151
|
Huang H, Su S, Wu N, Wan H, Wan S, Bi H, Sun L. Graphene-Based Sensors for Human Health Monitoring. Front Chem 2019; 7:399. [PMID: 31245352 PMCID: PMC6580932 DOI: 10.3389/fchem.2019.00399] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/17/2019] [Indexed: 12/17/2022] Open
Abstract
Since the desire for real-time human health monitoring as well as seamless human-machine interaction is increasing rapidly, plenty of research efforts have been made to investigate wearable sensors and implantable devices in recent years. As a novel 2D material, graphene has aroused a boom in the field of sensor research around the world due to its advantages in mechanical, thermal, and electrical properties. Numerous graphene-based sensors used for human health monitoring have been reported, including wearable sensors, as well as implantable devices, which can realize the real-time measurement of body temperature, heart rate, pulse oxygenation, respiration rate, blood pressure, blood glucose, electrocardiogram signal, electromyogram signal, and electroencephalograph signal, etc. Herein, as a review of the latest graphene-based sensors for health monitoring, their novel structures, sensing mechanisms, technological innovations, components for sensor systems and potential challenges will be discussed and outlined.
Collapse
Affiliation(s)
- Haizhou Huang
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing, China
| | - Shi Su
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing, China
- Center for Advanced Materials and Manufacture, Southeast University-Monash University Joint Research Institute, Suzhou, China
| | - Nan Wu
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing, China
| | - Hao Wan
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing, China
| | - Shu Wan
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing, China
| | - Hengchang Bi
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing, China
- Center for Advanced Carbon Materials, Jiangnan Graphene Research Institute, Southeast University, Changzhou, China
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing, China
- Center for Advanced Materials and Manufacture, Southeast University-Monash University Joint Research Institute, Suzhou, China
- Center for Advanced Carbon Materials, Jiangnan Graphene Research Institute, Southeast University, Changzhou, China
| |
Collapse
|
152
|
Hanstock HG, Edwards JP, Walsh NP. Tear Lactoferrin and Lysozyme as Clinically Relevant Biomarkers of Mucosal Immune Competence. Front Immunol 2019; 10:1178. [PMID: 31231369 PMCID: PMC6558391 DOI: 10.3389/fimmu.2019.01178] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/09/2019] [Indexed: 01/01/2023] Open
Abstract
Tears have attracted interest as a minimally-invasive biological fluid from which to assess biomarkers. Lactoferrin (Lf) and lysozyme (Lys) are abundant in the tear fluid and have antimicrobial properties. Since the eye is a portal for infection transmission, assessment of immune status at the ocular surface may be clinically relevant. Therefore, the aim of this series of studies was to investigate the tear fluid antimicrobial proteins (AMPs) Lf and Lys as biomarkers of mucosal immune status. To be considered biomarkers of interest, we would expect tear AMPs to respond to stressors known to perturb immunity but be robust to confounding variables, and to be lower in participants with heightened risk or incidence of illness. We investigated the relationship between tear AMPs and upper respiratory tract infection (URTI; study 1) as well as the response of tear AMPs to prolonged treadmill exercise (study 2) and dehydration (study 3). Study 1 was a prospective cohort study conducted during the common cold season whereas studies 2 and 3 used repeated-measures crossover designs. In study 1, tear Lys concentration (C) as well as tear AMP secretion rates (SRs) were lower in individuals who reported pathogen-confirmed URTI (n = 9) throughout the observation period than in healthy, pathogen-free controls (n = 17; Lys-C, P = 0.002, d = 0.85; Lys-SR, P < 0.001, d = 1.00; Lf-SR, P = 0.018, d = 0.66). Tear AMP secretion rates were also lower in contact lens wearers. In study 2, tear AMP SRs were 42-49% lower at 30 min-1 h post-exercise vs. pre-exercise (P < 0.001, d = 0.80-0.93). Finally, in study 3, tear AMPs were not influenced by dehydration, although tear AMP concentrations (but not secretion rates) displayed diurnal variation. We conclude that Lf and Lys have potential as biomarkers of mucosal immune competence; in particular, whether these markers are lower in infection-prone individuals warrants further investigation.
Collapse
Affiliation(s)
- Helen G Hanstock
- Extremes Research Group, School of Sport, Health and Exercise Sciences, College of Health and Human Sciences, Bangor University, Bangor, United Kingdom.,Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Jason P Edwards
- Extremes Research Group, School of Sport, Health and Exercise Sciences, College of Health and Human Sciences, Bangor University, Bangor, United Kingdom
| | - Neil P Walsh
- Extremes Research Group, School of Sport, Health and Exercise Sciences, College of Health and Human Sciences, Bangor University, Bangor, United Kingdom
| |
Collapse
|
153
|
Meng L, Turner APF, Mak WC. Soft and flexible material-based affinity sensors. Biotechnol Adv 2019; 39:107398. [PMID: 31071431 DOI: 10.1016/j.biotechadv.2019.05.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 05/01/2019] [Accepted: 05/04/2019] [Indexed: 01/11/2023]
Abstract
Recent advances in biosensors and point-of-care (PoC) devices are poised to change and expand the delivery of diagnostics from conventional lateral-flow assays and test strips that dominate the market currently, to newly emerging wearable and implantable devices that can provide continuous monitoring. Soft and flexible materials are playing a key role in propelling these trends towards real-time and remote health monitoring. Affinity biosensors have the capability to provide for diagnosis and monitoring of cancerous, cardiovascular, infectious and genetic diseases by the detection of biomarkers using affinity interactions. This review tracks the evolution of affinity sensors from conventional lateral-flow test strips to wearable/implantable devices enabled by soft and flexible materials. Initially, we highlight conventional affinity sensors exploiting membrane and paper materials which have been so successfully applied in point-of-care tests, such as lateral-flow immunoassay strips and emerging microfluidic paper-based devices. We then turn our attention to the multifarious polymer designs that provide both the base materials for sensor designs, such as PDMS, and more advanced functionalised materials that are capable of both recognition and transduction, such as conducting and molecularly imprinted polymers. The subsequent content discusses wearable soft and flexible material-based affinity sensors, classified as flexible and skin-mountable, textile materials-based and contact lens-based affinity sensors. In the final sections, we explore the possibilities for implantable/injectable soft and flexible material-based affinity sensors, including hydrogels, microencapsulated sensors and optical fibers. This area is truly a work in progress and we trust that this review will help pull together the many technological streams that are contributing to the field.
Collapse
Affiliation(s)
- Lingyin Meng
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | | | - Wing Cheung Mak
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden.
| |
Collapse
|
154
|
Flexible Micro-Battery for Powering Smart Contact Lens. SENSORS 2019; 19:s19092062. [PMID: 31058810 PMCID: PMC6539253 DOI: 10.3390/s19092062] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 11/17/2022]
Abstract
In this paper, we demonstrate the first attempt of encapsulating a flexible micro battery into a contact lens to implement an eye-tracker. The paper discusses how to scale the battery to power various circuits embedded in the contact lens, such as ASIC, photodiodes, etc., as well as how to combine the battery with external harvested energy sources. The fabricated ring battery has a surface area of 0.75 cm2 yielding an areal capacity of 43 µAh·cm−2 at 20C. Based on simulated 0.35-µm CMOS ASIC power consumption, this value is large enough to allow powering the ASIC for 3 minutes. The functioning of the micro battery is demonstrated by powering an orange LED.
Collapse
|
155
|
Wang KH, Hsieh JC, Chen CC, Zan HW, Meng HF, Kuo SY, Nguyễn MTN. A low-cost, portable and easy-operated salivary urea sensor for point-of-care application. Biosens Bioelectron 2019; 132:352-359. [DOI: 10.1016/j.bios.2019.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 01/31/2023]
|
156
|
Kim K, Park YG, Hyun BG, Choi M, Park JU. Recent Advances in Transparent Electronics with Stretchable Forms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804690. [PMID: 30556173 DOI: 10.1002/adma.201804690] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/19/2018] [Indexed: 06/09/2023]
Abstract
Advances in materials science and the desire for next-generation electronics have driven the development of stretchable and transparent electronics in the past decade. Novel applications, such as smart contact lenses and wearable sensors, have been introduced with stretchable and transparent form factors, requiring a deeper and wider exploration of materials and fabrication processes. In this regard, many research efforts have been dedicated to the development of mechanically stretchable, optically transparent materials and devices. Recent advances in stretchable and transparent electronics are discussed herein, with special emphasis on the development of stretchable and transparent materials, including substrates and electrodes. Several representative examples of applications enabled by stretchable and transparent electronics are presented, including sensors, smart contact lenses, heaters, and neural interfaces. The current challenges and opportunities for each type of stretchable and transparent electronics are also discussed.
Collapse
Affiliation(s)
- Kukjoo Kim
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Young-Geun Park
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Byung Gwan Hyun
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Minjae Choi
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jang-Ung Park
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
157
|
Yetisen AK, Soylemezoglu B, Dong J, Montelongo Y, Butt H, Jakobi M, Koch AW. Capillary flow in microchannel circuitry of scleral lenses. RSC Adv 2019; 9:11186-11193. [PMID: 35520217 PMCID: PMC9063415 DOI: 10.1039/c9ra01094g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/26/2019] [Indexed: 11/21/2022] Open
Abstract
Continuous monitoring of biomarkers in a quantitative manner at point-of-care settings can advance early diagnosis in medicine. Contact lenses offer a minimally-invasive platform to continuously detect biomarkers in tear fluid. Microfluidic components as lab-on-a-chip technology have the potential to transform contact lenses into fully-integrated multiplexed sensing devices. Here, simple and complex microchannels are created in scleral lenses that perform microfluidic operations via capillary action. The engraving of microchannels in scleral lenses were performed by laser micromilling, where a predictive computational model was developed to simulate the effect of laser power and exposure time on polymer behavior. Experimentally varying the CO2 laser power (1.2-3.6 W) and speed (38-100 mm s-1) allowed the micromilling of concave microchannels with groove depths of 10-240 μm and widths of 35-245 μm on polymetric substrates. The demonstrated laser micromilled circuitry in scleral lenses included linear channels, T/Y junctions, multiplexed arrays, mixers, and spiral channels, as well as serially organized multicomponent channels. Capillary forces acting in the microchannels allowed flowing rhodamine dye within the microfluidic components, which was visualized by optical microscopy in reflection and transmission modes simultaneously. The developed microfluidic components in scleral lenses may enable tear sampling, storage, analysis, and multiplexed detection capabilities for continuous monitoring applications.
Collapse
Affiliation(s)
- Ali K Yetisen
- Institute for Measurement Systems and Sensor Technology, Technical University of Munich 80333 Munich Germany
| | - Bugra Soylemezoglu
- Institute for Measurement Systems and Sensor Technology, Technical University of Munich 80333 Munich Germany
| | - Jie Dong
- Institute for Measurement Systems and Sensor Technology, Technical University of Munich 80333 Munich Germany
| | - Yunuen Montelongo
- School of Civil, Mechanical and Industrial Engineering, Universidad De La Salle Bajío León 37150 Mexico
| | - Haider Butt
- Department of Mechanical Engineering, Khalifa University Abu Dhabi 127788 United Arab Emirates
| | - Martin Jakobi
- Institute for Measurement Systems and Sensor Technology, Technical University of Munich 80333 Munich Germany
| | - Alexander W Koch
- Institute for Measurement Systems and Sensor Technology, Technical University of Munich 80333 Munich Germany
| |
Collapse
|
158
|
Salivary diagnostics on paper microfluidic devices and their use as wearable sensors for glucose monitoring. Anal Bioanal Chem 2019; 411:4919-4928. [DOI: 10.1007/s00216-019-01788-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 12/24/2022]
|
159
|
Someya T, Amagai M. Toward a new generation of smart skins. Nat Biotechnol 2019; 37:382-388. [DOI: 10.1038/s41587-019-0079-1] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/03/2019] [Indexed: 12/19/2022]
|
160
|
Zaki M, Pardo J, Carracedo G. A review of international medical device regulations: Contact lenses and lens care solutions. Cont Lens Anterior Eye 2019; 42:136-146. [DOI: 10.1016/j.clae.2018.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/02/2018] [Accepted: 11/02/2018] [Indexed: 12/12/2022]
|
161
|
Abstract
Miniaturization of electronic components and advances in flexible and stretchable materials have stimulated the development of wearable health care systems that can reflect and monitor personal health status by health care professionals. New skin-mountable devices that offer seamless contact onto the human skin, even under large deformations by natural motions of the wearer, provide a route for both high-fidelity monitoring and patient-controlled therapy. This article provides an overview of several important aspects of skin-mountable devices and their applications in many medical settings and clinical practices. We comprehensively describe various transdermal sensors and therapeutic systems that are capable of detecting physical, electrophysiological, and electrochemical responses and/or providing electrical and thermal therapies and drug delivery services, and we discuss the current challenges, opportunities, and future perspectives in the field. Finally, we present ways to protect the embedded electronic components of skin-mountable devices from the environment by use of mechanically soft packaging materials.
Collapse
Affiliation(s)
- Eun Kwang Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA;
| | - Min Ku Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA;
| | - Chi Hwan Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA; .,School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.,Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
162
|
|
163
|
Wang C, Xia K, Wang H, Liang X, Yin Z, Zhang Y. Advanced Carbon for Flexible and Wearable Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1801072. [PMID: 30300444 DOI: 10.1002/adma.201801072] [Citation(s) in RCA: 398] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 07/26/2018] [Indexed: 05/19/2023]
Abstract
Flexible and wearable electronics are attracting wide attention due to their potential applications in wearable human health monitoring and care systems. Carbon materials have combined superiorities such as good electrical conductivity, intrinsic and structural flexibility, light weight, high chemical and thermal stability, ease of chemical functionalization, as well as potential mass production, enabling them to be promising candidate materials for flexible and wearable electronics. Consequently, great efforts are devoted to the controlled fabrication of carbon materials with rationally designed structures for applications in next-generation electronics. Herein, the latest advances in the rational design and controlled fabrication of carbon materials toward applications in flexible and wearable electronics are reviewed. Various carbon materials (carbon nanotubes, graphene, natural-biomaterial-derived carbon, etc.) with controlled micro/nanostructures and designed macroscopic morphologies for high-performance flexible electronics are introduced. The fabrication strategies, working mechanism, performance, and applications of carbon-based flexible devices are reviewed and discussed, including strain/pressure sensors, temperature/humidity sensors, electrochemical sensors, flexible conductive electrodes/wires, and flexible power devices. Furthermore, the integration of multiple devices toward multifunctional wearable systems is briefly reviewed. Finally, the existing challenges and future opportunities in this field are summarized.
Collapse
Affiliation(s)
- Chunya Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry and Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, P. R. China
| | - Kailun Xia
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry and Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, P. R. China
| | - Huimin Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry and Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiaoping Liang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry and Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhe Yin
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry and Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, P. R. China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry and Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
164
|
Trujillo-de Santiago G, Sharifi R, Yue K, Sani ES, Kashaf SS, Alvarez MM, Leijten J, Khademhosseini A, Dana R, Annabi N. Ocular adhesives: Design, chemistry, crosslinking mechanisms, and applications. Biomaterials 2019; 197:345-367. [PMID: 30690421 PMCID: PMC6687460 DOI: 10.1016/j.biomaterials.2019.01.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/16/2018] [Accepted: 01/05/2019] [Indexed: 12/12/2022]
Abstract
Closure of ocular wounds after an accident or surgery is typically performed by suturing, which is associated with numerous potential complications, including suture breakage, inflammation, secondary neovascularization, erosion to the surface and secondary infection, and astigmatism; for example, more than half of post-corneal transplant infections are due to suture related complications. Tissue adhesives provide promising substitutes for sutures in ophthalmic surgery. Ocular adhesives are not only intended to address the shortcomings of sutures, but also designed to be easy to use, and can potentially minimize post-operative complications. Herein, recent progress in the design, synthesis, and application of ocular adhesives, along with their advantages, limitations, and potential are discussed. This review covers two main classes of ocular adhesives: (1) synthetic adhesives based on cyanoacrylates, polyethylene glycol (PEG), and other synthetic polymers, and (2) adhesives based on naturally derived polymers, such as proteins and polysaccharides. In addition, different technologies to cover and protect ocular wounds such as contact bandage lenses, contact lenses coupled with novel technologies, and decellularized corneas are discussed. Continued advances in this area can help improve both patient satisfaction and clinical outcomes.
Collapse
Affiliation(s)
- Grissel Trujillo-de Santiago
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA; Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA; Microsystems Technologies Laboratories, MIT, Cambridge, 02139, MA, USA; Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, NL 64849, Mexico
| | - Roholah Sharifi
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA; Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA
| | - Kan Yue
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA; Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA
| | - Ehsan Shrizaei Sani
- Chemical and Biomolecular Engineering Department, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Sara Saheb Kashaf
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA; Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA
| | - Mario Moisés Alvarez
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA; Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA; Microsystems Technologies Laboratories, MIT, Cambridge, 02139, MA, USA; Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, NL 64849, Mexico
| | - Jeroen Leijten
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA; Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA; Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medicine, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - Ali Khademhosseini
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA; Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA; Chemical and Biomolecular Engineering Department, University of California - Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, CA 90095, USA; Department of Radiology, David Geffen School of Medicine, University of California - Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
| | - Reza Dana
- Massachusetts Eye and Ear Infirmary and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Nasim Annabi
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA; Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA; Chemical and Biomolecular Engineering Department, University of California - Los Angeles, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
165
|
Accessing analytes in biofluids for peripheral biochemical monitoring. Nat Biotechnol 2019; 37:407-419. [DOI: 10.1038/s41587-019-0040-3] [Citation(s) in RCA: 336] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 11/20/2018] [Indexed: 02/07/2023]
|
166
|
Wearable biosensors for healthcare monitoring. Nat Biotechnol 2019; 37:389-406. [PMID: 30804534 DOI: 10.1038/s41587-019-0045-y] [Citation(s) in RCA: 1369] [Impact Index Per Article: 228.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 11/19/2018] [Indexed: 12/17/2022]
Abstract
Wearable biosensors are garnering substantial interest due to their potential to provide continuous, real-time physiological information via dynamic, noninvasive measurements of biochemical markers in biofluids, such as sweat, tears, saliva and interstitial fluid. Recent developments have focused on electrochemical and optical biosensors, together with advances in the noninvasive monitoring of biomarkers including metabolites, bacteria and hormones. A combination of multiplexed biosensing, microfluidic sampling and transport systems have been integrated, miniaturized and combined with flexible materials for improved wearability and ease of operation. Although wearable biosensors hold promise, a better understanding of the correlations between analyte concentrations in the blood and noninvasive biofluids is needed to improve reliability. An expanded set of on-body bioaffinity assays and more sensing strategies are needed to make more biomarkers accessible to monitoring. Large-cohort validation studies of wearable biosensor performance will be needed to underpin clinical acceptance. Accurate and reliable real-time sensing of physiological information using wearable biosensor technologies would have a broad impact on our daily lives.
Collapse
|
167
|
Yadav KS, Rajpurohit R, Sharma S. Glaucoma: Current treatment and impact of advanced drug delivery systems. Life Sci 2019; 221:362-376. [PMID: 30797820 DOI: 10.1016/j.lfs.2019.02.029] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/04/2019] [Accepted: 02/12/2019] [Indexed: 01/02/2023]
Abstract
The human eye being a complex and a very sensitive organ makes the drug delivery task challenging. An increase in the intra-ocular pressure at the aqueous humour leads to glaucoma which is not only indecipherable but can also be the reason of blindness for many. The presently available marketed formulations using anti-glaucoma drugs have issues of either difficulty in crossing the blood- retinal barrier or lower systemic bioavailability. Hence, the drugs having lower therapeutic index would need to be administered frequently, which eventually lead to deposition of concentrated solutions at ocular site, producing toxic effects and cellular damage to the eye. To overcome these drawbacks the novel drug delivery systems like In-situ gels, liposomes, niosomes, hydrogel, dendrimers, nanoparticles, solid lipid nanoparticles, Microneedles or ocular inserts play an important role to enhance the therapeutic efficacy of the anti-glaucomic drugs. The present review briefs the current treatments in terms of drugs used and in detail the impact of utilizing the above mentioned novel drug delivery systems in the treatment of glaucoma.
Collapse
Affiliation(s)
- Khushwant S Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, Mumbai, Maharashtra, India.
| | - Rahul Rajpurohit
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, Mumbai, Maharashtra, India
| | - Sushmita Sharma
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, Mumbai, Maharashtra, India
| |
Collapse
|
168
|
CMOS Interfaces for Internet-of-Wearables Electrochemical Sensors: Trends and Challenges. ELECTRONICS 2019. [DOI: 10.3390/electronics8020150] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Smart wearables, among immediate future IoT devices, are creating a huge and fast growing market that will encompass all of the next decade by merging the user with the Cloud in a easy and natural way. Biological fluids, such as sweat, tears, saliva and urine offer the possibility to access molecular-level dynamics of the body in a non-invasive way and in real time, disclosing a wide range of applications: from sports tracking to military enhancement, from healthcare to safety at work, from body hacking to augmented social interactions. The term Internet of Wearables (IoW) is coined here to describe IoT devices composed by flexible smart transducers conformed around the human body and able to communicate wirelessly. In addition the biochemical transducer, an IoW-ready sensor must include a paired electronic interface, which should implement specific stimulation/acquisition cycles while being extremely compact and drain power in the microwatts range. Development of an effective readout interface is a key element for the success of an IoW device and application. This review focuses on the latest efforts in the field of Complementary Metal–Oxide–Semiconductor (CMOS) interfaces for electrochemical sensors, and analyses them under the light of the challenges of the IoW: cost, portability, integrability and connectivity.
Collapse
|
169
|
Alvarez-Lorenzo C, Anguiano-Igea S, Varela-García A, Vivero-Lopez M, Concheiro A. Bioinspired hydrogels for drug-eluting contact lenses. Acta Biomater 2019; 84:49-62. [PMID: 30448434 DOI: 10.1016/j.actbio.2018.11.020] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/29/2018] [Accepted: 11/14/2018] [Indexed: 12/14/2022]
Abstract
Efficient ocular drug delivery that can overcome the challenges of topical application has been largely pursued. Contact lenses (CLs) may act as light-transparent cornea/sclera bandages for prolonged drug release towards the post-lens tear fluid, if their composition and inner architecture are fitted to the features of the drug molecules. In this review, first the foundations and advantages of using CLs as ocular drug depots are revisited. Then, pros and cons of common strategies to prepare drug-loaded CLs are analyzed on the basis of recent examples, and finally the main section focuses on bioinspired strategies that can overcome some limitations of current designs. Most bioinspired strategies resemble a reverse engineering process to create artificial receptors for the drug inside the CL network by mimicking the human natural binding site of the drug. Related bioinspired strategies are being also tested for designing CLs that elute comfort ingredients mimicking the blinking-associated renewal of eye mucins. Other bioinspired approaches exploit the natural eye variables as stimuli to trigger drug release or take benefit of bio-glues to specifically bind active components to the CL surface. Overall, biomimicking approaches are being revealed as valuable tools to fit the amounts loaded and the release profiles to the therapeutic demands of each pathology. STATEMENT OF SIGNIFICANCE: Biomimetic and bioinspired strategies are remarkable tools for the optimization of drug delivery systems. Translation of the knowledge about how drugs interact with the natural pharmacological receptor and about components and dynamics of anterior eye segment may shed light on the design criteria for obtaining efficient drug-eluting CLs. Current strategies for endowing CLs with controlled drug release performance still require optimization regarding amount loaded, drug retained in the CL structure during storage, regulation of drug release once applied onto the eye, and maintenance of CL physical properties. All these limitations may be addressed through a variety of recently growing bioinspired approaches, which are expected to pave the way of medicated CLs towards the clinics.
Collapse
Affiliation(s)
- Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Soledad Anguiano-Igea
- HGBeyond Materials Science S.L, Edificio Emprendia, Campus Vida s/n, 15782 Santiago de Compostela, Spain
| | - Angela Varela-García
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; HGBeyond Materials Science S.L, Edificio Emprendia, Campus Vida s/n, 15782 Santiago de Compostela, Spain
| | - María Vivero-Lopez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
170
|
Mohebbi S, Nezhad MN, Zarrintaj P, Jafari SH, Gholizadeh SS, Saeb MR, Mozafari M. Chitosan in Biomedical Engineering: A Critical Review. Curr Stem Cell Res Ther 2019; 14:93-116. [PMID: 30207244 DOI: 10.2174/1574888x13666180912142028] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/29/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022]
Abstract
Biomedical engineering seeks to enhance the quality of life by developing advanced materials and technologies. Chitosan-based biomaterials have attracted significant attention because of having unique chemical structures with desired biocompatibility and biodegradability, which play different roles in membranes, sponges and scaffolds, along with promising biological properties such as biocompatibility, biodegradability and non-toxicity. Therefore, chitosan derivatives have been widely used in a vast variety of uses, chiefly pharmaceuticals and biomedical engineering. It is attempted here to draw a comprehensive overview of chitosan emerging applications in medicine, tissue engineering, drug delivery, gene therapy, cancer therapy, ophthalmology, dentistry, bio-imaging, bio-sensing and diagnosis. The use of Stem Cells (SCs) has given an interesting feature to the use of chitosan so that regenerative medicine and therapeutic methods have benefited from chitosan-based platforms. Plenty of the most recent discussions with stimulating ideas in this field are covered that could hopefully serve as hints for more developed works in biomedical engineering.
Collapse
Affiliation(s)
- Shabnam Mohebbi
- Department of Chemical Engineering, Tabriz University, Tabriz, Iran
| | | | - Payam Zarrintaj
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Seyed Hassan Jafari
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Saman Seyed Gholizadeh
- Department of Microbiology, College of Basic Science, Islamic Azad University, Shiraz Branch, Shiraz, Iran
| | - Mohammad Reza Saeb
- Departments of Resin and Additives, Institute for Color Science and Technology, P.O. Box 16765-654, Tehran, Iran
| | - Masoud Mozafari
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
171
|
Moreddu R, Elsherif M, Butt H, Vigolo D, Yetisen AK. Contact lenses for continuous corneal temperature monitoring. RSC Adv 2019; 9:11433-11442. [PMID: 35520262 PMCID: PMC9063335 DOI: 10.1039/c9ra00601j] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/05/2019] [Indexed: 11/21/2022] Open
Abstract
Temperature variation is a ubiquitous medical sign to monitor ocular conditions including dry eye disease (DED), glaucoma, carotid artery stenosis, diabetic retinopathy, and vascular neuritis. The ability to measure OST in real time is desirable in point-of-care diagnostics. Here, we developed minimally invasive contact lens temperature sensors for continuous monitoring of the corneal temperature. The contact lens sensor consisted of a laser patterned commercial contact lens embedding temperature-sensitive Cholesteric Liquid Crystals (CLCs), which exhibited a fully reversible temperature-dependent color change in the visible spectrum. The contact lens allowed the corneal temperature to be mapped in four key areas, at distances of 0.0, 1.0, 3.0, and 5.0 mm from the pupil's edge. Liquid crystals exhibited a wavelength shift from 738 ± 4 nm to 474 ± 4 nm upon increasing the temperature from 29.0 °C to 40.0 °C, with a time responsivity of 490 ms and a negligible hysteresis. Readouts were performed using a smartphone, which output RGB triplets associated to temperature values. Contact lens sensors based on CLCs were fitted and tested on an ex vivo porcine eye and readouts were compared with infrared thermal measurements, resulting in an average difference of 0.3 °C. Temperature variation is a ubiquitous medical sign to monitor ocular conditions including dry eye disease (DED), glaucoma, carotid artery stenosis, diabetic retinopathy, and vascular neuritis.![]()
Collapse
Affiliation(s)
- Rosalia Moreddu
- Department of Chemical Engineering
- Imperial College London
- London
- SW7 2AZ UK
- School of Chemical Engineering
| | - Mohamed Elsherif
- School of Chemical Engineering
- University of Birmingham
- Birmingham
- UK
| | - Haider Butt
- Department of Mechanical Engineering
- Khalifa University
- Abu Dhabi 127788
- United Arab Emirates
| | - Daniele Vigolo
- School of Chemical Engineering
- University of Birmingham
- Birmingham
- UK
| | - Ali K. Yetisen
- Department of Chemical Engineering
- Imperial College London
- London
- SW7 2AZ UK
| |
Collapse
|
172
|
|
173
|
A novel murine model for contact lens wear reveals clandestine IL-1R dependent corneal parainflammation and susceptibility to microbial keratitis upon inoculation with Pseudomonas aeruginosa. Ocul Surf 2018; 17:119-133. [PMID: 30439473 DOI: 10.1016/j.jtos.2018.11.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE Contact lens wear carries a risk of complications, including corneal infection. Solving these complications has been hindered by limitations of existing animal models. Here, we report development of a new murine model of contact lens wear. METHODS C57BL/6 mice were fitted with custom-made silicone-hydrogel contact lenses with or without prior inoculation with Pseudomonas aeruginosa (PAO1-GFP). Contralateral eyes served as controls. Corneas were monitored for pathology, and examined ex vivo using high-magnification, time-lapse imaging. Fluorescent reporter mice allowed visualization of host cell membranes and immune cells. Lens-colonizing bacteria were detected by viable counts and FISH. Direct-colony PCR was used for bacterial identification. RESULTS Without deliberate inoculation, lens-wearing corneas remained free of visible pathology, and retained a clarity similar to non-lens wearing controls. CD11c-YFP reporter mice revealed altered numbers, and distribution, of CD11c-positive cells in lens-wearing corneas after 24 h. Worn lenses showed bacterial colonization, primarily by known conjunctival or skin commensals. Corneal epithelial cells showed vacuolization during lens wear, and after 5 days, cells with phagocyte morphology appeared in the stroma that actively migrated over resident keratocytes that showed altered morphology. Immunofluorescence confirmed stromal Ly6G-positive cells after 5 days of lens wear, but not in MyD88 or IL-1R gene-knockout mice. P. aeruginosa-contaminated lenses caused infectious pathology in most mice from 1 to 13 days. CONCLUSIONS This murine model of contact lens wear appears to faithfully mimic events occurring during human lens wear, and could be valuable for experiments, not possible in humans, that help solve the pathogenesis of lens-related complications.
Collapse
|
174
|
Agaoglu S, Diep P, Martini M, Kt S, Baday M, Araci IE. Ultra-sensitive microfluidic wearable strain sensor for intraocular pressure monitoring. LAB ON A CHIP 2018; 18:3471-3483. [PMID: 30276409 DOI: 10.1039/c8lc00758f] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Wearable technologies have potential to transform healthcare by providing continuous measurements of physiological parameters. Sensors that passively monitor physiological pressure without using electronic components are ideal for wearable contact lenses because they are easy to interface with the cornea and the external environment. Here, we report a passive integrated microfluidic sensor with a novel transduction mechanism that converts small strain changes into a large fluidic volume expansion, detectable by a smart-phone camera. The optimization of the sensor architecture and material properties results in a linear and stable sensor response. We have shown that the sensor has a detection limit of <0.06% for uniaxial and <0.004% for biaxial strain. We embedded our sensor in silicone contact lenses and measured the intraocular pressure induced strain in porcine eyes in the physiological range. The sensor's continuous operation capability for >19 hours and a lifetime reaching >7 months demonstrate its potential for long-term ophthalmic monitoring applications.
Collapse
Affiliation(s)
- Sevda Agaoglu
- Department of Bioengineering, Santa Clara University, Santa Clara, CA, USA.
| | | | | | | | | | | |
Collapse
|
175
|
Deng J, Chen S, Chen J, Ding H, Deng D, Xie Z. Self-Reporting Colorimetric Analysis of Drug Release by Molecular Imprinted Structural Color Contact Lens. ACS APPLIED MATERIALS & INTERFACES 2018; 10:34611-34617. [PMID: 30211539 DOI: 10.1021/acsami.8b11655] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
As a prospective ophthalmic drug delivery device, contact lenses attract a lot of attention because of the improved drug residence time and bioavailability. Herein, we proposed and fabricated a molecular imprinted structural color contact lens for sustained timolol release which could self-report the release process by color change. The specific recognition of target timolol by molecular imprinted sites can not only increase the loading amount and the residence time of the drug but also endow the structure color of lens remarkable blue shift with the accumulative release of timolol. The fascinating contact lens can be further used for controlling release of a large number of ophthalmic drugs and has high potential to be a new generation of functional contact lenses.
Collapse
Affiliation(s)
- Jingzhe Deng
- Department of Biomedical Engineering , China Pharmaceutical University , Nanjing 211198 , China
- State Key Laboratory of Bioelectronics , Southeast University , Nanjing 210096 , China
| | - Shan Chen
- State Key Laboratory of Bioelectronics , Southeast University , Nanjing 210096 , China
| | - Jialun Chen
- State Key Laboratory of Bioelectronics , Southeast University , Nanjing 210096 , China
| | - Hailong Ding
- State Key Laboratory of Bioelectronics , Southeast University , Nanjing 210096 , China
| | - Dawei Deng
- Department of Biomedical Engineering , China Pharmaceutical University , Nanjing 211198 , China
| | - Zhuoying Xie
- State Key Laboratory of Bioelectronics , Southeast University , Nanjing 210096 , China
| |
Collapse
|
176
|
Kim H, Kim J, Kang J, Song YW. Three-Dimensionally Printed Interconnects for Smart Contact Lenses. ACS APPLIED MATERIALS & INTERFACES 2018; 10:28086-28092. [PMID: 30043616 DOI: 10.1021/acsami.8b08675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
One of the ultimate wearable heath-monitoring gears, smart contact lens, requires miniaturized devices compounded and interconnected with each other on the lens for a successful system functioning. Because of the different device thickness, the interconnect patterns need to be three-dimensional (3D) conforming the steps given by the diversified on-lens devices. Also, the patterns should be low-temperature processed and flexible considering the mechanical and thermal property of the lens material. We demonstrate the 3D interconnects electrosprayed on a contact lens platform with Ag-Ag nanowire (NWs) composite ink conforming the steps. Quantitative and informative analysis on the interconnects is presented. Thick polyimide film (12.5 μm) in C-shape is employed as a primary substrate to form the 3D patterns that is to be transferred onto the contact lens. The AgNWs act as frames to support the Ag ion inks printed across the steps. The resultant interconnects realized with the Ag/AgNW composite ink with 0.3 wt % AgNW have the sheet resistance ( Rs) of 0.396 Ω/□ spanning the height difference of 300 μm. AgNWs also provide durability to the patterns against crack formation and propagation under significant device deformation. Unlike pure Ag pattern which shows the Rs changes of 86.1% in the bending condition, the optimally formulated composite pattern shows the suppressed Rs change of only 15.2% with a bending radius of 3 mm.
Collapse
Affiliation(s)
| | | | | | - Yong-Won Song
- Division of Nano & Information Technology, KIST School , Korea University of Science and Technology , Seoul 02792 , South Korea
| |
Collapse
|
177
|
Tseng RC, Chen CC, Hsu SM, Chuang HS. Contact-Lens Biosensors. SENSORS (BASEL, SWITZERLAND) 2018; 18:E2651. [PMID: 30104496 PMCID: PMC6111605 DOI: 10.3390/s18082651] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/06/2018] [Accepted: 08/10/2018] [Indexed: 12/14/2022]
Abstract
Rapid diagnosis and screening of diseases have become increasingly important in predictive and preventive medicine as they improve patient treatment strategies and reduce cost as well as burden on our healthcare system. In this regard, wearable devices are emerging as effective and reliable point-of-care diagnostics that can allow users to monitor their health at home. These wrist-worn, head-mounted, smart-textile, or smart-patches devices can offer valuable information on the conditions of patients as a non-invasive form of monitoring. However, they are significantly limited in monitoring physiological signals and biomechanics, and, mostly, rely on the physical attributes. Recently, developed wearable devices utilize body fluids, such as sweat, saliva, or skin interstitial fluid, and electrochemical interactions to allow continuous physiological condition and disease monitoring for users. Among them, tear fluid has been widely utilized in the investigation of ocular diseases, diabetes, and even cancers, because of its easy accessibility, lower complexity, and minimal invasiveness. By determining the concentration change of analytes within the tear fluid, it would be possible to identify disease progression and allow patient-oriented therapies. Considering the emerging trend of tear-based biosensing technology, this review article aims to focus on an overview of the tear fluid as a detection medium for certain diseases, such as ocular disorders, diabetes, and cancer. In addition, the rise and application of minimally invasive detection and monitoring via integrated contact lens biosensors will also be addressed, in regards to their practicality and current developmental progress.
Collapse
Affiliation(s)
- Ryan Chang Tseng
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City 701, Taiwan.
| | - Ching-Chuen Chen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City 701, Taiwan.
| | - Sheng-Min Hsu
- Department of Ophthalmology, National Cheng Kung University Hospital, Tainan City 704, Taiwan.
| | - Han-Sheng Chuang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City 701, Taiwan.
- Medical Device Innovation Center, National Cheng Kung University, Tainan City 701, Taiwan.
| |
Collapse
|
178
|
Proteomics Unravels the Regulatory Mechanisms in Human Tears Following Acute Renouncement of Contact Lens Use: A Comparison between Hard and Soft Lenses. Sci Rep 2018; 8:11526. [PMID: 30069058 PMCID: PMC6070515 DOI: 10.1038/s41598-018-30032-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/23/2018] [Indexed: 11/09/2022] Open
Abstract
Contact lenses (CLs) provide a superior alternative to spectacles. Although beneficial, the global burden of ocular dysfunctions attributed to regular use of CLs remains a topic of much challenge in ophthalmic research owing to debilitating clinical repercussions on the ocular surface, which are often manifested as breach in tear film integrity. This study elucidated the intricate tear proteome changes attributed to the use of different CLs (hard and soft) and unravelled, for the first time, the restorative mechanisms of several protein clusters following acute renouncement of CL use employing the label-free mass spectrometry-based quantitative proteomics approach. The expression patterns of certain proteins clusters were specific to the use of a particular lens type and a large majority of these actively regulates cell death and survival and, modulates cellular movement on the ocular surface. Noteworthy, CL use also evoked a significant upregulation of glycolytic enzymes associated with hypoxia and corresponding cognate metabolic pathways, particularly glucose metabolism and FXR/RXR pathways. Importantly, the assessment of CL renouncement unravelled the restorative properties of several clusters of proteins involved mainly in organismal injury and abnormalities and, cellular function and maintenance. These proteins play key roles in restoring tear homeostasis and wound-healing mechanisms post-CL use-elicited injury.
Collapse
|
179
|
Yetisen AK, Martinez‐Hurtado JL, Ünal B, Khademhosseini A, Butt H. Wearables in Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706910. [PMID: 29893068 PMCID: PMC6541866 DOI: 10.1002/adma.201706910] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 02/14/2018] [Indexed: 05/21/2023]
Abstract
Wearables as medical technologies are becoming an integral part of personal analytics, measuring physical status, recording physiological parameters, or informing schedule for medication. These continuously evolving technology platforms do not only promise to help people pursue a healthier life style, but also provide continuous medical data for actively tracking metabolic status, diagnosis, and treatment. Advances in the miniaturization of flexible electronics, electrochemical biosensors, microfluidics, and artificial intelligence algorithms have led to wearable devices that can generate real-time medical data within the Internet of things. These flexible devices can be configured to make conformal contact with epidermal, ocular, intracochlear, and dental interfaces to collect biochemical or electrophysiological signals. This article discusses consumer trends in wearable electronics, commercial and emerging devices, and fabrication methods. It also reviews real-time monitoring of vital signs using biosensors, stimuli-responsive materials for drug delivery, and closed-loop theranostic systems. It covers future challenges in augmented, virtual, and mixed reality, communication modes, energy management, displays, conformity, and data safety. The development of patient-oriented wearable technologies and their incorporation in randomized clinical trials will facilitate the design of safe and effective approaches.
Collapse
Affiliation(s)
- Ali K. Yetisen
- Institute for Measurement Systems and Sensor TechnologyTechnische Universität MünchenTheresienstrasse 90Munich80333Germany
- School of Chemical EngineeringThe University of BirminghamEdgbastonBirminghamB15 2TTUK
- Institute of Translational MedicineMindelsohn Way, EdgbastonBirminghamB15 2THUK
| | | | - Barış Ünal
- Triton Systems Inc.200 Turnpike Rd.ChelmsfordMA01824USA
| | - Ali Khademhosseini
- Department of BioengineeringDepartment of RadiologyDepartment of Chemical and Biomolecular EngineeringUniversity of CaliforniaLos AngelesCA90095USA
| | - Haider Butt
- Nanotechnology LaboratorySchool of EngineeringUniversity of BirminghamBirminghamB15 2TTUK
| |
Collapse
|
180
|
Stretchable wireless system for sweat pH monitoring. Biosens Bioelectron 2018; 107:192-202. [DOI: 10.1016/j.bios.2018.02.025] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/26/2018] [Accepted: 02/08/2018] [Indexed: 12/21/2022]
|
181
|
Jiang N, Montelongo Y, Butt H, Yetisen AK. Microfluidic Contact Lenses. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1704363. [PMID: 29521022 PMCID: PMC6607692 DOI: 10.1002/smll.201704363] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Indexed: 05/24/2023]
Abstract
Contact lens is a ubiquitous technology used for vision correction and cosmetics. Sensing in contact lenses has emerged as a potential platform for minimally invasive point-of-care diagnostics. Here, a microlithography method is developed to fabricate microconcavities and microchannels in a hydrogel-based contact lens via a combination of laser patterning and embedded templating. Optical microlithography parameters influencing the formation of microconcavities including ablation power (4.3 W) and beam speed (50 mm s-1 ) are optimized to control the microconcavity depth (100 µm) and diameter (1.5 mm). The fiber templating method allows the production of microchannels having a diameter range of 100-150 µm. Leak-proof microchannel and microconcavity connections in contact lenses are validated through flow testing of artificial tear containing fluorescent microbeads (Ø = 1-2 µm). The microconcavities of contact lenses are functionalized with multiplexed fluorophores (2 µL) to demonstrate optical excitation and emission capability within the visible spectrum. The fabricated microfluidic contact lenses may have applications in ophthalmic monitoring of metabolic disorders at point-of-care settings and controlled drug release for therapeutics.
Collapse
Affiliation(s)
- Nan Jiang
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
| | - Yunuen Montelongo
- Department of ChemistryImperial College LondonSouth Kensington CampusLondonSW7 2AZUK
- Universidad De La Salle BajíoLeón37150Mexico
| | - Haider Butt
- Nanotechnology LaboratorySchool of EngineeringUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Ali K. Yetisen
- Institute for Measurement Systems and Sensor TechnologyTechnische Universität MünchenTheresienstrasse 9080333MunichGermany
- School of Chemical EngineeringUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
- Institute of Translational MedicineMindelsohn Way, EdgbastonBirminghamB15 2THUK
| |
Collapse
|
182
|
Lee H, Hong YJ, Baik S, Hyeon T, Kim D. Enzyme-Based Glucose Sensor: From Invasive to Wearable Device. Adv Healthc Mater 2018; 7:e1701150. [PMID: 29334198 DOI: 10.1002/adhm.201701150] [Citation(s) in RCA: 341] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/28/2017] [Indexed: 02/07/2023]
Abstract
Blood glucose concentration is a key indicator of patients' health, particularly for symptoms associated with diabetes mellitus. Because of the large number of diabetic patients, many approaches for glucose measurement have been studied to enable continuous and accurate glucose level monitoring. Among them, electrochemical analysis is prominent because it is simple and quantitative. This technology has been incorporated into commercialized and research-level devices from simple test strips to wearable devices and implantable systems. Although directly monitoring blood glucose assures accurate information, the invasive needle-pinching step to collect blood often results in patients (particularly young patients) being reluctant to adopt the process. An implantable glucose sensor may avoid the burden of repeated blood collections, but it is quite invasive and requires periodic replacement of the sensor owing to biofouling and its short lifetime. Therefore, noninvasive methods to estimate blood glucose levels from tears, saliva, interstitial fluid (ISF), and sweat are currently being studied. This review discusses the evolution of enzyme-based electrochemical glucose sensors, including materials, device structures, fabrication processes, and system engineering. Furthermore, invasive and noninvasive blood glucose monitoring methods using various biofluids or blood are described, highlighting the recent progress in the development of enzyme-based glucose sensors and their integrated systems.
Collapse
Affiliation(s)
- Hyunjae Lee
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University (SNU) Seoul 08826 Republic of Korea
| | - Yongseok Joseph Hong
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University (SNU) Seoul 08826 Republic of Korea
| | - Seungmin Baik
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University (SNU) Seoul 08826 Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University (SNU) Seoul 08826 Republic of Korea
| | - Dae‐Hyeong Kim
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University (SNU) Seoul 08826 Republic of Korea
| |
Collapse
|
183
|
Han SJ, Park H, Lee JO, Choo H. Effect of optical aberrations on intraocular pressure measurements using a microscale optical implant in ex vivo rabbit eyes. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-9. [PMID: 29651824 PMCID: PMC8357320 DOI: 10.1117/1.jbo.23.4.047002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/23/2018] [Indexed: 06/03/2023]
Abstract
Elevated intraocular pressure (IOP) is the only modifiable major risk factor of glaucoma. Recently, accurate and continuous IOP monitoring has been demonstrated in vivo using an implantable sensor based on optical resonance with remote optical readout to improve patient outcomes. Here, we investigate the relationship between optical aberrations of ex vivo rabbit eyes and the performance of the IOP sensor using a custom-built setup integrated with a Shack-Hartmann sensor. The sensor readouts became less accurate as the aberrations increased in magnitude, but they remained within the clinically acceptable range. For root-mean-square wavefront errors of 0.10 to 0.94 μm, the accuracy and the signal-to-noise ratio were 0.58 ± 0.32 mm Hg and 15.57 ± 4.85 dB, respectively.
Collapse
Affiliation(s)
- Samuel J. Han
- California Institute of Technology, Department of Medical Engineering, Pasadena, California, United States
| | - Haeri Park
- California Institute of Technology, Department of Medical Engineering, Pasadena, California, United States
| | - Jeong Oen Lee
- California Institute of Technology, Department of Medical Engineering, Pasadena, California, United States
- California Institute of Technology, Department of Electrical Engineering, Pasadena, California, United States
| | - Hyuck Choo
- California Institute of Technology, Department of Medical Engineering, Pasadena, California, United States
- California Institute of Technology, Department of Electrical Engineering, Pasadena, California, United States
| |
Collapse
|
184
|
Advances in Materials for Recent Low-Profile Implantable Bioelectronics. MATERIALS 2018; 11:ma11040522. [PMID: 29596359 PMCID: PMC5951368 DOI: 10.3390/ma11040522] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/20/2018] [Accepted: 03/26/2018] [Indexed: 12/28/2022]
Abstract
The rapid development of micro/nanofabrication technologies to engineer a variety of materials has enabled new types of bioelectronics for health monitoring and disease diagnostics. In this review, we summarize widely used electronic materials in recent low-profile implantable systems, including traditional metals and semiconductors, soft polymers, biodegradable metals, and organic materials. Silicon-based compounds have represented the traditional materials in medical devices, due to the fully established fabrication processes. Examples include miniaturized sensors for monitoring intraocular pressure and blood pressure, which are designed in an ultra-thin diaphragm to react with the applied pressure. These sensors are integrated into rigid circuits and multiple modules; this brings challenges regarding the fundamental material’s property mismatch with the targeted human tissues, which are intrinsically soft. Therefore, many polymeric materials have been investigated for hybrid integration with well-characterized functional materials such as silicon membranes and metal interconnects, which enable soft implantable bioelectronics. The most recent trend in implantable systems uses transient materials that naturally dissolve in body fluid after a programmed lifetime. Such biodegradable metallic materials are advantageous in the design of electronics due to their proven electrical properties. Collectively, this review delivers the development history of materials in implantable devices, while introducing new bioelectronics based on bioresorbable materials with multiple functionalities.
Collapse
|
185
|
Wang T, Yang H, Qi D, Liu Z, Cai P, Zhang H, Chen X. Mechano-Based Transductive Sensing for Wearable Healthcare. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1702933. [PMID: 29359885 DOI: 10.1002/smll.201702933] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/20/2017] [Indexed: 06/07/2023]
Abstract
Wearable healthcare presents exciting opportunities for continuous, real-time, and noninvasive monitoring of health status. Even though electrochemical and optical sensing have already made great advances, there is still an urgent demand for alternative signal transformation in terms of miniaturization, wearability, conformability, and stretchability. Mechano-based transductive sensing, referred to the efficient transformation of biosignals into measureable mechanical signals, is claimed to exhibit the aforementioned desirable properties, and ultrasensitivity. In this Concept, a focus on pressure, strain, deflection, and swelling transductive principles based on micro-/nanostructures for wearable healthcare is presented. Special attention is paid to biophysical sensors based on pressure/strain, and biochemical sensors based on microfluidic pressure, microcantilever, and photonic crystals. There are still many challenges to be confronted in terms of sample collection, miniaturization, and wireless data readout. With continuing efforts toward solving those problems, it is anticipated that mechano-based transduction will provide an accessible route for multimode wearable healthcare systems integrated with physical, electrophysiological, and biochemical sensors.
Collapse
Affiliation(s)
- Ting Wang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hui Yang
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Dianpeng Qi
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhiyuan Liu
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Pingqiang Cai
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Han Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaodong Chen
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
186
|
Rechargeable, flexible and mediator-free biosupercapacitor based on transparent ITO nanoparticle modified electrodes acting in µM glucose containing buffers. Biosens Bioelectron 2018; 101:84-89. [DOI: 10.1016/j.bios.2017.10.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 10/03/2017] [Accepted: 10/09/2017] [Indexed: 11/24/2022]
|
187
|
Agustini D, Fedalto L, Bergamini MF, Marcolino-Junior LH. Microfluidic thread based electroanalytical system for green chromatographic separations. LAB ON A CHIP 2018; 18:670-678. [PMID: 29372195 DOI: 10.1039/c7lc01267e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The use of miniaturized chromatographic systems is an important strategy for reducing the consumption of supplies related to separations, allowing the development of more sustainable analytical methodologies. However, the high cost and complexity in the production of these systems combined with the operational difficulties and the need for the use of solvent and sample pretreatment are challenges to be overcome in order to make the chromatographic methods greener. Here, we report the construction and development of a low cost microfluidic system for green and solvent-free chromatographic separations with electrochemical detection integrated into cotton threads without the use of any mechanical pumping to transport the solutions. The manufacture of the proposed system was performed by simple assembly of the components, with the separation of the species based on an ion exchange mechanism and detection using gold electrodes manufactured directly on the cotton threads. A linear range of 0.025-5.0 mM was obtained for the effective separation of ascorbic acid (AA) and dopamine (DA) with detection limits of 2.89 μM (for AA) and 4.41 μM (for DA). Each analysis was performed at a low cost (less than 0.01 dollars), and with a small volume of waste generated (107.1 μL). So, the proposed system was successfully employed to determine the levels of AA and DA present in the tears of healthy volunteers without sample pretreatment, indicating the good analytical performance of the system and the possibility of performing greener chromatographic separations.
Collapse
Affiliation(s)
- Deonir Agustini
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CEP 81.531-980, Curitiba, PR, Brazil.
| | | | | | | |
Collapse
|
188
|
Hanstock HG, Edwards JP, Roberts R, Walsh NP. High heart rate reactors display greater decreases in tear SIgA concentration following a novel acute stressor. Biol Psychol 2018; 133:85-88. [PMID: 29427602 DOI: 10.1016/j.biopsycho.2018.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 12/07/2017] [Accepted: 02/04/2018] [Indexed: 10/18/2022]
Abstract
Tear secretory immunoglobulin-A (SIgA) is a putative biomarker of common-cold risk with potential utility in non-invasive diagnostics. As SIgA secretion at the ocular surface is under strong autonomic control, we investigated the relationship between HR reactivity and tear SIgA responses to novel experiential stress. Thirty-two healthy participants undertook a 60 s zip-line ride to evoke acute stress and a seated-rest control trial in a randomised-crossover design. We recorded heart rate (HR) continuously and collected unstimulated tear samples 5 min pre-, 2 min post- and 20 min post-stress/control. Stress increased HR and state anxiety whereas tear SIgA concentration decreased 44% post-stress vs. CONTROL Higher peak HR values during stress uniquely explained 21% of the variance in tear SIgA reactivity to stress (p < 0.01); high HR reactors displayed greater decreases in tear SIgA concentration. We conclude that physiological arousal increases immune reactivity to acute stress and highlight tear SIgA as a minimally-invasive, physiologically relevant biomarker of immune reactivity.
Collapse
Affiliation(s)
- Helen G Hanstock
- Extremes Research Group, College of Health and Behavioural Sciences, Bangor University, Bangor, Gwynedd, UK; Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden.
| | - Jason P Edwards
- Extremes Research Group, College of Health and Behavioural Sciences, Bangor University, Bangor, Gwynedd, UK
| | - Ross Roberts
- Institute for the Psychology of Elite Performance, College of Health and Behavioural Sciences, Bangor University, Bangor, Gwynedd, UK
| | - Neil P Walsh
- Extremes Research Group, College of Health and Behavioural Sciences, Bangor University, Bangor, Gwynedd, UK
| |
Collapse
|
189
|
Amperometric glucose sensing with polyaniline/poly(acrylic acid) composite film bearing glucose oxidase and catalase based on competitive oxygen consumption reactions. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.01.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
190
|
The impact of diabetes on corneal nerve morphology and ocular surface integrity. Ocul Surf 2018; 16:45-57. [PMID: 29113918 DOI: 10.1016/j.jtos.2017.10.006] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 10/03/2017] [Accepted: 10/26/2017] [Indexed: 12/11/2022]
|
191
|
Park J, Kim J, Kim SY, Cheong WH, Jang J, Park YG, Na K, Kim YT, Heo JH, Lee CY, Lee JH, Bien F, Park JU. Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. SCIENCE ADVANCES 2018; 4:eaap9841. [PMID: 29387797 PMCID: PMC5787380 DOI: 10.1126/sciadv.aap9841] [Citation(s) in RCA: 304] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 12/14/2017] [Indexed: 05/19/2023]
Abstract
Recent advances in wearable electronics combined with wireless communications are essential to the realization of medical applications through health monitoring technologies. For example, a smart contact lens, which is capable of monitoring the physiological information of the eye and tear fluid, could provide real-time, noninvasive medical diagnostics. However, previous reports concerning the smart contact lens have indicated that opaque and brittle components have been used to enable the operation of the electronic device, and this could block the user's vision and potentially damage the eye. In addition, the use of expensive and bulky equipment to measure signals from the contact lens sensors could interfere with the user's external activities. Thus, we report an unconventional approach for the fabrication of a soft, smart contact lens in which glucose sensors, wireless power transfer circuits, and display pixels to visualize sensing signals in real time are fully integrated using transparent and stretchable nanostructures. The integration of this display into the smart lens eliminates the need for additional, bulky measurement equipment. This soft, smart contact lens can be transparent, providing a clear view by matching the refractive indices of its locally patterned areas. The resulting soft, smart contact lens provides real-time, wireless operation, and there are in vivo tests to monitor the glucose concentration in tears (suitable for determining the fasting glucose level in the tears of diabetic patients) and, simultaneously, to provide sensing results through the contact lens display.
Collapse
Affiliation(s)
- Jihun Park
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Joohee Kim
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - So-Yun Kim
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Woon Hyung Cheong
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jiuk Jang
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Young-Geun Park
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kyungmin Na
- School of Electrical and Computer Engineering, UNIST, Ulsan 44919, Republic of Korea
| | - Yun-Tae Kim
- School of Life Sciences, School of Energy and Chemical Engineering, UNIST, Ulsan 44919, Republic of Korea
| | - Jun Hyuk Heo
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chang Young Lee
- School of Life Sciences, School of Energy and Chemical Engineering, UNIST, Ulsan 44919, Republic of Korea
| | - Jung Heon Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Corresponding author. (J.-U.P.); (F.B.); (J.H.L.)
| | - Franklin Bien
- School of Electrical and Computer Engineering, UNIST, Ulsan 44919, Republic of Korea
- Corresponding author. (J.-U.P.); (F.B.); (J.H.L.)
| | - Jang-Ung Park
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Corresponding author. (J.-U.P.); (F.B.); (J.H.L.)
| |
Collapse
|
192
|
Lee JO, Park H, Du J, Balakrishna A, Chen O, Sretavan D, Choo H. A microscale optical implant for continuous in vivo monitoring of intraocular pressure. MICROSYSTEMS & NANOENGINEERING 2017; 3:17057. [PMID: 31057882 PMCID: PMC6445001 DOI: 10.1038/micronano.2017.57] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 07/07/2017] [Accepted: 07/08/2017] [Indexed: 05/04/2023]
Abstract
Intraocular pressure (IOP) is a key clinical parameter in glaucoma management. However, despite the potential utility of daily measurements of IOP in the context of disease management, the necessary tools are currently lacking, and IOP is typically measured only a few times a year. Here we report on a microscale implantable sensor that could provide convenient, accurate, on-demand IOP monitoring in the home environment. When excited by broadband near-infrared (NIR) light from a tungsten bulb, the sensor's optical cavity reflects a pressure-dependent resonance signature that can be converted to IOP. NIR light is minimally absorbed by tissue and is not perceived visually. The sensor's nanodot-enhanced cavity allows for a 3-5 cm readout distance with an average accuracy of 0.29 mm Hg over the range of 0-40 mm Hg. Sensors were mounted onto intraocular lenses or silicone haptics and secured inside the anterior chamber in New Zealand white rabbits. Implanted sensors provided continuous in vivo tracking of short-term transient IOP elevations and provided continuous measurements of IOP for up to 4.5 months.
Collapse
Affiliation(s)
- Jeong Oen Lee
- Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91106, USA
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91106, USA
| | - Haeri Park
- Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91106, USA
| | - Juan Du
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Ashwin Balakrishna
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91106, USA
| | - Oliver Chen
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91106, USA
| | - David Sretavan
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Physiology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Hyuck Choo
- Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91106, USA
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91106, USA
| |
Collapse
|
193
|
Jospe MR, Taylor RW, Athens J, Roy M, Brown RC. Adherence to Hunger Training over 6 Months and the Effect on Weight and Eating Behaviour: Secondary Analysis of a Randomised Controlled Trial. Nutrients 2017; 9:nu9111260. [PMID: 29149038 PMCID: PMC5707732 DOI: 10.3390/nu9111260] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/17/2017] [Accepted: 11/14/2017] [Indexed: 01/03/2023] Open
Abstract
Monitoring blood glucose prior to eating can teach individuals to eat only when truly hungry, but how adherence to 'hunger training' influences weight loss and eating behaviour is uncertain. This exploratory, secondary analysis from a larger randomized controlled trial examined five indices of adherence to 'hunger training', chosen a priori, to examine which adherence measure best predicted weight loss over 6 months. We subsequently explored how the best measure of adherence influenced eating behavior in terms of intuitive and emotional eating. Retention was 72% (n = 36/50) at 6 months. Frequency of hunger training booklet entry most strongly predicted weight loss, followed by frequency of blood glucose measurements. Participants who completed at least 60 days of booklet entry (of recommended 63 days) lost 6.8 kg (95% CI: 2.6, 11.0; p < 0.001) more weight than those who completed fewer days. They also had significantly higher intuitive eating scores than those who completed 30 days or less of booklet entry; a difference (95% CI) of 0.73 (0.12, 1.35) in body-food choice congruence and 0.79 (0.06, 1.51) for eating for physical rather than emotional reasons. Adherent participants also reported significantly lower scores for emotional eating of -0.70 (-1.13, -0.27). Following hunger training and focusing on simply recording ratings of hunger on a regular basis can produce clinically significant weight loss and clinically relevant improvements in eating behaviour.
Collapse
Affiliation(s)
- Michelle R Jospe
- Department of Human Nutrition, University of Otago, Dunedin 9054, New Zealand.
| | - Rachael W Taylor
- Department of Medicine, University of Otago, Dunedin 9054, New Zealand.
| | - Josie Athens
- Department of Preventive and Social Medicine, University of Otago, Dunedin 9054, New Zealand.
| | - Melyssa Roy
- Department of Medicine, University of Otago, Dunedin 9054, New Zealand.
| | - Rachel C Brown
- Department of Human Nutrition, University of Otago, Dunedin 9054, New Zealand.
- Nutrition Society of New Zealand, Whanganui 4543, New Zealand.
| |
Collapse
|
194
|
Kim J, Jeerapan I, Ciui B, Hartel MC, Martin A, Wang J. Edible Electrochemistry: Food Materials Based Electrochemical Sensors. Adv Healthc Mater 2017; 6. [PMID: 28783874 DOI: 10.1002/adhm.201700770] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/13/2017] [Indexed: 11/10/2022]
Abstract
This study demonstrates the first example of completely food-based edible electrochemical sensors. The new edible composite electrodes consist of food materials and supplements serving as the edible conductor, corn, and olive oils as edible binders, vegetables as biocatalysts, and food-based packing sleeves. These edible composite electrodes are systematically characterized for their attractive electrochemical properties, such as potential window, capacitance, redox activity using various electrochemical techniques. The sensing performance of the edible carbon composite electrodes compares favorably with that of "traditional" carbon paste electrodes. Well defined voltammetric detection of catechol, uric acid, ascorbic acid, dopamine, and acetaminophen is demonstrated, including sensitive measurements in simulated saliva, gastric fluid, and intestinal fluid. Furthermore, successful biosensing applications are realized by incorporating a mushroom and horseradish vegetable tissues with edible carbon pastes for imparting biocatalytic activity toward the biosensing of phenolic and peroxide compounds. The attractive sensing performance of the new edible sensors indicates considerable promise for physiological monitoring applications and for developing edible and ingestible devices for diverse biomedical applications.
Collapse
Affiliation(s)
- Jayoung Kim
- Department of Nanoengineering; University of California; San Diego La Jolla CA 92093 USA
| | - Itthipon Jeerapan
- Department of Nanoengineering; University of California; San Diego La Jolla CA 92093 USA
| | - Bianca Ciui
- Department of Nanoengineering; University of California; San Diego La Jolla CA 92093 USA
| | - Martin C. Hartel
- Department of Nanoengineering; University of California; San Diego La Jolla CA 92093 USA
| | - Aida Martin
- Department of Nanoengineering; University of California; San Diego La Jolla CA 92093 USA
| | - Joseph Wang
- Department of Nanoengineering; University of California; San Diego La Jolla CA 92093 USA
| |
Collapse
|
195
|
Kovaleva M, Johnson K, Steven J, Barelle CJ, Porter A. Therapeutic Potential of Shark Anti-ICOSL VNAR Domains is Exemplified in a Murine Model of Autoimmune Non-Infectious Uveitis. Front Immunol 2017; 8:1121. [PMID: 28993766 PMCID: PMC5622306 DOI: 10.3389/fimmu.2017.01121] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/25/2017] [Indexed: 01/11/2023] Open
Abstract
Induced costimulatory ligand (ICOSL) plays an important role in the activation of T cells through its interaction with the inducible costimulator, ICOS. Suppression of full T cell activation can be achieved by blocking this interaction and has been shown to be an effective means of ameliorating disease in models of autoimmunity and inflammation. In this study, we demonstrated the ability of a novel class of anti-ICOSL antigen-binding single domains derived from sharks (VNARs) to effectively reduce inflammation in a murine model of non-infectious uveitis. In initial selections, specific VNARs that recognized human ICOSL were isolated from an immunized nurse shark phage display library and lead domains were identified following their performance in a series of antigen selectivity and in vitro bioassay screens. High potency in cell-based blocking assays suggested their potential as novel binders suitable for further therapeutic development. To test this hypothesis, surrogate anti-mouse ICOSL VNAR domains were isolated from the same phage display library and the lead VNAR clone selected via screening in binding and ICOS/ICOSL blocking experiments. The VNAR domain with the highest potency in cell-based blocking of ICOS/ICOSL interaction was fused to the Fc portion of human IgG1 and was tested in vivo in a mouse model of interphotoreceptor retinoid-binding protein-induced uveitis. The anti-mICOSL VNAR Fc, injected systemically, resulted in a marked reduction of inflammation in treated mice when compared with untreated control animals. This approach inhibited disease progression to an equivalent extent to that seen for the positive corticosteroid control, cyclosporin A, reducing both clinical and histopathological scores. These results represent the first demonstration of efficacy of a VNAR binding domain in a relevant clinical model of disease and highlight the potential of VNARs for the treatment of auto-inflammatory conditions.
Collapse
Affiliation(s)
| | - Katherine Johnson
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | | | | | - Andrew Porter
- Elasmogen Ltd., Aberdeen, United Kingdom
- Department of Molecular and Cell Biology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
196
|
Biswas SK, Sano H, Shams MI, Yano H. Three-Dimensional-Moldable Nanofiber-Reinforced Transparent Composites with a Hierarchically Self-Assembled "Reverse" Nacre-like Architecture. ACS APPLIED MATERIALS & INTERFACES 2017; 9:30177-30184. [PMID: 28812354 DOI: 10.1021/acsami.7b09390] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Achieving a structural hierarchy and a uniform nanofiller dispersion simultaneously remains highly challenging for obtaining a robust polymer nanocomposite of immiscible components. In this study, a remarkably facile Pickering emulsification approach is developed to fabricate hierarchical composites of immiscible acrylic polymer and native cellulose nanofibers by taking advantage of the dual role of the nanofibers as both emulsion stabilizer and polymer reinforcement. The composites feature a unique "reverse" nacre-like microstructure reinforced with a well-dispersed two-tier hierarchical nanofiber network, leading to a synergistic high strength, modulus, and toughness (20, 50, and 53 times that of neat polymer, respectively), high optical transparency (89%), high flexibility, and a drastically low thermal expansion (13 ppm K-1, 1/15th of the neat polymer). The nanocomposites have a three-dimensional-shape moldability, also their surface can be patterned with micro/nanoscale features with high fidelity by in situ compression molding, making them attractive as the substrate for flexible displays, smart contact lens devices, and photovoltaics. The Pickering emulsification approach should be broadly applicable for the fabrication of novel functional materials of various immiscible components.
Collapse
Affiliation(s)
- Subir K Biswas
- Research Institute for Sustainable Humanosphere, Kyoto University , Gokasho, Uji, Kyoto 611-0011, Japan
| | - Hironari Sano
- Research Institute for Sustainable Humanosphere, Kyoto University , Gokasho, Uji, Kyoto 611-0011, Japan
| | - Md Iftekhar Shams
- Forestry and Wood Technology Discipline, Khulna University , Khulna 9208, Bangladesh
| | - Hiroyuki Yano
- Research Institute for Sustainable Humanosphere, Kyoto University , Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
197
|
Abstract
With potential benefits to the 71 million contact lens users worldwide, contact lenses are being reinvented in the form of smart wearable electronics. In this issue of ACS Nano, Lee et al. report on the fascinating functions of a graphene-based smart contact lens that is able to protect eyes from electromagnetic waves and dehydration. Graphene and two-dimensional materials can be exploited in many opportunities in the development of smart contact lenses. Here, we briefly review and describe prospects for the future of smart contact lenses that incorporate graphene in their platforms.
Collapse
Affiliation(s)
- Kyoungjun Choi
- Nanoscience for Energy Technology and Sustainability, Department of Mechanical and Process Engineering, Eidgenössische Technische Hochschule (ETH) Zürich , Tannenstrasse 3, Zürich CH-8092, Switzerland
| | - Hyung Gyu Park
- Nanoscience for Energy Technology and Sustainability, Department of Mechanical and Process Engineering, Eidgenössische Technische Hochschule (ETH) Zürich , Tannenstrasse 3, Zürich CH-8092, Switzerland
| |
Collapse
|
198
|
Lee S, Jo I, Kang S, Jang B, Moon J, Park JB, Lee S, Rho S, Kim Y, Hong BH. Smart Contact Lenses with Graphene Coating for Electromagnetic Interference Shielding and Dehydration Protection. ACS NANO 2017; 11:5318-5324. [PMID: 28199121 DOI: 10.1021/acsnano.7b00370] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Recently, smart contact lenses with electronic circuits have been proposed for various sensor and display applications where the use of flexible and biologically stable electrode materials is essential. Graphene is an atomically thin carbon material with a two-dimensional hexagonal lattice that shows outstanding electrical and mechanical properties as well as excellent biocompatibility. In addition, graphene is capable of protecting eyes from electromagnectic (EM) waves that may cause eye diseases such as cataracts. Here, we report a graphene-based highly conducting contact lens platform that reduces the exposure to EM waves and dehydration. The sheet resistance of the graphene on the contact lens is as low as 593 Ω/sq (±9.3%), which persists in an wet environment. The EM wave shielding function of the graphene-coated contact lens was tested on egg whites exposed to strong EM waves inside a microwave oven. The results show that the EM energy is absorbed by graphene and dissipated in the form of thermal radiation so that the damage on the egg whites can be minimized. We also demonstrated the enhanced dehydration protection effect of the graphene-coated lens by monitoring the change in water evaporation rate from the vial capped with the contact lens. Thus, we believe that the graphene-coated contact lens would provide a healthcare and bionic platform for wearable technologies in the future.
Collapse
Affiliation(s)
- Sangkyu Lee
- Graphene Research Center, Advanced Institute of Convergence Technology & Department of Chemistry, Seoul National University , Gwanakro-1, Seoul 08826, Republic of Korea
- Materials & Production Engineering Research Institute, LG Electronics , LGro-222, Pyeongtaek 451-713, Republic of Korea
| | - Insu Jo
- Graphene Research Center, Advanced Institute of Convergence Technology & Department of Chemistry, Seoul National University , Gwanakro-1, Seoul 08826, Republic of Korea
| | - Sangmin Kang
- Graphene Research Center, Advanced Institute of Convergence Technology & Department of Chemistry, Seoul National University , Gwanakro-1, Seoul 08826, Republic of Korea
| | - Bongchul Jang
- Materials & Production Engineering Research Institute, LG Electronics , LGro-222, Pyeongtaek 451-713, Republic of Korea
| | - Joonhee Moon
- Advanced Nano-Surface Research Group, Korea Basic Science Institute , 169-148 Gwahak-ro, Yuseong-gu, Daejeon 34133, Republic of Korea
| | - Jong Bo Park
- Graphene Research Center, Advanced Institute of Convergence Technology & Department of Chemistry, Seoul National University , Gwanakro-1, Seoul 08826, Republic of Korea
| | - Soochang Lee
- Interojo, Inc., 28 & 25 Sandan-ro 15, Pyeongtaek 17744, Republic of Korea
| | - Sichul Rho
- Interojo, Inc., 28 & 25 Sandan-ro 15, Pyeongtaek 17744, Republic of Korea
| | - Youngsoo Kim
- Graphene Square, Inc., Inter-University Semiconductor Research Center, 1 Gwanak-ro, Seoul 08826, Republic of Korea
| | - Byung Hee Hong
- Graphene Research Center, Advanced Institute of Convergence Technology & Department of Chemistry, Seoul National University , Gwanakro-1, Seoul 08826, Republic of Korea
| |
Collapse
|
199
|
Delaney C, McCluskey P, Coleman S, Whyte J, Kent N, Diamond D. Precision control of flow rate in microfluidic channels using photoresponsive soft polymer actuators. LAB ON A CHIP 2017; 17:2013-2021. [PMID: 28530723 DOI: 10.1039/c7lc00368d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A novel approach that allows control of flow in microfluidic channels with unsurpassed performance using light is described. Valve structures have been created using photoresponsive hydrogels based on spiropyran-functionalised pNIPAAm hydrogels photopolymerised around pillar structures within the channels. Valve actuation is controlled from outside the fluidic system using externally located LEDs. Highly precise and accurate flow rates can be selected by passing real-time flow rate measurements into a PID algorithm. The optimised algorithm also minimises overshoot of the selected flow rate, eliminates flow rate drift, and improves the system response time. In addition to the dramatic improvements in flow rate control, the set up enables the polymer actuation behaviour to be rapidly characterised. The power supply to the LED also provides a useful system diagnostic for monitoring the performance of the valve over time. For example, degradation in the valve actuation due to photodegradation will manifest as an increasing power requirement over time, enabling predictive failure thresholds to be established for particular actuator designs and polymer compositions.
Collapse
Affiliation(s)
- Colm Delaney
- Insight Centre for Data Analytics, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland.
| | | | | | | | | | | |
Collapse
|
200
|
Abstract
Photonic crystals (PhCs) efficiently manipulate photons at the nanoscale. Applying these crystals to biological tissue that has been subjected to large deformation and humid environments can lead to fascinating bioapplications such as in vivo biosensors and artificial ocular prostheses. These applications require that these PhCs have mechanical durability, deformability, and biocompatibility. Herein, we introduce a deformable and conformal silk hydrogel inverse opal (SHIO); the photonic lattice of this 3D PhC can be deformed by mechanical strain. This SHIO is prepared by the UV cross-linking of a liquid stilbene/silk solution, to give a transparent and elastic hydrogel. The pseudophotonic band gap (pseudo-PBG) of this material can be stably tuned by deformation of the photonic lattice (stretching, bending, and compressing). Proof-of-concept experiments demonstrate that the SHIO can be applied as an ocular prosthesis for better vision, such as that provided by the tapeta lucida of nocturnal or deep-sea animals.
Collapse
|