151
|
Xiao L, Zhang L, Li S, Zhu Y, Yu Q, Liu Z, Qiu M, Li Y, Chen S, Zhou X. Visualization and Quantification of Drug Release by GSH-Responsive Multimodal Integrated Micelles. JACS AU 2024; 4:1194-1206. [PMID: 38559742 PMCID: PMC10976607 DOI: 10.1021/jacsau.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 04/04/2024]
Abstract
Using molecular imaging techniques to monitor biomarkers and drug release profiles simultaneously is highly advantageous for cancer diagnosis and treatment. However, achieving the accurate quantification of both biomarkers and drug release with a single imaging modality is challenging. This study presents the development of a glutathione (GSH)-responsive polymer-based micelle, PEG-SS-FCy7/PEG-SS-GEM (PSFG), which can precisely localize the tumor using bimodal imaging and prevent drug leakage. These PSFG micelles exhibit a small particle size of 106.3 ± 12.7 nm with a uniform size distribution, and the drug loading efficiency can also be easily controlled by changing the PEG-SS-FCy7 (PSF) and PEG-SS-GEM (PSG) feeding ratio. The PSFG micelles display weak fluorescence emission and minimal drug release under physiological conditions but collapse in the presence of GSH to trigger near-infrared fluorescence and the 19F magnetic resonance imaging signal, allowing for real-time monitoring of intracellular GSH levels and drug release. GSH could synergistically promote the disassembly of the micellar structure, resulting in accelerated probe and drug release of up to about 93.1% after 24 h. These prodrug micelles exhibit high in vitro and in vivo antitumor abilities with minimal side effects. The GSH-responsive drug delivery system with dual-modal imaging capability provides a promising imaging-guided chemotherapeutic platform to probe the tumor microenvironment and quantify real-time drug release profiles with minimal side effects.
Collapse
Affiliation(s)
- Long Xiao
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy
for Precision Measurement Science and Technology, Chinese Academy
of Sciences, Wuhan 430071, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lei Zhang
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy
for Precision Measurement Science and Technology, Chinese Academy
of Sciences, Wuhan 430071, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Sha Li
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy
for Precision Measurement Science and Technology, Chinese Academy
of Sciences, Wuhan 430071, P. R. China
| | - Yue Zhu
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy
for Precision Measurement Science and Technology, Chinese Academy
of Sciences, Wuhan 430071, P. R. China
| | - Qiao Yu
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy
for Precision Measurement Science and Technology, Chinese Academy
of Sciences, Wuhan 430071, P. R. China
| | - Zhaoqing Liu
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy
for Precision Measurement Science and Technology, Chinese Academy
of Sciences, Wuhan 430071, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Maosong Qiu
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy
for Precision Measurement Science and Technology, Chinese Academy
of Sciences, Wuhan 430071, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yu Li
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy
for Precision Measurement Science and Technology, Chinese Academy
of Sciences, Wuhan 430071, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shizhen Chen
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy
for Precision Measurement Science and Technology, Chinese Academy
of Sciences, Wuhan 430071, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School
of Biomedical Engineering, Hainan University, Haikou, Hainan 570228, P. R. China
| | - Xin Zhou
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy
for Precision Measurement Science and Technology, Chinese Academy
of Sciences, Wuhan 430071, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School
of Biomedical Engineering, Hainan University, Haikou, Hainan 570228, P. R. China
| |
Collapse
|
152
|
Kohlbecher R, Müller TJJ. A Rational Design of Electrochemically and Photophysically Tunable Triarylamine Luminophores by Consecutive (Pseudo-)Four-Component Syntheses. Chemistry 2024; 30:e202304119. [PMID: 38227421 DOI: 10.1002/chem.202304119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/17/2024]
Abstract
The concatenation of Suzuki coupling and two-fold Buchwald-Hartwig amination in sequentially palladium-catalyzed consecutive multicomponent syntheses paves a concise, convergent route to diversely functionalized para-biaryl-substituted triarylamines (p-bTAAs) from simple, readily available starting materials. An extensive library of p-bTAAs permits comprehensive investigations of their electronic properties by absorption and emission spectroscopy, cyclic voltammetry, and quantum chemical calculations, which contribute to a deep understanding of their electronic structure. The synthesized p-bTAAs exhibit tunable fluorescence from blue to yellow upon photonic excitation with quantum yields up to 98 % in solution and 92 % in the solid state. Furthermore, a pronounced bathochromic shift of the emission maxima by increasing solvent polarity indicates positive emission solvatochromism. Aggregation-induced enhanced emission (AIEE) in dimethyl sulfoxide (DMSO)/water mixtures causes the formation of intensely blue fluorescent aggregates. Cyclic voltammetry shows reversible first and second oxidations of p-bTAAs at low potentials, which are tunable by variation of the introduced para substituents. 3D Hammett plots resulting from the correlation of oxidation potentials and emission maxima with electronic substituent parameters emphasize the rational design of tailored p-bTAAs with predictable electrochemical and photophysical properties.
Collapse
Affiliation(s)
- Regina Kohlbecher
- Heinrich-Heine-Universität Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Universitätstrasse 1, 40225, Düsseldorf, Germany
| | - Thomas J J Müller
- Heinrich-Heine-Universität Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Universitätstrasse 1, 40225, Düsseldorf, Germany
| |
Collapse
|
153
|
Liu X, Chu B, Xiong Z, Liu B, Tu W, Zhang Z, Zhang H, Sun JZ, Zhang X, Tang BZ. Heteroatom-facilitated blue to near-infrared emission of nonconjugated polyesters. MATERIALS HORIZONS 2024; 11:1579-1587. [PMID: 38268396 DOI: 10.1039/d3mh01732j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Making nonconjugated polymers to emit visible light remains a formidable challenge, let alone near-infrared (NIR) light, although NIR luminophores have many advanced applications. Herein, we propose an electron-bridging strategy of using heteroatoms (O, N, and S) to achieve tunable emission from blue to NIR regions (440-800 nm) in nonconjugated polyesters. Especially, sulfur-containing polyester P4 exhibits NIR clusteroluminescence (CL) on changing either the concentration or excitation wavelength. Experimental characterization and theoretical calculation demonstrate that the introduction of heteroatoms significantly enhances the through-space interactions (TSIs) via the electron-bridging effect between heteroatoms and carbonyls. The strength of the electron-bridging effect follows the order of S > N > O, based on two synergistic effects: electronic structure and van der Waals radius of heteroatoms. This work provides a low-cost, scalable platform to produce new-generation nonconjugated luminophores with deeper insight into the photophysical mechanism.
Collapse
Affiliation(s)
- Xiong Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Centre for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou 311215, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China
| | - Bo Chu
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Centre for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Zuping Xiong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou 311215, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China
| | - Bin Liu
- School of Energy and Power Engineering, North University of China, Taiyuan 030051, China
| | - Weihao Tu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou 311215, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China
| | - Ziteng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Centre for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou 311215, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou 311215, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China
| | - Jing Zhi Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China
| | - Xinghong Zhang
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Centre for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Ben Zhong Tang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangzhou 518172, China.
| |
Collapse
|
154
|
Liu H, Hu Z, Ji X. Characterization by Gel Permeation Chromatography of the Molecular Weight of Supramolecular Polymers Generated by Forming Polyrotaxanes through the Introduction of External Stoppers. Chemistry 2024; 30:e202400099. [PMID: 38212246 DOI: 10.1002/chem.202400099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
Supramolecular polymers find wide applications across diverse domains, and the molecular weight exerts a critical influence on their applicability. Consequently, the measurement of molecular weight for supramolecular polymers assumes paramount significance. Gel Permeation Chromatography (GPC) requiring low-concentration condition is a common characterization employed for molecular weight determination, which is not suitable for supramolecular polymers possessing concentration-independence property. Here, to break this threshold, we synthesized M1 embodying dibenzo-24-crown-8 (DB24C8) moiety as well as dibenzylammonium salt (DBA) group, which was capable of self-assembling into supramolecular polymers terminated with aldehyde groups at its end. Upon the addition of (4- (1,2,2-Triphenylvinyl) phenyl) methylamine (TPE-NH2), supramolecular polymers underwent a transition into polyrotaxanes, for which it was led by the generation of imine bonds. By virtue of GPC, the molecular weight of polyrotaxanes was obtained, then it was available to gain the molecular weight of supramolecular polymers with the help of transformation efficiency.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Ziqing Hu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Xiaofan Ji
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| |
Collapse
|
155
|
Ma W, Wang Y, Xue Y, Wang M, Lu C, Guo W, Liu YH, Shu D, Shao G, Xu Q, Tu D, Yan H. Molecular engineering of AIE-active boron clustoluminogens for enhanced boron neutron capture therapy. Chem Sci 2024; 15:4019-4030. [PMID: 38487248 PMCID: PMC10935674 DOI: 10.1039/d3sc06222h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/01/2024] [Indexed: 03/17/2024] Open
Abstract
The development of boron delivery agents bearing an imaging capability is crucial for boron neutron capture therapy (BNCT), yet it has been rarely explored. Here we present a new type of boron delivery agent that integrates aggregation-induced emission (AIE)-active imaging and a carborane cluster for the first time. In doing so, the new boron delivery agents have been rationally designed by incorporating a high boron content unit of a carborane cluster, an erlotinib targeting unit towards lung cancer cells, and a donor-acceptor type AIE unit bearing naphthalimide. The new boron delivery agents demonstrate both excellent AIE properties for imaging purposes and highly selective accumulation in tumors. For example, at a boron delivery agent dose of 15 mg kg-1, the boron amount reaches over 20 μg g-1, and both tumor/blood (T/B) and tumor/normal cell (T/N) ratios reach 20-30 times higher than those required by BNCT. The neutron irradiation experiments demonstrate highly efficient tumor growth suppression without any observable physical tissue damage and abnormal behavior in vivo. This study not only expands the application scopes of both AIE-active molecules and boron clusters, but also provides a new molecular engineering strategy for a deep-penetrating cancer therapeutic protocol based on BNCT.
Collapse
Affiliation(s)
- Wenli Ma
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yanyang Wang
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University Nanjing 210008 China
| | - Yilin Xue
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University Nanjing 210033 China
| | - Mengmeng Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Wanhua Guo
- Department of Nuclear Medicine, Nanjing Tongren Hospital, the Affiliated Hospital of Southeast University Medical School Nanjing 210033 China
| | - Yuan-Hao Liu
- Neuboron Therapy System Ltd. Xiamen 361028 China
- Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
- Neuboron Medtech Ltd. Nanjing 211112 China
| | - Diyun Shu
- Neuboron Therapy System Ltd. Xiamen 361028 China
- Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
- Neuboron Medtech Ltd. Nanjing 211112 China
| | - Guoqiang Shao
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University Nanjing 210033 China
| | - Qinfeng Xu
- Department of Nuclear Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing 210029 China
| | - Deshuang Tu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
156
|
Lavarda G, Berghuis AM, Joseph K, van der Tol JJB, Murai S, Gómez Rivas J, Meijer EW. Tunable emission from H-type supramolecular polymers in optical nanocavities. Chem Commun (Camb) 2024; 60:2812-2815. [PMID: 38362956 PMCID: PMC10913141 DOI: 10.1039/d3cc05877h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
H-type supramolecular polymers with preferred helicity and highly efficient emission have been prepared from the self-assembly of chiral tetraphenylene-based monomers. Implementation of the one-dimensional fibers into dielectric nanoparticle arrays allows for a significant reshaping of fluorescence due to weak light-matter coupling.
Collapse
Affiliation(s)
- Giulia Lavarda
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands.
| | - Anton M Berghuis
- Eindhoven Hendrik Casimir Institute and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Kripa Joseph
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands.
| | - Joost J B van der Tol
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands.
| | - Shunsuke Murai
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 6158510, Japan
| | - Jaime Gómez Rivas
- Eindhoven Hendrik Casimir Institute and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - E W Meijer
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands.
| |
Collapse
|
157
|
Li Y, Zhang L, Meng X, Shi G, Gao W, Duan G, Ge Y. Visible-light Excited and Highly Photostable Organic Fluorophore with dual-state Emission. J Fluoresc 2024; 34:829-832. [PMID: 37389710 DOI: 10.1007/s10895-023-03305-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023]
Abstract
Organic fluorophores with dual-state emission (DSE) are rare or difficult to observe because most of them display either aggregation-induced emission (AIE) or aggregation-caused quenching (ACQ). Amazing works have been accomplished, yet most of the DSE compounds were excited by UV light which limits their wide application in bioimaging. In this work, we achieved a visible-light excited DSE fluorophore and realized its imaging in SKOV-3 cells and zebrafish. The naphtho[2',3':4,5]imidazo[1,2-a]pyridine (NIP) core ensures its emission in dilute solution. Meanwhile, the twisted phenyl ring blocks fluorescence quenching induced by the π-π stacking and leads to the emission of the solid. The fluorescence intensity is steady even after 6 h of continuous intense sunlight. More importantly, photostability of NIP in cells is much better than commercial dye (mitochondrial green).
Collapse
Affiliation(s)
- Yongchao Li
- Department of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 619, Changcheng Road, Taian, 271016, Shandong, China
| | - Liqing Zhang
- Department of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 619, Changcheng Road, Taian, 271016, Shandong, China
| | - Xianfeng Meng
- Department of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 619, Changcheng Road, Taian, 271016, Shandong, China
| | - Guowei Shi
- Department of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 619, Changcheng Road, Taian, 271016, Shandong, China
| | - Wei Gao
- Department of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 619, Changcheng Road, Taian, 271016, Shandong, China
| | - Guiyun Duan
- Department of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 619, Changcheng Road, Taian, 271016, Shandong, China.
| | - Yanqing Ge
- Department of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 619, Changcheng Road, Taian, 271016, Shandong, China.
| |
Collapse
|
158
|
Sun Z, Sun Z, Liu J, Gao X, Jiao L, Zhao Q, Chu Y, Wang X, Deng G, Cai L. Engineered Extracellular Vesicles Expressing Siglec-10 Camouflaged AIE Photosensitizer to Reprogram Macrophages to Active M1 Phenotype and Present Tumor-Associated Antigens for Photodynamic Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307147. [PMID: 37941517 DOI: 10.1002/smll.202307147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/15/2023] [Indexed: 11/10/2023]
Abstract
Cancer immunotherapy has attracted considerable attention due to its advantages of persistence, targeting, and ability to kill tumor cells. However, the efficacy of tumor immunotherapy in practical applications is limited by tumor heterogeneity and complex tumor immunosuppressive microenvironments in which abundant of M2 macrophages and immune checkpoints (ICs) are present. Herein, two type-I aggregation-induced emission (AIE)-active photosensitizers with various reactive oxygen species (ROS)-generating efficiencies are designed and synthesized. Engineered extracellular vesicles (EVs) that express ICs Siglec-10 are first obtained from 4T1 tumor cells. The engineered EVs are then fused with the AIE photosensitizer-loaded lipidic nanosystem to form SEx@Fc-NPs. The ROS generated by the inner type-I AIE photosensitizer of the SEx@Fc-NPs through photodynamic therapy (PDT) can convert M2 macrophages into M1 macrophages to improve tumor immunosuppressive microenvironment. The outer EV-antigens that carry 4T1 tumor-associated antigens directly stimulate dendritic cells maturation to activate different types of tumor-specific T cells in overcoming tumor heterogeneity. In addition, blocking Siglec-10 reversed macrophage exhaustion for enhanced antitumor ability. This study presents that a combination of PDT, immune checkpoints, and EV-antigens can greatly improve the efficiency of tumor immunotherapy and is expected to serve as an emerging strategy to improve tumor immunosuppressive microenvironment and overcome immune escape.
Collapse
Affiliation(s)
- Zhihong Sun
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, P. R. China
- Queen Mary School, Nanchang University, Nanchang, 330031, P. R. China
| | - Zhuokai Sun
- Queen Mary School, Nanchang University, Nanchang, 330031, P. R. China
| | - Jie Liu
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, P. R. China
| | - Xiaohan Gao
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, P. R. China
| | - Liping Jiao
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, P. R. China
| | - Qi Zhao
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, P. R. China
| | - Yongli Chu
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, P. R. China
| | - Xiaozhong Wang
- The Second Affiliated Hospital of Nanchang University, Nanchang, 330031, P. R. China
- School of Public Health, Nanchang University, Nanchang, 330031, P. R. China
| | - Guanjun Deng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- Sino-Euro Center of Biomedicine and Health, Shenzhen, 518024, P. R. China
| |
Collapse
|
159
|
He W, Kwok RTK, Qiu Z, Zhao Z, Tang BZ. A Holistic Perspective on Living Aggregate. J Am Chem Soc 2024; 146:5030-5044. [PMID: 38359354 DOI: 10.1021/jacs.3c09892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Aggregate is one of the most extensive existing modes of matters in the world. Besides the research objectives of inanimate systems in physical science, the entities in life science can be regarded as living aggregates, which are far from being thoroughly understood despite the great advances in molecular biology. Molecular biology follows the research philosophy of reductionism, which generally reduces the whole into parts to study. Although reductionism benefits the understanding of molecular behaviors, it encounters limitations when extending to the aggregate level. Holism is another epistemology comparable to reductionism, which studies objectives at the aggregate level, emphasizing the interactions and synergetic/antagonistic effects of a group of composed single entities in determining the characteristics of a whole. As a representative of holism, aggregation-induced emission (AIE) materials have made great achievements in the past two decades in both physical and life science. In particular, the unique properties of AIE materials endow them with in situ and real-time visual methods to investigate the inconsistency between microscopic molecules and macroscopic substances, offering researchers excellent toolkits to study living aggregates. The applications of AIE materials in life science are still in their infancy and worth expanding. In this Perspective, we summarize the research progress of AIE materials in unveiling some phenomena and processes of living systems, aiming to provide a general research approach from the viewpoint of holism. At last, insights into what we can do in the near future are also raised and discussed.
Collapse
Affiliation(s)
- Wei He
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing First RD, South Area, Hi-Tech Park Nanshan, Shenzhen 518057, China
| | - Ryan Tsz Kin Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing First RD, South Area, Hi-Tech Park Nanshan, Shenzhen 518057, China
| | - Zijie Qiu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Zheng Zhao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| |
Collapse
|
160
|
Shi Y, He X. Aggregation-Induced Emission-Based Chemiluminescence Systems in Biochemical Analysis and Disease Theranostics. Molecules 2024; 29:983. [PMID: 38474496 DOI: 10.3390/molecules29050983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Chemiluminescence (CL) is of great significance in biochemical analysis and imaging due to its high sensitivity and lack of need for external excitation. In this review, we summarized the recent progress of AIE-based CL systems, including their working mechanisms and applications in biochemical analysis, bioimaging, and disease diagnosis and treatment. In ion and molecular detection, CL shows high selectivity and high sensitivity, especially in the detection of dynamic reactive oxygen species (ROS). Further, the integrated NIR-CL single-molecule system and nanostructural CL platform harnessing CL resonance energy transfer (CRET) have remarkable advantages in long-term imaging with superior capability in penetrating deep tissue depth and high signal-to-noise ratio, and are promising in the applications of in vivo imaging and image-guided disease therapy. Finally, we summarized the shortcomings of the existing AIE-CL system and provided our perspective on the possible ways to develop more powerful CL systems in the future. It can be highly expected that these promoted CL systems will play bigger roles in biochemical analysis and disease theranostics.
Collapse
Affiliation(s)
- Yixin Shi
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xuewen He
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
161
|
Xu C, Ou X, Wang B, Shen H, Liu J, Yang X, Zhou Q, Chau JHC, Sung HHY, Xing G, Lam JWY, Tang BZ. Modulation of Heterotypic and Homotypic Interactions to Visualize the Evolution of Organic Aggregates in a Fluorescence Turn-on Manner. J Am Chem Soc 2024; 146:4851-4863. [PMID: 38346857 DOI: 10.1021/jacs.3c13252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The abnormal evolution of membrane-less organelles into amyloid fibrils is a causative factor in many neurodegenerative diseases. Fundamental research on evolving organic aggregates is thus instructive for understanding the root causes of these diseases. In-situ monitoring of evolving molecular aggregates with built-in fluorescence properties is a reliable approach to reflect their subtle structural variation. To increase the sensitivity of real-time monitoring, we presented organic aggregates assembled by TPAN-2MeO, which is a triphenyl acrylonitrile derivative. TPAN-2MeO showed a morphological evolution with distinct turn-on emission. Upon rapid nanoaggregation, it formed non-emissive spherical aggregates in the kinetically metastable state. Experimental and simulation results revealed that the weak homotypic interactions between the TPAN-2MeO molecules liberated their molecular motion for efficient non-radiative decay, and the strong heterotypic interactions between TPAN-2MeO and water stabilized the molecular geometry favorable for the non-fluorescent state. After ultrasonication, the decreased heterotypic interactions and increased homotypic interactions acted synergistically to allow access to the emissive thermodynamic equilibrium state with a decent photoluminescence quantum yield (PLQY). The spherical aggregates were eventually transformed into micrometer-sized blocklike particles. Under mechanical stirring, the co-assembly of TPAN-2MeO and Pluronic F-127 formed uniform fluorescent platelets, inducing a significant enhancement in PLQY. These results decipher the stimuli-triggered structural variation of organic aggregates with concurrent sensitive fluorescence response and pave the way for a deep understanding of the evolutionary events of biogenic aggregates.
Collapse
Affiliation(s)
- Changhuo Xu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- MOE Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau, 999078, China
| | - Xinwen Ou
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Bingzhe Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, China
| | - Hanchen Shen
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Junkai Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Xueqin Yang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Qingqing Zhou
- MOE Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau, 999078, China
| | - Joe H C Chau
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Herman H Y Sung
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Guichuan Xing
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
162
|
Saddik AA, Mohammed AAK, Talloj SK, Kamal El-Dean AM, Younis O. Solvatochromism of new tetraphenylethene luminogens: integration of aggregation-induced emission and conjugation-induced rigidity for emitting strongly in both solid and solution state. RSC Adv 2024; 14:6072-6084. [PMID: 38370453 PMCID: PMC10870197 DOI: 10.1039/d4ra00719k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024] Open
Abstract
In this study, we synthesized and characterized four tetraphenylethene (TPE) analogs, investigated their photophysical properties, and conducted quantum chemical calculations. Some molecules exhibited aggregation-induced emission enhancement behavior and showed efficient emission in both solid and solution states. Solvatochromism was observed in particular derivatives, with solvent polarity influencing either a bathochromic or hypsochromic shift, indicating the occurrence of photoinduced intramolecular charge transfer (ICT) processes. Quantum chemical calculations confirmed that variations in molecular packing and rigidity among the TPE analogs contributed to their diverse behavior. The study showcases aggregation in luminophores without significant impact on the excited state and highlights how minor alterations in terminal substituents can lead to unconventional behavior. These findings have implications for the development of luminescent materials. Furthermore, the synthesized compounds exhibited biocompatibility, suggesting their potential for cell imaging applications.
Collapse
Affiliation(s)
- Abdelreheem A Saddik
- Department of Chemistry, Faculty of Science, Assiut University Assiut 71516 Egypt
| | - Ahmed A K Mohammed
- Department of Chemistry, Faculty of Science, Assiut University Assiut 71516 Egypt
| | - Satish K Talloj
- Intonation Research Laboratories Nacharam Hyderabad Telangana 500076 India
| | - Adel M Kamal El-Dean
- Department of Chemistry, Faculty of Science, Assiut University Assiut 71516 Egypt
| | - Osama Younis
- Chemistry Department, Faculty of Science, New Valley University El-Kharga 72511 Egypt
| |
Collapse
|
163
|
Li X, Zhang Y, Shi Z, Wang D, Yang H, Zhang Y, Qin H, Lu W, Chen J, Li Y, Qing G. Water-stable boroxine structure with dynamic covalent bonds. Nat Commun 2024; 15:1207. [PMID: 38331926 PMCID: PMC10853236 DOI: 10.1038/s41467-024-45464-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Boroxines are significant structures in the production of covalent organic frameworks, anion receptors, self-healing materials, and others. However, their utilization in aqueous media is a formidable task due to hydrolytic instability. Here we report a water-stable boroxine structure discovered from 2-hydroxyphenylboronic acid. We find that, under ambient environments, 2-hydroxyphenylboronic acid undergoes spontaneous dehydration to form a dimer with dynamic covalent bonds and aggregation-induced enhanced emission activity. Intriguingly, upon exposure to water, the dimer rapidly transforms into a boroxine structure with excellent pH stability and water-compatible dynamic covalent bonds. Building upon these discoveries, we report the strong binding capacity of boroxines toward fluoride ions in aqueous media, and develop a boroxine-based hydrogel with high acid-base stability and reversible gel-sol transition. This discovery of the water-stable boroxine structure breaks the constraint of boroxines not being applicable in aqueous environments, opening a new era of researches in boroxine chemistry.
Collapse
Affiliation(s)
- Xiaopei Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
- Instrumental Analysis Center, School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, P. R. China
| | - Yongjie Zhang
- Instrumental Analysis Center, School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, P. R. China
| | - Zhenqiang Shi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Dongdong Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Hang Yang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Yahui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Haijuan Qin
- Research Centre of Modern Analytical Technology, Tianjin University of Science & Technology, Tianjin, P. R. China
| | - Wenqi Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Junjun Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Yan Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Guangyan Qing
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China.
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, P. R. China.
| |
Collapse
|
164
|
Yang LL, Wang H, Zhang J, Wu B, Li Q, Chen JY, Tang AL, Lam JWY, Zhao Z, Yang S, Tang BZ. Understanding the AIE phenomenon of nonconjugated rhodamine derivatives via aggregation-induced molecular conformation change. Nat Commun 2024; 15:999. [PMID: 38307892 PMCID: PMC10837119 DOI: 10.1038/s41467-024-45271-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 01/19/2024] [Indexed: 02/04/2024] Open
Abstract
The bottom-up molecular science research paradigm has greatly propelled the advancement of materials science. However, some organic molecules can exhibit markedly different properties upon aggregation. Understanding the emergence of these properties and structure-property relationship has become a new research hotspot. In this work, by taking the unique closed-form rhodamines-based aggregation-induced emission (AIE) system as model compounds, we investigated their luminescent properties and the underlying mechanism deeply from a top-down viewpoint. Interestingly, the closed-form rhodamine-based AIE system did not display the expected emission behavior under high-viscosity or low-temperature conditions. Alternatively, we finally found that the molecular conformation change upon aggregation induced intramolecular charge transfer emission and played a significant role for the AIE phenomenon of these closed-form rhodamine derivatives. The application of these closed-form rhodamine-based AIE probe in food spoilage detection was also explored.
Collapse
Affiliation(s)
- Lin-Lin Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, P.R. China
| | - Haoran Wang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, P.R. China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Jianyu Zhang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Bo Wu
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, P.R. China
| | - Qiyao Li
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, P.R. China
| | - Jie-Ying Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - A-Ling Tang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Jacky W Y Lam
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Zheng Zhao
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, P.R. China.
- HKUST Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area Hi-tech Park, Nanshan, Shenzhen, 518057, China.
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China.
| | - Ben Zhong Tang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, P.R. China.
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.
- HKUST Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area Hi-tech Park, Nanshan, Shenzhen, 518057, China.
| |
Collapse
|
165
|
Chen J, Gu P, Ran G, Zhang Y, Li M, Chen B, Lu H, Han YZ, Zhang W, Tang Z, Yan Q, Sun R, Fu X, Chen G, Shi Z, Wang S, Liu X, Li J, Wang L, Zhu Y, Shen J, Tang BZ, Fan C. Atomically precise photothermal nanomachines. NATURE MATERIALS 2024; 23:271-280. [PMID: 37957270 DOI: 10.1038/s41563-023-01721-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/10/2023] [Indexed: 11/15/2023]
Abstract
Interfacing molecular machines to inorganic nanoparticles can, in principle, lead to hybrid nanomachines with extended functions. Here we demonstrate a ligand engineering approach to develop atomically precise hybrid nanomachines by interfacing gold nanoclusters with tetraphenylethylene molecular rotors. When gold nanoclusters are irradiated with near-infrared light, the rotation of surface-decorated tetraphenylethylene moieties actively dissipates the absorbed energy to sustain the photothermal nanomachine with an intact structure and steady efficiency. Solid-state nuclear magnetic resonance and femtosecond transient absorption spectroscopy reveal that the photogenerated hot electrons are rapidly cooled down within picoseconds via electron-phonon coupling in the nanomachine. We find that the nanomachine remains structurally and functionally intact in mammalian cells and in vivo. A single dose of near-infrared irradiation can effectively ablate tumours without recurrence in tumour-bearing mice, which shows promise in the development of nanomachine-based theranostics.
Collapse
Affiliation(s)
- Jing Chen
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai, China
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Peilin Gu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guangliu Ran
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, China
| | - Yu Zhang
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Mingqiang Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Chen
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Hui Lu
- Zhangjiang Laboratory, Shanghai, China
| | - Ying-Zi Han
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, China
| | - Zichao Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | | | - Rui Sun
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
- Xiangfu Laboratory, Jiashan, China
| | - Xiaobin Fu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Guorui Chen
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiwen Shi
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Shiyong Wang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiang Li
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai, China
| | - Lihua Wang
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai, China
- Zhangjiang Laboratory, Shanghai, China
| | - Ying Zhu
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai, China.
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, China.
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
166
|
Zhao Y, Yang J, Liang C, Wang Z, Zhang Y, Li G, Qu J, Wang X, Zhang Y, Sun P, Shi J, Tong B, Xie HY, Cai Z, Dong Y. Fused-Ring Pyrrole-Based Near-Infrared Emissive Organic RTP Material for Persistent Afterglow Bioimaging. Angew Chem Int Ed Engl 2024; 63:e202317431. [PMID: 38081786 DOI: 10.1002/anie.202317431] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Indexed: 12/23/2023]
Abstract
Organic near-infrared room temperature phosphorescence (RTP) materials offer remarkable advantages in bioimaging due to their characteristic time scales and background noise elimination. However, developing near-infrared RTP materials for deep tissue imaging still faces challenges since the small band gap may increase the non-radiative decay, resulting in weak emission and short phosphorescence lifetime. In this study, fused-ring pyrrole-based structures were employed as the guest molecules for the construction of long wavelength emissive RTP materials. Compared to the decrease of the singlet energy level, the triplet energy level showed a more effectively decrease with the increase of the conjugation of the substituent groups. Moreover, the sufficient conjugation of fused ring structures in the guest molecule suppresses the non-radiative decay of triplet excitons. Therefore, a near-infrared RTP material (764 nm) was achieved for deep penetration bioimaging. Tumor cell membrane is used to coat RTP nanoparticles (NPs) to avoid decreasing the RTP performance compared to traditional coating by amphiphilic surfactants. RTP NPs with tumor-targeting properties show favorable phosphorescent properties, superior stability, and excellent biocompatibility. These NPs are applied for time-resolved luminescence imaging to eliminate background interference with excellent tissue penetration. This study provides a practical solution to prepare long-wavelength and long-lifetime organic RTP materials and their applications in bioimaging.
Collapse
Affiliation(s)
- Yeyun Zhao
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jianhui Yang
- School of Materials Science and Engineering, Luoyang Institute of Science and Technology, Luoyang, 471023, P. R. China
| | - Chao Liang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Zhongjie Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yongfeng Zhang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Gengchen Li
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jiamin Qu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xi Wang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yahui Zhang
- Department of Chemistry, School of Science, Xihua University, Chengdu, 610039, P. R. China
| | - Peng Sun
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jianbing Shi
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Bin Tong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Hai-Yan Xie
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Chemical Biology Center, Peking University, Beijing, 100191, P. R. China
| | - Zhengxu Cai
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yuping Dong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
167
|
Zhang G, Liu T, Cai H, Hu Y, Zhang Z, Huang M, Peng J, Lai W. Molecular Engineering and Confinement Effect Powered Ultrabright Nanoparticles for Improving Sensitivity of Lateral Flow Immunoassay. ACS NANO 2024; 18:2346-2354. [PMID: 38181225 DOI: 10.1021/acsnano.3c10427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
The application of traditional lateral flow immunoassay (LFIA)-based gold nanoparticles (AuNPs) to measure traces of target chemicals is usually challenging. In this study, we developed an integrated strategy based on molecular engineering and the spatial confinement of nanoparticles (NPs) to obtain ultrahigh quantum yields (QYs) of aggregation-induced emission (AIE) fluorescence NPs and employed them for the highly sensitive detection of T-2 toxin on the LFIA platform. Tetraethyl-4,4',4″,4‴-(ethene-1,1,2,2-tetrayl)tetrabenzoate (TCPEME), an AIE luminogen, was designed using molecular engineering to lower the energy gap, achieving higher QYs (26.26%) than previous AIEgens (13.02%). Subsequently, TCPEME-doped fluorescence NPs (TFNPs) achieved ultrahigh QYs, up to 84.55%, which were generated from the strong restriction of the NP state, efficiently suppressing nonradiative relaxation channels verified by ultrafast electron dynamics. On the LFIA platform, the sensitivity of the designed TFNP-based LFIA (TFNP-LFIA) was 10.4-fold and 4.3-fold more sensitive than that of the AuNP-LFIA and TPENP-LFIA for detecting the T-2 toxin, respectively. In addition, TFNP-LFIA was used for detecting T-2 toxin in samples and showed satisfactory recoveries (79.5 to 122.0%) with CV (1.49 to 11.75%), which implied excellent application potential for TFNP-LFIA. Overall, dual improvement of the molecule in fluorescence performance originating from the molecular engineering and spatial confinement of NPs could be an efficient tool for promoting the development of high-performance reporters in LFIA.
Collapse
Affiliation(s)
- Gan Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Tingting Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Huadong Cai
- Animal Husbandry Development and Disease Control Center of Ganzhou, Ganzhou 341000, China
| | - Yan Hu
- Ganzhou Animal Husbandry and Fisheries Research Institute, Gannan Academy of Sciences, Ganzhou 341000, China
| | - Zhifang Zhang
- Jiangxi Agricultural Product Quality Safety and Inspection Center, Nanchang 330077, China
| | - Meifeng Huang
- Animal Husbandry Development and Disease Control Center of Ganzhou, Ganzhou 341000, China
| | - Juan Peng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Weihua Lai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| |
Collapse
|
168
|
Somasundaran SM, Kompella SVK, Madapally HV, Vishnu EK, Balasubramanian S, Thomas KG. Red Circularly Polarized Luminescence from Dimeric H-Aggregates of Acridine Orange by Chiral Induction. J Phys Chem Lett 2024; 15:507-513. [PMID: 38190655 DOI: 10.1021/acs.jpclett.3c03127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Understanding the mechanism of chirality transfer from a chiral surface to an achiral molecule is essential for designing molecular systems with tunable chiroptical properties. These aspects are explored herein using l- and d-isomers of alkyl valine amphiphiles, which self-assemble in water as nanofibers possessing a negative surface charge. An achiral chromophore, acridine orange, upon electrostatic binding on these surfaces displays mirror-imaged bisignated circular dichroism and red-emitting circularly polarized luminescence signals with a high dissymmetry factor. Experimental and computational investigations establish that the chiroptical properties emerge from surface-bound asymmetric H-type dimers of acridine orange, further supported by fluorescence lifetime imaging studies. Specifically, atomistic molecular dynamics simulations show that the experimentally observed chiral signatures have their origin in van der Waals interactions between acridine orange dimers and the amphiphile head groups as well as in the extent of solvent exposure of the chromophore.
Collapse
Affiliation(s)
- Sanoop Mambully Somasundaran
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Srinath V K Kompella
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Hridya Valia Madapally
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - E Krishnan Vishnu
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - K George Thomas
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| |
Collapse
|
169
|
Bhattacharya S, Pal P, Baitalik S. Design of molecular sensors and switches based on luminescent ruthenium-terpyridine complexes bearing active methylene and triphenylphosphonium motifs as anion recognition sites: experimental and DFT/TD-DFT investigation. Dalton Trans 2024; 53:1307-1321. [PMID: 38115813 DOI: 10.1039/d3dt03681b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Synthesis, characterization and thorough investigation of the photophysical and electrochemical properties of a new category of emissive homo- and heteroleptic Ru(II)-complexes derived from the [4'-(p-triphenylphosphonium methyl phenyl)-2,2':6',2''-terpyridine]bromide (tpy-PhCH2PPh3Br) ligand have been executed in this work. Incorporation of the PhCH2PPh3+Br- group at the terpyridine motif appropriately adjusts the triplet metal-to-ligand charge transfer (3MLCT) and metal-centered (3MC) excited states so that the complexes luminesce at room temperature (RT) having lifetimes within the range of 6.82-9.63 ns. The RT emission characteristics of the complexes get further enhanced via aggregation phenomena through the use of different solvent/non-solvent mixtures (DMSO/H2O and DMSO/PhCH3 mixtures). Temperature dependent emission spectral measurements indicate that the emission intensity, quantum yield and lifetime increase upon dropping down the temperature, thereby designated as the on-state, while the increase of temperature causes a reduction of the said properties, indicating the off-state and the process is fully reversible. Taking advantage of the active methylene group coupled with a phosphonium motif, anion sensing characteristics of the complexes are investigated systematically in DMSO through the use of various optical channels and spectroscopic tools. The complexes are very much sensitive to fluoride and to a lesser extent acetate and dihydrogen phosphate among the studied anions. In essence, the complexes function as sensors for temperature and fluoride ion. Computational investigations were also executed via density functional theory (DFT) and time-dependent (TD)-DFT to obtain a clear understanding of the electronic structures of the metalloreceptors, appropriate assignment of the spectral bands and their mode of interaction with selected anions.
Collapse
Affiliation(s)
- Sohini Bhattacharya
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India.
| | - Poulami Pal
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India.
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & B Raja S C Mullick Road, Kolkata 700032, India
| | - Sujoy Baitalik
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
170
|
Wang X, Zhang X, Zheng G, Dong M, Huang Z, Lin L, Yan K, Zheng J, Wang J. Mitochondria-targeted pentacyclic triterpene NIR-AIE derivatives for enhanced chemotherapeutic and chemo-photodynamic combined therapy. Eur J Med Chem 2024; 264:115975. [PMID: 38039788 DOI: 10.1016/j.ejmech.2023.115975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/03/2023]
Abstract
Complexes formed by combining pentacyclic triterpenes (PTs) with Aggregation-Induced Emission luminogens (AIEgens), termed pentacyclic triterpene-aggregation induced emission (PT-AIEgen) complexes, merge the chemotherapeutic properties of PTs with the photocytotoxicity of AIEgens. In this study, we synthesized derivatives by connecting three types of triphenylamine (TPA) pyridinium derivatives with three common pentacyclic triterpenes. Altering the connecting group between the electron donor TPA and the electron acceptor pyridinium resulted in increased production of reactive oxygen species (ROS) by PT-AIEgens and a red-shift in their fluorescence emission spectra. Importantly, the fluorescence emission spectra of BA-3, OA-3, and UA-3 extended into the near-infrared (NIR) range, enabling NIR-AIE imaging of the sites where the derivatives aggregated. The incorporation of the pyridinium structure improved the mitochondrial targeting of PT-AIEgens, enhancing mitochondrial pathway-mediated cell apoptosis and improving the efficiency of chemotherapy (CT) and chemo-photodynamic combined therapy (CPCT) both in vivo and in vitro. Cellular fluorescence imaging demonstrated rapid cellular uptake and mitochondrial accumulation of BA-1 (-2, -3). Cell viability experiments revealed that BA-1 (-2), OA-1 (-2), and UA-1 (-2) exhibited superior CT cytotoxicity compared to their parent drugs, with BA-1 showing the most potent inhibitory effect on HeLa cells (IC50 = 1.19 μM). Furthermore, HeLa cells treated with BA-1 (1 μM), BA-2 (1.25 μM), and BA-3 (1 μM) exhibited survival rates of 2.99 % ± 0.05 % μM, 5.92 % ± 2.04 % μM, and 2.53 % ± 0.73 % μM, respectively, under white light irradiation. Mechanistic experiments revealed that derivatives induced cell apoptosis via the mitochondrial apoptosis pathway during both CT and CPCT. Remarkably, BA-1 and BA-3 in CPCT inhibited cancer cell proliferation in an in vivo melanoma mouse xenograft model. These results collectively encourage further research of PT-AIEgens as potential anticancer agents.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Chemistry, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, PR China
| | - Xuewei Zhang
- Department of Chemistry, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, PR China
| | - Guoxing Zheng
- Department of Chemistry, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, PR China
| | - Mingming Dong
- Department of Chemistry, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, PR China
| | - Zhaopeng Huang
- Department of Chemistry, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, PR China
| | - Liyin Lin
- Central Laboratory, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, PR China
| | - Kang Yan
- Department of Chemistry, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, PR China
| | - Jinhong Zheng
- Department of Chemistry, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, PR China
| | - Jinzhi Wang
- Department of Chemistry, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, PR China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, PR China.
| |
Collapse
|
171
|
Deng J, Wang X, Zhao Y, Zhao X, Yang L, Qi Z. A dual donor-acceptor fluorescent probe with viscosity response and lipid droplets targeting to initiate oxidative stress for tumor elimination. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123503. [PMID: 37857075 DOI: 10.1016/j.saa.2023.123503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/09/2023] [Accepted: 10/07/2023] [Indexed: 10/21/2023]
Abstract
A dual donor-acceptor photosensitizer TCN-2 prepared based on single donor-acceptor could fulfil lipid droplets targeting to trigger apoptosis and tumor growth arrest. Meanwhile, all of experiments both in phosphate buffer solution and intracellular surroundings have demonstrated that TCN-2 catalyzed the production of type I as well as type II reactive oxygen species, forming a hybrid reactive oxygen species pattern, indicating that TCN-2 could be applied to initiate a series of biological responses triggered by oxidative stress within most high-viscosity solid tumors. In addition, TCN-2 also has the capability of fluorescence imaging, which could perfectly combine therapeutic imaging to achieve therapeutic effects while identifying cancerous lesions. Due to the structural design of double electron-absorbing groups, TCN-2 retained excellent lipophilicity while enhancing solubility in the biological environment. Terrific biocompatibility, minimal phototoxic damage to normal cells and tissues, and specific driving to prescriptive organelles to maximize therapeutic effects were used to enhance the therapeutic effect of photodynamic therapy to cease disease progression.
Collapse
Affiliation(s)
- Jing Deng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Xing Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yongfei Zhao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Xinxin Zhao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Li Yang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Zhengjian Qi
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
172
|
Bao J, Tong C, He M, Zhang H. Luminescent polypeptides. LUMINESCENCE 2024; 39:e4594. [PMID: 37712500 DOI: 10.1002/bio.4594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/29/2023] [Accepted: 09/13/2023] [Indexed: 09/16/2023]
Abstract
Polypeptides, as biomacromolecules, hold immense potential in various biological applications such as tissue engineering, immunomodulating agents, and target binding. Among these applications, the attention towards luminescent polypeptides has grown significantly, due to their ability to visualize biological processes effectively. In this perspective, we have compiled information on three distinct types of luminescent polypeptides: natural fluorescent proteins, luminophores-bioconjugated polypeptides, and synthesized polypeptides with clusteroluminescence. Last, we shed light on the significance and prospects of clusteroluminescent polypeptides, which are expected to emerge as crucial new-generation bioluminophores, offering high emission efficiency and tunable emission wavelengths.
Collapse
Affiliation(s)
- Jieyu Bao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Chuanye Tong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Mengxuan He
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, China
| |
Collapse
|
173
|
Li Z, Huan W, Wang Y, Yang YW. Multimodal Therapeutic Platforms Based on Self-Assembled Metallacycles/Metallacages for Cancer Radiochemotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306245. [PMID: 37658495 DOI: 10.1002/smll.202306245] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/18/2023] [Indexed: 09/03/2023]
Abstract
Discrete organometallic complexes with defined structures are proceeding rapidly in combating malignant tumors due to their multipronged treatment modalities. Many innovative superiorities, such as high antitumor activity, extremely low systemic toxicity, active targeting ability, and enhanced cellular uptake, make them more competent for clinical applications than individual precursors. In particular, coordination-induced regulation of luminescence and photophysical properties of organic light-emitting ligands has demonstrated significant potential in the timely evaluation of therapeutic efficacy by bioimaging and enabled synergistic photodynamic therapy (PDT) or photothermal therapy (PTT). This review highlights instructive examples of multimodal radiochemotherapy platforms for cancer ablation based on self-assembled metallacycles/metallacages, which would be classified by functions in a progressive manner. Finally, the essential demands and some plausible prospects in this field for cancer therapy are also presented.
Collapse
Affiliation(s)
- Zheng Li
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Weiwei Huan
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, P. R. China
| | - Yan Wang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
174
|
Xie Y, Li Z, Zhao C, Lv R, Li Y, Zhang Z, Teng M, Wan Q. Recent advances in aggregation-induced emission-active type I photosensitizers with near-infrared fluorescence: From materials design to therapeutic platform fabrication. LUMINESCENCE 2024; 39:e4621. [PMID: 38044321 DOI: 10.1002/bio.4621] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 12/05/2023]
Abstract
Near-infrared (NIR) fluorescence imaging-guided photodynamic therapy (PDT) technology plays an important role in treating various diseases and still attracts increasing research interests for developing novel photosensitizers (PSs) with outstanding performances. Conventional PSs such as porphyrin and rhodamine derivatives have easy self-aggregation properties in the physiological environment due to their inherent hydrophobic nature caused by their rigid molecular structure that induces strong intermolecular stacking π-π interaction, leading to serious fluorescence quenching and cytotoxic reactive oxygen species (ROS) reduction. Meanwhile, hypoxia is an inherent barrier in the microenvironment of solid tumors, seriously restricting the therapeutic outcome of conventional PDT. Aforementioned disadvantages should be overcome urgently to enhance the therapeutic effect of PSs. Novel NIR fluorescence-guided type I PSs with aggregation-induced emission (AIE), which features the advantages of improving fluorescent intensity and ROS generation efficiency at aggregation as well as outstanding oxygen tolerance, bring hope for resolving aforementioned problems simultaneously. At present, plenty of research works fully demonstrates the advancement of AIE-active PDT based on type I PSs. In this review, cutting-edge advances focusing on AIE-active NIR type I PSs that include the aspects of the photochemical mechanism of type I ROS generation, various molecular structures of reported type I PSs with NIR fluorescence and their design strategies, and typical anticancer applications are summarized. Finally, a brief conclusion is obtained, and the underlying challenges and prospects of AIE-active type I PSs are proposed.
Collapse
Affiliation(s)
- Yili Xie
- College of Ecology and Environment, Yuzhang Normal University, Nanchang, China
| | - Zhijia Li
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Chunhui Zhao
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, China
| | - Ruizhi Lv
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, China
| | - Yan Li
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, China
| | - Zhihong Zhang
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, China
| | - Muzhou Teng
- The Second Clinical Medical College of Lanzhou University, Lanzhou University Second Hospital, Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou, China
| | - Qing Wan
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates (South China University of Technology), Guangzhou, China
| |
Collapse
|
175
|
Liu D, Liang M, Fan A, Bing W, Qi J. Hypoxia-responsive AIEgens for precise disease theranostics. LUMINESCENCE 2024; 39:e4659. [PMID: 38286609 DOI: 10.1002/bio.4659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/01/2023] [Accepted: 12/04/2023] [Indexed: 01/31/2024]
Abstract
Specific biomarker-activatable probes have revolutionized theranostics, being beneficial for precision medicine. Hypoxia is a critical pathological characteristic prevalent in numerous major diseases such as cancers, cardiovascular disorders, inflammatory diseases, and acute ischemia. Aggregation-induced emission luminogens (AIEgens) have emerged as a promising tool to tackle the biomedical issues. Of particular significance are the hypoxia-responsive AIEgens, representing a kind of crucial probe capable of delicately sensing and responding to the hypoxic microenvironment, thereby enhancing the precision of disease diagnosis and treatment. In this review, we summarize the recent advances of hypoxia-responsive AIEgens for varied biomedical applications. The hypoxia-responsive structures based on AIEgens, such as azobenzene, nitrobenzene, and N-oxide are presented, which are in response to the reduction property to bring about significant alternations in response spectra and/or fluorescence intensity. The bioapplications including imaging and therapy of tumor and ischemia diseases are discussed. Moreover, the review sheds light on the future challenges and prospects in this field. This review aims to provide comprehensive guidance and understanding into the development of activatable bioprobes, especially the hypoxia-responsive AIEgens for improving the diagnosis and therapy outcome of related diseases.
Collapse
Affiliation(s)
- Dongfang Liu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, China
| | - Mengyun Liang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Aohua Fan
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, China
| | - Wei Bing
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, China
| | - Ji Qi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
176
|
Ishigaki Y, Harimoto T, Shimajiri T, Suzuki T. Carbon-based Biradicals: Structural and Magnetic Switching. Chem Rev 2023; 123:13952-13965. [PMID: 37948658 DOI: 10.1021/acs.chemrev.3c00376] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Sterically hindered C═C double bonds often deform into a bent or twisted geometry. Thus, many overcrowded ethylenes or anthraquinodimethanes can adopt multiple conformations, such as a folded form or a twisted form, which are interconvertible under the application of external stimuli. A perpendicular form with biradical character can also be adopted when designed to incorporate a stable carbon-based radical unit, which is involved in stimuli-responsive magnetic switching accompanied by a structural change. This review focuses on recent advances in the development of such strained π-electron systems and reveals the factors that affect the mutual interconversion and switching behavior. The energy barrier for the interconversion of conformational isomers is affected by the tricyclic skeleton or bulky substituents on the C═C double bonds, whereas the relative stability of the perpendicular biradical form increases with the additional insertion of 9,10-anthrylene units into the C═C double bonds.
Collapse
Affiliation(s)
- Yusuke Ishigaki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takashi Harimoto
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takuya Shimajiri
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Creative Research Institution, Hokkaido University, Sapporo 001-0021, Japan
| | - Takanori Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
177
|
Teppang KL, Zhao Q, Yang J. Development of fluorophores for the detection of oligomeric aggregates of amyloidogenic proteins found in neurodegenerative diseases. Front Chem 2023; 11:1343118. [PMID: 38188930 PMCID: PMC10766704 DOI: 10.3389/fchem.2023.1343118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Alzheimer's disease and Parkinson's disease are the two most common neurodegenerative diseases globally. These neurodegenerative diseases have characteristic late-stage symptoms allowing for differential diagnosis; however, they both share the presence of misfolded protein aggregates which appear years before clinical manifestation. Historically, research has focused on the detection of higher-ordered aggregates (or amyloids); however, recent evidence has shown that the oligomeric state of these protein aggregates plays a greater role in disease pathology, resulting in increased efforts to detect oligomers to aid in disease diagnosis. In this review, we summarize some of the exciting new developments towards the development of fluorescent probes that can detect oligomeric aggregates of amyloidogenic proteins present in Alzheimer's and Parkinson's disease patients.
Collapse
Affiliation(s)
| | | | - Jerry Yang
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
178
|
Jiang J, Ma F, Dong R, Zhang S, Zhang Z, Tan H, Cai X, Qiu Z, Xiong Y, Han W, Zhao Z, Tang BZ. Aqueous Circularly Polarized Luminescence Induced by Homopolypeptide Self-Assembly. J Am Chem Soc 2023; 145:27282-27294. [PMID: 38063341 DOI: 10.1021/jacs.3c06769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Remarkable advances have been achieved in solution self-assembly of polypeptides from the perspective of nanostructures, mechanisms, and applications. Despite the intrinsic chirality of polypeptides, the promising generation of aqueous circularly polarized luminescence (CPL) based on their self-assembly has been rarely reported due to the weak fluorescence of most polypeptides and the indeterminate self-assembly mechanism. Here, we propose a facile strategy for achieving aqueous CPL based on the self-assembly of simple homopolypeptides modified with a terminal group featuring both twisted intramolecular charge transfer and aggregation-induced emission properties. A morphology-dependent CPL can be observed under different self-assembly conditions by altering the solvents. A nanotoroid-dispersed aqueous solution with detectable CPL can be obtained by using tetrahydrofuran as a good solvent for the self-assembly, which is attributed to the involvement of the terminal group in the chiral environment formed by the homopolypeptide chains. However, such a chiral packing mode cannot be realized in nanorods self-assembled from dioxane, resulting in an inactive CPL phenomenon. Furthermore, CPL signals can be greatly amplified by co-assembly of homopolypeptides with the achiral small molecule derived from the terminal group. This work not only provides a pathway to construct aqueous CPL-active homopolypeptide nanomaterials but also reveals a potential mechanism in the self-assembly for chiral production, transfer, and amplification in polypeptide-based nanostructures.
Collapse
Affiliation(s)
- Jinhui Jiang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518061, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Fulong Ma
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Ruihua Dong
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Siwei Zhang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Zicong Zhang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Haozhe Tan
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Xumin Cai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zijie Qiu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Yu Xiong
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518061, China
| | - Wei Han
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR 999077, China
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Zheng Zhao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- HKUST-Shenzhen (CUHK-Shenzhen) Research Institute, South Area Hi-Tech Park, Nanshan, Shenzhen, Guangdong Province 518057, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
179
|
Hu L, Chen Z, Li T, Ye X, Luo Q, Lai W. Comparison of oriented and non-oriented antibody conjugation with AIE fluorescence microsphere for the immunochromatographic detection of enrofloxacin. Food Chem 2023; 429:136816. [PMID: 37459713 DOI: 10.1016/j.foodchem.2023.136816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 08/24/2023]
Abstract
Antibodies and labels were typically non-oriented conjugated in conventional immunochromatographic assays (ICAs). In this work, a C-terminal cysteine-tagged recombinant protein A (rPA) was conjugated in an oriented manner onto aggregation-induced emission fluorescence microsphere (AIEFM). The Fc fragment of anti-enrofloxacin monoclonal antibody (anti-ENR mAb) was then conjugated onto the rPA. The resulting oriented mAb-AIEFM probe was used in an ENR-ICA for the rapid detection of ENR, a widely abused animal drug. The ENR-ICA with the oriented probe saved 66.7% of anti-ENR mAb and 25% of ENR-bovine serum albumin, and had a limit of detection of 0.035 ng/mL, compared with 0.079 ng/mL for the non-oriented probe. The corresponding linear ranges of the ENR-ICA based on the oriented and non-oriented probes were 0.25-10 ng/mL and 0.1-2.5 ng/mL, respectively. This novel ICA based on the oriented probe has the potential to be used for sensitive and rapid detection in food safety.
Collapse
Affiliation(s)
- Liwen Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Zhenzhen Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Ting Li
- Ganjiang Traditional Chinese Medicine Innovation Center, Nanchang 330115, PR China
| | - Xianlong Ye
- Ganjiang Traditional Chinese Medicine Innovation Center, Nanchang 330115, PR China
| | - Qi Luo
- Jiangxi Ceneral Institute of Testing and Certification, Nanchang 330052, PR China
| | - Weihua Lai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China.
| |
Collapse
|
180
|
Zhang Q, Meng X, Qu J, Zhao F, Liao X, Li Z, He Y, Zhang X, Cao Z. Conformer aggregates exhibit dual wavelength emissions on chiral binaphthyl-based triphenylethylenes and acetone detection. Chemistry 2023:e202303708. [PMID: 38088216 DOI: 10.1002/chem.202303708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Indexed: 12/23/2023]
Abstract
The study on structure-property relationship has been a significant focus in the field of organic molecular luminescence. In the present work, three chiral binaphthyl-based triphenylethylene (HTPE) derivatives were prepared through condensation reactions. Despite their similar structures, these compounds exhibited distinct luminescent properties. Diphenylmethane-derived HTPE displayed dual-state emissions, characterized by dual-wavelength emissions which were insensitive to the polarity of solvents. The dual emissions in solution state could be attributed to the different locally excited (LE) excitons. However, upon aggregation, two stable conformers were generated, probably leading to different emission peaks. In contrast, dibenzocycloheptadiene-derived HTPE aggregates showed only a single emission peak. Surprisingly, fluorene-derived HTPE exhibited obvious luminescence in neither solution nor aggregate states due to inherent π-π interactions. These conclusions were substantiated by X-ray analysis, spectroscopic analysis, and theory calculations. Application studies demonstrated that fluorescence on/off switches could be achieved through exposure to acetone. More importantly, trace amounts of acetone could be detected using luminescent materials in both organic and aqueous phases with a detection limit of 0.08 %. Thus, this work not only presents a strategy for designing chiral triphenylethylene fluorophores but also provides valuable information for dual wavelength emissions resulting from two stable conformations.
Collapse
Affiliation(s)
- Qing Zhang
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P. R. China
| | - Xin Meng
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P. R. China
| | - Jun Qu
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P. R. China
| | - Fapeng Zhao
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P. R. China
| | - Xiaoming Liao
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Zan Li
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P. R. China
| | - Yuanchun He
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P. R. China
| | - Xiaoxiang Zhang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Ziping Cao
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P. R. China
| |
Collapse
|
181
|
Oró A, Romeo-Gella F, Perles J, Fernández-García JM, Corral I, Martín N. Tetrahedraphene: A Csp 3 -centered 3D Molecular Nanographene Showing Aggregation-Induced Emission. Angew Chem Int Ed Engl 2023; 62:e202312314. [PMID: 37846849 DOI: 10.1002/anie.202312314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/18/2023]
Abstract
The bottom-up synthesis of 3D tetrakis(hexa-peri-hexabenzocoronenyl)methane, "tetrahedraphene", is reported. This molecular nanographene constituted by four hexa-peri-hexabenzocoronene (HBC) units attached to a central sp3 carbon atom, shows a highly symmetric arrangement of the HBC units disposed in the apex of a tetrahedron. The X-ray crystal structure reveals a tetrahedral symmetry of the molecule and the packing in the crystal is achieved mostly by CH⋅⋅⋅π interactions since the interstitial solvent molecules prevent the π⋅⋅⋅π interactions. In solution, tetrahedraphene shows the same electrochemical and photophysical properties as the hexa-t Bu-substituted HBC (t Bu-HBC) molecule. However, upon water addition, it undergoes a fluorescence change in solution and in the precipitated solid, showing an aggregation induced emission (AIE) process, probably derived from the restriction in the rotation and/or vibration of the HBCs. Time-Dependent Density Functional Theory (TDDFT) calculations reveal that upon aggregation, the high energy region of the emission band decreases in intensity, whereas the intensity of the red edge emission signal increases and presents a smoother decay, compared to the non-aggregated molecule. All in all, the excellent correlation between our simulations and the experimental findings allows explaining the colour change observed in the different solutions upon increasing the water fraction.
Collapse
Affiliation(s)
- Arturo Oró
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense de Madrid, Avd. Complutense S/N, 28040, Madrid, Spain
| | - Fernando Romeo-Gella
- Departamento de Química, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Josefina Perles
- Laboratorio de Difracción de Rayos X de Monocristal, SIdI, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente, 7. Campus de Cantoblanco, 28049, Madrid, Spain
| | - Jesús M Fernández-García
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense de Madrid, Avd. Complutense S/N, 28040, Madrid, Spain
| | - Inés Corral
- Departamento de Química, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Nazario Martín
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense de Madrid, Avd. Complutense S/N, 28040, Madrid, Spain
- IMDEA-Nanociencia, C/Faraday, 9. Campus de Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
182
|
Yan H, Yin X, Wang D, Han T, Tang BZ. Synergistically Boosting the Circularly Polarized Luminescence of Functionalized Pillar[5]arenes by Polymerization and Aggregation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305149. [PMID: 37867209 PMCID: PMC10724438 DOI: 10.1002/advs.202305149] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/03/2023] [Indexed: 10/24/2023]
Abstract
Supramolecular polymers based on chiral macrocycles have attracted increasing attention in the field of circularly polarized luminescence (CPL) owing to their unique properties. However, the construction of macrocyclic supramolecular polymers with highly efficient CPL properties in aggregate states still remains challenging. Herein, w e constructed a class of macrocycle-based coordination polymers by combining the planar chiral properties of pillar[5]arene with the excellent fluorescence properties of aggregation-induced emission luminogens. The formation of polymers enhances both the fluorescence and chiral properties, resulting in chiral supramolecular polymers with remarkable CPL properties. Increasing the aggregation degree of the polymers can further improve their CPL properties, as evidenced by a 21-fold increase in the dissymmetry factor and an over 25-fold increase in the fluorescence quantum yield in the aggregate state compared to the solution state. Such a synergistic effect of polymerization- and aggregation-enhanced CPL can be explained by the restriction of intramolecular motions and aggregation-induced conformation confinement. This work provides a promising method for developing highly efficient CPL supramolecular polymers.
Collapse
Affiliation(s)
- Hewei Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and EngineeringShenzhen UniversityShenzhenGuangdong518060China
- College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Xiaojun Yin
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and EngineeringShenzhen UniversityShenzhenGuangdong518060China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and EngineeringShenzhen UniversityShenzhenGuangdong518060China
| | - Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and EngineeringShenzhen UniversityShenzhenGuangdong518060China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and TechnologyThe Chinese University of Hong KongShenzhen (CUHK‐Shenzhen)Guangdong518172China
| |
Collapse
|
183
|
Abdo J, Ayoub A, Ibrahim N, Allain M, Frère P. Tuning the Solid State Luminescence of Benzofuran-Cyanostilbenes by Functionalization with Electron Donors or Acceptors. Chempluschem 2023; 88:e202300402. [PMID: 37782457 DOI: 10.1002/cplu.202300402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/03/2023]
Abstract
Three series of linear extended benzofuran derivatives associating cyanovinyl unit and electron withdrawing systems such as paracyanophenyl (series 1) and pentafluorophenyl (series 2) units or the electron donor 3,4-dimethoxyphenyl (series 3) moiety have been prepared. The donor character of the benzofuran part is adjusted either without modifying the conjugation by adding electron-donating methoxy groups to positions 5 and 6 of the benzofuran (compounds BF2 and BF3) or by increasing the extension of the conjugation with the naphthofuran unit (BF4), and by the insertion of a furan ring between the benzofuran and the cyanovinylene bond (BF5). While most of the compounds show very low emission in solution, microcrystalline powders of almost all compounds show middle at strong emissions under excitation at 350-400 nm with emission colors ranging from blue - green to red. It is shown that this variation of the emission colors is essentially due to the type of stacking of the molecules in the solids for series 1 and 2. For series 3, it is above all the extension of the conjugation of the compounds which leads to the red shift.
Collapse
Affiliation(s)
- Jihad Abdo
- UNIV Angers, CNRS UMR 6200, MOLTECH-Anjou, 2 boulevard Lavoisier, 49000, Angers, France
| | - Augustin Ayoub
- UNIV Angers, CNRS UMR 6200, MOLTECH-Anjou, 2 boulevard Lavoisier, 49000, Angers, France
| | - Nagham Ibrahim
- UNIV Angers, CNRS UMR 6200, MOLTECH-Anjou, 2 boulevard Lavoisier, 49000, Angers, France
| | - Magali Allain
- UNIV Angers, CNRS UMR 6200, MOLTECH-Anjou, 2 boulevard Lavoisier, 49000, Angers, France
| | - Pierre Frère
- UNIV Angers, CNRS UMR 6200, MOLTECH-Anjou, 2 boulevard Lavoisier, 49000, Angers, France
| |
Collapse
|
184
|
Yang S, Yu H, Liu J, Ma L, Hou Z, Ma J, Miao MZ, Kwok RTK, Sun J, Sung HHY, Williams ID, Lam JWY, Liu X, Tang BZ. Integrating Anion-π + Interaction and Crowded Conformation to Develop Multifunctional NIR AIEgen for Effective Tumor Theranostics via Hippo-YAP Pathway. ACS NANO 2023; 17:21182-21194. [PMID: 37901961 DOI: 10.1021/acsnano.3c05080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
The technology of aggregation-induced emission (AIE) presents a promising avenue for fluorescence imaging-guided photodynamic cancer therapy. However, existing near-infrared AIE photosensitizers (PSs) frequently encounter limitations, including tedious synthesis, poor tumor retention, and a limited understanding of the underlying molecular biology mechanism. Herein, an effective molecular design paradigm of anion-π+ interaction combined with the inherently crowded conformation that could enhance fluorescence efficacy and reactive oxygen species generation was proposed through a concise synthetic method. Mechanistically, upon photosensitization, the Hippo signaling pathway contributes to the death of melanoma cells and promotes the nuclear location of its downstream factor, yes-associated protein, which regulates the transcription and expression of apoptosis-related genes. The finding in this study would trigger the development of high-performance and versatile AIE PSs for precision cancer therapy based on a definite regulatory mechanism.
Collapse
Affiliation(s)
- Shiping Yang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Hongchi Yu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Junkai Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Lunjie Ma
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Zhe Hou
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Jia Ma
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Michael Z Miao
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Jianwei Sun
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Herman H Y Sung
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Ian D Williams
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
185
|
Qu J, Zhang Q, Liao X, Song C, Meng X, He Y, Li Z, Zhang X, Cao Z. Chiral Dual Core Chromophores Based on Binaphthyl Acrylonitrile Motif with Tunable Dual Emission Bands and Anti-counterfeiting. Chemistry 2023; 29:e202301766. [PMID: 37550834 DOI: 10.1002/chem.202301766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
Small organic molecules which can emit fluorescence with tunable dual emission bands are significant for fundamental research and broad applications. In this work, two binaphthyl based arylacrylonitrile derivatives with pyrene and triphenylamine unit (BiNp-Py and BiNp-TPA) were designed and synthesized, respectively, featuring chiral backbone and dual AIE-active cyanostyrene-linked chromophores. Excellent fluorescence emissions in a range of solution and solid states were observed with high quantum yields, indicative of the solvatochromism and mechanochromism. More interestingly, dual emission bands were found and tunable by the water fraction in THF, and speculatively attributed to the balancing of intramolecular charge transfer (ICT) and locally excited (LE) emission in solution and aggregate states. Furthermore, the potential application in anti-counterfeiting ink was also explored, indicating the very low concentration (5 ppm) for sufficient distinguishable vision and small colour migration (28 nm) for printing on the filter. The present work provides a new strategy to design organic luminescent structure having widely fluorescent emissions in dual states and a valuable reference for the study of chiral optical materials.
Collapse
Affiliation(s)
- Jun Qu
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and, Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University Qufu, 273165, Shandong, P. R. China
| | - Qing Zhang
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and, Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University Qufu, 273165, Shandong, P. R. China
| | - Xiaoming Liao
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and, Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University Qufu, 273165, Shandong, P. R. China
| | - Cunyu Song
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and, Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University Qufu, 273165, Shandong, P. R. China
| | - Xin Meng
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and, Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University Qufu, 273165, Shandong, P. R. China
| | - Yuanchun He
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and, Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University Qufu, 273165, Shandong, P. R. China
| | - Zan Li
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and, Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University Qufu, 273165, Shandong, P. R. China
| | - Xiaoxiang Zhang
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and, Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University Qufu, 273165, Shandong, P. R. China
| | - Ziping Cao
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and, Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University Qufu, 273165, Shandong, P. R. China
| |
Collapse
|
186
|
Cai XM, Lin Y, Zhang J, Li Y, Tang Z, Zhang X, Jia Y, Wang W, Huang S, Alam P, Zhao Z, Tang BZ. Chromene-based BioAIEgens: 'in-water' synthesis, regiostructure-dependent fluorescence and ER-specific imaging. Natl Sci Rev 2023; 10:nwad233. [PMID: 38188025 PMCID: PMC10769509 DOI: 10.1093/nsr/nwad233] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 01/09/2024] Open
Abstract
Exploration of artificial aggregation-induced emission luminogens (AIEgens) has garnered extensive interest in the past two decades. In particular, AIEgens possessing natural characteristics (BioAIEgens) have received more attention recently due to the advantages of biocompatibility, sustainability and renewability. However, the extremely limited number of BioAIEgens extracted from natural sources have retarded their development. Herein, a new class of BioAIEgens based on the natural scaffold of chromene have been facilely synthesized via green reactions in a water system. These compounds show regiostructure-, polymorphism- and substituent-dependent fluorescence, which clearly illustrates the close relationship between the macroscopic properties and hierarchical structure of aggregates. Due to the superior biocompatibility of the natural scaffold, chromene-based BioAIEgens can specifically target the endoplasmic reticulum (ER) via the introduction of tosyl amide. This work has provided a new chromene scaffold for functional BioAIEgens on the basis of green and sustainable 'in-water' synthesis, applicable regiostructure-dependent fluorescence, and effective ER-specific imaging.
Collapse
Affiliation(s)
- Xu-Min Cai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China
| | - Yuting Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianyu Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Ying Li
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China
| | - Zhenguo Tang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xuedan Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ying Jia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjin Wang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Parvej Alam
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China
| | - Zheng Zhao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China
| |
Collapse
|
187
|
Maji S, Natarajan R. A Halogen-Bonded Organic Framework (XOF) Emissive Cocrystal for Acid Vapor and Explosive Sensing, and Iodine Capture. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302902. [PMID: 37394720 DOI: 10.1002/smll.202302902] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/19/2023] [Indexed: 07/04/2023]
Abstract
There is a strong and urgent need for efficient materials that can capture radioactive iodine atoms from nuclear waste. This work presents a novel strategy to develop porous materials for iodine capture by employing halogen bonding, mechanochemistry and crystal engineering. 3D halogen-bonded organic frameworks (XOFs) with guest-accessible permanent pores are exciting targets in crystal engineering for developing functional materials, and this work reports the first example of such a structure. The new-found XOF, namely TIEPE-DABCO, exhibits enhanced emission in the solid state and turn-off emission sensing of acid vapors and explosives like picric acid in nanomolar quantity. TIEPE-DABCO captures iodine from the gas phase (3.23 g g-1 at 75 °C and 1.40 g g-1 at rt), organic solvents (2.1 g g-1 ), and aqueous solutions (1.8 g g-1 in the pH range of 3-8); the latter with fast kinetics. The captured iodine can be retained for more than 7 days without any leaching, but readily released using methanol, when required. TIEPE-DABCO can be recycled for iodine capture several times without any loss of storage capacity. The results presented in this work demonstrate the potential of mechanochemical cocrystal engineering with halogen bonding as an approach to develop porous materials for iodine capture and sensing.
Collapse
Affiliation(s)
- Suman Maji
- Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ramalingam Natarajan
- Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
188
|
Shi Y, Su W, Yuan F, Yuan T, Song X, Han Y, Wei S, Zhang Y, Li Y, Li X, Fan L. Carbon Dots for Electroluminescent Light-Emitting Diodes: Recent Progress and Future Prospects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210699. [PMID: 36959751 DOI: 10.1002/adma.202210699] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Carbon dots (CDs), as emerging carbon nanomaterials, have been regarded as promising alternatives for electroluminescent light-emitting diodes (LEDs) owing to their distinct characteristics, such as low toxicity, tuneable photoluminescence, and good photostability. In the last few years, despite remarkable progress achieved in CD-based LEDs, their device performance is still inferior to that of well-developed organic, heavy-metal-based QDs, and perovskite LEDs. To better exploit LED applications and boost device performance, in this review, a comprehensive overview of currently explored CDs is presented, focusing on their key optical characteristics, which are closely related to the structural design of CDs from their carbon core to surface modifications, and to macroscopic structural engineering, including the embedding of CDs in the matrix or spatial arrangement of CDs. The design of CD-based LEDs for display and lighting applications based on the fluorescence, phosphorescence, and delayed fluorescence emission of CDs is also highlighted. Finally, it is concluded with a discussion regarding the key challenges and plausible prospects in this field. It is hoped that this review inspires more extensive research on CDs from a new perspective and promotes practical applications of CD-based LEDs in multiple directions of current and future research.
Collapse
Affiliation(s)
- Yuxin Shi
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Wen Su
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Fanglong Yuan
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Ting Yuan
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xianzhi Song
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yuyi Han
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Shuyan Wei
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yang Zhang
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yunchao Li
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xiaohong Li
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Louzhen Fan
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
189
|
Yamada KE, Stepek IA, Matsuoka W, Ito H, Itami K. Synthesis of Heptagon-Containing Polyarenes by Catalytic C-H Activation. Angew Chem Int Ed Engl 2023:e202311770. [PMID: 37902441 DOI: 10.1002/anie.202311770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/13/2023] [Accepted: 10/30/2023] [Indexed: 10/31/2023]
Abstract
Nanocarbons incorporating non-hexagonal aromatic rings - such as five-, seven-, and eight-membered rings - have various intriguing physical properties such as curved structures, unique one-dimensional packing, and promising magnetic, optical, and conductivity properties. Herein, we report an efficient synthetic approach to polycyclic aromatics containing seven-membered rings via a palladium-catalyzed intramolecular Ar-H/Ar-Br coupling. In addition to all-hydrocarbon scaffolds, heteroatom-embedded heptagon-containing polyarenes can be efficiently constructed with this method. Rhodium- and palladium-catalyzed sequential six- and seven-membered ring formations also afford complex heptagon-containing molecular nanocarbons from readily available arylacetylenes and biphenyl boronic acids. Detailed mechanistic analysis by DFT calculations showed the feasibility of seven-membered ring formation by a concerted metalation-deprotonation mechanism. This reaction can serve as a template for the synthesis of a wide range of seven-membered ring-containing molecular nanocarbons.
Collapse
Affiliation(s)
- Keigo E Yamada
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Iain A Stepek
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Wataru Matsuoka
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Hideto Ito
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Kenichiro Itami
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
190
|
Yang S, Zhang J, Zhang Z, Zhang R, Ou X, Xu W, Kang M, Li X, Yan D, Kwok RTK, Sun J, Lam JWY, Wang D, Tang BZ. More Is Better: Dual-Acceptor Engineering for Constructing Second Near-Infrared Aggregation-Induced Emission Luminogens to Boost Multimodal Phototheranostics. J Am Chem Soc 2023; 145:22776-22787. [PMID: 37812516 DOI: 10.1021/jacs.3c08627] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The manipulation of electron donor/acceptor (D/A) shows an endless impetus for innovating optical materials. Currently, there is booming development in electron donor design, while research on electron acceptor engineering has received limited attention. Inspired by the philosophical idea of "more is different", two systems with D'-D-A-D-D' (1A system) and D'-D-A-A-D-D' (2A system) structures based on acceptor engineering were designed and studied. It was demonstrated that the 1A system presented a weak aggregation-induced emission (AIE) to aggregation-caused quenching (ACQ) phenomenon, along with the increased acceptor electrophilicity and planarity. In sharp contrast, the 2A system with one more acceptor exhibited an opposite ACQ-to-AIE transformation. Interestingly, the fluorophore with a more electron-deficient A-A moiety in the 2A system displayed superior AIE activity. More importantly, all compounds in the 2A system showed significantly higher molar absorptivity (ε) in comparison to their counterparts in the 1A system. Thanks to the highest ε, near-infrared-II (NIR-II, 1000-1700 nm) emission, desirable AIE property, favorable reactive oxygen species (ROS) generation, and high photothermal conversion efficiency, a representative member of the 2A system handily performed in fluorescence-photoacoustic-photothermal multimodal imaging-guided photodynamic-photothermal collaborative therapy for efficient tumor elimination. Meanwhile, the NIR-II fluorescence imaging of blood vessels and lymph nodes in living mice was also accomplished. This study provides the first evidence that the dual-connected acceptor tactic could be a new molecular design direction for the AIE effect, resulting in high ε, aggregation-intensified NIR-II fluorescence emission, and improved ROS and heat generation capacities of phototheranostic agents.
Collapse
Affiliation(s)
- Shiping Yang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, Ming Wai Lau Centre for Reparative Medicine, Karolinska Institute, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Jianyu Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, Ming Wai Lau Centre for Reparative Medicine, Karolinska Institute, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Zhijun Zhang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Rongyuan Zhang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Xinwen Ou
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, Ming Wai Lau Centre for Reparative Medicine, Karolinska Institute, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Weilin Xu
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Miaomiao Kang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xue Li
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dingyuan Yan
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, Ming Wai Lau Centre for Reparative Medicine, Karolinska Institute, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Jianwei Sun
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, Ming Wai Lau Centre for Reparative Medicine, Karolinska Institute, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, Ming Wai Lau Centre for Reparative Medicine, Karolinska Institute, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, Ming Wai Lau Centre for Reparative Medicine, Karolinska Institute, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
191
|
Xing GW, Gao J, Wang H, Liu YC. New Fluorophore and Its Applications in Visualizing Polystyrene Nanoplastics in Bean Sprouts and HeLa Cells. Molecules 2023; 28:7102. [PMID: 37894580 PMCID: PMC10609485 DOI: 10.3390/molecules28207102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/19/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
In the domain of environmental science, pollutants of nanoscale plastic dimensions are acknowledged as subjects of intricate significance. Such entities, though minuscule, present formidable challenges to ecological systems and human health. The diminutive dimensions of these contaminants render their detection arduous, thus demanding the inception of avant-garde methodologies. The present manuscript postulates the employment of the tetraphenylethylene functional group with a fused xanthene (TPEF), a distinguished fluorophore, as an exemplary system for the discernment of nanoplastic particulates. The synthesis and characterization of TPEF have been exhaustively elucidated, revealing its paramount fluorescence attributes and inherent affinity for interaction with nanoplastics. When subjected to comparison with TPEF, nanoplastics are observed to manifest a more pronounced fluorescent luminescence than when associated with the conventional Nile Red (NR). Particularly, the TPEF has shown exceptional affinity for polystyrene (PS) nanoplastics. Further, the resilience of nanoplastics within the hypocotyl epidermis of soybeans, as well as their persistence in mung bean sprouts subsequent to rigorous rinsing protocols, has been meticulously examined. Additionally, this investigation furnishes empirical data signifying the existence of nano-dimensional plastic contaminants within HeLa cellular structures. The urgency of addressing the environmental ramifications engendered by these diminutive yet potent plastic constituents is emphatically highlighted in this manuscript. TPEF paves the way for prospective explorations, with the aspiration of devising efficacious mitigation strategies. Such strategies might encompass delineating the trajectories undertaken by nanoplastics within trophic networks or their ingress into human cellular architectures.
Collapse
Affiliation(s)
- Guo-Wen Xing
- College of Chemistry, Beijing Normal University, Beijing 100875, China;
| | - Jerry Gao
- Beijing No. 80 High School, Beijing 100102, China; (J.G.); (H.W.)
| | - Heng Wang
- Beijing No. 80 High School, Beijing 100102, China; (J.G.); (H.W.)
| | - Yi-Chen Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China;
| |
Collapse
|
192
|
Yu J, Niu J, Yue J, Wang LH, Liu Y. Aromatic Bridged Bis(triphenylamine) Cascade Assembly Achieved Tunable Nanosupramolecular Morphology and NIR Targeted Cell Imaging. ACS NANO 2023; 17:19349-19358. [PMID: 37782105 DOI: 10.1021/acsnano.3c06697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Possessing four cationic pyridium groups, phenyl-bridged bis(triphenylamine) derivatives (G1, G2) were encapsulated by cucurbit[8]uril (CB[8]) at a 1:2 stoichiometry to form the network-like organic two-dimensional nanosheet, which could efficiently enhance the near-infrared (NIR) luminescence and companies with a red-shift from 750 to 810 nm for G1. Benefiting from the supramolecular multivalent interaction, α-cyclodextrin modified hyaluronic acid (HACD) and G1/CB[8] formed nanoparticles to further enhance NIR luminescence behaviors. Compared with the short rigid aromatic bridged bis(triphenylamine) derivative (G2), the supramolecular assembly derived from G1 with long flexible cationic arms gives a larger Stokes shift, which further coassembles with the phosphorescent bromophenylpyridinium derivative/CB[8] pseudorotaxane, leading to efficient phosphorescent resonance energy transfer (PRET). Especially, the nanoparticle showed delayed NIR fluorescence under 308 nm light excitation with an ultralarge Stokes shift up to 502 nm, which was successfully applied in targeted NIR cell imaging.
Collapse
Affiliation(s)
- Jie Yu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Jie Niu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Jinlong Yue
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Li-Hua Wang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
193
|
Maji S, Samanta J, Samanta K, Natarajan R. Emissive Click Cages. Chemistry 2023; 29:e202301985. [PMID: 37498735 DOI: 10.1002/chem.202301985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023]
Abstract
This study reports the synthesis of cofacial organic cage molecules containing aggregation-induced emissive (AIE) luminogens (AIEgens) through four-fold Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) "click" reactions. The shorter AIEgen, tetraphenylethylene (TPE), afforded two orientational isomers (TPE-CC-1A and TPE-CC-1B). The longer AIEgen, tetrabiphenylethylene (TBPE), afforded a single isomer (TBPE-CC-2). The click reaction employed is irreversible, yet it yielded remarkable four-fold click products above 40 %. The phenyl rings around the ethylene core generate propeller-shaped chirality owing to their orientation, which influences the chirality of the resulting cages. The shorter cages are a mixture of PP/MM isomers, while the longer ones are a mixture of PM/MP isomers, as evidenced by their x-ray structures. The newly synthesized cage molecules are emissive even in dilute solutions (THF) and exhibit enhanced AIE upon the addition of water. The aggregated cage molecules in aqueous solution exhibit turn-off emission sensing of nitroaromatic explosives, with selectivity to picric acid in the 25-38 nanomolar detection range.
Collapse
Affiliation(s)
- Suman Maji
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jayanta Samanta
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Krishanu Samanta
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ramalingam Natarajan
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
194
|
Zhang T, Pan Y, Suo M, Lyu M, Lam JWY, Jin Z, Ning S, Tang BZ. Photothermal-Triggered Sulfur Oxide Gas Therapy Augments Type I Photodynamic Therapy for Potentiating Cancer Stem Cell Ablation and Inhibiting Radioresistant Tumor Recurrence. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304042. [PMID: 37559173 PMCID: PMC10582409 DOI: 10.1002/advs.202304042] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Indexed: 08/11/2023]
Abstract
Despite advances in cancer therapy, the existence of self-renewing cancer stem cells (CSC) can lead to tumor recurrence and radiation resistance, resulting in treatment failure and high mortality in patients. To address this issue, a near-infrared (NIR) laser-induced synergistic therapeutic platform has been developed by incorporating aggregation-induced emission (AIE)-active phototheranostic agents and sulfur dioxide (SO2 ) prodrug into a biocompatible hydrogel, namely TBH, to suppress malignant CSC growth. Outstanding hydroxyl radical (·OH) generation and photothermal effect of the AIE phototheranostic agent actualizes Type I photodynamic therapy (PDT) and photothermal therapy through 660 nm NIR laser irradiation. Meanwhile, a large amount of SO2 is released from the SO2 prodrug in thermo-sensitive TBH gel, which depletes upregulated glutathione in CSC and consequentially promotes ·OH generation for PDT enhancement. Thus, the resulting TBH hydrogel can diminish CSC under 660 nm laser irradiation and finally restrain tumor recurrence after radiotherapy (RT). In comparison, the tumor in the mice that were only treated with RT relapsed rapidly. These findings reveal a double-boosting ·OH generation protocol, and the synergistic combination of AIE-mediated PDT and gas therapy provides a novel strategy for inhibiting CSC growth and cancer recurrence after RT, which presents great potential for clinical treatment.
Collapse
Affiliation(s)
- Tianfu Zhang
- School of Biomedical EngineeringGuangzhou Medical UniversityGuangzhou510182China
- Department of Chemistrythe Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstructionand Guangdong‐Hong Kong‐Macro Joint Laboratory of Optoelectronic and Magnetic Functional MaterialsThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong Kong999077China
| | - You Pan
- Guangxi Medical University Cancer HospitalNanning530000China
| | - Meng Suo
- School of Biomedical EngineeringGuangzhou Medical UniversityGuangzhou510182China
| | - Meng Lyu
- Department of Gastrointestinal Surgery & Department of GeriatricsShenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdong518020China
| | - Jacky Wing Yip Lam
- Department of Chemistrythe Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstructionand Guangdong‐Hong Kong‐Macro Joint Laboratory of Optoelectronic and Magnetic Functional MaterialsThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong Kong999077China
| | - Zhaokui Jin
- School of Biomedical EngineeringGuangzhou Medical UniversityGuangzhou510182China
| | - Shipeng Ning
- Guangxi Medical University Cancer HospitalNanning530000China
| | - Ben Zhong Tang
- Department of Chemistrythe Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstructionand Guangdong‐Hong Kong‐Macro Joint Laboratory of Optoelectronic and Magnetic Functional MaterialsThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong Kong999077China
- School of Science and EngineeringShenzhen Institute of Aggregate Science and TechnologyThe Chinese University of Hong KongShenzhenGuangdong518172China
| |
Collapse
|
195
|
Adair LD, New EJ. Molecular fluorescent sensors for in vivo imaging. Curr Opin Biotechnol 2023; 83:102973. [PMID: 37531801 DOI: 10.1016/j.copbio.2023.102973] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023]
Abstract
Small-molecule fluorophores are powerful tools for biological research. They have enabled researchers to study cellular architecture and decipher biological processes. Responsive fluorescent sensors have enabled the study of a wide range of analytes and their effects on biological phenomena in situ. The application of fluorescent sensors to studies in living organisms is complicated by challenges such as biocompatibility, chemostability, photostability and sufficient penetration of light through living tissues. Translation to in vivo imaging is therefore not straightforward and requires innovative approaches. Recent advances in the design of fluorophores with improved photophysical properties and the development of long-wavelength-emitting fluorophore scaffolds that can be modularly functionalised with targeting and sensing groups have allowed the application of fluorogenic, ratiometric and reversible sensors in vivo.
Collapse
Affiliation(s)
- Liam D Adair
- School of Chemistry, The University of Sydney, NSW 2006, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, NSW 2006, Australia; The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW 2006, Australia.
| | - Elizabeth J New
- School of Chemistry, The University of Sydney, NSW 2006, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, NSW 2006, Australia; The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
196
|
Sun Z, Wen H, Zhang Z, Xu W, Bao M, Mo H, Hua X, Niu J, Song J, Kang M, Wang D, Tang BZ. Acceptor engineering-facilitated versatile AIEgen for mitochondria-targeted multimodal imaging-guided cancer photoimmunotherapy. Biomaterials 2023; 301:122276. [PMID: 37579564 DOI: 10.1016/j.biomaterials.2023.122276] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
Photoimmunotherapy has been acknowledged to be an unprecedented strategy to obtain significantly improved cancer treatment efficacy. In this regard, the exploitation of high-performance multimodal phototheranostic agents is highly desired. Apart from tailoring electron donors, acceptor engineering is gradually rising as a deliberate approach in this field. Herein, we rationally designed a family of aggregation-induced emission (AIE)-active compounds with the same donors but different acceptors based on the acceptor engineering. Through finely adjusting the functional groups on electron acceptors, the electron affinity of electron acceptors and the conformation of the compounds were simultaneously modulated. It was found that one of the molecules (named DCTIC), bearing a moderately electrophilic electron acceptor and the best planarity, exhibited optimal phototheranostic properties in terms of light-harvesting ability, fluorescence emission, reactive oxygen species (ROS) production, and photothermal performance. For the purpose of amplified therapeutic outcomes, DCTIC was fabricated into tumor and mitochondria dual-targeted DCTIC nanoparticles (NPs), which afforded good performance in the fluorescence/photoacoustic/photothermal trimodal imaging-guided photodynamic/photothermal-synergized cancer immunotherapy with the combination of programmed cell death protein-1 (PD-1) antibody. Not only the primary tumors were totally eradicated, but efficient growth inhibition of distant tumors was also realized.
Collapse
Affiliation(s)
- Zhe Sun
- Pingyang Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325400, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, 518038, China
| | - Haifei Wen
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China; School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, (CUHK-Shenzhen), Guangdong, 518172, China
| | - Zhijun Zhang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Weilin Xu
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Mengni Bao
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, 518038, China
| | - Han Mo
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, 518038, China
| | - Xiumeng Hua
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Jianlou Niu
- Pingyang Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325400, China
| | - Jiangping Song
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, 518038, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Miaomiao Kang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, (CUHK-Shenzhen), Guangdong, 518172, China.
| |
Collapse
|
197
|
Guo T, Lin Y, Pan D, Zhang X, Zhu W, Cai XM, Huang G, Wang H, Xu D, Kühn FE, Zhang B, Zhang T. Towards bioresource-based aggregation-induced emission luminogens from lignin β-O-4 motifs as renewable resources. Nat Commun 2023; 14:6076. [PMID: 37770462 PMCID: PMC10539282 DOI: 10.1038/s41467-023-41681-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023] Open
Abstract
One-pot synthesis of heterocyclic aromatics with good optical properties from phenolic β-O-4 lignin segments is of high importance to meet high value added biorefinery demands. However, executing this process remains a huge challenge due to the incompatible reaction conditions of the depolymerization of lignin β-O-4 segments containing γ-OH functionalities and bioresource-based aggregation-induced emission luminogens (BioAIEgens) formation with the desired properties. In this work, benzannulation reactions starting from lignin β-O-4 moieties with 3-alkenylated indoles catalyzed by vanadium-based complexes have been successfully developed, affording a wide range of functionalized carbazoles with up to 92% yield. Experiments and density functional theory calculations suggest that the reaction pathway involves the selective cleavage of double C-O bonds/Diels-Alder cycloaddition/dehydrogenative aromatization. Photophysical investigations show that these carbazole products represent a class of BioAIEgens with twisted intramolecular charge transfer. Distinctions of emission behavior were revealed based on unique acceptor-donor-acceptor-type molecular conformations as well as molecular packings. This work features lignin β-O-4 motifs with γ-OH functionalities as renewable substrates, without the need to apply external oxidant/reductant systems. Here, we show a concise and sustainable route to functional carbazoles with AIE properties, building a bridge between lignin and BioAIE materials.
Collapse
Affiliation(s)
- Tenglong Guo
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yuting Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Deng Pan
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, China
| | - Xuedan Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Wenqing Zhu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xu-Min Cai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Genping Huang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, China.
| | - Hua Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Dezhu Xu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Fritz E Kühn
- Molecular Catalysis, Catalysis Research Center and Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, D-85748, Garching bei München, Germany
| | - Bo Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
198
|
Wang S, Zhou K, Lyu X, Li H, Qiu Z, Zhao Z, Tang BZ. The Bioimaging Story of AIEgens. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:509-521. [PMID: 39473571 PMCID: PMC11503683 DOI: 10.1021/cbmi.3c00056] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 11/11/2024]
Abstract
Observations of the micro world, especially the structures of organelles, have been attractive topics since the 17th century. As a powerful detection tool, the fluorescence technique has played a significant role in bioimaging to provide more details and enhance the signal-to-noise ratio compared to that of traditional optical microscopes. The boom of aggregate-induced emission luminogens (AIEgens) in the last two decades has revolutionized the design strategy of luminescent materials for biological applications. This Review summarizes the advantages and recent progress of AIEgens in imaging and tracking. Different imaging strategies of AIEgens including turn-on imaging, stimuli-response sensing, and long-term tracking are presented. NIR AIEgens used for in-depth bioimaging via different methods are also discussed. Finally, we propose several potential development directions for AIEgens in bioimaging.
Collapse
Affiliation(s)
- Siyuan Wang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen, Guangdong 518172, China
| | - Kun Zhou
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen, Guangdong 518172, China
| | - Xinyan Lyu
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen, Guangdong 518172, China
| | - Haowen Li
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen, Guangdong 518172, China
| | - Zijie Qiu
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen, Guangdong 518172, China
| | - Zheng Zhao
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen, Guangdong 518172, China
- HKUST-Shenzhen
Research Institute, South
Area Hi-Tech Park, Nanshan, Shenzhen, Guangdong Province 518057, China
| | - Ben Zhong Tang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen, Guangdong 518172, China
- AIE
Institute, Guangzhou
Development District, Huangpu, Guangdong 510530, China
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| |
Collapse
|
199
|
Harrington K, Hogan DT, Sutherland TC, Stamplecoskie K. Photophysical investigation into room-temperature emission from xanthene derivatives. Phys Chem Chem Phys 2023; 25:24829-24837. [PMID: 37671931 DOI: 10.1039/d3cp02802j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The photophysical consequences of replacing the nitrogen heteroatom in phenothiazine with methylene are investigated for both solutions and crystalline solids. We analysed the excited state dynamics of four xanthene derivatives and observed an anomalous fluorescence from an energy level higher than the S1 state with lifetimes between 2.8 ns and 5.8 ns in solution and as solids. Additionally, the solid-state xanthene derivatives exhibited long-lived emission consistent with a triplet excited state, displaying millisecond lifetimes that ranged from 0.1 ms to 3.4 ms at ambient temperature in air. Our findings were supported by optical studies, crystallographic structural analyses, and DFT computations, which corroborated the photophysical measurements. It was concluded that the presence of the nitrogen atom in phenothiazine is crucial for achieving ultra-long emission lifetimes and that these results contribute to a deeper understanding of excited state dynamics which have potential implications for applications, such as display technologies, anticounterfeiting technologies, and sensors.
Collapse
Affiliation(s)
| | - David T Hogan
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, T3G 1M1, Canada.
| | - Todd C Sutherland
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, T3G 1M1, Canada.
| | | |
Collapse
|
200
|
Wang X, Wang Z, Dong F, Yang D, Yin L, Han L. Exploration of Water-Soluble Natural AIEgens Boosting Label-Free Turn-on Fluorescent Sensing in a DNA Hydrogel. Anal Chem 2023; 95:13864-13871. [PMID: 37643162 DOI: 10.1021/acs.analchem.3c02004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Various aggregation-induced emission luminogens (AIEgens) have been developed and applied in different areas in recent years. However, AIEgens generally can aggregate and emit strong fluorescence in aqueous solution even containing DNA and other biomacromolecules because of poor water solubility, restricting their application in biosensing and bioimaging in aqueous solution. Moreover, the great majority of AIEgens commonly suffer from complex organic synthesis, environmental damage, and biological toxicity. In this work, jatrorrhizine (Jat), an isoquinoline alkaloid from Chinese herbs, was found to be a natural water-soluble AIEgen that has not been previously reported. Jat's photometric characteristics and single-crystal structure demonstrated that the restriction of intramolecular motion and twisted intramolecular charge transfer were responsible for its AIE phenomenon. Due to the good water solubility and AIE character of Jat, it did not emit fluorescence in the aqueous solution containing DNA and polymers until the formation of the DNA hydrogel. Therefore, a DNA hydrogel fluorescence biosensor was designed by using the target (miRNA) as a catalyst to trigger the entropy-driven circuit of DNA, realizing the ultrasensitive and label-free detection of miRNA with an ultralow limit of detection (0.049 fM, S/N = 3). This biosensing strategy also has excellent stability and acceptable reliability for real sample assay. The results not only indicated the excellent sensing performance of Jat as AIE probes in aqueous solution but also demonstrated the promising application potential of water-soluble natural AIEgens.
Collapse
Affiliation(s)
- Xiuzhong Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong, China
| | - Zhen Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong, China
| | - Fengying Dong
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong, China
| | - Dongxu Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong, China
| | - Li Yin
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong, China
| | - Lei Han
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong, China
| |
Collapse
|