151
|
Groen A, Kunne C, Jongsma G, van den Oever K, Mok KS, Petruzzelli M, Vrins CLJ, Bull L, Paulusma CC, Oude Elferink RPJ. Abcg5/8 independent biliary cholesterol excretion in Atp8b1-deficient mice. Gastroenterology 2008; 134:2091-100. [PMID: 18466903 DOI: 10.1053/j.gastro.2008.02.097] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 02/22/2008] [Accepted: 02/29/2008] [Indexed: 12/24/2022]
Abstract
BACKGROUNDS & AIMS ATP8B1 is a phosphatidylserine flippase in the canalicular membrane; patients with mutations in ATP8B1 develop severe chronic (PFIC1) or periodic (BRIC1) cholestatic liver disease. We have observed that Atp8b1 deficiency leads to enhanced biliary cholesterol excretion. It has been established that biliary cholesterol excretion depends on transport by the heterodimer Abcg5/Abcg8. We hypothesized that the increased cholesterol output was due to enhanced extraction from the altered canalicular membrane rather than to higher Abcg5/Abcg8 activity. We therefore studied the relation between Abcg5/Abcg8 expression and biliary cholesterol excretion in mice lacking Atp8b1, Abcg8, or both (GF mice). METHODS Bile formation was studied in LXR agonist-fed wild-type mice as well as mice lacking Atp8b1 or Abcg8, or in GF mice upon infusion of taurocholate. Bile samples were analyzed for cholesterol, bile salt, phospholipids, and ectoenzyme content. RESULTS LXR agonist increased Abcg5/8 expression, and this was accompanied by increased biliary cholesterol output in both wild-type and Atp8b1(G308V/G308V) mice. However, Atp8b1(G308V/G308V) mice maintained higher cholesterol output. Although in Abcg8(-/-) mice biliary cholesterol output was severely reduced, GF mice displayed high biliary cholesterol output, which was comparable with wild-type mice. Bile of both Atp8b1(G308V/G308V) and GF mice displayed elevated levels of phosphatidylserine and sphingomyelin, indicating membrane stress. CONCLUSIONS Our data demonstrate that the increased biliary cholesterol excretion in Atp8b1-deficient mice is independent of Abcg5/8 activity. This implicates that Atp8b1 deficiency leads to a decrease in the detergent resistance and subsequent nonspecific extraction of cholesterol from the canalicular membrane by bile salts.
Collapse
Affiliation(s)
- Annemiek Groen
- AMC Liver Center, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Abstract
The aim of this article is to provide essential information for hepatologists, who primarily care for adults, regarding liver-based inborn errors of metabolism with particular reference to those that may be treatable with liver transplantation and to provide adequate references for more in-depth study should one of these disease states be encountered.
Collapse
Affiliation(s)
- Keli Hansen
- Division of Transplant Surgery and Division of Gastroenterology, Children's Hospital and Regional Medical Center, Seattle, WA 98105, USA
| | | |
Collapse
|
153
|
Abstract
The aim of this article is to provide essential information for hepatologists, who primarily care for adults, regarding liver-based inborn errors of metabolism with particular reference to those that may be treatable with liver transplantation and to provide adequate references for more in-depth study should one of these disease states be encountered.
Collapse
Affiliation(s)
- Keli Hansen
- Children's Hospital and Regional Medical Center, Seattle, WA 98105, USA.
| | | |
Collapse
|
154
|
Abstract
Three distinct forms of familial intrahepatic cholestasis are the result of mutations in the ATP8B1, ABCB11, and ABCB4 genes. The pathophysiologies of the latter 2 of these diseases are well characterized and are the result of abnormalities in canalicular excretion of bile acids and phospholipids, respectively. The molecular pathophysiology of the systemic disease associated with mutations in ATP8B1 remains unclear. In all of these diseases, wide variations in clinical phenotypes have been observed. The variability can be ascribed at least in part to predicted genotype:phenotype correlations. Disease- and genotype-specific prognoses and therapeutic approaches may exist, although much more information needs to be ascertained before clinicians can confidently make decisions based on genetic information.
Collapse
|
155
|
Paulusma CC, Folmer DE, Ho-Mok KS, de Waart DR, Hilarius PM, Verhoeven AJ, Oude Elferink RPJ. ATP8B1 requires an accessory protein for endoplasmic reticulum exit and plasma membrane lipid flippase activity. Hepatology 2008; 47:268-78. [PMID: 17948906 DOI: 10.1002/hep.21950] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
UNLABELLED Mutations in ATP8B1 cause progressive familial intrahepatic cholestasis type 1 and benign recurrent intrahepatic cholestasis type 1. Previously, we have shown in mice that Atp8b1 deficiency leads to enhanced biliary excretion of phosphatidylserine, and we hypothesized that ATP8B1 is a flippase for phosphatidylserine. However, direct evidence for this function is still lacking. In Saccharomyces cerevisiae, members of the Cdc50p/Lem3p family are essential for proper function of the ATP8B1 homologs. We have studied the role of two human members of this family, CDC50A and CDC50B, in the routing and activity of ATP8B1. When only ATP8B1 was expressed in Chinese hamster ovary cells, the protein localized to the endoplasmic reticulum. Coexpression with CDC50 proteins resulted in relocalization of ATP8B1 from the endoplasmic reticulum to the plasma membrane. Only when ATP8B1 was coexpressed with CDC50 proteins was a 250%-500% increase in the translocation of fluorescently labeled phosphatidylserine observed. Importantly, natural phosphatidylserine exposure in the outer leaflet of the plasma membrane was reduced by 17%-25% in cells coexpressing ATP8B1 and CDC50 proteins in comparison with cells expressing ATP8B1 alone. The coexpression of ATP8B1 and CDC50A in WIF-B9 cells resulted in colocalization of both proteins in the canalicular membrane. CONCLUSION Our data indicate that CDC50 proteins are pivotal factors in the trafficking of ATP8B1 to the plasma membrane and thus may be essential determinants of ATP8B1-related disease. In the plasma membrane, ATP8B1 functions as a flippase for phosphatidylserine. Finally, CDC50A may be the potential beta-subunit or chaperone for ATP8B1 in hepatocytes.
Collapse
Affiliation(s)
- Coen C Paulusma
- AMC Liver Center, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
156
|
Kagawa T, Watanabe N, Mochizuki K, Numari A, Ikeno Y, Itoh J, Tanaka H, Arias IM, Mine T. Phenotypic differences in PFIC2 and BRIC2 correlate with protein stability of mutant Bsep and impaired taurocholate secretion in MDCK II cells. Am J Physiol Gastrointest Liver Physiol 2008; 294:G58-G67. [PMID: 17947449 DOI: 10.1152/ajpgi.00367.2007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Progressive familial cholestasis (PFIC) 2 and benign recurrent intrahepatic cholestasis (BRIC) 2 are caused by mutations in the bile salt export pump (BSEP, ABCB11) gene; however, their prognosis differs. PFIC2 progresses to cirrhosis and requires liver transplantation, whereas BRIC2 is clinically benign. To identify the molecular mechanism(s) responsible for the phenotypic differences, eight PFIC2 and two BRIC2 mutations were introduced in rat Bsep, which was transfected in MDCK II cells. Taurocholate transport activity, protein expression, and subcellular distribution of these mutant proteins were studied in a polarized MDCK II monolayer. The taurocholate transport activity was approximately half of the wild-type (WT) in BRIC2 mutants (A570T and R1050C), was substantially less in two PFIC2 mutants (D482G and E297G), and was almost abolished in six other PFIC2 mutants (K461E, G982R, R1153C, R1268Q, 3767-3768insC, and R1057X). Bsep protein expression levels correlated closely with transport activity, except for R1057X. The half-life of the D482G mutant was shorter than that of the WT (1.35 h vs. 3.49 h in the mature form). BRIC2 mutants and three PFIC mutants (D482G, E297G, and R1057X) were predominantly distributed in the apical membrane. The other PFIC2 mutants remained intracellular. The R1057X mutant protein was stably expressed and trafficked to the apical membrane, suggesting that the COOH-terminal tail is required for transport activity but not for correct targeting. In conclusion, taurocholate transport function was impaired in proportion to rapid degradation of Bsep protein in the mutants, which were aligned in the following order: A570T and R1050C > D482G > E297G > K461E, G982R, R1153C, R1268Q, 3767-3768insC, and R1057X. These results may explain the phenotypic difference between BRIC2 and PFIC2.
Collapse
Affiliation(s)
- Tatehiro Kagawa
- Department of Gastroenterology, Tokai Univ. School of Medicine, Bohseidai, Isehara, Kanagawa 259-1193, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Van Mil SWC, Milona A, Dixon PH, Mullenbach R, Geenes VL, Chambers J, Shevchuk V, Moore GE, Lammert F, Glantz AG, Mattsson LA, Whittaker J, Parker MG, White R, Williamson C. Functional variants of the central bile acid sensor FXR identified in intrahepatic cholestasis of pregnancy. Gastroenterology 2007; 133:507-16. [PMID: 17681172 DOI: 10.1053/j.gastro.2007.05.015] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Accepted: 05/03/2007] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Intrahepatic cholestasis of pregnancy (ICP) is characterized by liver impairment, pruritus, and elevated maternal serum bile acids. It can cause premature delivery and intrauterine death. Bile acid synthesis, metabolism, and transport are regulated by the bile acid sensor FXR, and we hypothesized that genetic variation in FXR confers susceptibility to ICP. METHODS The coding regions and intron/exon boundaries of FXR were sequenced in 92 British ICP cases of mixed ethnicity. Subsequently, a case-control study of allele frequencies of these variants in 2 independent cohorts of Caucasian ICP patients and controls was performed. Variants were cloned into an FXR expression plasmid and tested in functional assays. RESULTS We identified 4 novel heterozygous FXR variants (-1g>t, M1V, W80R, M173T) in ICP. W80R was not present in Caucasians and M1V was detected uniquely in 1 British case. M173T and -1g>t occur both in Caucasian cases and controls, and we found a significant association of M173T with ICP (OR, 3.2; 95% confidence interval, 1.1-11.2; P = .02) when the allele frequencies of both Caucasian cohorts were analyzed together. We demonstrate functional defects in either translation efficiency or activity for 3 of the 4 variants (-1g>t, M1V, M173T). CONCLUSIONS This is the first report of functional variants in FXR. We propose that these variants may predispose to ICP, and because FXR has a central role in regulating bile and lipid homeostasis they may be associated with other cholestatic and dyslipidemic disorders.
Collapse
Affiliation(s)
- Saskia W C Van Mil
- Maternal and Fetal Disease Group, Institute of Reproductive and Developmental Biology, Imperial College London, London, England
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Groen A, Kunne C, Paulusma CC, Kramer W, Agellon LB, Bull LN, Oude Elferink RPJ. Intestinal bile salt absorption in Atp8b1 deficient mice. J Hepatol 2007; 47:114-22. [PMID: 17448567 DOI: 10.1016/j.jhep.2007.02.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 02/04/2007] [Accepted: 02/12/2007] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Mutations in the ATP8B1 gene can cause Progressive Familial Intrahepatic Cholestasis type 1. We have previously reported that Atp8b1(G308V/G308V) mice, a model for PFIC1, have slightly, but significantly, higher baseline serum bile salt (BS) concentrations compared to wt mice. Upon BS feeding, serum BS concentrations strongly increased in Atp8b1-deficient mice. Despite these findings, we observed only mildly impaired canalicular BS transport. In the present report we tested the hypothesis that Atp8b1(G308V/G308V) mice hyperabsorb BS in the intestine during BS feeding. METHODS Intestinal BS absorption was measured in intestinal perfusion and in intestinal explants. In addition, we measured BS concentrations in portal blood. Ileal expression of the Fxr-targets Asbt, Ilbp and Shp was assessed. RESULTS In wt and Atp8b1(G308V/G308V) mice, intestinal taurocholate absorption is primarily mediated by the ileal bile salt transporter Asbt. Neither of the experimental systems revealed enhanced absorption of BS in Atp8b1(G308V/G308V) mice compared to wt mice. In line with these observations, we found no difference in the ileal protein expression of Asbt. Induction of Shp expression during BS feeding also demonstrated that Fxr signalling is intact in Atp8b1(G308V/G308V) mice. CONCLUSIONS The accumulation of BS in plasma of Atp8b1(G308V/G308V) mice during BS feeding is not caused by increased intestinal BS absorption.
Collapse
Affiliation(s)
- Annemiek Groen
- AMC Liver Center, Academic Medical Center, Room S1-166, Meibergdreef 69-71, 1105 BK Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
159
|
Jung C, Driancourt C, Baussan C, Zater M, Hadchouel M, Meunier-Rotival M, Guiochon-Mantel A, Jacquemin E. Prenatal molecular diagnosis of inherited cholestatic diseases. J Pediatr Gastroenterol Nutr 2007; 44:453-8. [PMID: 17414143 DOI: 10.1097/mpg.0b013e318036a569] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Progressive familial intrahepatic cholestasis (PFIC) and to a lesser extent, Alagille syndrome, often lead to end-stage liver disease during childhood. We report our experience of DNA-based prenatal diagnosis of PFIC1-3 and Alagille syndrome. PATIENTS AND METHODS Four molecular antenatal diagnoses were performed in 3 PFIC families and 17 in 11 Alagille syndrome families. DNA was isolated from chorionic villus or cultured amniocyte samples from women, without pregnancy complications. RESULTS All four foetuses with a family history of PFIC1, 2, or 3 were heterozygous for an ATP8B1, ABCB11, or ABCB4 mutation and pregnancies were continued. Three of the infants were healthy after birth, and 1 premature infant, who had an ABCB4 mutation, experienced transient neonatal cholestasis. Among the families with a history of de novo JAG1 mutation, none of the foetuses was mutated, versus 40% of those with a history of familial mutation. Of 4 pregnant women with a JAG1-mutated foetus, 3 cut short their pregnancy and 1 gave birth to a child with overt Alagille syndrome. CONCLUSIONS Molecular antenatal diagnosis of PFIC1-3 and Alagille syndrome is reliable because clinical outcome after birth corresponded to molecular foetal data.
Collapse
Affiliation(s)
- Camille Jung
- Pediatric Hepatology and National Reference Centre for Biliary Atresia, Bicêtre Hospital, University of Paris-South XI, AP-HP, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
160
|
Liu C, Aronow BJ, Jegga AG, Wang N, Miethke A, Mourya R, Bezerra JA. Novel resequencing chip customized to diagnose mutations in patients with inherited syndromes of intrahepatic cholestasis. Gastroenterology 2007; 132:119-26. [PMID: 17241866 PMCID: PMC2190109 DOI: 10.1053/j.gastro.2006.10.034] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Accepted: 10/05/2006] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Inherited syndromes of intrahepatic cholestasis commonly result from mutations in the genes SERPINA1 (alpha(1)-antitrypsin deficiency), JAG1 (Alagille syndrome), ATP8B1 (progressive familial intrahepatic cholestasis type 1 [PFIC1]), ABCB11 (PFIC2), and ABCB4 (PFIC3). However, the large gene sizes and lack of mutational hotspots make it difficult to survey for disease-causing mutations in clinical practice. Here, we aimed to develop a technological tool that reads out the nucleotide sequence of these genes rapidly and accurately. METHODS 25-mer nucleotide probes were designed to identify each base for all exons, 10 bases of intronic sequence bordering exons, 280-500 bases upstream from the first exon for each gene, and 350 bases of the second intron of the JAG1 gene and tiled using the Affymetrix resequencing platform. We then developed high-fidelity polymerase chain reactions to produce amplicons using 1 mL of blood from each subject; amplicons were hybridized to the chip, and nucleotide calls were validated by standard capillary sequencing methods. RESULTS Hybridization of amplicons with the chip produced a high nucleotide sequence readout for all 5 genes in a single assay, with an automated call rate of 93.5% (range, 90.3%-95.7%). The accuracy of nucleotide calls was 99.99% when compared with capillary sequencing. Testing the chip on subjects with cholestatic syndromes identified disease-causing mutations in SERPINA1, JAG1, ATP8B1, ABCB11, or ABCB4. CONCLUSIONS The resequencing chip efficiently reads SERPINA1, JAG1, ATP8B1, ABCB11, and ABCB4 with a high call rate and accuracy in one assay and identifies disease-causing mutations.
Collapse
Affiliation(s)
- Cong Liu
- Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | |
Collapse
|
161
|
Affiliation(s)
- Jae Sung Ko
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Kee Seo
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
162
|
Schneider G, Paus TC, Kullak-Ublick GA, Meier PJ, Wienker TF, Lang T, van de Vondel P, Sauerbruch T, Reichel C. Linkage between a new splicing site mutation in the MDR3 alias ABCB4 gene and intrahepatic cholestasis of pregnancy. Hepatology 2007; 45:150-8. [PMID: 17187437 DOI: 10.1002/hep.21500] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
UNLABELLED Intrahepatic cholestasis of pregnancy (ICP) is defined as pruritus and elevated bile acid serum concentrations in late pregnancy. Splicing mutations have been described in the multidrug resistance p-glycoprotein 3 (MDR3, ABCB4) gene in up to 20% of ICP women. Pedigrees studied were not large enough for linkage analysis. Ninety-seven family members of a woman with proven ICP were asked about pruritus in earlier pregnancies, birth complications and symptomatic gallstone disease. The familial cholestasis type 1 (FIC1, ATP8B1) gene, bile salt export pump (BSEP, ABCB11) and MDR3 gene were analyzed in 55 relatives. We identified a dominant mode of inheritance with female restricted expression and a new intronic MDR3 mutation c.3486+5G>A resulting in a 54 bp (3465-3518) inframe deletion via cryptic splicing site activation. Linkage analysis of the ICP trait versus this intragenic MDR3 variant yielded a LOD score of 2.48. A Bayesian analysis involving MDR3, BSEP, FIC1 and an unknown locus gave a posterior probability of >0.9966 in favor of MDR3 as causative ICP locus. During the episode of ICP the median gamma-glutamyl transpeptidase (gamma-GT) activity was 10 U/l (95% CI, 6.9 to 14.7 U/l) in the index woman. Four stillbirths were reported in seven heterozygous women (22 pregnancies) and none in five women (14 pregnancies) without MDR3 mutation. Symptomatic gallstone disease was more prevalent in heterozygous relatives (7/21) than in relatives without the mutation (1/34), (P = 0.00341). CONCLUSION This study demonstrates that splicing mutations in the MDR3 gene can cause ICP with normal gamma-GT and may be associated with stillbirths and gallstone disease.
Collapse
Affiliation(s)
- Gudrun Schneider
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Walkowiak J, Jankowska I, Pawlowska J, Bull L, Herzig KH, Socha J. Normal pancreatic secretion in children with progressive familial intrahepatic cholestasis type 1. Scand J Gastroenterol 2006; 41:1480-3. [PMID: 17101580 DOI: 10.1080/00365520600842344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Progressive familial intrahepatic cholestasis type 1 (PFIC1) is a rare, autosomal, recessive, inherited disease resulting from mutations in the ATP8B1 gene which is expressed at high levels in the small intestine and pancreas and at lower levels in the liver. Given this expression pattern, patients might be expected to have a pancreatic phenotype. Although pancreatitis and steatorrhea have been reported in patients with PFIC1, the available data on pancreatic function are not fully convincing. Therefore, the objective of this study was to assess exocrine pancreatic function in patients with PFIC1. MATERIAL AND METHODS Three subjects with a diagnosis of PFIC1 were included in the study. The diagnosis was confirmed by molecular analysis of ATP8B1. Prior to surgical treatment (biliary diversion), two patients had steatorrhea and in the third patient, a borderline value for fecal fat excretion was documented. In one patient, liver transplantation also was subsequently performed. Exocrine pancreatic secretion was assessed by the use of fecal elastase-1 and chymotrypsin tests. Fecal lipase concentrations were determined in order to exclude isolated lipase deficiency. Other typical diagnostic procedures were performed annually. RESULTS The results of the fecal tests were within the normal range. None of the three patients experienced any episodes that could be related to acute or chronic pancreatitis. Laboratory tests including serum amylase and lipase tests were always normal. Abdominal ultrasonography findings did not show any pancreatic pathology. CONCLUSIONS Pancreatic secretion in the study patients with progressive familial intrahepatic cholestasis type 1 was normal. The observed steatorrhea was not related to pancreatic insufficiency.
Collapse
Affiliation(s)
- Jaroslaw Walkowiak
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznan, Poland.
| | | | | | | | | | | |
Collapse
|
164
|
Liu K, Hua Z, Nepute JA, Graham TR. Yeast P4-ATPases Drs2p and Dnf1p are essential cargos of the NPFXD/Sla1p endocytic pathway. Mol Biol Cell 2006; 18:487-500. [PMID: 17122361 PMCID: PMC1783782 DOI: 10.1091/mbc.e06-07-0592] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Drs2p family P-type ATPases (P4-ATPases) are required in multiple vesicle-mediated protein transport steps and are proposed to be phospholipid translocases (flippases). The P4-ATPases Drs2p and Dnf1p cycle between the exocytic and endocytic pathways, and here we define endocytosis signals required by these proteins to maintain a steady-state localization to internal organelles. Internalization of Dnf1p from the plasma membrane uses an NPFXD endocytosis signal and its recognition by Sla1p, part of an endocytic coat/adaptor complex with clathrin, Pan1p, Sla2p/End4p, and End3p. Drs2p has multiple endocytosis signals, including two NPFXDs near the C terminus and PEST-like sequences near the N terminus that may mediate ubiquitin (Ub)-dependent endocytosis. Drs2p localizes to the trans-Golgi network in wild-type cells and accumulates on the plasma membrane when both the Ub- and NPFXD-dependent endocytic mechanisms are inactivated. Surprisingly, the pan1-20 temperature-sensitive mutant is constitutively defective for Ub-dependent endocytosis but is not defective for NPFXD-dependent endocytosis at the permissive growth temperature. To sustain viability of pan1-20, Drs2p must be endocytosed through the NPFXD/Sla1p pathway. Thus, Drs2p is an essential endocytic cargo in cells compromised for Ub-dependent endocytosis. These results demonstrate an essential role for endocytosis in retrieving proteins back to the Golgi, and they define critical cargos of the NPFXD/Sla1p system.
Collapse
Affiliation(s)
- Ke Liu
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235-1634
| | - Zhaolin Hua
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235-1634
| | - Joshua A. Nepute
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235-1634
| | - Todd R. Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235-1634
| |
Collapse
|
165
|
Chen S, Wang J, Muthusamy BP, Liu K, Zare S, Andersen RJ, Graham TR. Roles for the Drs2p-Cdc50p Complex in Protein Transport and Phosphatidylserine Asymmetry of the Yeast Plasma Membrane. Traffic 2006; 7:1503-17. [PMID: 16956384 DOI: 10.1111/j.1600-0854.2006.00485.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Drs2p, a P-type adenosine triphosphatase required for a phosphatidylserine (PS) flippase activity in the yeast trans Golgi network (TGN), was first implicated in protein trafficking by a screen for mutations synthetically lethal with arf1 (swa). Here, we show that SWA4 is allelic to CDC50, encoding a membrane protein previously shown to chaperone Drs2p from the endoplasmic reticulum to the Golgi complex. We find that cdc50Delta exhibits the same clathrin-deficient phenotypes as drs2Delta, including delayed transport of carboxypeptidase Y to the vacuole, mislocalization of resident TGN enzymes and the accumulation of aberrant membrane structures. These trafficking defects precede appearance of cell polarity defects in cdc50Delta, suggesting that the latter are a secondary consequence of disrupting Golgi function. Involvement of Drs2p-Cdc50p in PS translocation suggests a role in restricting PS to the cytosolic leaflet of the Golgi and plasma membrane. Annexin V binding and papuamide B hypersensitivity indicate that drs2Delta or cdc50Delta causes a loss of plasma membrane PS asymmetry. However, clathrin and other endocytosis null mutants also exhibit a comparable loss of PS asymmetry, and studies with drs2-ts and clathrin (chc1-ts) conditional mutants suggest that loss of plasma membrane asymmetry is a secondary consequence of disrupting protein trafficking.
Collapse
Affiliation(s)
- Sophie Chen
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | | | | | | | |
Collapse
|
166
|
Knisely AS, Strautnieks SS, Meier Y, Stieger B, Byrne JA, Portmann BC, Bull LN, Pawlikowska L, Bilezikçi B, Ozçay F, László A, Tiszlavicz L, Moore L, Raftos J, Arnell H, Fischler B, Németh A, Papadogiannakis N, Cielecka-Kuszyk J, Jankowska I, Pawłowska J, Melín-Aldana H, Emerick KM, Whitington PF, Mieli-Vergani G, Thompson RJ. Hepatocellular carcinoma in ten children under five years of age with bile salt export pump deficiency. Hepatology 2006; 44:478-86. [PMID: 16871584 DOI: 10.1002/hep.21287] [Citation(s) in RCA: 250] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is rare in young children. We attempted to see if immunohistochemical and mutational-analysis studies could demonstrate that deficiency of the canalicular bile acid transporter bile salt export pump (BSEP) and mutation in ABCB11, encoding BSEP, underlay progressive familial intrahepatic cholestasis (PFIC)--or "neonatal hepatitis" suggesting PFIC--that was associated with HCC in young children. We studied 11 cases of pediatric HCC in the setting of PFIC or "neonatal hepatitis" suggesting PFIC. Archival liver were retrieved and immunostained for BSEP. Mutational analysis of ABCB11 was performed in leukocyte DNA from available patients and parents. Among the 11 nonrelated children studied aged 13-52 months at diagnosis of HCC, 9 (and a full sibling, with neonatal hepatitis suggesting PFIC, of a tenth from whom liver was not available) had immunohistochemical evidence of BSEP deficiency; the eleventh child did not. Mutations in ABCB11 were demonstrated in all patients with BSEP deficiency in whom leukocyte DNA could be studied (n = 7). These mutations were confirmed in the parents (n = 14). With respect to the other 3 children with BSEP deficiency, mutations in ABCB11 were demonstrated in all 5 parents in whom leukocyte DNA could be studied. Thirteen different mutations were found. In conclusion, PFIC associated with BSEP deficiency represents a previously unrecognized risk for HCC in young children. Immunohistochemical evidence of BSEP deficiency correlates well with demonstrable mutation in ABCB11.
Collapse
Affiliation(s)
- A S Knisely
- Institute of Liver Studies, King's College Hospital, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Paulusma CC, Groen A, Kunne C, Ho-Mok KS, Spijkerboer AL, Rudi de Waart D, Hoek FJ, Vreeling H, Hoeben KA, van Marle J, Pawlikowska L, Bull LN, Hofmann AF, Knisely AS, Oude Elferink RPJ. Atp8b1 deficiency in mice reduces resistance of the canalicular membrane to hydrophobic bile salts and impairs bile salt transport. Hepatology 2006; 44:195-204. [PMID: 16799980 DOI: 10.1002/hep.21212] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Progressive familial intrahepatic cholestasis type 1 (PFIC1, Byler disease, OMIM 211600) is a severe inherited liver disease caused by mutations in ATP8B1. ATP8B1 is a member of the type 4 subfamily of P-type ATPases, which are phospholipid flippases. PFIC1 patients generally develop end-stage liver disease before the second decade of life. The disease is characterized by impaired biliary bile salt excretion, but the mechanism whereby impaired ATP8B1 function results in cholestasis is unclear. In a mouse model for PFIC1, we observed decreased resistance of the hepatocanalicular membrane to hydrophobic bile salts as evidenced by enhanced biliary recovery of phosphatidylserine, cholesterol, and ectoenzymes. In liver specimens from PFIC1 patients, but not in those from control subjects, ectoenzyme expression at the canalicular membrane was markedly deficient. In isolated mouse livers Atp8b1 deficiency impaired the transport of hydrophobic bile salts into bile. In conclusion, our study shows that Atp8b1 deficiency causes loss of canalicular phospholipid membrane asymmetry that in turn renders the canalicular membrane less resistant toward hydrophobic bile salts. The loss of phospholipid asymmetry may subsequently impair bile salt transport and cause cholestasis.
Collapse
Affiliation(s)
- Coen C Paulusma
- Amsterdam Liver Center, Department of Experimental Hepatology, Academic Medical Center, Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Paulusma CC, Oude Elferink RPJ. Diseases of intramembranous lipid transport. FEBS Lett 2006; 580:5500-9. [PMID: 16828084 DOI: 10.1016/j.febslet.2006.06.067] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 06/19/2006] [Accepted: 06/20/2006] [Indexed: 12/20/2022]
Abstract
The maintenance of transbilayer distribution of phospholipids is crucial for proper cell function. Intramembrane transport of lipids is mediated by three activities termed floppases, flippases, and scramblases. Members of the ATP-binding cassette transporter family and P-type ATPase superfamily have been implicated in the translocation of lipids. The importance of these activities is exemplified by several severe human inherited disorders that are caused by defects in intramembranous transport of lipids. In order to elucidate the molecular mechanisms that underlie these disorders, the combination of in vivo, biochemical, and structural analyses on intramembrane transporters is crucial.
Collapse
Affiliation(s)
- Coen C Paulusma
- Amsterdam Liver Center, Department of Experimental Hepatology, Academic Medical Center, Meibergdreef 69-71, S-1-168, 1105 BK Amsterdam, The Netherlands.
| | | |
Collapse
|
169
|
Abstract
The nuclear farnesoid X receptor (FXR) plays a pivotal role in maintaining bile acid homeostasis by regulating key genes involved in bile acid synthesis, metabolism and transport, including CYP7A1, UGT2B4, BSEP, MDR3, MRP2, ASBT, I-BABP, NTCP and OSTalpha-OSTbeta in humans. Altered expression or malfunction of these genes has been described in patients with cholestatic liver diseases. This review examines the rationale for the use of FXR ligand therapy in various cholestatic liver disorders and includes potential concerns.
Collapse
Affiliation(s)
- Shi-Ying Cai
- Liver Center, Department of Medicine, Yale University School of Medicine, P.O. Box 208019, New Haven, CT 06520-8019, USA
| | | |
Collapse
|
170
|
Abstract
Bile acids and bile salts have essential functions in the liver and in the small intestine. Their synthesis in the liver provides a metabolic pathway for the catabolism of cholesterol and their detergent properties promote the solubilisation of essential nutrients and vitamins in the small intestine. Inherited conditions that prevent the synthesis of bile acids or their excretion cause cholestasis, or impaired bile flow. These disorders generally lead to severe human liver disease, underscoring the essential role of bile acids in metabolism. Recent advances in the elucidation of gene defects underlying familial cholestasis syndromes has greatly increased knowledge about the process of bile flow. The expression of key proteins involved in bile flow is tightly regulated by transcription factors of the nuclear hormone receptor family, which function as sensors of bile acids and cholesterol. Here we review the genetics of familial cholestasis disorders, the functions of the affected genes in bile flow, and their regulation by bile acids and cholesterol.
Collapse
Affiliation(s)
- S W C van Mil
- Department of Metabolic and Endocrine Disorders, University Medical Center, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | | | | |
Collapse
|
171
|
Andersen S, Okkels H, Krarup H, Laurberg P. Geographical clustering and maintained health in individuals harbouring the mutation for Greenland familial cholestasis: A population-based study. Scand J Gastroenterol 2006; 41:445-50. [PMID: 16635913 DOI: 10.1080/00365520510024250] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Cholestasis Familiaris Groenlandica, a severe variant of progressive familial intrahepatic cholestasis type 1 (Byler disease), carries an autosomal recessive trait, and the mutation has been located. The disease is relatively common among Inuit in East Greenland. The aim of the study was to assess the carrier frequency and the possible impact on health in populations in East Greenland. MATERIAL AND METHODS A population-based study comprising 324 Inuit and non-Inuit subjects, aged 50-69 years, living in the Ammassalik district of East Greenland was carried out to analyse the presence of the mutation on ATP8B1 at 18q21. Bilirubin and gamma-glutamyl transpeptidase levels in serum were measured, a physical examination was performed, which included body height and weight, and calculation of BMI. RESULTS The participation rate was 96%. None of the subjects was homozygous and 12% of Inuit were heterozygous for the mutation. Harbouring the mutation did not influence height (p = 0.26), weight (p = 0.89), BMI (p = 0.65), frequency of self-reported disease (p = 0.17), or differ with gender (p = 0.57). A marked geographical clustering was found (p = 0.002) and heterozygocity for the mutation varied from 5% in a southern to 23% in a northern settlement where 1 out of 75 children could be calculated to have the disease. A physical investigation identified none with jaundice or signs of liver disease. Bilirubin and gamma-glutamyl transpeptidase levels in serum were lower among mutation-positive compared with mutation-negative Inuit. CONCLUSIONS Heterozygosity for Greenland familial cholestasis is common among the Inuit in East Greenland but it is not a risk factor for disease in the carrier.
Collapse
Affiliation(s)
- Stig Andersen
- Department of Medicine, Queen Ingrids Hospital, Nuuk, Greenland, Denmark.
| | | | | | | |
Collapse
|
172
|
Walkowiak J, Jankowska I, Pawlowska J, Strautnieks S, Bull L, Thompson R, Herzig KH, Socha J. Exocrine pancreatic function in children with progressive familial intrahepatic cholestasis type 2. J Pediatr Gastroenterol Nutr 2006; 42:416-8. [PMID: 16641580 DOI: 10.1097/01.mpg.0000218154.26792.6a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
In progressive familial intrahepatic cholestasis type 2 (PFIC-2), severe steatorrhea is often documented. However, pancreatic exocrine secretion has not yet been studied. In 14 children with PFIC-2, pancreatic function was assessed using standard fecal tests. Normal fecal lipase concentrations excluded isolated lipase deficiency. No differences in fecal elastase-1 concentrations and chymotrypsin activities were detected between PFIC-2 patients with or without steatorrhea, nor between these patients and healthy subjects. In conclusion, pancreatic exocrine function in patients with PFIC-2 is normal. Steatorrhea observed in those patients is not related to pancreatic insufficiency.
Collapse
Affiliation(s)
- Jaroslaw Walkowiak
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznan, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
173
|
Oude Elferink RPJ, Paulusma CC, Groen AK. Hepatocanalicular transport defects: pathophysiologic mechanisms of rare diseases. Gastroenterology 2006; 130:908-25. [PMID: 16530529 DOI: 10.1053/j.gastro.2005.08.052] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 09/20/2005] [Indexed: 12/31/2022]
Abstract
The apical membrane of the hepatocyte fulfils a unique function in the formation of primary bile. For all important biliary constituents a primary active transporter is present that extrudes or translocates its substrate toward the canalicular lumen. Most of these transporters are ATP-binding cassette (ABC) transporters. Two types of transporters can be recognized: those having endogenous metabolites as substrates (which could be referred to as "physiologic" transporters) and those involved in the elimination of drugs, toxins, and waste products. It should be emphasized that this distinction cannot be strictly made as some endogenous metabolites can be regarded as toxins as well. The importance of the canalicular transporters has been recognized by the pathologic consequence of their genetic defects. For each of the physiologic transporter genes an inherited disease has now been identified and most of these diseases have a quite serious clinical phenotype. Strikingly, complete defects in drug transporter function have not been recognized (yet) or only cause a mild phenotype. In this review we only briefly discuss the inherited defects in transporter function, and we focus on the pathophysiologic concepts that these diseases have generated.
Collapse
|
174
|
Schenker S, Bissell DM, Blei AT. Hepatology over the years. Hepatology 2006; 43:S6-S12. [PMID: 16447280 DOI: 10.1002/hep.21061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
175
|
Abstract
'Idiopathic neonatal hepatitis' is a term that has traditionally been used to denote a clinical syndrome manifest by prolonged jaundice in the neonate. This description is now used much less frequently because recent studies unite well-defined clinical, biochemical and molecular features of intrahepatic cholestasis into specific syndromes. Advances in the understanding of the molecular basis of cholestatic syndromes now enable the classification of syndromes based on biology and offer an opportunity to develop new diagnostic approaches and treatment strategies that take into account the genetic make-up of the child with cholestasis.
Collapse
MESH Headings
- Bile/metabolism
- Cholestasis, Intrahepatic/diagnosis
- Cholestasis, Intrahepatic/genetics
- Cholestasis, Intrahepatic/therapy
- Diagnosis, Differential
- Hepatitis/diagnosis
- Hepatitis/embryology
- Hepatitis/genetics
- Hepatitis/therapy
- Humans
- Infant, Newborn
- Infant, Newborn, Diseases/diagnosis
- Infant, Newborn, Diseases/embryology
- Infant, Newborn, Diseases/genetics
- Infant, Newborn, Diseases/therapy
- Metabolism, Inborn Errors/diagnosis
- Metabolism, Inborn Errors/embryology
- Metabolism, Inborn Errors/genetics
- Metabolism, Inborn Errors/therapy
Collapse
Affiliation(s)
- William F Balistreri
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA.
| | | |
Collapse
|
176
|
Stapelbroek JM, van Erpecum KJ, Klomp LWJ, Venneman NG, Schwartz TP, van Berge Henegouwen GP, Devlin J, van Nieuwkerk CMJ, Knisely AS, Houwen RHJ. Nasobiliary drainage induces long-lasting remission in benign recurrent intrahepatic cholestasis. Hepatology 2006; 43:51-3. [PMID: 16374853 DOI: 10.1002/hep.20998] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Benign recurrent intrahepatic cholestasis (BRIC) is characterized by episodic cholestasis and pruritus without anatomical obstruction. Effective medical treatment is not available. We report complete and long-lasting disappearance of pruritus and normalization of serum bile salt concentrations in cholestatic BRIC patients within 24 hours after endoscopic nasobiliary drainage (NBD). Relative amounts of phospholipids and bile salts in bile collected during NBD appeared to be normal, but phospholipids other than phosphatidylcholine (especially sphingomyelin) were increased. In conclusion, we propose that temporary endoscopic nasobiliary drainage should be considered in cholestatic BRIC patients.
Collapse
Affiliation(s)
- Janneke M Stapelbroek
- Department of Pediatric Gastroenterology, University Medical Center Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Alvarez L, Jara P, Hierro L, Sánchez-Sabaté E, Martínez-Fernández P, López-Santamaría M. Molecular basis of cholestatic diseases of surgical interest. Semin Pediatr Surg 2005; 14:200-5. [PMID: 16226694 DOI: 10.1053/j.sempedsurg.2005.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cholestasis constitutes one of the most common and severe manifestations of acquired or inherited liver disease. When manifest in early infancy, it is often life-threatening and usually requires surgical management. In many cases, liver transplantation is the only effective therapy. Extensive knowledge about the molecular mechanisms underlying several pediatric cholestatic disorders has been gained in recent years from studies in both experimental models and clinical forms. In this review, we focus on recent contributions to the knowledge of molecular basis of main pediatric cholestatic disorders, such as biliary atresia, Alagille syndrome, and familial intrahepatic cholestasis. For some of them, putative targets of therapeutic interest, such as interferon-gamma and Farnesoid X receptor, have been proposed.
Collapse
Affiliation(s)
- Luis Alvarez
- Research Unit, La Paz Children's University Hospital, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
178
|
Hierro L, Jara P. Colestasis infantil y transportadores biliares. GASTROENTEROLOGIA Y HEPATOLOGIA 2005; 28:388-95. [PMID: 16137474 DOI: 10.1157/13077760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Identification of the transport systems involved in bile secretion and of the genes codifying these systems has allowed the etiology of familial intrahepatic cholestasis to be determined in most affected children. Mutations in ATP8B1 cause a defect in FIC1, an aminophospholipid flipase, and give rise to a variable spectrum of disease, ranging from progressive intrahepatic cholestasis to benign recurrent cholestasis, due to alterations in the lipid composition of the membranes and decreased expression of the nuclear factor FXR. Mutations in ABCB11 cause a defect of the canalicular bile salt export pump (BSEP), with early clinical manifestations and progression to hepatocellular failure in childhood. Mutations in ABCB4 cause an alteration in the MDR3 phospholipid transporter, and a variable spectrum of disease from progressive ductal injury to cirrhosis in children, and gallstones, cholestasis of pregnancy, or late cirrhosis in adults.
Collapse
Affiliation(s)
- L Hierro
- Servicio de Hepatología y Trasplante, Hospital Infantil Universitario La Paz, Madrid, España.
| | | |
Collapse
|
179
|
Pauli-Magnus C, Stieger B, Meier Y, Kullak-Ublick GA, Meier PJ. Enterohepatic transport of bile salts and genetics of cholestasis. J Hepatol 2005; 43:342-57. [PMID: 15975683 DOI: 10.1016/j.jhep.2005.03.017] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Revised: 03/29/2005] [Accepted: 03/29/2005] [Indexed: 12/24/2022]
Affiliation(s)
- Christiane Pauli-Magnus
- Division of Clinical Pharmacology and Toxicology, University Hospital Zurich, Rämistrasse 100, E RAE 09, 8091 Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
180
|
Paulusma CC, Oude Elferink RPJ. The type 4 subfamily of P-type ATPases, putative aminophospholipid translocases with a role in human disease. Biochim Biophys Acta Mol Basis Dis 2005; 1741:11-24. [PMID: 15919184 DOI: 10.1016/j.bbadis.2005.04.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 04/21/2005] [Accepted: 04/25/2005] [Indexed: 11/22/2022]
Abstract
The maintenance of phospholipid asymmetry in membrane bilayers is a paradigm in cell biology. However, the mechanisms and proteins involved in phospholipid translocation are still poorly understood. Members of the type 4 subfamily of P-type ATPases have been implicated in the translocation of phospholipids from the outer to the inner leaflet of membrane bilayers. In humans, several inherited disorders have been identified which are associated with loci harboring type 4 P-type ATPase genes. Up to now, one inherited disorder, Byler disease or progressive familial intrahepatic cholestasis type 1 (PFIC1), has been directly linked to mutations in a type 4 P-type ATPase gene. How the absence of an aminophospholipid translocase activity relates to this severe disease is, however, still unclear. Studies in the yeast Saccharomyces cerevisiae have recently identified important roles for type 4 P-type ATPases in intracellular membrane- and protein-trafficking events. These processes require an (amino)phospholipid translocase activity to initiate budding or fusion of membrane vesicles from or with other membranes. The studies in yeast have greatly contributed to our cell biological insight in membrane dynamics and intracellular-trafficking events; if this knowledge can be translated to mammalian cells and organs, it will help to elucidate the molecular mechanisms which underlie severe inherited human diseases such as Byler disease.
Collapse
Affiliation(s)
- C C Paulusma
- Department of Experimental Hepatology, Academic Medical Center/AMC Liver Center, Meibergdreef 69-71, 1105 BK Amsterdam, The Netherlands.
| | | |
Collapse
|
181
|
Painter JN, Savander M, Ropponen A, Nupponen N, Riikonen S, Ylikorkala O, Lehesjoki AE, Aittomäki K. Sequence variation in the ATP8B1 gene and intrahepatic cholestasis of pregnancy. Eur J Hum Genet 2005; 13:435-9. [PMID: 15657619 DOI: 10.1038/sj.ejhg.5201355] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is a cholestatic condition that may affect women during the third trimester of pregnancy. Symptoms experienced by these women generally resolve spontaneously following delivery, but prior to delivery the fetus is at increased risk of intrauterine distress and sudden intrauterine death. The genetic etiology of most cases of ICP is unknown, although heterozygous carriers of mutations causing progressive familial intrahepatic cholestasis (PFIC) diseases may experience ICP. When examining linkage to known cholestasis genes, affected members of four Finnish ICP families shared haplotypes around ATP8B1, the gene responsible for PFIC1. This gene was subsequently screened in 176 familial and sporadic ICP patients. A total of 17 sequence changes were detected, five exonic and 12 intronic. No intronic change was associated with ICP in sporadic cases. Four intronic changes segregated with ICP in three families, a different change in each of two families and three changes in another family, although the significance of this is currently unknown. Three exonic changes were nonsynonymous, one (in exon 23) is probably a polymorphism while two predict novel amino-acid replacements (N45T and K203R). These changes, in exons 2 and 7, were detected in one individual each, and may have predisposed these individuals to ICP. In conclusion, although the exon 2 and 7 changes may have functioned as risk alleles, ATP8B1 is probably not a major gene contributing to the occurrence of ICP.
Collapse
Affiliation(s)
- Jodie N Painter
- Folkhälsan Institute of Genetics, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
182
|
Balistreri WF, Bezerra JA, Jansen P, Karpen SJ, Shneider BL, Suchy FJ. Intrahepatic cholestasis: summary of an American Association for the Study of Liver Diseases single-topic conference. Hepatology 2005; 42:222-35. [PMID: 15898074 DOI: 10.1002/hep.20729] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- William F Balistreri
- Cincinnati Children's Hospital Medical Center and the University of Cincinnati, OH, USA.
| | | | | | | | | | | |
Collapse
|
183
|
Abstract
PURPOSE OF REVIEW This review highlights recent publications on hepatobiliary pathology concerning several unusual types of hepatitis, fatty liver disease, disorders of the biliary tree and other topics that have a substantial impact on liver biopsy interpretation. RECENT FINDINGS In the outbreak of severe acute respiratory syndrome (SARS), many patients had abnormalities in liver function tests. Liver biopsy findings in three cases were reported that showed a generic picture of hepatitis, with exceptionally increased mitotic activity. The role of portal myofibroblasts in cirrhosis was examined in several studies. A newly described lesion, isolated ductular hyperplasia (IDH) was found in patients with prolonged abnormalities of liver function tests of uncertain origin. Hyperplastic, well-differentiated bile ductules were seen on liver biopsy in the absence of any identifiable biliary disease. Hereditary hemochromatosis is now a complex entity with various clinicopathological forms based on mutations in the HFE gene and other iron-homeostatic genes such as transferrin receptor 2 and ferroportin 1. In some of these heritable forms of primary iron overload, stainable iron is present in both hepatocytes and Kupffer cells. After liver transplantation, differentiating recurrent HCV infection from acute rejection on liver biopsy is problematic, with exceptionally low inter- and intra-observer reliability shown in one study. SUMMARY The hepatitis associated with the SARS coronavirus, Isolated Ductular Hyperplasia in patients with liver function test abnormalities and other topics with pathologic relevance are reviewed.
Collapse
Affiliation(s)
- Jay H Lefkowitch
- Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
184
|
Abstract
PURPOSE OF REVIEW This review highlights recent advances in understanding the regulation of bile acid transport in cholestasis and the pathogenesis and treatment of a variety of cholestatic conditions. RECENT FINDINGS Highlights include new understanding of the role of Mrp4 in bile acid homeostasis in cholestasis, new insights into the pathogenesis of specific cholestatic syndromes including primary biliary cirrhosis, primary sclerosing cholangitis, biliary atresia, and progressive familial intrahepatic cholestasis, and clinical trials of therapies for primary biliary cirrhosis, primary sclerosing cholangitis and intrahepatic cholestasis. SUMMARY Our understanding of the molecular mechanisms of cholestasis is advancing. These advances will hopefully lead to more effective therapies for specific cholestatic conditions.
Collapse
Affiliation(s)
- Daniel S Pratt
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02111, USA.
| |
Collapse
|
185
|
Abstract
The secretion of bile is the result of active hepatocellular transport processes, most of which occur across the canalicular membrane of liver cells. Disturbance of the function and/or expression of these transporters leads to the intracellular accumulation of toxic bile acids, thereby promoting cholestatic liver cell injury. Genetically determined alterations of hepatobiliary transporter function are increasingly recognized as important risk factors for an individual's susceptibility to develop cholestasis. It has become evident that, besides the established pathogenic role of mutations in canalicular transporter genes in progressive and benign forms of familial intrahepatic cholestasis, genetics may also play an important role in acquired cholestatic syndromes, such as intrahepatic cholestasis of pregnancy or drug-induced cholestasis. This overview summarizes the physiologic function and regulation of human hepatobiliary transport systems and discusses the impact of their genetic variations for the pathophysiology of different cholestatic syndromes.
Collapse
Affiliation(s)
- Christiane Pauli-Magnus
- Division of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zurich, Switzerland.
| | | |
Collapse
|
186
|
Alvarez L, Jara P, Sánchez-Sabaté E, Hierro L, Larrauri J, Díaz MC, Camarena C, De la Vega A, Frauca E, López-Collazo E, Lapunzina P. Reduced hepatic expression of farnesoid X receptor in hereditary cholestasis associated to mutation in ATP8B1. Hum Mol Genet 2004; 13:2451-60. [PMID: 15317749 DOI: 10.1093/hmg/ddh261] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Farnesoid X receptor (FXR) is a transcription factor that controls bile acid homeostasis. The phenotype of Fxr null mice is characterized by hypercholanaemia, impaired secretion of bile acids and failure to thrive. Human disorders with these characteristics include FIC1 disease (caused by mutations in ATP8B1, which encodes a putative aminophospholipid translocase, FIC1, whose function in bile handling is unknown) and bile salt export pump (BSEP) disease (caused by mutation in ABCB11, which encodes BSEP, the primary canalicular bile salt export pump). We investigated the possibility of hepatic down-regulation of FXR in FIC1 disease and BSEP disease. Three siblings with this phenotype, born to consanguine parents, were initially studied. The children were demonstrated to be compound heterozygotes for missense and nonsense mutations in ATP8B1. Expression of specific genes in liver was analysed, comparing one of these siblings with a child homozygous for missense mutation in ABCB11, as well as with a child having idiopathic cholestatic liver disease, a child with extrahepatic biliary atresia and a normal organ donor. The expression of two main FXR isoforms was specifically decreased in the liver of the FIC1 disease patient. A consistent and concomitant reduction in messenger RNA levels of FXR targets, such as BSEP and small heterodimer partner, was also found. Gene-profiling experiments identified 163 transcripts whose expression changed significantly in FIC1-disease liver. Of note was that several genes involved in synthesis, conjugation and transport of bile acids were down-regulated. A cluster of genes involved in lipid metabolism was also differentially expressed. Our findings suggest that hepatic down-regulation of FXR contributes to the severe cholestasis of FIC1 disease.
Collapse
Affiliation(s)
- Luis Alvarez
- Research Unit, La Paz University Hospital, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
van Mil SWC, van der Woerd WL, van der Brugge G, Sturm E, Jansen PLM, Bull LN, van den Berg IET, Berger R, Houwen RHJ, Klomp LWJ. Benign recurrent intrahepatic cholestasis type 2 is caused by mutations in ABCB11. Gastroenterology 2004; 127:379-84. [PMID: 15300568 DOI: 10.1053/j.gastro.2004.04.065] [Citation(s) in RCA: 219] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Progressive familial intrahepatic cholestasis (PFIC) and benign recurrent intrahepatic cholestasis (BRIC) are hereditary liver disorders; PFIC is characterized by severe progressive liver disease whereas BRIC patients have intermittent attacks of cholestasis without permanent liver damage. Mutations in ATP8B1 are present in PFIC type 1 and in a subset of BRIC patients. We hypothesized that a genetically distinct form of BRIC is associated with mutations in ABCB11. This gene encodes the bile salt export pump (BSEP) and is mutated in PFIC type 2. METHODS Patients from 20 families were included; all had a normal ATP8B1 sequence. Sequencing of all 27 coding exons including the splice junctions of ABCB11 revealed 8 distinct mutations in 11 patients from 8 different families: one homozygous missense mutation (E297G) previously described in PFIC2 patients, 6 novel missense mutations, and one putative splice site mutation. RESULTS In 12 families, no mutations in ATB8B1 or ABCB11 were detected. Pancreatitis is a known extrahepatic symptom in BRIC caused by ATP8B1 mutations, but was not present in BRIC patients with mutations in ABCB11. In contrast, cholelithiasis was observed in 7 of 11 BRIC patients with mutations in ABCB11, but has not been described in ATP8B1-affected BRIC patients. CONCLUSIONS Mutations in ABCB11 are associated with BRIC, and consistent with the genetic classification of PFIC into 2 subtypes, we propose that this disorder be named BRIC type 2.
Collapse
Affiliation(s)
- Saskia W C van Mil
- Department of Metabolic and Endocrine Diseases, University Medical Center, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|