xian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumour Microbiology, Fujian Medical University, Fuzhou, China
| | - Qi-Yue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumour Microbiology, Fujian Medical University, Fuzhou, China
| | - Long-Long Cao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumour Microbiology, Fujian Medical University, Fuzhou, China
| | - Ying-Hong Yang
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, China
- Gastrointestinal Cancer Institute, Fujian Medical University, Fuzhou, 350001, China
| | - Chang-Ming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumour Microbiology, Fujian Medical University, Fuzhou, China
| | - Jian-Wei Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumour Microbiology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
178
|
Ahn S, Kwak Y, Kwon GY, Kim KM, Kim M, Kim H, Park YS, Oh HJ, Lee K, Lee SH, Lee HS. Interpretation of PD-L1 expression in gastric cancer: summary of a consensus meeting of Korean gastrointestinal pathologists. J Pathol Transl Med 2024; 58:103-116. [PMID: 38653580 PMCID: PMC11106610 DOI: 10.4132/jptm.2024.03.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 04/25/2024] Open
Abstract
Nivolumab plus chemotherapy in the first-line setting has demonstrated clinical efficacy in patients with human epidermal growth factor receptor 2-negative advanced or metastatic gastric cancer, and is currently indicated as a standard treatment. Programmed death-ligand 1 (PD-L1) expression is an important biomarker for predicting response to anti-programmed death 1/PD-L1 agents in several solid tumors, including gastric cancer. In the CheckMate-649 trial, significant clinical improvements were observed in patients with PD-L1 combined positive score (CPS) ≥ 5, determined using the 28-8 pharmDx assay. Accordingly, an accurate interpretation of PD-L1 CPS, especially at a cutoff of 5, is important. The CPS method evaluates both immune and tumor cells and provides a comprehensive assessment of PD-L1 expression in the tumor microenvironment of gastric cancer. However, CPS evaluation has several limitations, one of which is poor interobserver concordance among pathologists. Despite these limitations, clinical indications relying on PD-L1 CPS are increasing. In response, Korean gastrointestinal pathologists held a consensus meeting for the interpretation of PD-L1 CPS in gastric cancer. Eleven pathologists reviewed 20 PD-L1 slides with a CPS cutoff close to 5, stained with the 28-8 pharmDx assay, and determined the consensus scores. The issues observed in discrepant cases were discussed. In this review, we present cases of gastric cancer with consensus PD-L1 CPS. In addition, we briefly touch upon current practices and clinical issues associated with assays used for the assessment of PD-L1 expression in gastric cancer.
Collapse
Affiliation(s)
- Soomin Ahn
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yoonjin Kwak
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Gui Young Kwon
- Seoul Clinical Laboratories, Department of Pathology, Yongin, Korea
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Moonsik Kim
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Korea
| | - Hyunki Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Young Soo Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyeon Jeong Oh
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kyoungyul Lee
- Pathology Center, Seegene Medical Foundation, Seoul, Korea
| | - Sung Hak Lee
- Department of Hospital Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
179
|
Huang Y, Yuan J. Improvement of assessment in surrogate endpoint and safety outcome of single-arm trials for anticancer drugs. Expert Rev Clin Pharmacol 2024; 17:477-487. [PMID: 38632893 DOI: 10.1080/17512433.2024.2344669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/15/2024] [Indexed: 04/19/2024]
Abstract
INTRODUCTION Single-arm trials (SATs) and surrogate endpoints were adopted as pivotal evidence for accelerated approval of anticancer drugs for more than 30 years. However, concerns regarding clinical evidence quality in trials, particularly in the SATs of anticancer drugs have increasingly been raised. SAT may not always provide strong evidence due to the lack of control and endpoint of overall survival that is typically present in randomized controlled trials. AREAS COVERED Clinical trial endpoint adjudication is a crucial factor in surrogate outcome measurement to ensure the data quality of the clinical trial of anticancer drugs. In this review, we systematically discuss the characteristics of adjudications in assessments in surrogate endpoint and safety outcome respectively, which are essential for ensuring reliable and transparent outcomes. Endpoint adjudication effectively reduces potential bias and mitigates variance that may be introduced by investigators when analyzing the medical records for the surrogate endpoints. We analyze the advantages and disadvantages of each type of adjudicator and provide a summary of the roles of adjudicators. EXPERT OPINION By suggestion of improving data reliability and transparency in pivotal trials, this review aims to supply a strategy for better clinical investigation for anticancer drugs, ultimately leading to better patient outcomes.
Collapse
Affiliation(s)
- Yafang Huang
- School of General Practice and Continuing Education, Capital Medical University, Beijing, China
| | - Jinqiu Yuan
- Clinical Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
180
|
Wu D, Yang L, Yan Y, Jiang Z, Liu Y, Dong P, Lv Y, Zhou S, Qiu Y, Yu X. Neoadjuvant immunotherapy improves outcomes for resectable gastroesophageal junction cancer: A systematic review and meta-analysis. Cancer Med 2024; 13:e7176. [PMID: 38716645 PMCID: PMC11077431 DOI: 10.1002/cam4.7176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND In recent years, neoadjuvant immunotherapy (NAIT) has developed rapidly in patients with gastroesophageal junction cancer (GEJC). The suggested neoadjuvant treatment regimens for patients with GEJC may vary in light of the efficacy and safety results. METHODS A search of the Cochrane Library, PubMed, Embase, and Web of Science was completed to locate studies examining the safety and effectiveness of NAIT for resectable GEJC. We analyzed the effect sizes (ES) and 95% confidence intervals (CI) in addition to subgroups and heterogeneity. Meta-analyses were performed using Stata BE17 software. RESULTS For these meta-analyses, 753 patients were chosen from 21 studies. The effectiveness of NAIT was assessed using the pathological complete response (pCR), major pathological response (MPR), and nodal downstage to ypN0 rate. The MPR, pCR, and nodal downstage to ypN0 rate values in NAIT were noticeably higher (MPR: ES = 0.45; 95% CI: 0.36-0.54; pCR: ES = 0.26; 95% CI: 0.21-0.32; nodal downstage to ypN0 rate: ES = 0.60; 95% CI: 0.48-0.72) than those of neoadjuvant chemotherapy (nCT) or neoadjuvant chemoradiotherapy (nCRT) (MPR < 30%; pCR: ES = 3%-17%; nodal downstage to ypN0 rate: ES = 21%-29%). Safety was assessed using the treatment-related adverse events (trAEs) incidence rate, surgical delay rate, surgical complications incidence rate, and surgical resection rate. In conclusion, the incidence of trAEs, incidence of surgical complications, and surgical delay rate had ES values of 0.66, 0.48, and 0.09, respectively. These rates were comparable to those from nCT or nCRT (95% CI: 0.60-0.70; 0.15-0.51; and 0, respectively). The reported resection rates of 85%-95% with nCT or nCRT were comparable to the mean surgical resection rate of 90%. CONCLUSION NAIT is an effective treatment for resectable GEJC; additionally, the level of NAIT toxicity is acceptable. The long-term effects of NAIT require further study.
Collapse
Affiliation(s)
- Danzhu Wu
- Clinical Medical College of Jining Medical UniversityJiningShandong ProvinceChina
| | - Liyuan Yang
- Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Yu Yan
- Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Zhengchen Jiang
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Yinglong Liu
- Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Peng Dong
- Department of OncologyThe Second Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, TaianJinanShandongChina
| | - Yajuan Lv
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer InstituteNational Key Laboratory of Advanced Drug Delivery and Release SystemsJinanShandongChina
| | - Siqin Zhou
- Medical CollegeWuhan University of Science and TechnologyWuhanChina
| | - Yiyang Qiu
- School of Nursing, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei ProvinceChina
| | - Xinshuang Yu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer InstituteNational Key Laboratory of Advanced Drug Delivery and Release SystemsJinanShandongChina
| |
Collapse
|
181
|
Liu Y, Cui K, Ma W. Gene mutation profiling in microsatellite instability colorectal cancer and its association with the efficacy of immunotherapy: A retrospective study. Cancer Med 2024; 13:e6910. [PMID: 38746969 PMCID: PMC11094515 DOI: 10.1002/cam4.6910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/29/2023] [Accepted: 12/25/2023] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Microsatellite instability-high (MSI-H) colorectal cancer (CRC) is known for its heightened responsiveness to immunotherapy. However, establishing robust predictive markers for immunotherapy efficacy remains imperative. This retrospective study aimed to elucidate the genetic landscape of MSI-H CRC and correlate these genetic alterations with immunotherapy outcomes in a cohort of 121 patients. METHODS We analyzed clinical and molecular data from 121 patients with MSI-H CRC. We conducted a thorough genetic analysis of MSI-H CRC patients, with a specific emphasis on the APC, TP53, RAS, and MMR genes. We further analyzed the relationship between gene mutations and immunotherapy efficacy. The primary endpoints analyzed were objective response rate (ORR) and progression-free survival (PFS). All statistical analysis was conducted using SPSS26.0 and R 4.2.0 software. RESULTS Our findings underscored the complexity of the genetic landscape in MSI-H CRC, shedding light on the intricate interplay of these genes in CRC development. Notably, mutations in MMR genes exhibited a distinctive pattern, providing insights into the underlying mechanisms of MSI-H. Furthermore, our results revealed correlations between specific genetic alterations and immunotherapy outcomes, with a particular focus on treatment response rates and progression-free survival. CONCLUSION This study represents a significant step toward unraveling the genetic nuances of MSI-H CRC. The distinctive pattern of MMR gene mutations not only adds depth to our understanding of MSI-H CRC but also hints at potential avenues for targeted therapies. This research sets the stage for future investigations aimed at refining therapeutic strategies and improving outcomes for patients with MSI-H CRC.
Collapse
Affiliation(s)
- Ying Liu
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanPeople's Republic of China
| | - Kang Cui
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanPeople's Republic of China
| | - Wang Ma
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanPeople's Republic of China
| |
Collapse
|
182
|
Liu B, Zhang L. Geriatric nutritional risk index predicts the prognosis of gastric cancer patients treated with immune checkpoint inhibitors. Medicine (Baltimore) 2024; 103:e37863. [PMID: 38669385 PMCID: PMC11049790 DOI: 10.1097/md.0000000000037863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
The nutritional status is closely linked to the immune function of patients. Previous studies have demonstrated the utility of the Geriatric Nutritional Risk Index (GNRI) in assessing nutritional status. The aim of this study is to investigate the prognostic significance of GNRI in patients with gastric cancer who received immune checkpoint inhibitor (ICI) therapy. The study enrolled 89 gastric cancer patients who received different types of immune checkpoint inhibitors (ICIs) between August 2016 and December 2020, along with 57 patients who underwent chemotherapy during the same period as a control group. The GNRI cutoff point was established based on prior research. Differences in clinical and pathological features were analyzed using the Chi-square test or independent samples t-test. Univariate and multivariate analyses were used to identify prognostic factors for both progression-free survival (PFS) and overall survival (OS). Furthermore, nomograms were created to predict the likelihood of patient survival. There were 31 cases (21.2%) with GNRI < 92.00 and 115 cases (78.8%) with GNRI ≥ 92.00. Patients with low GNRI had significantly shorter PFS (21.33 months vs 28.37 months, P = .001) and OS (33.06 months vs 41.63 months, P = .001) than those with high GNRI, among all patients. Similar results were also found in patients treated with ICIs. Additionally, GNRI was identified as an independent prognostic factor. The C-index and 95% CI of the nomograms for predicting survival probabilities were 0.667 (0.600-0.735) and 0.685 (0.622-0.749), respectively. GNRI was significantly associated with survival time in patients with gastric cancer who received ICIs, patients with low GNRI had shorter PFS and OS. GNRI might be able to identify patients who might benefit from ICIs.
Collapse
Affiliation(s)
- Bao Liu
- Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Limin Zhang
- Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
183
|
Garcia-Marquez MA, Thelen M, Bauer E, Maas L, Wennhold K, Lehmann J, Keller D, Nikolić M, George J, Zander T, Schröder W, Müller P, Yazbeck AM, Bruns C, Thomas R, Gathof B, Quaas A, Peifer M, Hillmer AM, von Bergwelt-Baildon M, Schlößer HA. Germline homozygosity and allelic imbalance of HLA-I are common in esophagogastric adenocarcinoma and impair the repertoire of immunogenic peptides. J Immunother Cancer 2024; 12:e007268. [PMID: 38631707 PMCID: PMC11029431 DOI: 10.1136/jitc-2023-007268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND The individual HLA-I genotype is associated with cancer, autoimmune diseases and infections. This study elucidates the role of germline homozygosity or allelic imbalance of HLA-I loci in esophago-gastric adenocarcinoma (EGA) and determines the resulting repertoires of potentially immunogenic peptides. METHODS HLA genotypes and sequences of either (1) 10 relevant tumor-associated antigens (TAAs) or (2) patient-specific mutation-associated neoantigens (MANAs) were used to predict good-affinity binders using an in silico approach for MHC-binding (www.iedb.org). Imbalanced or lost expression of HLA-I-A/B/C alleles was analyzed by transcriptome sequencing. FluoroSpot assays and TCR sequencing were used to determine peptide-specific T-cell responses. RESULTS We show that germline homozygosity of HLA-I genes is significantly enriched in EGA patients (n=80) compared with an HLA-matched reference cohort (n=7605). Whereas the overall mutational burden is similar, the repertoire of potentially immunogenic peptides derived from TAAs and MANAs was lower in homozygous patients. Promiscuity of peptides binding to different HLA-I molecules was low for most TAAs and MANAs and in silico modeling of the homozygous to a heterozygous HLA genotype revealed normalized peptide repertoires. Transcriptome sequencing showed imbalanced expression of HLA-I alleles in 75% of heterozygous patients. Out of these, 33% showed complete loss of heterozygosity, whereas 66% had altered expression of only one or two HLA-I molecules. In a FluoroSpot assay, we determined that peptide-specific T-cell responses against NY-ESO-1 are derived from multiple peptides, which often exclusively bind only one HLA-I allele. CONCLUSION The high frequency of germline homozygosity in EGA patients suggests reduced cancer immunosurveillance leading to an increased cancer risk. Therapeutic targeting of allelic imbalance of HLA-I molecules should be considered in EGA.
Collapse
Affiliation(s)
- Maria Alejandra Garcia-Marquez
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Department of General, Visceral, Cancer and Transplantation Surgery, University of Cologne, Cologne, Germany
| | - Martin Thelen
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Department of General, Visceral, Cancer and Transplantation Surgery, University of Cologne, Cologne, Germany
| | - Eugen Bauer
- Institute of Transfusion Medicine, University of Cologne, Cologne, Germany
| | - Lukas Maas
- Department of Translational Genomics, University of Cologne, Cologne, Germany
| | - Kerstin Wennhold
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Department of General, Visceral, Cancer and Transplantation Surgery, University of Cologne, Cologne, Germany
| | - Jonas Lehmann
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Department of General, Visceral, Cancer and Transplantation Surgery, University of Cologne, Cologne, Germany
| | - Diandra Keller
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Department of General, Visceral, Cancer and Transplantation Surgery, University of Cologne, Cologne, Germany
| | - Miloš Nikolić
- Department of Translational Genomics, University of Cologne, Cologne, Germany
| | - Julie George
- Department of Translational Genomics, University of Cologne, Cologne, Germany
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital Cologne, Cologne, Germany
| | - Thomas Zander
- Department I of Internal Medicine and Center for Integrated Oncology (CIO) Aachen Bonn Cologne Duesseldorf, University Hospital Cologne, Cologne, Germany
| | - Wolfgang Schröder
- Department of General, Visceral, Cancer and Transplantation Surgery, University of Cologne, Cologne, Germany
| | - Philipp Müller
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Institute of Pathology, University of Cologne, Cologne, Germany
| | - Ali M Yazbeck
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Institute of Pathology, University of Cologne, Cologne, Germany
| | - Christiane Bruns
- Department of General, Visceral, Cancer and Transplantation Surgery, University of Cologne, Cologne, Germany
| | - Roman Thomas
- Department of Translational Genomics, University of Cologne, Cologne, Germany
- Institute of Pathology, University of Cologne, Cologne, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Birgit Gathof
- Institute of Transfusion Medicine, University of Cologne, Cologne, Germany
| | - Alexander Quaas
- Institute of Pathology, University of Cologne, Cologne, Germany
| | - Martin Peifer
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Department of Translational Genomics, University of Cologne, Cologne, Germany
| | - Axel M Hillmer
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Institute of Pathology, University of Cologne, Cologne, Germany
| | - Michael von Bergwelt-Baildon
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Gene Centre, Ludwig Maximilians University Munich, Munchen, Germany
- Department of Medicine III, Ludwig Maximilians University Munich, Munchen, Germany
| | - Hans Anton Schlößer
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Department of General, Visceral, Cancer and Transplantation Surgery, University of Cologne, Cologne, Germany
| |
Collapse
|
184
|
Sun J, Wang Y, Zhang K, Shi S, Gao X, Jia X, Cong B, Zheng C. Molecular subtype construction and prognosis model for stomach adenocarcinoma characterized by metabolism-related genes. Heliyon 2024; 10:e28413. [PMID: 38596054 PMCID: PMC11002599 DOI: 10.1016/j.heliyon.2024.e28413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024] Open
Abstract
Background Metabolic reprogramming is implicated in cancer progression. However, the impact of metabolism-associated genes in stomach adenocarcinomas (STAD) has not been thoroughly reviewed. Herein, we characterized metabolic transcription-correlated STAD subtypes and evaluated a metabolic RiskScore for evaluation survival. Method Genes related to metabolism were gathered from previous study and metabolic subtypes were screened using ConsensusClusterPlus in TCGA-STAD and GSE66229 dataset. The ssGSEA, MCP-Count, ESTIMATE and CIBERSORT determined the immune infiltration. A RiskScore model was established using the WGCNA and LASSO Cox regression in the TCGA-STAD queue and verified in the GSE66229 datasets. RT-qPCR was employed to measure the mRNA expressions of genes in the model. Result Two metabolism-related subtypes (C1 and C2) of STAD were constructed on account of the expression profiles of 113 prognostic metabolism genes with different immune outcomes and apparently distinct metabolic characteristic. The overall survival (OS) of C2 subtype was shorter than that of C1 subtype. Four metabolism-associated genes in turquoise model, which closely associated with C2 subtype, were employed to build the RiskScore (MATN3, OSBPL1A, SERPINE1, CPNE8) in TCGA-train dataset. Patients developed a poorer prognosis if they had a high RiskScore than having a low RiskScore. The promising effect of RiskScore was verified in the TCGA-test, TCGA-STAD and GSE66229 datasets. The prediction reliability of the RiskScore was validated by time-dependent receiver operating characteristic curve (ROC) and nomogram. Moreover, samples with high RiskScore had an enhanced immune status and TIDE score. Moreover, MATN3, OSBPL1A, SERPINE1 and CPNE8 mRNA levels were all elevated in SGC7901 cells. Inhibition of OSBPL1A decreased SGC7901 cells invasion numbers. Conclusion This work provided a new perspective into heterogeneity in metabolism and its association with immune escape in STAD. RiskScore was considered to be a strong prognostic label that could help individualize the treatment of STAD patients.
Collapse
Affiliation(s)
- Jie Sun
- Department of Gastrointestinal Surgery, Shandong Provincial Third Hospital, Jinan, 250031, China
| | - Yuanyuan Wang
- Department of Oncology and Hematology, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250001, China
| | - Kai Zhang
- General Surgery Department, Wenshang County People's Hospital, Wenshang, 272501, China
| | - Sijia Shi
- Shandong Provincial Hospital, Jinan, 250001, China
| | - Xinxin Gao
- Gastrointestinal Surgery, Shandong First Medical University Affiliated Provincial Hospital, Jinan, 250001, China
| | - Xianghao Jia
- Gastrointestinal Surgery, Shandong Provincial Hospital, Jinan, 250001, China
| | - Bicong Cong
- Gastrointestinal Surgery, Shandong First Medical University Affiliated Provincial Hospital, Jinan, 250001, China
| | - Chunning Zheng
- Gastrointestinal Surgery, Shandong Provincial Hospital, Jinan, 250001, China
| |
Collapse
|
185
|
Bao ZH, Hu C, Zhang YQ, Yu PC, Wang Y, Xu ZY, Fu HY, Cheng XD. Safety and efficacy of a programmed cell death 1 inhibitor combined with oxaliplatin plus S-1 in patients with Borrmann large type III and IV gastric cancers. World J Gastrointest Oncol 2024; 16:1281-1295. [PMID: 38660643 PMCID: PMC11037035 DOI: 10.4251/wjgo.v16.i4.1281] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/26/2023] [Accepted: 02/07/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is the fifth most common and the fourth most lethal malignant tumour in the world. Most patients are already in the advanced stage when they are diagnosed, which also leads to poor overall survival. The effect of postoperative adjuvant chemotherapy for advanced GC is unsatisfactory with a high rate of distant metastasis and local recurrence. AIM To investigate the safety and efficacy of a programmed cell death 1 (PD-1) inhibitor combined with oxaliplatin and S-1 (SOX) in the treatment of Borrmann large type III and IV GCs. METHODS A retrospective analysis (IRB-2022-371) was performed on 89 patients with Borrmann large type III and IV GCs who received neoadjuvant therapy (NAT) from January 2020 to December 2021. According to the different neoadjuvant treatment regimens, the patients were divided into the SOX group (61 patients) and the PD-1 + SOX (P-SOX) group (28 patients). RESULTS The pathological response (tumor regression grade 0/1) in the P-SOX group was significantly higher than that in the SOX group (42.86% vs 18.03%, P = 0.013). The incidence of ypN0 in the P-SOX group was higher than that in the SOX group (39.29% vs 19.67%, P = 0.05). The use of PD-1 inhibitors was an independent factor affecting tumor regression grade. Meanwhile, the use of PD-1 did not increase postoperative complications or the adverse effects of NAT. CONCLUSION A PD-1 inhibitor combined with SOX could significantly improve the rate of tumour regression during NAT for patients with Borrmann large type III and IV GCs.
Collapse
Affiliation(s)
- Zhe-Han Bao
- Department of Interventional Radiology, Zhejiang Cancer Hospital, Hangzhou 310004, Zhejiang Province, China
| | - Can Hu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, Zhejiang Province, China
| | - Yan-Qiang Zhang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, Zhejiang Province, China
| | - Peng-Cheng Yu
- Department of Colonic Surgery, Jinhua Central Hospital, Jinhua 321000, Zhejiang Province, China
| | - Yi Wang
- Department of Breast Surgery, Lin’an People’s Hospital, Hangzhou 311300, Zhejiang Province, China
| | - Zhi-Yuan Xu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, Zhejiang Province, China
| | - Huan-Ying Fu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, Zhejiang Province, China
| | - Xiang-Dong Cheng
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, Zhejiang Province, China
| |
Collapse
|
186
|
Lee WWL, Lim JQ, Tang TPL, Tan D, Koh SM, Puan KJ, Wang LW, Lim J, Tan KP, Chng WJ, Lim ST, Ong CK, Rotzschke O. Counterproductive effects of anti-CD38 and checkpoint inhibitor for the treatment of NK/T cell lymphoma. Front Immunol 2024; 15:1346178. [PMID: 38680487 PMCID: PMC11045949 DOI: 10.3389/fimmu.2024.1346178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/27/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction Natural killer/T cell lymphoma (NKTL) is an aggressive malignancy associated with poor prognosis. This is largely due to limited treatment options, especially for relapsed patients. Immunotherapies like immune checkpoint inhibitors (ICI) and anti-CD38 therapies have shown promising but variable clinical efficacies. Combining these therapies has been suggested to enhance efficacy. Methods We conducted a case study on a relapsed NKTL patient treated sequentially with anti-CD38 followed by ICI (anti-PD1) using cytometry analyses. Results and Discussion Our analysis showed an expected depletion of peripheral CD38+ B cells following anti-CD38 treatment. Further analysis indicated that circulating anti-CD38 retained their function for up to 13 weeks post-administration. Anti-PD1 treatment triggered re-activation and upregulation of CD38 on the T cells. Consequently, these anti-PD1-activated T cells were depleted by residual circulating anti-CD38, rendering the ICI treatment ineffective. Finally, a meta-analysis confirmed this counterproductive effect, showing a reduced efficacy in patients undergoing combination therapy. In conclusion, our findings demonstrate that sequential anti-CD38 followed by anti-PD1 therapy leads to a counterproductive outcome in NKTL patients. This suggests that the treatment sequence is antithetic and warrants re-evaluation for optimizing cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Wendy W. L. Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Jing Quan Lim
- Lymphoma Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
- Oncology-Academic Clinical Programme (ONCO-ACP), Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Tiffany P. L. Tang
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Daryl Tan
- Clinic for Lymphoma, Myeloma and Blood Disorders, Mount Elizabeth Hospital Novena Specialist Centre, Singapore, Singapore
| | - Ser Mei Koh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Kia Joo Puan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Liang Wei Wang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Jackwee Lim
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Kim Peng Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Hematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore, Singapore
| | - Soon Thye Lim
- Director’s Office, National Cancer Centre Singapore, Singapore, Singapore
- Office of Education, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Choon Kiat Ong
- Lymphoma Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
- Cancer and Stem Cell Biology, Duke-National University of Singapore (NUS) Graduate Medical School, Singapore, Singapore
| | - Olaf Rotzschke
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
187
|
Sullivan KM, Li H, Yang A, Zhang Z, Munoz RR, Mahuron KM, Yuan YC, Paz IB, Von Hoff D, Han H, Fong Y, Woo Y. Tumor and Peritoneum-Associated Macrophage Gene Signature as a Novel Molecular Biomarker in Gastric Cancer. Int J Mol Sci 2024; 25:4117. [PMID: 38612926 PMCID: PMC11012629 DOI: 10.3390/ijms25074117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/27/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
A spectrum of immune states resulting from tumor resident macrophages and T-lymphocytes in the solid tumor microenvironment correlates with patient outcomes. We hypothesized that in gastric cancer (GC), macrophages in a polarized immunosuppressive transcriptional state would be prognostic of poor survival. We derived transcriptomic signatures for M2 (M2TS, MRC1; MS4A4A; CD36; CCL13; CCL18; CCL23; SLC38A6; FGL2; FN1; MAF) and M1 (M1TS, CCR7; IL2RA; CXCL11; CCL19; CXCL10; PLA1A; PTX3) macrophages, and cytolytic T-lymphocytes (CTLTS, GZMA; GZMB; GZMH; GZMM; PRF1). Primary GC in a TCGA stomach cancer dataset was evaluated for signature expressions, and a log-rank test determined overall survival (OS) and the disease-free interval (DFI). In 341 TCGA GC entries, high M2TS expression was associated with histological types and later stages. Low M2TS expression was associated with significantly better 5-year OS and DFI. We validated M2TS in prospectively collected peritoneal fluid of a GC patient cohort (n = 28). Single-cell RNA sequencing was used for signature expression in CD68+CD163+ cells and the log-rank test compared OS. GC patients with high M2TS in CD68+CD163+ cells in their peritoneal fluid had significantly worse OS than those with low expression. Multivariate analyses confirmed M2TS was significantly and independently associated with survival. As an independent predictor of poor survival, M2TS may be prognostic in primary tumors and peritoneal fluid of GC patients.
Collapse
Affiliation(s)
- Kevin M. Sullivan
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA; (K.M.S.); (A.Y.); (Z.Z.); (K.M.M.); (I.B.P.); (Y.F.)
| | - Haiqing Li
- Integrative Genome Core, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (H.L.); (Y.-C.Y.)
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Annie Yang
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA; (K.M.S.); (A.Y.); (Z.Z.); (K.M.M.); (I.B.P.); (Y.F.)
| | - Zhifang Zhang
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA; (K.M.S.); (A.Y.); (Z.Z.); (K.M.M.); (I.B.P.); (Y.F.)
| | - Ruben R. Munoz
- Molecular Medicine Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA; (R.R.M.); (D.V.H.); (H.H.)
| | - Kelly M. Mahuron
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA; (K.M.S.); (A.Y.); (Z.Z.); (K.M.M.); (I.B.P.); (Y.F.)
| | - Yate-Ching Yuan
- Integrative Genome Core, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (H.L.); (Y.-C.Y.)
| | - Isaac Benjamin Paz
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA; (K.M.S.); (A.Y.); (Z.Z.); (K.M.M.); (I.B.P.); (Y.F.)
| | - Daniel Von Hoff
- Molecular Medicine Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA; (R.R.M.); (D.V.H.); (H.H.)
| | - Haiyong Han
- Molecular Medicine Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA; (R.R.M.); (D.V.H.); (H.H.)
| | - Yuman Fong
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA; (K.M.S.); (A.Y.); (Z.Z.); (K.M.M.); (I.B.P.); (Y.F.)
| | - Yanghee Woo
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA; (K.M.S.); (A.Y.); (Z.Z.); (K.M.M.); (I.B.P.); (Y.F.)
- Cancer Immunotherapeutics Program, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
188
|
Luo Z, Chen Y, Chen B, Zhao Z, Wu R, Ren J. GGT5 facilitates migration and invasion through the induction of epithelial-mesenchymal transformation in gastric cancer. BMC Med Genomics 2024; 17:82. [PMID: 38581025 PMCID: PMC10998378 DOI: 10.1186/s12920-024-01856-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Gamma-glutamyltransferase 5 (GGT5), one of the two members in the GGT family (GGT1 and GGT5), plays a crucial role in oxidative regulation, inflammation promotion, and drug metabolism. Particularly in the tumorigenesis of various cancers, its significance has been recognized. Nevertheless, GGT5's role in gastric cancer (GC) remains ambiguous. This study delves into the function and prognostic significance of GGT5 in GC through a series of in vitro experiments. METHODS Employing online bioinformatics analysis tools such as The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), Kaplan-Meier plotter, and cBioPortal, we explored GGT5 characteristics and functions in GC. This encompassed aberrant expression, prognostic value, genomic alterations and mutations, immune cell infiltration, and associated signaling pathways. Immunohistochemistry was conducted to assess GGT5 expression in GC and adjacent normal tissues. Subsequently, univariate and multivariate logistic regression analyses were applied to investigate the associations between GGT5 and clinical characteristics. CCK8, wound healing, and migration assays were utilized to evaluate the impact of GGT5 on cell viability and migration. Additionally, Gene Set Enrichment Analysis (GSEA) and Western blot analysis were performed to scrutinize the activity of the epithelial-mesenchymal transformation (EMT) signaling pathway under GGT5 regulation. RESULTS GGT5 exhibits upregulation in gastric cancer, with its overexpression significantly linked to histological differentiation in GC patients (P < 0.05). Multivariate analysis indicates that elevated GGT5 expression is an independent risk factor associated with poorer overall survival in gastric cancer patients (P < 0.05). In vitro experiments reveal that downregulation of GGT5 hampers the proliferation and migration of GC cell lines. Finally, GSEA using TCGA data highlights a significant correlation between GGT5 expression and genes associated with EMT, a finding further confirmed by Western blot analysis. CONCLUSIONS GGT5 emerges as a promising prognostic biomarker and potential therapeutic target for GC.
Collapse
Affiliation(s)
- Zhuang Luo
- Department of Proctology, Huai'an Hospital of Traditional Chinese Medicine, Huai'an, 223001, China
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
| | - Yong Chen
- Department of Hepatobiliary Pancreatic Surgery, Gaochun People's Hospital of Nanjing, Nanjing, 211300, China
| | - Bangquan Chen
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, China
| | - Ziming Zhao
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, China
| | - Rongfan Wu
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, China
| | - Jun Ren
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China.
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, China.
| |
Collapse
|
189
|
Fu M, Zhang X, Shen F, Ma J, Li Z. Prognostic value of peripheral blood neutrophil/lymphocyte ratio, platelet/lymphocyte ratio, pan-immune-inflammation value and systemic immune-inflammation index for the efficacy of immunotherapy in patients with advanced gastric cancer. Immunotherapy 2024. [PMID: 38578121 DOI: 10.2217/imt-2024-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
Aim: The study aimed to assess the value of pretreatment peripheral blood neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR), pan-immune-inflammation value (PIV) and systemic immune-inflammation index (SII) for predicting immunotherapy prognosis and efficacy in advanced gastric cancer (GC). Methods: A total of 84 advanced GC patients received immunotherapy were retrospectively collected. The optimal cut-off values were determined by receiver operating characteristic curves. The univariate and multivariate analysis investigated the effects of NLR, PLR, PIV and SII on patients prognosis. Results: NLR, PLR, PIV and SII had predictive value of efficacy. NLR ≥3.65 was an independent risk factor for worse outcomes. Conclusion: NLR, PLR, PIV and SII have predictive value of efficacy and NLR ≥3.65 suggests a poor prognosis following immunotherapy in advanced GC.
Collapse
Affiliation(s)
- Maodong Fu
- Department of Integrated Traditional Chinese & Western Medicine, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian, 361015, People's Republic of China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, Fujian, 361015, People's Republic of China
| | - Xiuping Zhang
- Department of Oncology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian, 361015, People's Republic of China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, Fujian, 361015, People's Republic of China
| | - Feng Shen
- Department of Oncology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian, 361015, People's Republic of China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, Fujian, 361015, People's Republic of China
| | - Jun Ma
- Department of Integrated Traditional Chinese & Western Medicine, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian, 361015, People's Republic of China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, Fujian, 361015, People's Republic of China
| | - Zhiyong Li
- Department of Oncology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian, 361015, People's Republic of China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, Fujian, 361015, People's Republic of China
| |
Collapse
|
190
|
Wei Q, Xu X, Li J, Wang C, Chen W, Xie Y, Luo C, Chen L, Chu J, Wu W, Han Z, Yang Y, Hu Z, Xu Q, Ying J. Apatinib Plus Toripalimab (Anti-PD1 Therapy) as Second-Line Therapy in Patients With Advanced Gastric or Esophagogastric Junction Cancer: Results From a Randomized, Open-Label Phase II Study. Oncologist 2024; 29:364-e578. [PMID: 38366886 PMCID: PMC10994245 DOI: 10.1093/oncolo/oyae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 11/21/2023] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND This study aimed to assess the activity of apatinib plus toripalimab in the second line for patients with advanced gastric or esophagogastric junction cancer (GC/EGJC). METHODS In this open-label, phase II, randomized trial, patients with advanced GC/EGJC who progressed after first-line chemotherapy were enrolled and received 250 mg apatinib per day plus 240 mg toripalimab on day 1 per 3 weeks (arm A) or physician's choice of chemotherapy (PC, arm B). The primary endpoint of this study was the 1-year survival rate. Progression-free survival (PFS), overall survival (OS), overall response rate (ORR), and safety were assessed as secondary endpoints. RESULTS Twenty-five patients received apatinib plus toripalimab while 26 were enrolled in arm B. The 1-year survival rates of the 2 groups were 43.3% and 42.3%, respectively (P = .903). The PFS was 2.77 versus 2.33 months (P = .660). The OS was 8.30 versus 9.88 months (P = .539). An objective response was reported in 20.0% of patients in arm A compared to 26.9% in arm B (P = .368), respectively. A total of 6 (24.0%) patients experienced adverse events of grade ≥ 3 in arm A, while 9 (34.6%) patients suffered from adverse events of grade ≥ 3 in arm B. No drug-related deaths occurred in either group. CONCLUSION Toripalimab plus apatinib treatment in second-line therapy of advanced GC/EGJC showed manageable toxicity but did not improve clinical outcomes relative to PC treatment (ClinicalTrials.gov Identifier: NCT04190745).
Collapse
Affiliation(s)
- Qing Wei
- Department of Hepato-Pancreato-Biliary and Gastric Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, People’s Republic of China
| | - Xiaoqing Xu
- Department of Hepato-Pancreato-Biliary and Gastric Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| | - Jingjing Li
- Department of Hepato-Pancreato-Biliary and Gastric Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| | - Chang Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Weijun Chen
- Department of Radiotherapy, Taizhou Central Hospital, Taizhou, Zhejiang, People’s Republic of China
| | - Yanru Xie
- Department of Medical Oncology, Lishui Municipal Central Hospital, Lishui, Zhejiang, People’s Republic of China
| | - Cong Luo
- Department of Hepato-Pancreato-Biliary and Gastric Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| | - Lei Chen
- Department of Hepato-Pancreato-Biliary and Gastric Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| | - Jiadong Chu
- Department of Clinical Research, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| | - Wei Wu
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| | - Zhe Han
- Radiology Department, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| | - Yanlian Yang
- Nanopep Biotech. Corp., Beijing, People’s Republic of China
| | - Zhiyuan Hu
- Nanopep Biotech. Corp., Beijing, People’s Republic of China
| | - Qi Xu
- Department of Hepato-Pancreato-Biliary and Gastric Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| | - Jieer Ying
- Department of Hepato-Pancreato-Biliary and Gastric Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, People’s Republic of China
| |
Collapse
|
191
|
Xu M, Ren T, Deng J, Yang J, Lu T, Xi H, Yuan L, Zhang W, Zhou J. Correlation of CT parameters and PD-L1 expression status in gastric cancer. Abdom Radiol (NY) 2024; 49:1320-1329. [PMID: 38436699 DOI: 10.1007/s00261-024-04200-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/02/2024] [Accepted: 01/12/2024] [Indexed: 03/05/2024]
Abstract
OBJECTIVE We aimed to explore the correlation between routine computed tomography (CT) imaging features and programmed cell death ligand-1(PD-L1) expression status in gastric cancer and evaluate the predictive value of imaging parameters for this immunotherapy biomarker. MATERIALS AND METHODS Patients with gastric adenocarcinoma who underwent abdominal CT three-stage enhanced scan and PD-L1 immunohistochemical testing before treatment were retrospectively examined. All diagnoses were confirmed through pathology. According to the expression status of PD-L1, they were divided into the positive (CPS ≥ 5) or negative group (CPS < 5). Baseline CT imaging features were collected. Diagnostic performances of the different variables were evaluated using receiver operating characteristic (ROC) curve. RESULTS In total, 67 patients (17 women and 50 men; mean age: 59.55 ± 10.22 years) with gastric adenocarcinoma were included in the study. The overall stages, probability of maximum lymph node short diameter > 1 cm and peak of lesion enhancement occurring in the arterial phase were statistically significant between the two groups (p < 0.05). Moreover, the arterial enhancement fraction (AEF) was significantly higher in the positive group than that in the negative group (p < 0.05), and ROC curve analysis showed that the AEF exhibited a high evaluation efficacy (area under the curve [AUC] = 0.724 [95% confidence interval (CI): 0.602-0.826]). The combined parameters had the best diagnostic efficacy (AUC = 0.825 [95%CI: 0.716-0.933]), sensitivity (75.00%), and specificity (81.40%). CONCLUSIONS These findings confirm a correlation between CT imaging features and PD-L1 expression status in gastric cancer, and AEF may help evaluate high PD-L1 expression and select patients suitable for immunotherapy.
Collapse
Affiliation(s)
- Min Xu
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Tiezhu Ren
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Juan Deng
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Jingjing Yang
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Ting Lu
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Huaze Xi
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Long Yuan
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Wenjuan Zhang
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China.
- Second Clinical School, Lanzhou University, Lanzhou, China.
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China.
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China.
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China.
- Second Clinical School, Lanzhou University, Lanzhou, China.
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China.
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China.
| |
Collapse
|
192
|
Rüschoff J, Kumar G, Badve S, Jasani B, Krause E, Rioux-Leclercq N, Rojo F, Martini M, Cheng L, Tretiakova M, Mitchell C, Anders RA, Robert ME, Fahy D, Pyle M, Le Q, Yu L, Glass B, Baxi V, Babadjanova Z, Pratt J, Brutus S, Karasarides M, Hartmann A. Scoring PD-L1 Expression in Urothelial Carcinoma: An International Multi-Institutional Study on Comparison of Manual and Artificial Intelligence Measurement Model (AIM-PD-L1) Pathology Assessments. Virchows Arch 2024; 484:597-608. [PMID: 38570364 DOI: 10.1007/s00428-024-03795-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Assessing programmed death ligand 1 (PD-L1) expression on tumor cells (TCs) using Food and Drug Administration-approved, validated immunoassays can guide the use of immune checkpoint inhibitor (ICI) therapy in cancer treatment. However, substantial interobserver variability has been reported using these immunoassays. Artificial intelligence (AI) has the potential to accurately measure biomarker expression in tissue samples, but its reliability and comparability to standard manual scoring remain to be evaluated. This multinational study sought to compare the %TC scoring of PD-L1 expression in advanced urothelial carcinoma, assessed by either an AI Measurement Model (AIM-PD-L1) or expert pathologists. The concordance among pathologists and between pathologists and AIM-PD-L1 was determined. The positivity rate of ≥ 1%TC PD-L1 was between 20-30% for 8/10 pathologists, and the degree of agreement and scoring distribution for among pathologists and between pathologists and AIM-PD-L1 was similar both scored as a continuous variable or using the pre-defined cutoff. Numerically higher score variation was observed with the 22C3 assay than with the 28-8 assay. A 2-h training module on the 28-8 assay did not significantly impact manual assessment. Cases exhibiting significantly higher variability in the assessment of PD-L1 expression (mean absolute deviation > 10) were found to have patterns of PD-L1 staining that were more challenging to interpret. An improved understanding of sources of manual scoring variability can be applied to PD-L1 expression analysis in the clinical setting. In the future, the application of AI algorithms could serve as a valuable reference guide for pathologists while scoring PD-L1.
Collapse
Affiliation(s)
- Josef Rüschoff
- Discovery Life Sciences and Pathology Nordhessen, Kassel, Germany.
| | | | - Sunil Badve
- Emory University School of Medicine, Atlanta, GA, USA
| | - Bharat Jasani
- Discovery Life Sciences and Pathology Nordhessen, Kassel, Germany
- University of Cardiff, Cardiff, Wales, UK
| | | | | | - Federico Rojo
- IIS-Fundacion Jimenez Diaz CIBERONC (Madrid), Madrid, Spain
| | | | - Liang Cheng
- Brown University Warren Alpert Medical School and the Legorreta Cancer Center at Brown University, Providence, RI, USA
| | | | | | | | | | | | | | | | | | | | - Vipul Baxi
- Bristol Myers Squibb, Princeton, NJ, USA
| | | | | | | | | | - Arndt Hartmann
- Comprehensive Cancer Center EMN, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital Erlangen, Erlangen, Germany.
| |
Collapse
|
193
|
Ebert MP, Fischbach W, Hollerbach S, Höppner J, Lorenz D, Stahl M, Stuschke M, Pech O, Vanhoefer U, Porschen R. S3-Leitlinie Diagnostik und Therapie der Plattenepithelkarzinome und Adenokarzinome des Ösophagus. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2024; 62:535-642. [PMID: 38599580 DOI: 10.1055/a-2239-9802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Affiliation(s)
- Matthias P Ebert
- II. Medizinische Klinik, Medizinische Fakultät Mannheim, Universitätsmedizin, Universität Heidelberg, Mannheim
- DKFZ-Hector Krebsinstitut an der Universitätsmedizin Mannheim, Mannheim
- Molecular Medicine Partnership Unit, EMBL, Heidelberg
| | - Wolfgang Fischbach
- Deutsche Gesellschaft zur Bekämpfung der Krankheiten von Magen, Darm und Leber sowie von Störungen des Stoffwechsels und der Ernährung (Gastro-Liga) e. V., Giessen
| | | | - Jens Höppner
- Klinik für Allgemeine Chirurgie, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck
| | - Dietmar Lorenz
- Chirurgische Klinik I, Allgemein-, Viszeral- und Thoraxchirurgie, Klinikum Darmstadt, Darmstadt
| | - Michael Stahl
- Klinik für Internistische Onkologie und onkologische Palliativmedizin, Evang. Huyssensstiftung, Evang. Kliniken Essen-Mitte, Essen
| | - Martin Stuschke
- Klinik und Poliklinik für Strahlentherapie, Universitätsklinikum Essen, Essen
| | - Oliver Pech
- Klinik für Gastroenterologie und Interventionelle Endoskopie, Krankenhaus Barmherzige Brüder, Regensburg
| | - Udo Vanhoefer
- Klinik für Hämatologie und Onkologie, Katholisches Marienkrankenhaus, Hamburg
| | - Rainer Porschen
- Gastroenterologische Praxis am Kreiskrankenhaus Osterholz, Osterholz-Scharmbeck
| |
Collapse
|
194
|
Fakhrioliaei A, Tanhaei S, Pakmehr S, Noori Shakir M, Qasim MT, Hariri M, Nouhi Kararoudi A, Valilo M. Potential Role of Nrf2, HER2, and ALDH in Cancer Stem Cells: A Narrative Review. J Membr Biol 2024; 257:3-16. [PMID: 38356054 DOI: 10.1007/s00232-024-00307-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024]
Abstract
Cancer is one of the main causes of death among humans, second only to cardiovascular diseases. In recent years, numerous studies have been conducted on the pathophysiology of cancer, and it has been established that this disease is developed by a group of stem cells known as cancer stem cells (CSCs). Thus, cancer is considered a stem cell disease; however, there is no comprehensive consensus about the characteristics of these cells. Several different signaling pathways including Notch, Hedgehog, transforming growth factor-β (TGF-β), and WNT/β-catenin pathways cause the self-renewal of CSCs. CSCs change their metabolic pathways in order to access easy energy. Therefore, one of the key objectives of researchers in cancer treatment is to destroy CSCs. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays an essential role in the protection of CSCs from reactive oxygen species (ROS) and chemotherapeutic agents by regulating antioxidants and detoxification enzymes. Human epidermal growth factor receptor 2 (HER2) is a member of the tyrosine kinase receptor family, which contributes to the protection of cancer cells against treatment and implicated in the invasion, epithelial-mesenchymal transition (EMT), and tumorigenesis. Aldehyde dehydrogenases (ALDHs) are highly active in CSCs and protect the cells against damage caused by active aldehydes through the regulation of aldehyde metabolism. On the other hand, ALDHs promote the formation and maintenance of tumor cells and lead to drug resistance in tumors through the activation of various signaling pathways, such as the ALDH1A1/HIF-1α/VEGF axis and Wnt/β-catenin, as well as changing the intracellular pH value. Given the growing body of information in this field, in the present narrative review, we attempted to shed light on the function of Nrf2, HER2, and ALDH in CSCs.
Collapse
Affiliation(s)
| | | | | | - Maha Noori Shakir
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | - Maytham T Qasim
- Department of Anesthesia, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Maryam Hariri
- Department of Pathobiology, Auburn University, Auburn, AL, 36832, USA
| | - Alireza Nouhi Kararoudi
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Mohammad Valilo
- Dpartment of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
195
|
Chang L, Zhang X, Ma Q, Kong L, Yu Y, Tao J, Li Q. Safety and efficacy of apatinib in combination with chemotherapy with or without immunotherapy versus chemotherapy alone as first-line treatment for advanced gastric cancer. Invest New Drugs 2024; 42:161-170. [PMID: 38367168 PMCID: PMC10944401 DOI: 10.1007/s10637-024-01423-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/22/2024] [Indexed: 02/19/2024]
Abstract
The specific first-line regimen for advanced gastric cancer (GC) is still controversial. The benefit of apatinib for first-line treatment of advanced GC remains unknown and needs to be further explored. Eighty-two patients with advanced GC treated in our institution from October 2017 to March 2023 were retrospectively reviewed. All individuals had her-2 negative GC and had received at least two cycles of first-line treatment, including 44 patients in the combination treatment group (apatinib in combination with chemotherapy with or without immunotherapy) and 38 patients in the simple chemotherapy group. We evaluated the efficacy and safety of apatinib in combination with chemotherapy with or without immunotherapy in the first-line treatment of advanced GC by comparing the efficacy, progression-free survival (PFS), and adverse events in two groups of patients. The median PFS of the simple chemotherapy group was 9.25 months (95% confidence interval (CI), 6.1-11.2 months), and that of the combination treatment group was 10.9 months (95% CI, 7.9-15.8 months), which was 1.65 months longer than the simple chemotherapy group. Statistically significant differences are shown (P = 0.022). The objective response rate (ORR) of the combination treatment group was 65.9%, and 36.8% in the simple chemotherapy group. Statistically significant differences are shown (P = 0.014). No serious (Grade IV) adverse events occurred in either group. Our study indicates that apatinib in combination with chemotherapy with or without immunotherapy as first-line treatment for advanced GC exhibits good anti-tumor activity and is well tolerated by patients.
Collapse
Affiliation(s)
- Lele Chang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, Heilongjiang Province 150001, China
| | - Xuemei Zhang
- Department of Radiation Oncology, Quzhou People's Hospital, Quzhou, China
| | - Qian Ma
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, Heilongjiang Province 150001, China
| | - Lingyang Kong
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, Heilongjiang Province 150001, China
| | - Yang Yu
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Ji Tao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, Heilongjiang Province 150001, China
| | - Qingwei Li
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, Heilongjiang Province 150001, China.
| |
Collapse
|
196
|
Ma Y, Yu J, Ma X, Li Q, Su Q, Cao B. Efficacy and adverse events of immune checkpoint inhibitors in esophageal cancer patients: Challenges and perspectives for immunotherapy. Asia Pac J Clin Oncol 2024; 20:180-187. [PMID: 37171038 DOI: 10.1111/ajco.13961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/10/2023] [Accepted: 03/29/2023] [Indexed: 05/13/2023]
Abstract
Esophageal cancer (EC) is the seventh most common cancer worldwide. Patients with EC have a generally poor prognosis mainly due to the lack of effective treatments. Cancer immunotherapy is a promising novel treatment option for EC. This literature review investigated the clinical efficacy of immunotherapy either alone or in combination with chemotherapy or targeted therapy. In addition, we analyzed the adverse events associated with immune checkpoint inhibitors (ICIs). In conclusion, ICIs increase the efficacy of EC treatments, thereby improving the outcomes of EC patients. The findings of this study may help enhance the response to immunotherapy, diminish toxicity, and thus eventually improve medical care for patients with EC.
Collapse
Affiliation(s)
- Yingjie Ma
- Department of Oncology, Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Junxian Yu
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Xiaoting Ma
- Department of Oncology, Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Qin Li
- Department of Oncology, Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Qiang Su
- Department of Oncology, Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Bangwei Cao
- Department of Oncology, Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| |
Collapse
|
197
|
Hu HH, Wang SQ, Zhao H, Chen ZS, Shi X, Chen XB. HER2 + advanced gastric cancer: Current state and opportunities (Review). Int J Oncol 2024; 64:36. [PMID: 38391024 PMCID: PMC10901538 DOI: 10.3892/ijo.2024.5624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Human epidermal growth factor receptor 2 (HER2)+ gastric cancer (GC) is a distinct subtype of GC, accounting for 10‑20% of all cases of GC. Although the development of the anti‑HER2 monoclonal antibody trastuzumab has markedly improved response rates and prognosis of patients with HER2+ advanced GC (AGC), drug resistance remains a considerable challenge. Therefore, dynamic monitoring of HER2 expression levels can facilitate the identification of patients who may benefit from targeted therapy. Besides trastuzumab, DS‑8201 and RC48 have been applied in the treatment of HER2+ AGC, and several novel anti‑HER2 therapies are undergoing preclinical/clinical trials. At present, combination immunotherapy with anti‑HER2 agents is used as the first‑line treatment of this disease subtype. New promising approaches such as chimeric antigen receptor T‑cell immunotherapy and cancer vaccines are also being investigated for their potential to improve clinical outcomes. The current review provides new insights that will guide the future application of anti‑HER2 therapy by summarizing research progress on targeted therapy drugs for HER2+ AGC and combination treatments.
Collapse
Affiliation(s)
- Hui-Hui Hu
- Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Department of Oncology, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan 450008, P.R. China
| | - Sai-Qi Wang
- Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Department of Oncology, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan 450008, P.R. China
| | - Huichen Zhao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Xiaojing Shi
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiao-Bing Chen
- Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Department of Oncology, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan 450008, P.R. China
| |
Collapse
|
198
|
Colarusso G, Mechahougui H, Koessler T, Friedlaender A. Metastatic gastric cancer: synergizing and sequencing targeted therapy with first-line immunotherapy. Immunotherapy 2024; 16:427-430. [PMID: 38469713 DOI: 10.2217/imt-2024-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Affiliation(s)
- Gina Colarusso
- Oncology Department, Geneva University Hospital, 1205 Geneva, Switzerland
| | - Hiba Mechahougui
- Oncology Department, Geneva University Hospital, 1205 Geneva, Switzerland
| | - Thibaud Koessler
- Oncology Department, Geneva University Hospital, 1205 Geneva, Switzerland
| | - Alex Friedlaender
- Oncology Department, Geneva University Hospital, 1205 Geneva, Switzerland
- Clinique Générale Beaulieu, 1206 Geneva, Switzerland
| |
Collapse
|
199
|
Gao X, Jiang J. Exploring the regulatory mechanism of intestinal flora based on PD-1 receptor/ligand targeted cancer immunotherapy. Front Immunol 2024; 15:1359029. [PMID: 38617841 PMCID: PMC11010636 DOI: 10.3389/fimmu.2024.1359029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/18/2024] [Indexed: 04/16/2024] Open
Abstract
Serving as a pivotal immunotherapeutic approach against tumors, anti-PD-1/PD-L1 therapy amplifies the immune cells' capability to eliminate tumors by obstructing the interaction between PD-1 and PD-L1. Research indicates that immune checkpoint inhibitors are effective when a patient's gut harbors unique beneficial bacteria. As such, it has further been revealed that the gut microbiome influences tumor development and the efficacy of cancer treatments, with metabolites produced by the microbiome playing a regulatory role in the antitumor efficacy of Immune checkpoint inhibitors(ICBs). This article discusses the mechanism of anti-PD-1 immunotherapy and the role of intestinal flora in immune regulation. This review focuses on the modulation of intestinal flora in the context of PD-1 immunotherapy, which may offer a new avenue for combination therapy in tumor immunotherapy.
Collapse
Affiliation(s)
- Xinran Gao
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor lmmunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor lmmunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
200
|
Zhu Y, Zhou M, Li C, Kong W, Hu Y. Gastric cancer with brain metastasis: from molecular characteristics and treatment. Front Oncol 2024; 14:1310325. [PMID: 38577333 PMCID: PMC10991736 DOI: 10.3389/fonc.2024.1310325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
Gastric cancer is one of the cancers with increasing incidence and ranks fourth globally among the most frequent causes of cancer-related mortality. Early gastric cancer is often asymptomatic or presents with atypical symptoms, and the majority of patients present with advanced disease upon diagnosis. Brain metastases are present in approximately 1% of gastric cancer patients at the time of diagnosis, which significantly contributed to the overall mortality of the disease worldwide. Conventional therapies for patients with brain metastases remain limited and the median overall survival of patients is only 8 months in advanced cases. Recent studies have improved our understanding of the molecular mechanisms underlying gastric cancer brain metastases, and immunotherapy has become an important treatment option in combination with radiotherapy, chemotherapy, targeted therapy and surgery. This review aims to provide insight into the cellular processes involved in gastric cancer brain metastases, discuss diagnostic approaches, evaluate the integration of immune checkpoint inhibitors into treatment and prognosis, and explore the predictive value of biomarkers in immunotherapy.
Collapse
Affiliation(s)
- Yingze Zhu
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Miao Zhou
- Department of Oncology, Tang Shan Central Hospital, Tangshan, China
| | - Congling Li
- School of Clinical Medicine, Affiliated Hospital, North China University of Science and Technology, Tangshan, China
| | - Wenyue Kong
- School of Clinical Medicine, Affiliated Hospital, North China University of Science and Technology, Tangshan, China
| | - Yuning Hu
- School of Clinical Medicine, Affiliated Hospital, North China University of Science and Technology, Tangshan, China
| |
Collapse
|