151
|
Tang S, Bao H, Zhang Y, Yao J, Yang P, Chen X. 14-3-3ε mediates the cell fate decision-making pathways in response of hepatocellular carcinoma to Bleomycin-induced DNA damage. PLoS One 2013; 8:e55268. [PMID: 23472066 PMCID: PMC3589417 DOI: 10.1371/journal.pone.0055268] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 12/27/2012] [Indexed: 11/30/2022] Open
Abstract
Background Lack of understanding of the response of hepatocellular carcinoma (HCC) to anticancer drugs causes the high mortality of HCC patients. Bleomycin (BLM) that induces DNA damage is clinically used for cancer therapy, while the mechanism underlying BLM-induced DNA damage response (DDR) in HCC cells remains ambiguous. Given that 14-3-3 proteins are broadly involved in regulation of diverse biological processes (BPs)/pathways, we investigate how a 14-3-3 isoform coordinates particular BPs/pathways in BLM-induced DDR in HCC. Methodology/Principal Findings Using dual-tagging quantitative proteomic approach, we dissected the 14-3-3ε interactome formed during BLM-induced DDR, which revealed that 14-3-3ε via its associations with multiple pathway-specific proteins coordinates multiple pathways including chromosome remodeling, DNA/RNA binding/processing, DNA repair, protein ubiquitination/degradation, cell cycle arrest, signal transduction and apoptosis. Further, “zoom-in” investigation of the 14-3-3ε interacting network indicated that the BLM-induced interaction between 14-3-3ε and a MAP kinase TAK1 plays a critical role in determining cell propensity of apoptosis. Functional characterization of this interaction further revealed that BLM triggers site-specific phosphorylations in the kinase domain of TAK1. These BLM-induced changes of phosphorylations directly correlate to the strength of the TAK1 binding to 14-3-3ε, which govern the phosphorylation-dependent TAK1 activation. The enhanced 14-3-3ε-TAK1 association then inhibits the anti-apoptotic activity of TAK1, which ultimately promotes BLM-induced apoptosis in HCC cells. In a data-dependent manner, we then derived a mechanistic model where 14-3-3ε plays the pivotal role in integrating diverse biological pathways for cellular DDR to BLM in HCC. Conclusions Our data demonstrated on a systems view that 14-3-3ε coordinates multiple biological pathways involved in BLM-induced DDR in HCC cells. Specifically, 14-3-3ε associates with TAK1 in a phosphorylation-dependent manner to determine the cell fate of BLM-treated HCC cells. Not only individual proteins but also those critical links in the network could be the potential targets for BLM-mediated therapeutic intervention of HCC.
Collapse
Affiliation(s)
- Siwei Tang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Huimin Bao
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yang Zhang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jun Yao
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Pengyuan Yang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xian Chen
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
152
|
Molecular cloning of partial 14-3-3 genes in the marine sponge Hymeniacidon perleve and its role in differentiating infectious and non-infectious bacteria. CHINESE SCIENCE BULLETIN-CHINESE 2013. [DOI: 10.1007/s11434-012-5400-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
153
|
Inoue M, Yasuda K, Uemura H, Yasaka N, Schnaufer A, Yano M, Kido H, Kohda D, Doi H, Fukuma T, Tsuji A, Horikoshi N. Trypanosoma brucei 14-3-3I and II proteins predominantly form a heterodimer structure that acts as a potent cell cycle regulator in vivo. ACTA ACUST UNITED AC 2013; 153:431-9. [DOI: 10.1093/jb/mvt016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
154
|
Malki K, Campbell J, Davies M, Keers R, Uher R, Ward M, Paya-Cano J, Aitchinson KJ, Binder E, Sluyter F, Kuhn K, Selzer S, Craig I, McGuffin P, Schalkwyk LC. Pharmacoproteomic investigation into antidepressant response in two mouse inbred strains. Proteomics 2013; 12:2355-65. [PMID: 22696452 DOI: 10.1002/pmic.201100306] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this study, we present a pharmacoproteomic investigation of response to antidepressants two inbred strains. Our aim was to uncover molecular mechanisms underlying antidepressant action and identify new biomarkers to determine therapeutic response to two antidepressants with proven efficacy in the treatment of depression but divergent mechanisms of action. Mice were treated with the pro-noradrenergic drug nortriptyline, the pro-serotonergic drug escitalopram or saline. Quantitative proteomic analyses were undertaken on hippocampal tissue from a study design that used two inbred mouse strains, two depressogenic protocols and a control condition, (maternal separation, chronic mild stress, control), two antidepressant drugs and two dosing protocols. The proteomic analysis was aimed at the identification of specific drug-response markers. Complementary approaches, 2DE and isobaric tandem mass tagging (TMT), were applied to the selected experimental groups. To investigate the relationship between proteomic profiles, depressogenic protocols and drug response, 2DE and TMT data sets were analysed using multivariate methods. The results highlighted significant strain- and stress-related differences across both 2DE and TMT data sets and identified the three gene products involved in serotonergic (PXBD5, YHWAB, SLC25A4) and one in noradrenergic antidepressant action (PXBD6).
Collapse
Affiliation(s)
- Karim Malki
- King's College London, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Role of akirin in skeletal myogenesis. Int J Mol Sci 2013; 14:3817-23. [PMID: 23396110 PMCID: PMC3588072 DOI: 10.3390/ijms14023817] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/23/2013] [Accepted: 01/31/2013] [Indexed: 11/17/2022] Open
Abstract
Akirin is a recently discovered nuclear factor that plays an important role in innate immune responses. Beyond its role in innate immune responses, Akirin has recently been shown to play an important role in skeletal myogenesis. In this article, we will briefly review the structure and tissue distribution of Akirin and discuss recent advances in our understanding of its role and signal pathway in skeletal myogenesis.
Collapse
|
156
|
Brennan GP, Jimenez-Mateos EM, McKiernan RC, Engel T, Tzivion G, Henshall DC. Transgenic overexpression of 14-3-3 zeta protects hippocampus against endoplasmic reticulum stress and status epilepticus in vivo. PLoS One 2013; 8:e54491. [PMID: 23359526 PMCID: PMC3554740 DOI: 10.1371/journal.pone.0054491] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/12/2012] [Indexed: 01/05/2023] Open
Abstract
14-3-3 proteins are ubiquitous molecular chaperones that are abundantly expressed in the brain where they regulate cell functions including metabolism, the cell cycle and apoptosis. Brain levels of several 14-3-3 isoforms are altered in diseases of the nervous system, including epilepsy. The 14-3-3 zeta (ζ) isoform has been linked to endoplasmic reticulum (ER) function in neurons, with reduced levels provoking ER stress and increasing vulnerability to excitotoxic injury. Here we report that transgenic overexpression of 14-3-3ζ in mice results in selective changes to the unfolded protein response pathway in the hippocampus, including down-regulation of glucose-regulated proteins 78 and 94, activating transcription factors 4 and 6, and Xbp1 splicing. No differences were found between wild-type mice and transgenic mice for levels of other 14-3-3 isoforms or various other 14-3-3 binding proteins. 14-3-3ζ overexpressing mice were potently protected against cell death caused by intracerebroventricular injection of the ER stressor tunicamycin. 14-3-3ζ overexpressing mice were also potently protected against neuronal death caused by prolonged seizures. These studies demonstrate that increased 14-3-3ζ levels protect against ER stress and seizure-damage despite down-regulation of the unfolded protein response. Delivery of 14-3-3ζ may protect against pathologic changes resulting from prolonged or repeated seizures or where injuries provoke ER stress.
Collapse
Affiliation(s)
- Gary P. Brennan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Eva M. Jimenez-Mateos
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ross C. McKiernan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Guri Tzivion
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - David C. Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- * E-mail:
| |
Collapse
|
157
|
Liang S, Shen G, Liu Q, Xu Y, Zhou L, Xiao S, Xu Z, Gong F, You C, Wei Y. Isoform-specific expression and characterization of 14-3-3 proteins in human glioma tissues discovered by stable isotope labeling with amino acids in cell culture-based proteomic analysis. Proteomics Clin Appl 2012; 3:743-53. [PMID: 21136983 DOI: 10.1002/prca.200800198] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Human 14-3-3 proteins have isoform-specific expression and functions in different kinds of normal or tumor cells and tissues. However, the expression profiling of 14-3-3 proteins and isoform-specific biological functions are unclear in human glioma so far. In our study, the expression levels and characterization of 14-3-3 isoforms in human glioma tissues were investigated by a sensitive, accurate stable isotope labeling with amino acids in cell culture-based quantitative proteomic strategy. As a result, except unexpressed 14-3-3σ, the other six isoforms, with different expression levels, were existed in glioma tissues and para-cancerous brain tissues (PBTs). 14-3-3β and η were upregulated, whereas 14-3-3ζ was downregulated in glioma tissues compared with that in PBTs. And the other three isoforms 14-3-3ε, θ, and γ had similar expression levels in human glioma tissues and PBTs. Western blot and immunohistochemistry analysis were both consistent with the quantitative proteomic data. The loss of expression of 14-3-3σ was further discovered due to DNA high methylation in its coding region in glioma by methylation-specific PCR analysis. These results indicated that the four isoforms, including 14-3-3β, η, ζ, and σ, may play important roles in tumorigenesis of human glioma, which is probably used as potential biomarkers for diagnosis and targets for treatment of human gliomas in future.
Collapse
Affiliation(s)
- Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, P.R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Kuboki T, Kantawong F, Burchmore R, Dalby MJ, Kidoaki S. 2D-DIGE proteomic analysis of mesenchymal stem cell cultured on the elasticity-tunable hydrogels. Cell Struct Funct 2012; 37:127-39. [PMID: 22971925 DOI: 10.1247/csf.12012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The present study focuses on mechanotransduction in mesenchymal stem cells (MSCs) in response to matrix elasticity. By using photocurable gelatinous gels with tunable stiffness, proteomic profiles of MSCs cultured on tissue culture plastic, soft (3 kPa) and stiff (52 kPa) matrices were deciphered using 2-dimensional differential in-gel analysis (2D-DIGE). The DIGE data, tied to immunofluorescence, indicated abundance and organization changes in the cytoskeletonal proteins as well as differential regulation of important signaling-related proteins, stress-responsing proteins and also proteins involved in collagen synthesis. The major CSK proteins including actin, tubulin and vimentin of the cells cultured on the gels were remarkably changed their expressions. Significant down-regulation of α-tubulin and β-actin can be observed on gel samples in comparison to the rigid tissue culture plates. The expression abundance of vimentin appeared to be highest in the MSCs cultured on hard gels. These results suggested that the substrate stiffness significantly affects expression balances in cytoskeletal proteins of MSCs with some implications to cellular tensegrity.
Collapse
Affiliation(s)
- Thasaneeya Kuboki
- Institute for Materials Chemistry and Engineering, Division of Biomolecular Chemistry, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
159
|
Park SG, Jung S, Ryu HH, Jung TY, Moon KS, Kim IY, Jeong YI, Pei J, Park SJ, Kang SS. Role of 14-3-3-beta in the migration and invasion in human malignant glioma cell line U87MG. Neurol Res 2012; 34:893-900. [PMID: 22925547 DOI: 10.1179/1743132812y.0000000087] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
PURPOSE To assess the influence of 14-3-3-beta in modulating the migration and invasion of human glioma cells. METHODS To profile the genes associated with malignant glioma cell motility, differential display-polymerase chain reaction was performed and the findings were validated by Northern blotting in the U343MG-A, U87MG, and U87MG-10' human glioma cell lines. Antisense 14-3-3-beta cDNA plasmid was transfected into U87MG ('U87-YA-3'). To follow motility changes after transfection, simple scratch test and matrigel assay were performed. Morphological and cytoskeletal changes were documented by light and confocal microscopy. In addition, doubling times of the transfectant and endogenous 14-3-3-beta levels were determined in various glioma cell lines with different motilities. RESULTS 14-3-3-beta was highly expressed in U87MG cells. U87-YA-3 cells became small and flat, and actin was depolarized. Furthermore, U87-YA-3 cell motility was inhibited markedly versus parental U87MG cells. The doubling times of transfected and parent cells were 32 and 37 hours, respectively. Endogenous 14-3-3-beta expression in the human glioma cell lines was proportional to their migratory and invasive abilities. CONCLUSION 14-3-3-beta modulates the migration and invasion in U87MG cells, which may be useful in developing therapeutic approaches for the treatment of glioma.
Collapse
Affiliation(s)
- Sung-Geun Park
- Department of Neurosurgery, Chonnam National University Hwasun Hospital and Medical School, Gwangju, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Murata T, Takayama KI, Urano T, Fujimura T, Ashikari D, Obinata D, Horie-Inoue K, Takahashi S, Ouchi Y, Homma Y, Inoue S. 14-3-3ζ, a novel androgen-responsive gene, is upregulated in prostate cancer and promotes prostate cancer cell proliferation and survival. Clin Cancer Res 2012; 18:5617-27. [PMID: 22904106 DOI: 10.1158/1078-0432.ccr-12-0281] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE Androgen receptor is an essential transcriptional factor that contributes to the development and progression of prostate cancer. In this study, we investigated the androgen regulation and functional analysis of 14-3-3ζ in prostate cancer. EXPERIMENTAL DESIGN Using chromatin immunoprecipitation (ChIP) combined with DNA microarray (ChIP-chip) analysis in LNCaP cells, we identified a functional androgen receptor-binding site in the downstream region of the 14-3-3ζ gene. Androgen regulation was examined by quantitative reverse transcription PCR and Western blot analysis. Prostate cancer cells stably expressing 14-3-3ζ and siRNA knockdown were used for functional analyses. We further examined 14-3-3ζ expression in clinical samples of prostate cancer by immunohistochemistry and quantitative reverse transcription PCR. RESULTS Androgen-dependent upregulation of 14-3-3ζ was validated at the mRNA and protein levels. The 14-3-3ζ gene is favorable for cancer-cell survival, as its ectopic expression in LNCaP cells contributes to cell proliferation and the acquired resistance to etoposide-induced apoptosis. 14-3-3ζ expression was associated with androgen receptor transcriptional activity and prostate-specific antigen (PSA) mRNA expression. Immunoprecipitation indicated that 14-3-3ζ was associated with androgen receptor in the nucleus. Clinicopathologic studies further support the relevance of 14-3-3ζ in prostate cancers, as its higher expression is associated with malignancy and lymph node metastasis. CONCLUSIONS 14-3-3ζ is a novel androgen-responsive gene that activates proliferation, cell survival, and androgen receptor transcriptional activity. 14-3-3ζ may facilitate the progression of prostate cancer.
Collapse
Affiliation(s)
- Taro Murata
- Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Riva C, Cristoni S, Binelli A. Effects of triclosan in the freshwater mussel Dreissena polymorpha: a proteomic investigation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 118-119:62-71. [PMID: 22522169 DOI: 10.1016/j.aquatox.2012.03.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/16/2012] [Accepted: 03/17/2012] [Indexed: 05/31/2023]
Abstract
Triclosan (TCS, 5-chloro-2-(2,4-dichlorophenoxy)phenol) is commonly used in several personal care products, textiles, and children's toys. Because the removal of TCS by wastewater treatment plants is incomplete, its environmental fate is to be discharged into freshwater ecosystems, where its ecotoxicological impact is still largely unexplored. Previously, we began a structured multi-tiered approach in order to evaluate TCS toxicity in the freshwater mussel Dreissena polymorpha. The results of our previous studies, based on in vitro and in vivo experiments, highlighted a pronounced cytogenotoxic effect exerted by TCS, and showed that an increase in oxidative stress was likely to be one of its main toxic mechanisms. In this work, in order to investigate TCS toxicity mechanisms in aquatic non-target species in greater depth, we decided to use a proteomic approach, analysing changes in protein expression profiles in gills of D. polymorpha exposed for seven days to TCS. Moreover, thiobarbituric acid reactive substances (TBARS) were measured to investigate further the role played by TCS in inducing oxidative stress. Finally, TCS bioaccumulation in mussel tissues was also assessed, to ensure an effective accumulation of the toxicant. Our results not only confirmed the role played by TCS in inducing oxidative stress, but furthered knowledge about the mechanism exerted by TCS in inducing toxicity in an aquatic non-target organisms. TCS induced significant alterations in protein expression profiles in gills of D. polymorpha. The wide range of proteins affected suggested that this chemical has marked effects on various biological processes, especially those involved in calcium binding or stress response. We also confirmed that the proteomic analysis, using 2-DE and de novo sequencing, is a reliable and powerful approach to investigate cellular responses to pollutants in a non-model organism with few genomic sequences available in databases.
Collapse
Affiliation(s)
| | - Simone Cristoni
- I.S.B., Ion Source & Biotechnologies S.r.l., Gerenzano, Varese, Italy
| | | |
Collapse
|
162
|
Tsigkari KK, Acevedo SF, Skoulakis EMC. 14-3-3ε Is required for germ cell migration in Drosophila. PLoS One 2012; 7:e36702. [PMID: 22666326 PMCID: PMC3364263 DOI: 10.1371/journal.pone.0036702] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 04/05/2012] [Indexed: 11/19/2022] Open
Abstract
Although 14-3-3 proteins participate in multiple biological processes, isoform-specific specialized functions, as well as functional redundancy are emerging with tissue and developmental stage-specificity. Accordingly, the two 14-3-3ε proteins in Drosophila exhibit functional specificity and redundancy. Homozygotes for loss of function alleles of D14-3-3ε contain significantly fewer germ line cells (pole cells) in their gonads, a phenotype not shared by mutants in the other 14-3-3 gene leo. We show that although D14-3-3ε is enriched within pole cells it is required in mesodermal somatic gonad precursor cells which guide pole cells in their migration through the mesoderm and coalesce with them to form the embryonic gonad. Loss of D14-3-3ε results in defective pole cell migration, reduced pole cell number. We present evidence that D14-3-3ε loss results in reduction or loss of the transcription factor Zfh-1, one of the main regulatory molecules of the pole cell migration, from the somatic gonad precursor cells.
Collapse
Affiliation(s)
- K. Kirki Tsigkari
- Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
| | - Summer F. Acevedo
- Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
| | | |
Collapse
|
163
|
Yang X, Cao W, Zhou J, Zhang W, Zhang X, Lin W, Fei Z, Lin H, Wang B. 14-3-3ζ positive expression is associated with a poor prognosis in patients with glioblastoma. Neurosurgery 2012; 68:932-8; discussion 938. [PMID: 21242845 DOI: 10.1227/neu.0b013e3182098c30] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND When identifying clinical markers predicting clinical outcome, disease recurrence and resistance to therapies often determine the diagnosis and therapy of some cancer types. OBJECTIVE To investigate whether 14-3-3zeta positive expression is an indicator of prognosis in patients with glioblastoma. METHODS Forty-seven patients treated with surgery, radiotherapy, and adjuvant chemotherapy between 2005 and 2007 were divided into 2 groups according to 14-3-3zeta expression in an immunohistochemical study: the 14-3-3zeta negative group (n = 12 patients) and the 14-3-3zeta positive group (n = 35 patients). The clinicopathologic features and survival data for patients in the 14-3-3zeta positive group were compared with data from the patients in the 14-3-3zeta negative group. Kaplan-Meier survival analysis and univariate and multivariate analyses were performed to determine the prognostic factors that influenced patient survival. RESULTS 14-3-3zeta positive expression was observed in approximately 74.5% of patients with glioblastoma. Patients in the 14-3-3zeta positive group had lower overall survival rates and median survival time than those in the 14-3-3zeta negative group (overall 2-year actuarial survival rates, 8.6% for the 14-3-3zeta positive group vs 16.7% for the 14-3-3zeta negative group; overall 2-year median survival time, 12.9 months for the 14-3-3zeta positive group vs 17.9 months for the 14-3-3zeta negative group, P = .019). 14-3-3zeta positive expression in tumor cells also was correlated with a shorter interval to tumor recurrence (median interval to recurrence, 5.9 months in the 14-3-3zeta positive group vs 8.3 months in the 14-3-3zeta negative group, P = .002). Univariate and multivariate analyses showed that 14-3-3zeta positive expression was an independent prognostic factor. CONCLUSION 14-3-3zeta positive expression can be used as a potential molecular risk factor in patients with glioblastoma.
Collapse
Affiliation(s)
- Xiaoliang Yang
- Institute of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xían, Shaanxi Province, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Lee CG, Park GY, Han YK, Lee JH, Chun SH, Park HY, Lim KH, Kim EG, Choi YJ, Yang K, Lee CW. Roles of 14-3-3η in mitotic progression and its potential use as a therapeutic target for cancers. Oncogene 2012; 32:1560-9. [DOI: 10.1038/onc.2012.170] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
165
|
Role of individual phosphorylation sites for the 14-3-3-protein-dependent activation of yeast neutral trehalase Nth1. Biochem J 2012; 443:663-70. [DOI: 10.1042/bj20111615] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Trehalases are important highly conserved enzymes found in a wide variety of organisms and are responsible for the hydrolysis of trehalose that serves as a carbon and energy source as well as a universal stress protectant. Emerging evidence indicates that the enzymatic activity of the neutral trehalase Nth1 in yeast is enhanced by 14-3-3 protein binding in a phosphorylation-dependent manner through an unknown mechanism. In the present study, we investigated in detail the interaction between Saccharomyces cerevisiae Nth1 and 14-3-3 protein isoforms Bmh1 and Bmh2. We determined four residues that are phosphorylated by PKA (protein kinase A) in vitro within the disordered N-terminal segment of Nth1. Sedimentation analysis and enzyme kinetics measurements show that both yeast 14-3-3 isoforms form a stable complex with phosphorylated Nth1 and significantly enhance its enzymatic activity. The 14-3-3-dependent activation of Nth1 is significantly more potent compared with Ca2+-dependent activation. Limited proteolysis confirmed that the 14-3-3 proteins interact with the N-terminal segment of Nth1 where all phosphorylation sites are located. Site-directed mutagenesis in conjunction with the enzyme activity measurements in vitro and the activation studies of mutant forms in vivo suggest that Ser60 and Ser83 are sites primarily responsible for PKA-dependent and 14-3-3-mediated activation of Nth1.
Collapse
|
166
|
Leal MF, Calcagno DQ, Demachki S, Assumpção PP, Chammas R, Burbano RR, Smith MDAC. Clinical implication of 14-3-3 epsilon expression in gastric cancer. World J Gastroenterol 2012; 18:1531-7. [PMID: 22509086 PMCID: PMC3319950 DOI: 10.3748/wjg.v18.i13.1531] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 12/23/2011] [Accepted: 12/31/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate for the first time the protein and mRNA expression of 14-3-3ε in gastric carcinogenesis.
METHODS: 14-3-3ε protein expression was determined by western blotting, and mRNA expression was examined by real-time quantitative RT-PCR in gastric tumors and their matched non-neoplastic gastric tissue samples.
RESULTS: Authors observed a significant reduction of 14-3-3ε protein expression in gastric cancer (GC) samples compared to their matched non-neoplastic tissue. Reduced levels of 14-3-3ε were also associated with diffuse-type GC and early-onset of this pathology. Our data suggest that reduced 14-3-3ε may have a role in gastric carcinogenesis process.
CONCLUSION: Our results reveal that the reduced 14-3-3ε expression in GC and investigation of 14-3-3ε interaction partners may help to elucidate the carcinogenesis process.
Collapse
|
167
|
van der Wal DE, Gitz E, Du VX, Lo KSL, Koekman CA, Versteeg S, Akkerman JWN. Arachidonic acid depletion extends survival of cold-stored platelets by interfering with the [glycoprotein Ibα--14-3-3ζ] association. Haematologica 2012; 97:1514-22. [PMID: 22371179 DOI: 10.3324/haematol.2011.059956] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Cold storage of platelets reduces bacterial growth and preserves their hemostatic properties better than current procedures do. However, storage at 0°C induces [14-3-3ζ-glycoprotein Ibα] association, 14-3-3ζ release from phospho-Bad, Bad activation and apoptosis. DESIGN AND METHODS We investigated whether arachidonic acid, which also binds 14-3-3ζ, contributes to coldinduced apoptosis. RESULTS Cold storage activated P38-mitogen-activated protein kinase and released arachidonic acid, which accumulated due to cold inactivation of cyclooxygenase-1/thromboxane synthase. Accumulated arachidonic acid released 14-3-3ζ from phospho-Bad and decreased the mitochondrial membrane potential, which are steps in the induction of apoptosis. Addition of arachidonic acid did the same and its depletion made platelets resistant to cold-induced apoptosis. Incubation with biotin-arachidonic acid revealed formation of an [arachidonic acid-14-3-3ζ-glycoprotein Ibα] complex. Indomethacin promoted complex formation by accumulating arachidonic acid and released 14-3-3ζ from cyclo-oxygenase-1. Arachidonic acid depletion prevented the cold-induced reduction of platelet survival in mice. CONCLUSIONS We conclude that cold storage induced apoptosis through an [arachidonic acid-14-3-3ζ-glycoprotein Ibα] complex, which released 14-3-3ζ from Bad in an arachidonic acid-dependent manner. Although arachidonic acid depletion reduced agonist-induced thromboxane A(2) formation and aggregation, arachidonic acid repletion restored these functions, opening ways to reduce apoptosis during storage without compromising hemostatic functions post-transfusion.
Collapse
Affiliation(s)
- Dianne E van der Wal
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
168
|
Neal CL, Xu J, Li P, Mori S, Yang J, Neal NN, Zhou X, Wyszomierski SL, Yu D. Overexpression of 14-3-3ζ in cancer cells activates PI3K via binding the p85 regulatory subunit. Oncogene 2012; 31:897-906. [PMID: 21743495 PMCID: PMC3193867 DOI: 10.1038/onc.2011.284] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 05/14/2011] [Accepted: 06/04/2011] [Indexed: 01/12/2023]
Abstract
The ubiquitously expressed 14-3-3 proteins regulate many pathways involved in transformation. Previously, we found that 14-3-3ζ overexpression increased Akt phosphorylation in human mammary epithelial cells. Here, we investigated the clinical relevance and molecular mechanism of 14-3-3ζ-overexpression-mediated Akt phosphorylation, and its potential impact on breast cancer progression. We found that 14-3-3ζ overexpression was significantly (P=0.005) associated with increased Akt phosphorylation in human breast tumors. Additionally, 14-3-3ζ overexpression combined with strong Akt phosphorylation was significantly (P=0.01) associated with increased cancer recurrence in patients. In contrast, knockdown of 14-3-3ζ expression by small interfering RNA in cancer cell lines and tumor xenografts reduced Akt phosphorylation. Furthermore, 14-3-3ζ enhanced Akt phosphorylation through activation of phosphoinositide 3-kinase (PI3K). Mechanistically, 14-3-3ζ bound to the p85 regulatory subunit of PI3K and increased PI3K translocation to the cell membrane. A single 14-3-3-binding motif encompassing serine 83 on p85 is largely responsible for 14-3-3ζ-mediated p85 binding and PI3K/Akt activation. Mutation of serine 83 to alanine on p85 inhibited 14-3-3ζ binding to the p85 subunit of PI3K, reduced PI3K membrane localization and activation, impeded anchorage-independent growth and enhanced stress-induced apoptosis. These findings revealed a novel mechanism by which 14-3-3ζ overexpression activates PI3K, a key node in the mitogenic signaling network known to promote malignancies in many cell types.
Collapse
Affiliation(s)
- Christopher L. Neal
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jia Xu
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
- Cancer Biology Program, the University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, USA
| | - Ping Li
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Seiji Mori
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jun Yang
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
- Cancer Biology Program, the University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, USA
| | - Nina N. Neal
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaoyan Zhou
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shannon L. Wyszomierski
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
- Cancer Biology Program, the University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, USA
| |
Collapse
|
169
|
Proteomic analysis of differentially expressed proteins in the lymphoid organ of Vibrio harveyi-infected Penaeus monodon. Mol Biol Rep 2012; 39:6367-77. [DOI: 10.1007/s11033-012-1458-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 01/23/2012] [Indexed: 12/20/2022]
|
170
|
Lai A, Ghaffari A, Li Y, Ghahary A. Microarray-based identification of aminopeptidase N target genes in keratinocyte conditioned medium-stimulated dermal fibroblasts. J Cell Biochem 2012; 113:1061-8. [DOI: 10.1002/jcb.23438] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
171
|
Mukherjee A, Reisdorph N, Guda B, Pandey S, Roy SK. Changes in ovarian protein expression during primordial follicle formation in the hamster. Mol Cell Endocrinol 2012; 348:87-94. [PMID: 21821096 PMCID: PMC3418795 DOI: 10.1016/j.mce.2011.07.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 01/01/2023]
Abstract
Although many proteins have been shown to affect the transition of primordial follicles to the primary stage, factors regulating the formation of primordial follicles remains sketchy at best. Differentiation of somatic cells into early granulosa cells during ovarian morphogenesis is the hallmark of primordial follicle formation; hence, critical changes are expected in protein expression. We wanted to identify proteins, the expression of which would correlate with the formation of primordial follicles as a first step to determine their biological function in folliculogenesis. Proteins were extracted from embryonic (E15) and 8-day-old (P8) hamster ovaries and fractionated by two-dimensional gel electrophoresis. Gels were stained with Proteosilver, and images of protein profiles corresponding to E15 and P8 ovaries were overlayed to identify protein spots showing altered expression. Some of the protein spots were extracted from SyproRuby-stained preparative gels, digested with trypsin, and analyzed by mass spectrometry. Both E15 and P8 ovaries had high molecular weight proteins at acidic, basic, and neutral ranges; however, we focused on small molecular weight proteins at 4-7 pH range. Many of those spots might represent post-translational modification. Mass spectrometric analysis revealed the identity of these proteins. The formation of primordial follicles on P8 correlated with many differentially and newly expressed proteins. Whereas Ebp1 expression was downregulated in ovarian somatic cells, Sfrs3 expression was specifically upregulated in newly formed granulosa cells of primordial follicles on P8. The results show for the first time that the morphogenesis of primordial follicles in the hamster coincides with altered and novel expression of proteins involved in cell proliferation, transcriptional regulation, and metabolism. Therefore, formation of primordial follicles is an active process requiring differentiation of somatic cells into early granulosa cells and their interaction with the oocytes.
Collapse
Affiliation(s)
- Anindit Mukherjee
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center 984515 Nebraska Medical Center, Omaha, NE 68198-4515
| | - Nichole Reisdorph
- Department of Immunology, National Jewish Medical and Research Center, 1400 Jackson St, K924, Denver, CO 80206
| | - Babu Guda
- Department of Genetics, Cell Biology and Anatomy, and Center for Bioinformatics and System Biology, University of Nebraska Medical Center 984515 Nebraska Medical Center, Omaha, NE 68198-4515
| | - Sanjit Pandey
- Department of Genetics, Cell Biology and Anatomy, and Center for Bioinformatics and System Biology, University of Nebraska Medical Center 984515 Nebraska Medical Center, Omaha, NE 68198-4515
| | - Shyamal K Roy
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center 984515 Nebraska Medical Center, Omaha, NE 68198-4515
- Department of Cellular and Integrative Physiology, Department of OB/GYN and Olson Center for Women's Health, and Eppley Institute for Cancer Research, University of Nebraska Medical Center 984515 Nebraska Medical Center, Omaha, NE 68198-4515
| |
Collapse
|
172
|
Malerba M, Crosti P, Cerana R. Defense/stress responses activated by chitosan in sycamore cultured cells. PROTOPLASMA 2012; 249:89-98. [PMID: 21327845 DOI: 10.1007/s00709-011-0264-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 01/24/2011] [Indexed: 05/23/2023]
Abstract
Chitosan (CHT) is a natural, non-toxic, and inexpensive compound obtained by partial alkaline deacetylation of chitin, the main component of the exoskeleton of crustaceans and other arthropods. The unique physiological and biological properties of CHT make this polymer useful for a wide range of industries. In agriculture, CHT is used to control numerous pre- and postharvest diseases on various horticultural commodities. In recent years, much attention has been devoted to CHT as an elicitor of defense responses in plants, which include raising of cytosolic Ca(2+), activation of MAP kinases, callose apposition, oxidative burst, hypersensitive response, synthesis of abscisic acid, jasmonate, phytoalexins, and pathogenesis-related proteins. In this work, we investigated the effects of different CHT concentrations on some defense/stress responses of sycamore (Acer pseudoplatanus L.) cultured cells. CHT induced accumulation of dead cells, and of cells with fragmented DNA, production of H(2)O(2) and nitric oxide, release of cytochrome c from the mitochondrion, accumulation of regulative 14-3-3 proteins in the cytosol and of HSP70 molecular chaperone binding protein in the endoplasmic reticulum, accompanied by marked modifications in the architecture of this cell organelle.
Collapse
Affiliation(s)
- Massimo Malerba
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy.
| | | | | |
Collapse
|
173
|
Dash S, Chandramouli KH, Zhang Y, Qian PY. Effects of poly-ether B on proteome and phosphoproteome expression in biofouling Balanus amphitrite cyprids. BIOFOULING 2012; 28:405-415. [PMID: 22519465 DOI: 10.1080/08927014.2012.679731] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Biofouling is ubiquitous in marine environments, and the barnacle Balanus amphitrite is one of the most recalcitrant and aggressive biofoulers in tropical waters. Several natural antifoulants that were claimed to be non-toxic have been isolated in recent years, although the mechanism by which they inhibit fouling is yet to be investigated. Poly-ether B has shown promise in the non-toxic inhibition of larval barnacle attachment. Hence, in this study, multiplex two-dimensional electrophoresis (2-DE) was applied in conjunction with mass spectrometry to investigate the effects of poly-ether B on barnacle larvae at the molecular level. The cyprid proteome response to poly-ether B treatment was analyzed at the total proteome and phosphoproteome levels, with 65 protein and 19 phosphoprotein spots found to be up- or down-regulated. The proteins were found to be related to energy-metabolism, oxidative stress, and molecular chaperones, thus indicating that poly-ether B may interfere with the redox-regulatory mechanisms governing the settlement of barnacle larvae. The results of this study demonstrate the usefulness of the proteomic technique in revealing the working mechanisms of antifouling compounds.
Collapse
Affiliation(s)
- Swagatika Dash
- KAUST Global Collaborative Research, Division of Life Science, Hong Kong University of Science and Technology, HKSAR, China
| | | | | | | |
Collapse
|
174
|
Uçar E, Arda N, Aitken A. Extract from mistletoe, Viscum album L., reduces Hsp27 and 14-3-3 protein expression and induces apoptosis in C6 rat glioma cells. GENETICS AND MOLECULAR RESEARCH 2012; 11:2801-13. [DOI: 10.4238/2012.august.24.5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
175
|
Wanna W, Thipwong J, Mahakaew W, Phongdara A. Identification and expression analysis of two splice variants of the 14-3-3 epsilon from Litopenaeus Vannamei during WSSV infections. Mol Biol Rep 2011; 39:5487-93. [PMID: 22179749 DOI: 10.1007/s11033-011-1351-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 12/09/2011] [Indexed: 02/01/2023]
Abstract
The 14-3-3 epsilon (14-3-3ε) is a member of the 14-3-3-protein family claimed to play important roles in many biological processes. In this study, two alternative 14-3-3 epsilon mRNAs, designated as 14-3-3EL and 14-3-3ES were identified from the shrimp L. vannamei. The 14-3-3EL isoform contains an insertion of 48 nucleotides by intron retention in the pre-mRNA of 14-3-3ε. While the 14-3-3ES occurred after being fully spliced. Using the yeast two hybrid method, the pattern of dimer formation by the two alternative 14-3-3ε isoforms revealed that the shrimp 14-3-3ε formed both homodimers and heterodimers. Both 14-3-3ε transcript variants were constitutively expressed in all shrimp tissues tested but the level of the 14-3-3ES isoform was always lower. However, after white spot syndrome virus (WSSV) infection, the expression level of the two transcript variants changed. At 48 h after infection, expression of 14-3-3EL mRNA increased significantly in the gill and muscle tissue whereas the expression 14-3-3ES increased only in muscle. It was of interest that in the lymphoid organ, there was a significant down-expression of both transcript variants. From these results we suggest that 14-3-3EL and 14-3-3ES might be related to different cellular processes that are modulated during virus infection.
Collapse
Affiliation(s)
- Warapond Wanna
- Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla, 90112, Thailand.
| | | | | | | |
Collapse
|
176
|
Zheng G, Xiong Y, Yi S, Zhang W, Peng B, Zhang Q, He Z. 14-3-3σ regulation by p53 mediates a chemotherapy response to 5-fluorouracil in MCF-7 breast cancer cells via Akt inactivation. FEBS Lett 2011; 586:163-8. [PMID: 22192357 DOI: 10.1016/j.febslet.2011.11.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Revised: 11/22/2011] [Accepted: 11/27/2011] [Indexed: 01/26/2023]
Abstract
We previously demonstrated that 14-3-3σ was downregulated in 5-fluorouracil (5-Fu)-resistant MCF-7 breast cancer cells (MCF-7/5-Fu). Here, we found that stably enhanced 14-3-3σ expression strengthened the effects of 5-Fu, Mitoxantrone and cDDP. 14-3-3σ stabilised the p53 protein and bound Akt to inhibit its activity and its downstream targets: survivin, Bcl-2 and NF-κB-p50. In addition, decreased p53 expression, but not promoter hypermethylation, was responsible for the downregulation of 14-3-3σ in MCF-7/5-Fu cells. Meanwhile, initial treatments with high concentrations of 5-Fu clearly induced 14-3-3σ and p53 expression in a time-dependent manner. 14-3-3σ-mediated molecular events that synergise with p53 may play important roles in the chemotherapy of breast cancer.
Collapse
Affiliation(s)
- Guopei Zheng
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, Hunan, PR China
| | | | | | | | | | | | | |
Collapse
|
177
|
Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen and angiogenin interact with common host proteins, including annexin A2, which is essential for survival of latently infected cells. J Virol 2011; 86:1589-607. [PMID: 22130534 DOI: 10.1128/jvi.05754-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) infection and latency-associated nuclear antigen (LANA-1) upregulate the multifunctional protein angiogenin (ANG). Our studies demonstrate that silencing ANG or inhibiting its nuclear translocation downregulates KSHV LANA-1 expression and ANG is necessary for KSHV latency, anti-apoptosis and angiogenesis (Sadagopan et al., J. Virol. 83:3342-3364, 2009; Sadagopan et al., J Virol. 85:2666-2685, 2011). Here we show that LANA-1 interacts with ANG and colocalizes in latently infected endothelial telomerase-immortalized human umbilical vein endothelial (TIVE-LTC) cells. Mass spectrometric analyses of TIVE-LTC proteins immunoprecipitated by anti-LANA-1 and ANG antibodies identified 28 common cellular proteins such as ribosomal proteins, structural proteins, tRNA synthetases, metabolic pathway enzymes, chaperons, transcription factors, antioxidants, and ubiquitin proteosome proteins. LANA-1 and ANG interaction with one of the proteins, annexin A2, was validated. Annexin A2 has been shown to play roles in cell proliferation, apoptosis, plasmin generation, exocytosis, endocytosis, and cytoskeleton reorganization. It is also known to associate with glycolytic enzyme 3-phosphoglyceratekinase in the primer recognition protein (PRP) complex that interacts with DNA polymerase α in the lagging strand of DNA during replication. A higher level of annexin A2 is expressed in KSHV+ but not in Epstein-Barr virus (EBV)+ B-lymphoma cell lines. Annexin A2 colocalized with several LANA-1 punctate spots in KSHV+ body cavity B-cell lymphoma (BCBL-1) cells. In triple-staining analyses, we observed annexin A2-ANG-LANA-1, annexin A2-ANG, and ANG-LANA-1 colocalizations. Annexin A2 appeared as punctate nuclear dots in LANA-1-positive TIVE-LTC cells. In LANA-1-negative TIVE-LTC cells, annexin A2 was detected predominately in the cytoplasm, with some nuclear spots, and colocalization with ANG was observed mostly in the cytoplasm. Annexin A2 coimmunoprecipitated with LANA-1 and ANG in TIVE-LTC and BCBL-1 cells and with ANG in 293T cells independent of LANA-1. This suggested that annexin A2 forms a complex with LANA-1 and ANG as well as a separate complex with ANG. Silencing annexin A2 in BCBL-1 cells resulted in significant cell death, downregulation of cell cycle-associated Cdk6 and of cyclin D, E, and A proteins, and downregulation of LANA-1 and ANG expression. No effect was seen in KSHV⁻ lymphoma (BJAB and Ramos) and 293T cells. These studies suggest that LANA-1 association with annexin A2/ANG could be more important than ANG association with annexin A2, and KSHV probably uses annexin A2 to maintain the viability and cell cycle regulation of latently infected cells. Since the identified LANA-1- and ANG-interacting common cellular proteins are hitherto unknown to KSHV and ANG biology, this offers a starting point for further analysis of their roles in KSHV biology, which may lead to identification of potential therapeutic targets to control KSHV latency and associated malignancies.
Collapse
|
178
|
Wang H, Huang H, Li W, Jin X, Zeng J, Liu Y, Gu Y, Sun X, Wen G, Ding Y, Zhao L. Nuclear localization of 14-3-3epsilon inversely correlates with poor long-term survival of patients with colorectal cancer. J Surg Oncol 2011; 106:224-31. [PMID: 22105787 DOI: 10.1002/jso.22152] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 10/31/2011] [Indexed: 01/21/2023]
Abstract
BACKGROUND 14-3-3ε regulates diverse biological processes and plays a significant role in the formation of malignant tumors. However, the localization and clinical significance of 14-3-3ε in colorectal cancer (CRC) have not been elucidated. METHODS We investigated 14-3-3ε expression and its prognostic significance in CRC. CRC surgical samples were taken from 137 clinicopathologically characterized CRC cases. 14-3-3ε expression was tested by immunohistochemical assay. Separate Western blot of nuclear and cytosol preparations confirmed nuclear localization of 14-3-3ε protein. RESULTS Nuclear expression of 14-3-3ε was observed in 76.9% of normal colorectal tissue and 78.8% of all CRC samples. Statistical analysis showed that there was significant difference of nuclear 14-3-3ε expression in patients categorized according to lymph node metastasis. A trend was identified between decreasing nuclear 14-3-3ε expression in CRC and worsening clinical prognosis. Multivariate analysis showed that loss of nuclear 14-3-3ε expression was an independent prognostic indicator for patient's survival. CONCLUSIONS The current data provide evidence that 14-3-3ε is not exclusively a cytosolic protein, but is also detectable within the nucleus. Our results suggest that nuclear 14-3-3ε as a suppressor may serve as important biomarker of tumor metastasis. Loss of nuclear 14-3-3ε is closely associated with poor overall survival in CRC patients.
Collapse
Affiliation(s)
- Hui Wang
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangzhou Medical College, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Qian Z, Micorescu M, Yakhnitsa V, Barmack NH. Climbing fiber activity reduces 14-3-3-θ regulated GABA(A) receptor phosphorylation in cerebellar Purkinje cells. Neuroscience 2011; 201:34-45. [PMID: 22119642 DOI: 10.1016/j.neuroscience.2011.11.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 11/07/2011] [Accepted: 11/08/2011] [Indexed: 11/24/2022]
Abstract
Cerebellar adaptive plasticity regulates posture and movement in response to changing conditions of sensory stimulation. Study of adaptive plasticity of cerebellar circuitry in vitro confines experimental interest to mechanisms with a time scale of minutes. However, cerebellar plasticity, measured behaviorally or electrophysiologically in vivo, occurs over a time scale of tens of minutes and hours. Here we investigate how optokinetically-evoked increases in climbing fiber activity influence expression of key subcellular signaling proteins that regulate the accumulation of GABA(A) receptors (GABA(A)Rs) in the cytoplasm of Purkinje cells and their insertion into the plasma membrane. We used long-term horizontal optokinetic stimulation (HOKS) to activate climbing fibers that project to the flocculus of mice. Although long-term increases in climbing fiber activity in vivo do not alter the expression of any of the subunits of GABA(A)Rs expressed by Purkinje cells, they do influence other subcellular events such as transcription and interaction of signaling proteins. Specifically, increased climbing fiber activity evoked decreased expression of 14-3-3-θ, reduced serine phosphorylation of GABA(A)g(2), and reduced the interaction of 14-3-3-θ with protein kinase C-γ (PKC-γ). Knockdown of 14-3-3-θ in vivo reduced the serine phosphorylation of GABA(A)γ(2). Conversely, treatment of cerebellar lysates with phorbol 12-myristate-13-acetate (PMA), a PKC activator, increased serine phosphorylation of GABA(A)γ(2). Knockdown of 14-3-3-θ or PKC-γ in N2a cells in vitro reduced serine phosphorylation of GABA(A)γ(2) and reduced its cell-surface expression. We interpret these data to mean that a prolonged increase in climbing fiber activity decreases the cell-surface expression of GABA(A)Rs in Purkinje cells and thereby reduces their sensitivity to GABAergic inhibition. This provides a homeostatic mechanism by which Purkinje cells become less sensitive to stellate cell inhibition also evoked by climbing fiber activity.
Collapse
Affiliation(s)
- Z Qian
- Department of Physiology and Pharmacology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
180
|
Florentinus AK, Bowden P, Sardana G, Diamandis EP, Marshall JG. Identification and quantification of peptides and proteins secreted from prostate epithelial cells by unbiased liquid chromatography tandem mass spectrometry using goodness of fit and analysis of variance. J Proteomics 2011; 75:1303-17. [PMID: 22120120 DOI: 10.1016/j.jprot.2011.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 10/29/2011] [Accepted: 11/05/2011] [Indexed: 10/15/2022]
Abstract
The proteins secreted by prostate cancer cells (PC3(AR)6) were separated by strong anion exchange chromatography, digested with trypsin and analyzed by unbiased liquid chromatography tandem mass spectrometry with an ion trap. The spectra were matched to peptides within proteins using a goodness of fit algorithm that showed a low false positive rate. The parent ions for MS/MS were randomly and independently sampled from a log-normal population and therefore could be analyzed by ANOVA. Normal distribution analysis confirmed that the parent and fragment ion intensity distributions were sampled over 99.9% of their range that was above the background noise. Arranging the ion intensity data with the identified peptide and protein sequences in structured query language (SQL) permitted the quantification of ion intensity across treatments, proteins and peptides. The intensity of 101,905 fragment ions from 1421 peptide precursors of 583 peptides from 233 proteins separated over 11 sample treatments were computed together in one ANOVA model using the statistical analysis system (SAS) prior to Tukey-Kramer honestly significant difference (HSD) testing. Thus complex mixtures of proteins were identified and quantified with a high degree of confidence using an ion trap without isotopic labels, multivariate analysis or comparing chromatographic retention times.
Collapse
|
181
|
Chen G, Zhang C, Li C, Wang C, Xu Z, Yan P. Haemocyte protein expression profiling of scallop Chlamys farreri response to acute viral necrosis virus (AVNV) infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1135-1145. [PMID: 21530577 DOI: 10.1016/j.dci.2011.03.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/28/2011] [Accepted: 03/28/2011] [Indexed: 05/30/2023]
Abstract
Acute viral necrosis virus (AVNV) was newly reported as one causative agent responsible for mass mortality of adult Chinese scallop Chlamys farreri, which is widely cultured on northern China coast. Unfortunately, the interaction between virus and host is largely unknown. According to these, this study was undertaken to deeply explore the immune response of haemocyte against AVNV. Two-dimensional gel electrophoresis (2-DE) was introduced to produce protein expression profiles from samples taken at 24h post-infection (hpi) from the haemocytes of C. farreri that were either specific pathogen free or else infected with AVNV. Forty-eight protein spots, which consistently showed either a marked change (≥1.5-fold difference) in accumulated levels or else were highly expressed in haemocytes, were selected for further investigation. In-gel trypsin digestion was conducted followed by matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF-MS). Matching search was subsequently performed throughout bioinformatics databases. A total of 42 proteins were identified, all of which were classified into eight categories according to their Gene Ontology annotations of biological processes and molecular functions, i.e. cytoskeleton proteins, proteins involved in metabolism, proteins related to calcium homeostasis, chaperone, proteins involved in immunity, proteins involved in transcriptional regulation, proteins related to signal transduction, and ungrouped proteins. The possible biological significance of some observed proteins in the host response to AVNV was discussed. These studies could be served as the first global analysis of differentially expressed proteins in haemocytes from AVNV-infected C. farreri, and in addition to increasing our understanding of the pathogenesis of this virus-associated scallop disease, the results presented here should be useful both for potential biomarkers identification and anti-virus approaches development as well.
Collapse
Affiliation(s)
- Guofu Chen
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| | | | | | | | | | | |
Collapse
|
182
|
Matthews Q, Jirasek A, Lum JJ, Brolo AG. Biochemical signatures of in vitro radiation response in human lung, breast and prostate tumour cells observed with Raman spectroscopy. Phys Med Biol 2011; 56:6839-55. [PMID: 21971286 DOI: 10.1088/0031-9155/56/21/006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This work applies noninvasive single-cell Raman spectroscopy (RS) and principal component analysis (PCA) to analyze and correlate radiation-induced biochemical changes in a panel of human tumour cell lines that vary by tissue of origin, p53 status and intrinsic radiosensitivity. Six human tumour cell lines, derived from prostate (DU145, PC3 and LNCaP), breast (MDA-MB-231 and MCF7) and lung (H460), were irradiated in vitro with single fractions (15, 30 or 50 Gy) of 6 MV photons. Remaining live cells were harvested for RS analysis at 0, 24, 48 and 72 h post-irradiation, along with unirradiated controls. Single-cell Raman spectra were acquired from 20 cells per sample utilizing a 785 nm excitation laser. All spectra (200 per cell line) were individually post-processed using established methods and the total data set for each cell line was analyzed with PCA using standard algorithms. One radiation-induced PCA component was detected for each cell line by identification of statistically significant changes in the PCA score distributions for irradiated samples, as compared to unirradiated samples, in the first 24-72 h post-irradiation. These RS response signatures arise from radiation-induced changes in cellular concentrations of aromatic amino acids, conformational protein structures and certain nucleic acid and lipid functional groups. Correlation analysis between the radiation-induced PCA components separates the cell lines into three distinct RS response categories: R1 (H460 and MCF7), R2 (MDA-MB-231 and PC3) and R3 (DU145 and LNCaP). These RS categories partially segregate according to radiosensitivity, as the R1 and R2 cell lines are radioresistant (SF(2) > 0.6) and the R3 cell lines are radiosensitive (SF(2) < 0.5). The R1 and R2 cell lines further segregate according to p53 gene status, corroborated by cell cycle analysis post-irradiation. Potential radiation-induced biochemical response mechanisms underlying our RS observations are proposed, such as (1) the regulated synthesis and degradation of structured proteins and (2) the expression of anti-apoptosis factors or other survival signals. This study demonstrates the utility of RS for noninvasive radiobiological analysis of tumour cell radiation response, and indicates the potential for future RS studies designed to investigate, monitor or predict radiation response.
Collapse
Affiliation(s)
- Q Matthews
- Department of Physics and Astronomy, University of Victoria, Victoria BC V8W 3P6, Canada.
| | | | | | | |
Collapse
|
183
|
Chandramouli KH, Soo L, Qian PY. Differential expression of proteins and phosphoproteins during larval metamorphosis of the polychaete Capitella sp. I. Proteome Sci 2011; 9:51. [PMID: 21888661 PMCID: PMC3180302 DOI: 10.1186/1477-5956-9-51] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 09/03/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The spontaneous metamorphosis of the polychaete Capitella sp. I larvae into juveniles requires minor morphological changes, including segment formation, body elongation, and loss of cilia. In this study, we investigated changes in the expression patterns of both proteins and phosphoproteins during the transition from larvae to juveniles in this species. We used two-dimensional gel electrophoresis (2-DE) followed by multiplex fluorescent staining and MALDI-TOF mass spectrometry analysis to identify the differentially expressed proteins as well as the protein and phosphoprotein profiles of both competent larvae and juveniles. RESULTS Twenty-three differentially expressed proteins were identified in the two developmental stages. Expression patterns of two of those proteins were examined at the protein level by Western blot analysis while seven were further studied at the mRNA level by real-time PCR. Results showed that proteins related to cell division, cell migration, energy storage and oxidative stress were plentifully expressed in the competent larvae; in contrast, proteins involved in oxidative metabolism and transcriptional regulation were abundantly expressed in the juveniles. CONCLUSION It is likely that these differentially expressed proteins are involved in regulating the larval metamorphosis process and can be used as protein markers for studying molecular mechanisms associated with larval metamorphosis in polychaetes.
Collapse
Affiliation(s)
- Kondethimmanahalli H Chandramouli
- KAUST Global Collaborative Research, Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | | | | |
Collapse
|
184
|
Geng C, Sang M, Yang R, Gao W, Zhou T, Wang S. Overexpression of 14-3-3σ counteracts tumorigenicity by positively regulating p73 in vivo. Oncol Lett 2011; 2:1177-1182. [PMID: 22848285 DOI: 10.3892/ol.2011.401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 08/16/2011] [Indexed: 11/05/2022] Open
Abstract
14-3-3σ, one of the 14-3-3 family members, was initially identified as a human mammary epithelium-specific marker 1. The expression of 14-3-3σ is directly regulated by p53. It has been demonstrated that 14-3-3σ stabilizes p53 and enhances its transcriptional activity through the interaction with p53, suggesting that 14-3-3σ has a positive feedback effect on p53. Our previous study showed that 14-3-3σ is a direct transcriptional target of p73 and enhances the p73-mediated transcriptional as well as pro-apoptotic activity in vitro. In the present study, we explored the tumor-suppressive effect of 14-3-3σ by establishing a breast cancer xenograft nude mouse model with an inducible expression of 14-3-3σ or with an inducible expression of p53/p73 plus 14-3-3σ with ADR treatment. Tumor formation was then assayed. Moreover, 66 primary breast cancer specimens and paired tumor-free breast specimens obtained from the female patients were examined. Results showed that the expression of p73 and 14-3-3σ in breast cancer specimens was significantly lower than the tumor-free breast specimens and that 14-3-3σ expression was positively correlated with the expression of p73. Furthermore, overexpression of 14-3-3σ counteracts tumorigenicity by positively regulating p73 in p53-mutated or -deficient cancers in vivo. Therefore, our results may lead to the use of 14-3-3σ in the therapeutic application for the p53-mutated and p73-expressed breast cancer patients.
Collapse
Affiliation(s)
- Cuizhi Geng
- Breast Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | | | | | | | | | | |
Collapse
|
185
|
Kobayashi H, Ogura Y, Sawada M, Nakayama R, Takano K, Minato Y, Takemoto Y, Tashiro E, Watanabe H, Imoto M. Involvement of 14-3-3 proteins in the second epidermal growth factor-induced wave of Rac1 activation in the process of cell migration. J Biol Chem 2011; 286:39259-68. [PMID: 21868386 DOI: 10.1074/jbc.m111.255489] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Immense previous efforts have elucidated the core machinery in cell migration, actin remodeling regulated by Rho family small GTPases including RhoA, Cdc42, and Rac1; however, the spatiotemporal regulation of these molecules remains largely unknown. Here, we report that EGF induces biphasic Rac1 activation in the process of cell migration, and UTKO1, a cell migration inhibitor, inhibits the second EGF-induced wave of Rac1 activation but not the first wave. To address the regulation mechanism and role of the second wave of Rac1 activation, we identified 14-3-3ζ as a target protein of UTKO1 and also showed that UTKO1 abrogated the binding of 14-3-3ζ to Tiam1 that was responsible for the second wave of Rac1 activation, suggesting that the interaction of 14-3-3ζ with Tiam1 is involved in this event. To our knowledge, this is the first report to use a chemical genetic approach to demonstrate the mechanism of temporal activation of Rac1.
Collapse
Affiliation(s)
- Hiroki Kobayashi
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Aitken A. Post-translational modification of 14-3-3 isoforms and regulation of cellular function. Semin Cell Dev Biol 2011; 22:673-80. [PMID: 21864699 DOI: 10.1016/j.semcdb.2011.08.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 08/06/2011] [Indexed: 12/18/2022]
Abstract
14-3-3 is now well established as a family of dimeric proteins that can modulate interaction between proteins involved in a wide range of functions. In many cases, these proteins show a distinct preference for a particular isoform(s) of 14-3-3 and in many cases a specific repertoire of dimer formation influences the particular proteins that 14-3-3 interact. Well over 200 proteins have been shown to interact with 14-3-3. The purpose of this review is to give an overview of the recently identified post-translational modifications of 14-3-3 isoforms and how this regulates function, interaction, specificity of dimerisation between isoforms and cellular location of target proteins. The association between 14-3-3 and its targets usually involves phosphorylation of the interacting protein which has been the subject of many reviews and discussion of this is included in other reviews in this series. However, it is now realised that in some cases the phosphorylation and a number of other, novel covalent modifications of 14-3-3 isoforms may modulate interaction and dimerisation of 14-3-3. Since this aspect is now emerging to be of major importance in the mechanism of regulation by 14-3-3 isoforms and has not been the focus of previous reviews, this will be detailed here.
Collapse
Affiliation(s)
- Alastair Aitken
- University of Edinburgh, School of Biological Sciences, Darwin Building, Kings Buildings, Edinburgh EH9 3JR, Scotland, UK.
| |
Collapse
|
187
|
Pham CD, Perlin MH. Possible additional roles in mating for Ustilago maydis Rho1 and 14-3-3 homologues. Commun Integr Biol 2011; 3:57-9. [PMID: 20539785 DOI: 10.4161/cib.3.1.9864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 08/18/2009] [Indexed: 12/14/2022] Open
Abstract
Both the Rho GTPases and 14-3-3 proteins each belong to ubiquitous families of proteins involved in a variety of cellular processes, including cytokinesis, cell polarity, cellular differentiation and apoptosis. In fungi, these components of signaling pathways are involved in cell cycle regulation, cytokinesis and virulence. We study cellular differentiation and pathogenesis for Ustilago maydis, the dimorphic fungal pathogen of maize. We have reported on the interactions of Pdc1, a U. maydis homologue of human 14-3-3varepsilon, with Rho1, a small GTP binding protein; these proteins participate in cell polarity and filamentation pathways that include another small G protein, Rac1, and its effector PAK kinase, Cla4. Here we describe additional experiments that explore possible relationships of Pdc1 and Rho1 with another PAK-like kinase pathway and with the a matingtype locus.
Collapse
Affiliation(s)
- Cau D Pham
- Department of Biology; Program on Disease Evolution; University of Louisville; Louisville, KY USA
| | | |
Collapse
|
188
|
Zhang Y, Li W, Zhang R, Sun J, Wu B, Zhang X, Cheng S. Preliminary evaluation of gene expression profiles in liver of mice exposed to Taihu Lake drinking water for 90 days. ECOTOXICOLOGY (LONDON, ENGLAND) 2011; 20:1071-1077. [PMID: 21437627 DOI: 10.1007/s10646-011-0654-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/15/2011] [Indexed: 05/30/2023]
Abstract
Differential gene expression profiling was performed via DNA microarray in the liver tissue of Mus musculus mice after exposure to drinking water of Taihu Lake for 90 days. A total of 75 differentially expressed candidate genes (DEGs) were identified (1.5-fold, p ≤ 0.05), among which the expression of 29 genes was up-regulated and that of 46 genes was down-regulated. Most DEGs were involved in biological process based on gene ontology mapping analysis. The drinking water of Taihu Lake significantly influenced the expression of genes related to cell proliferation, apoptosis, amino acid metabolism, development and immune responses. Long-term exposure to the Taihu drinking water may result in increased carcinogenic risk.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Pollution Control & Resource Reuse and School of the Environment at Nanjing University, Nanjing, 210046, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
189
|
Lee JY, Kim BJ, Sim G, Kim GT, Kang D, Jung JH, Hwa JS, Kwak YJ, Choi YJ, Park YS, Han J, Lee CS, Kang KR. Spinal cord injury markedly altered protein expression patterns in the affected rat urinary bladder during healing stages. J Korean Med Sci 2011; 26:814-23. [PMID: 21655070 PMCID: PMC3102878 DOI: 10.3346/jkms.2011.26.6.814] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 04/05/2011] [Indexed: 01/01/2023] Open
Abstract
The influence of spinal cord injury (SCI) on protein expression in the rat urinary bladder was assessed by proteomic analysis at different time intervals post-injury. After contusion SCI between T9 and T10, bladder tissues were processed by 2-DE and MALDI-TOF/MS at 6 hr to 28 days after SCI to identify proteins involved in the healing process of SCI-induced neurogenic bladder. Approximately 1,000 spots from the bladder of SCI and sham groups were visualized and identified. At one day after SCI, the expression levels of three protein were increased, and seven spots were down-regulated, including heat shock protein 27 (Hsp27) and heat shock protein 20 (Hsp20). Fifteen spots such as S100-A11 were differentially expressed seven days post-injury, and seven proteins including transgelin had altered expression patterns 28 days after injury. Of the proteins with altered expression levels, transgelin, S100-A11, Hsp27 and Hsp20 were continuously and variably expressed throughout the entire post-SCI recovery of the bladder. The identified proteins at each time point belong to eight functional categories. The altered expression patterns identified by 2-DE of transgelin and S100-A11 were verified by Western blot. Transgelin and protein S100-A11 may be candidates for protein biomarkers in the bladder healing process after SCI.
Collapse
Affiliation(s)
- Ji-Young Lee
- MRCND and Department of Biochemistry, BK21 Program for Biomedical Sciences, School of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Bong Jo Kim
- MRCND and Department of Psychiatry, BK21 Program for Biomedical Sciences, School of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Gyujin Sim
- MRCND and Department of Biochemistry, BK21 Program for Biomedical Sciences, School of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Gyu-Tae Kim
- MRCND and Department of Physiology, BK21 Program for Biomedical Sciences, School of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Dawon Kang
- MRCND and Department of Physiology, BK21 Program for Biomedical Sciences, School of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Jae Hun Jung
- MRCND and Department of Urology, BK21 Program for Biomedical Sciences, School of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Jeong Seok Hwa
- MRCND and Department of Urology, BK21 Program for Biomedical Sciences, School of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Yeon Ju Kwak
- MRCND and Department of Biochemistry, BK21 Program for Biomedical Sciences, School of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Yeon Jin Choi
- MRCND and Department of Biochemistry, BK21 Program for Biomedical Sciences, School of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Young Sook Park
- Department of Physical Medicine and Rehabilitation, Changwon Samsung Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Jaehee Han
- MRCND and Department of Physiology, BK21 Program for Biomedical Sciences, School of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Cheol Soon Lee
- MRCND and Department of Psychiatry, BK21 Program for Biomedical Sciences, School of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Kee Ryeon Kang
- MRCND and Department of Biochemistry, BK21 Program for Biomedical Sciences, School of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| |
Collapse
|
190
|
Auweter SD, Bhavsar AP, de Hoog CL, Li Y, Chan YA, van der Heijden J, Lowden MJ, Coombes BK, Rogers LD, Stoynov N, Foster LJ, Finlay BB. Quantitative mass spectrometry catalogues Salmonella pathogenicity island-2 effectors and identifies their cognate host binding partners. J Biol Chem 2011; 286:24023-35. [PMID: 21566117 DOI: 10.1074/jbc.m111.224600] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gram-negative bacterial pathogens have developed specialized secretion systems to transfer bacterial proteins directly into host cells. These bacterial effectors are central to virulence and reprogram host cell processes to favor bacterial survival, colonization, and proliferation. Knowing the complete set of effectors encoded by a particular pathogen is the key to understanding bacterial disease. In addition, the identification of the molecular assemblies that these effectors engage once inside the host cell is critical to determining the mechanism of action of each effector. In this work we used stable isotope labeling of amino acids in cell culture (SILAC), a powerful quantitative proteomics technique, to identify the proteins secreted by the Salmonella pathogenicity island-2 type three secretion system (SPI-2 T3SS) and to characterize the host interaction partners of SPI-2 effectors. We confirmed many of the known SPI-2 effectors and were able to identify several novel substrate candidates of this secretion system. We verified previously published host protein-effector binding pairs and obtained 11 novel interactions, three of which were investigated further and confirmed by reciprocal co-immunoprecipitation. The host cell interaction partners identified here suggest that Salmonella SPI-2 effectors target, in a concerted fashion, cellular processes such as cell attachment and cell cycle control that are underappreciated in the context of infection. The technology outlined in this study is specific and sensitive and serves as a robust tool for the identification of effectors and their host targets that is readily amenable to the study of other bacterial pathogens.
Collapse
Affiliation(s)
- Sigrid D Auweter
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Yang CG, Wang XL, Wang L, Zhang B, Chen SL. A new Akirin1 gene in turbot (Scophthalmus maximus): molecular cloning, characterization and expression analysis in response to bacterial and viral immunological challenge. FISH & SHELLFISH IMMUNOLOGY 2011; 30:1031-1041. [PMID: 21300161 DOI: 10.1016/j.fsi.2011.01.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/29/2011] [Accepted: 01/30/2011] [Indexed: 05/30/2023]
Abstract
SmAkirin1, a member of the NF-κB signaling pathway, was isolated from turbot by RACE. Its cDNA was 564 bp and encoded a putative protein of 187 amino acids with a predicted molecular mass of 21 kDa and an isoelectric point (pI) of 9.05. Amino acid sequence alignments showed that SmAkirin1 was 91% identical to the Salvelinus alpinus Akirin1 protein ACV49694. Transient expression of SmAkirin1-GFP in the turbot kidney cell line SMKC revealed a nuclear localization of the protein, and a typical NLS signal was found at the N-terminal region of the SmAkirin1 protein. Trans-activation assay in yeast demonstrated that SmAkirin1 has no transcriptional activation. Transcriptional analysis showed that SmAkirin1 was expressed in all of the tissues examined, with the highest expression in the spleen and brain. Real-time quantitative reverse-transcriptase polymerase chain reaction analysis showed that the SmAkirin1 transcript was induced by bacterial and viral infection.
Collapse
Affiliation(s)
- Chang-Geng Yang
- Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | | | | | | | | |
Collapse
|
192
|
Yoon HE, Kim KS, Kim IY. 14-3-3η inhibits chondrogenic differentiation of ATDC5 cell. Biochem Biophys Res Commun 2011; 406:59-63. [DOI: 10.1016/j.bbrc.2011.01.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 01/27/2011] [Indexed: 10/18/2022]
|
193
|
Panni S, Montecchi-Palazzi L, Kiemer L, Cabibbo A, Paoluzi S, Santonico E, Landgraf C, Volkmer-Engert R, Bachi A, Castagnoli L, Cesareni G. Combining peptide recognition specificity and context information for the prediction of the 14-3-3-mediated interactome in S. cerevisiae
and H. sapiens. Proteomics 2010; 11:128-43. [DOI: 10.1002/pmic.201000030] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Revised: 09/24/2010] [Accepted: 10/09/2010] [Indexed: 11/08/2022]
|
194
|
Urano-Tashiro Y, Sasaki H, Sugawara-Kawasaki M, Yamada T, Sugiyama A, Akiyama H, Kawasaki Y, Tashiro F. Implication of Akt-dependent Prp19 alpha/14-3-3beta/Cdc5L complex formation in neuronal differentiation. J Neurosci Res 2010; 88:2787-97. [PMID: 20629186 DOI: 10.1002/jnr.22455] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
PRP19alpha and CDC5L are major components of the active spliceosome. However, their association process is still unknown. Here, we demonstrated that PRP19 alpha/14-3-3beta/CDC5L complex formation is regulated by Akt during nerve growth factor (NGF)-induced neuronal differentiation of PC12 cells. Analysis of PRP19 alpha mutants revealed that the phosphorylation of PRP19 alpha at Thr 193 by Akt was critical for its binding with 14-3-3beta to translocate into the nuclei and for PRP19 alpha/14-3-3beta/CDC5L complex formation in neuronal differentiation. Forced expression of either sense PRP19 alpha or sense 14-3-3beta RNAs promoted NGF-induced neuronal differentiation, whereas down-regulation of these mRNAs showed a suppressive effect. The nonphosphorylation mutant PRP19 alpha T193A lost its binding ability with 14-3-3beta and acted as a dominant-negative mutant in neuronal differentiation. These results imply that Akt-dependent phosphorylation of PRP19 alpha at Thr193 triggers PRP19 alpha/14-3-3beta/CDC5L complex formation in the nuclei, likely to assemble the active spliceosome against neurogenic pre-mRNAs.
Collapse
Affiliation(s)
- Yumiko Urano-Tashiro
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
195
|
Mizukami C, Spiliotis M, Gottstein B, Yagi K, Katakura K, Oku Y. Gene silencing in Echinococcus multilocularis protoscoleces using RNA interference. Parasitol Int 2010; 59:647-52. [DOI: 10.1016/j.parint.2010.08.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 08/23/2010] [Accepted: 08/24/2010] [Indexed: 11/26/2022]
|
196
|
Malerba M, Crosti P, Cerana R. Ethylene is involved in stress responses induced by fusicoccin in sycamore cultured cells. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:1442-7. [PMID: 20630615 DOI: 10.1016/j.jplph.2010.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 05/18/2010] [Accepted: 05/18/2010] [Indexed: 05/23/2023]
Abstract
The phytohormone ethylene is involved in many physiological and developmental processes of plants, as well as in stress responses and in the development of disease resistance. Fusicoccin (FC) is a well-known phytotoxin, that in sycamore (Acer pseudoplatanus L.) cultured cells, induces a set of stress responses, including synthesis of ethylene. In this study, we investigated the possible involvement of ethylene in the FC-induced stress responses of sycamore cells by means of Co(2+), a well-known specific inhibitor of ethylene biosynthesis. Co(2+) inhibited the accumulation of dead cells in the culture, the production of nitric oxide (NO) and of the molecular chaperone Binding Protein (BiP) in the endoplasmic reticulum induced by FC. By contrast, Co(2+) was ineffective on the FC-induced accumulation of cells with fragmented DNA, production of H(2)O(2) and release of cytochrome c from the mitochondrion, and only partially reduced the accumulation of regulative 14-3-3 proteins in the cytosol. In addition, we compared the effect of FC on the above parameters with that of the ethylene-releasing compound ethephon (2-chloroethane phosphonic acid). The results suggest that ethylene is involved in several stress responses induced by FC in sycamore cells, including a form of cell death that does not show apoptotic features and possibly involves NO as a signaling molecule.
Collapse
Affiliation(s)
- Massimo Malerba
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| | | | | |
Collapse
|
197
|
Arnouk H, Lee H, Zhang R, Chung H, Hunt RC, Jahng WJ. Early biosignature of oxidative stress in the retinal pigment epithelium. J Proteomics 2010; 74:254-61. [PMID: 21074641 DOI: 10.1016/j.jprot.2010.11.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 10/06/2010] [Accepted: 11/03/2010] [Indexed: 11/30/2022]
Abstract
The retinal pigment epithelium (RPE) is essential for retinoid recycling and phagocytosis of photoreceptors. Understanding of proteome changes that mediate oxidative stress-induced degeneration of RPE cells may provide further insight into the molecular mechanisms of retinal diseases. In the current study, comparative proteomics has been applied to investigate global changes of RPE proteins under oxidative stress. Proteomic techniques, including 2D SDS-PAGE, differential gel electrophoresis (DIGE), and tandem time-of-flight (TOF-TOF) mass spectrometry, were used to identify early protein markers of oxidative stress in the RPE. Two biological models of RPE cells revealed several differentially expressed proteins that are involved in key cellular processes such as energy metabolism, protein folding, redox homeostasis, cell differentiation, and retinoid metabolism. Our results provide a new perspective on early signaling molecules of redox imbalance in the RPE and putative therapeutic target proteins of RPE diseases caused by oxidative stress.
Collapse
Affiliation(s)
- Hilal Arnouk
- Department of Ophthalmology, University of South Carolina, Columbia, SC 29203, USA
| | | | | | | | | | | |
Collapse
|
198
|
Li Z, Dong Z, Myer D, Yip-Schneider M, Liu J, Cui P, Schmidt CM, Zhang JT. Role of 14-3-3σ in poor prognosis and in radiation and drug resistance of human pancreatic cancers. BMC Cancer 2010; 10:598. [PMID: 21040574 PMCID: PMC2991307 DOI: 10.1186/1471-2407-10-598] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 11/01/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pancreatic cancer is the fourth leading cause of death in the US. Unlike other solid tumors such as testicular cancer which are now curable, more than 90% of pancreatic cancer patients die due to lack of response to therapy. Recently, the level of 14-3-3σ mRNA was found to be increased in pancreatic cancers and this increased expression may contribute to the failure in treatment of pancreatic cancers. In the present study, we tested this hypothesis. METHODS Western blot analysis was used to determine 14-3-3σ protein level in fresh frozen tissues and was correlated to clinical outcome. A stable cell line expressing 14-3-3σ was established and the effect of 14-3-3σ over-expression on cellular response to radiation and anticancer drugs were tested using SRB assay and clonogenic assays. Cell cycle distribution and apoptosis analyses were performed using propidium iodide staining and PARP cleavage assays. RESULTS We found that 14-3-3σ protein level was increased significantly in about 71% (17 of 24) of human pancreatic cancer tissues and that the 14-3-3σ protein level in cancers correlated with lymph node metastasis and poor prognosis. Furthermore, we demonstrated that over-expression of 14-3-3σ in a pancreatic cancer cell line caused resistance to γ-irradiation as well as anticancer drugs by causing resistance to treatment-induced apoptosis and G2/M arrest. CONCLUSION The increased level of 14-3-3σ protein likely contributes to the poor clinical outcome of human pancreatic cancers by causing resistance to radiation and anticancer drugs. Thus, 14-3-3σ may serve as a prognosis marker predicting survival of pancreatic cancer patients and guide the clinical treatment of these patients.
Collapse
Affiliation(s)
- Zhaomin Li
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Zizheng Dong
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - David Myer
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michele Yip-Schneider
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jianguo Liu
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ping Cui
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - C Max Schmidt
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jian-Ting Zhang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
199
|
Jianke L, Mao F, Begna D, Yu F, Aijuan Z. Proteome comparison of hypopharyngeal gland development between Italian and royal jelly producing worker honeybees (Apis mellifera L.). J Proteome Res 2010; 9:6578-94. [PMID: 20882974 DOI: 10.1021/pr100768t] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hypopharyngeal gland (HG) of the honeybee (Apis mellifera L.) produces royal jelly (RJ) that is essential to feed and raise broods and queens. A strain of bees (high royal jelly producing bee, RJb) has been selected for its high RJ production, but the mechanisms of its higher yield are not understood. In this study, we compared HG acini size, RJ production, and protein differential expressions between the RJb and nonselected honeybee (Italian bee, ITb) using proteomics in combination with an electron microscopy, Western blot, and quantitative real-time PCR (qRT-PCR). Generally, the HG of both bees showed age-dependent changes in acini sizes and protein expression as worker behaviors changed from brood nursing to nectar ripening, foraging, and storage activities. The electron microscopic analysis revealed that the HG acini diameter of the RJb strain was large and produced 5 times more RJ than the ITb, demonstrating a positive correlation between the yield and HG acini size. In addition, the proteomic analysis showed that RJb significantly upregulated a large group of proteins involved in carbohydrate metabolism and energy production, those involved in protein biosynthesis, development, amino acid metabolism, nucleotide and fatty acid, transporter, protein folding, cytoskeleton, and antioxidation, which coincides with the fact that the HGs of the RJb strain produce more RJ than the ITb strain that is owing to selection pressure. We also observed age-dependent major royal jelly proteins (MRJPs) changing both in form and expressional intensity concurrent with task-switching. In addition to MRJPs, the RJb overexpressed proteins such as enolase and transitional endoplasmic reticulum ATPase, protein biosynthesis, and development proteins compared to the ITb strain to support its large HG growth and RJ secretion. Because of selection pressure, RJb pursued a different strategy of increased RJ production by involving additional proteins compared to its original counterpart ITb. To our knowledge, this morphological and proteomic comparison study on the HG of the two strains of worker honeybees associated with their age-dependent division of labor is the first of its kind. The study provided not only the quantity and quality differences in the HG from the RJb and the ITb, but also addressed the cellular and behavioral biology development question of how the RJb strain can produce RJ more efficiently than its wild type strain (ITb).
Collapse
Affiliation(s)
- Li Jianke
- Department of Beekeeping and Biotechnology, Chinese Academy of Agricultural Science/Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Beijing 100093, China
| | | | | | | | | |
Collapse
|
200
|
Raaby L, Otkjær K, Salvskov-Iversen ML, Johansen C, Iversen L. A Characterization of the expression of 14-3-3 isoforms in psoriasis, basal cell carcinoma, atopic dermatitis and contact dermatitis. Dermatol Reports 2010; 2:e14. [PMID: 25386251 PMCID: PMC4211473 DOI: 10.4081/dr.2010.e14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 10/08/2010] [Indexed: 11/23/2022] Open
Abstract
14-3-3 is a highly conserved protein involved in a number of cellular processes including cell signalling, cell cycle regulation and gene transcription. Seven isoforms of the protein have been identified; β, γ, ε, ζ η σ and τ. The expression profile of the various isoforms in skin diseases is unknown. To investigate the expression of the seven 14-3-3 isoforms in involved and uninvolved skin from psoriasis, basal cell carcinoma (BCC), atopic dermatitis and nickel induced allergic contact dermatitis. Punch biopsies from involved and uninvolved skin were analyzed with quantitative reverse transcription-polymerase chain reaction to determine the mRNA expression of the 14-3-3 isoforms. The protein level of 14-3-3 isoforms was measured by Western blot technique in keratome biopsies from patients with psoriasis. Evaluation of dermal and epidermal protein expression was performed by immunofluorescence staining. Increased 14-3-3τ mRNA levels were detected in involved skin from patients with psoriasis, contact dermatitis and BCC. 14-3-3σ mRNA expression was increased in psoriasis and contact dermatitis, but not in BCC. In atopic dermatitis no significant difference between involved and uninvolved skin was found. The expression of the 14-3-3 isoforms was also studied at the protein level in psoriasis. Only 14-3-3τ expression was significantly increased in involved psoriatic skin compared with uninvolved skin. Immunofluorescence staining with 14-3-3τ- and 14-3-3σ-specific antibodies showed localization of both isoforms to the cytoplasm of the keratinocytes in the various skin sections. These results demonstrate a disease specific expression profile of the 14-3-3τ and 14-3-3σ iso-forms.
Collapse
Affiliation(s)
- Line Raaby
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Kristian Otkjær
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Claus Johansen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|