151
|
Carella F, Aceto S, Mangoni O, Mollica MP, Cavaliere G, Trinchese G, Aniello F, De Vico G. Assessment of the Health Status of Mussels Mytilus galloprovincialis Along the Campania Coastal Areas: A Multidisciplinary Approach. Front Physiol 2018; 9:683. [PMID: 29946265 PMCID: PMC6005891 DOI: 10.3389/fphys.2018.00683] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/16/2018] [Indexed: 01/21/2023] Open
Abstract
The bivalve Mytilus galloprovincialis has a broad geographic distribution, represent an important species for the ecology of coastal waters, also constituting a major aquaculture species. In the present work, molecular and tissue biomarkers were examined in mussel populations (M. galloprovincialis) located in four different areas of the coastal water of the Campania Region. During an annual life cycle, we analyzed the expression patterns of several genes commonly used to estimate cellular stress response and damage, namely p53, p63, HSP70, MT-10, and MT-20, related tissue lesions (pathogens, inflammations, digestive tubules damage), oxidative stress indicators (H2O2, SOD specific activity) and associated environmental data. The computed Principal Component Analysis showed that the areas were discernible based on the environmental data and biomarker results. About animal health status, mussels from Gulf of Pozzuoli and Naples's harbor did show a thinnest epithelial cell of digestive tubules compared to mussels sampled from other sampling sites; moreover, high prevalence of cases of intersex in three of the examinated areas were observed. The presence of a potential zoonotic pathogen (Nocardia crassostreae) was identified, appearing as an important possible emerging disease. We also reported the OIE notifiable protozoa Marteilia refringens in three areas out of four. The likely impact of both observed pathogens on the mussel health and shellfish aquaculture needs to be urgently addressed. Results are discussed considering animal histopathological health parameters and biological effects.
Collapse
Affiliation(s)
- Francesca Carella
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
152
|
Kumeiko VV, Sokolnikova YN, Grinchenko AV, Mokrina MS, Kniazkina MI. Immune state correlates with histopathological level and reveals molluscan health in populations of Modiolus kurilensis by integral health index (IHI). J Invertebr Pathol 2018; 154:42-57. [PMID: 29604260 DOI: 10.1016/j.jip.2018.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/26/2018] [Accepted: 03/23/2018] [Indexed: 11/26/2022]
Abstract
Quantitative analysis of the histopathological and immune parameters of bivalve Modiolus kurilensis collected from water areas with different level of ecotoxicological stress was performed. Significant differences between samples from polluted and non-polluted sites were revealed for total haemocyte count; percentage of agranulocytes; size and internal complexity of agranulocytes and granulocytes; phagocytic activity; percentage of NBT-positive cells; hemolytic activity and plasma protein concentration; percentage of the optical density of haemolymph major polypeptide bands at 55 kDa, 78 kDa, and 124 kDa; concretion coverage area in the kidney tubules; thickness of the tubular basement membrane; nephrocyte shape; and karyopyknosis of the kidneys; and hypervacuolisation; necrosis; karyopyknosis; haemocyte infiltration; fibrosis; and invasion of the digestive gland. Analysis of the global histopathological condition index based on the weighted indices also revealed that both the digestive gland and kidneys showed significantly greater histopathological changes in the bivalves collected from polluted water. Bivalve histopathology is an established tool in aquatic toxicology. However, it reflects a morphological picture of change, which, as a rule, can be clearly recorded only at the later stages of pathology, and in some cases, indicates an adaptation to stressors within the physiological norm. In this respect, a promising and highly sensitive biomarker of the functional state of bivalves, in terms of norm and pathology as well as their habitat, is the evaluation of immune status in combination with morphological changes. However, the use of different methods and scales of assessment and the diagnosis of biomarkers, characterised by different profiles of the stress response, makes it difficult to compare the results of different studies. We propose a reliable and powerful system for assessing the physiological state of bivalve molluscs, expressed in the integral health index (IHI) and based on the standardisation of the numerical values for all parameters that have significant differences between animals collected from impacted and non-impacted water areas. In our study, IHI calculated in three variants (for histopathological parameters, for immunological parameters, and in combination) showed the most significant differences in each of the cases, but the strongest difference (-4.07) was in calculating the total IHI, which included both the immune and histopathological parameters (p = 0.00005).
Collapse
Affiliation(s)
- Vadim V Kumeiko
- School of Natural Sciences, Far Eastern Federal University, Vladivostok 690950, Russian Federation; School of Biomedicine, Far Eastern Federal University, Vladivostok 690950, Russian Federation; National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690041, Russian Federation.
| | - Yulia N Sokolnikova
- School of Natural Sciences, Far Eastern Federal University, Vladivostok 690950, Russian Federation
| | - Andrei V Grinchenko
- School of Natural Sciences, Far Eastern Federal University, Vladivostok 690950, Russian Federation; School of Biomedicine, Far Eastern Federal University, Vladivostok 690950, Russian Federation
| | - Maria S Mokrina
- School of Natural Sciences, Far Eastern Federal University, Vladivostok 690950, Russian Federation
| | - Marina I Kniazkina
- School of Natural Sciences, Far Eastern Federal University, Vladivostok 690950, Russian Federation
| |
Collapse
|
153
|
Vieira CED, Pérez MR, Acayaba RD, Raimundo CCM, Dos Reis Martinez CB. DNA damage and oxidative stress induced by imidacloprid exposure in different tissues of the Neotropical fish Prochilodus lineatus. CHEMOSPHERE 2018; 195:125-134. [PMID: 29268171 DOI: 10.1016/j.chemosphere.2017.12.077] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/09/2017] [Accepted: 12/11/2017] [Indexed: 06/07/2023]
Abstract
Imidacloprid (IMI), a systemic neonicotinoid insecticide widely used in worldwide scale, is reported in freshwater bodies. Nevertheless, there is a lack of information about IMI sublethal effects on freshwater fish. Thus, the aim of this study was to identify the potential hazard of this insecticide to the South American fish Prochilodus lineatus exposed for 120 h to four IMI concentrations (1.25, 12.5, 125, and 1250 μg L-1). A set of biochemical, genotoxic and physiological biomarkers were evaluated in different organs of the fish. IMI exposure induced significant changes in the enzymatic profiles of P. lineatus, with alterations in the activity of biotransformation and antioxidant enzymes in different tissues. Redox balance of the tissues was affected, since oxidative damage such as lipoperoxidation (LPO) and protein carbonylation (PCC) were evidenced in the liver, gills, kidney and brain of fish exposed to different IMI concentrations. Fish exposed to all IMI concentrations showed decreased blood glucose indicating an increase of energetic demand. DNA damage was evidenced by the comet test, in the erythrocytes of fish all the concentrations evaluated. We integrated these results in the Integrated Biomarker Response (IBR) index, which evidenced that the organs most affected by IMI exposure were the liver and kidney, followed by the gills. Our results highlight the importance of investigating different target tissues after IMI exposure and show the sublethal effects of IMI in some of them; they also warn to the possible consequences that fish living in freshwater ecosystems can suffer due to IMI exposure.
Collapse
Affiliation(s)
- Carlos Eduardo Delfino Vieira
- Laboratório de Ecofisiologia Animal, Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, Paraná, Brazil.
| | - Maria Rita Pérez
- Laboratorio de Ictiología, Instituto Nacional de Limnología (CONICET-UNL), Santa Fe, Argentina
| | - Raphael D'Anna Acayaba
- Laboratório de Química Ambiental, Instituto de Química, Departamento de Química Analítica, Universidade de Campinas, São Paulo, Brazil
| | | | - Cláudia Bueno Dos Reis Martinez
- Laboratório de Ecofisiologia Animal, Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, Paraná, Brazil
| |
Collapse
|
154
|
Paunescu A, Soare LC, Fierascu RC, Fierascu I, Ponepal MC. The Influence of Six Pesticides on Physiological Indices of Pelophylax Ridibundus (Pallas, 1771). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 100:376-383. [PMID: 29368302 DOI: 10.1007/s00128-018-2277-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/13/2018] [Indexed: 06/07/2023]
Abstract
The objective of the study is to screen for morphological, biochemical and histological changes induced by six widely used pesticides (Reldan 40EC, Actara 25WG, Tilt 250EC, Champion 50WG, Fusilade Forte, Dual Gold 960EC) in the amphibian species Pelophylax ridibundus (Pallas, 1771). Highly degenerative changes were observed in animals cultured at 22-24°C, compared to those cultured at 4-6°C. The hepatosomatic index increased upon exposure to almost all of the pesticides, the erythrocyte number decreased upon exposure to all pesticides except Reldan 40EC, while leucopenia was observed only for Reldan 40EC and Actara 25WG. Hyperglycemia was observed upon administration of pesticides (except Champion 50WG and Fusilade Forte, for which hypoglycemia is registered), while a decrease in cholesterol levels was induced by nearly all pesticides. Triglycerides varied only slightly. The results suggest that chronic pesticides exposure can lead to alteration of various indices, as well as to hepatic lesions in amphibians.
Collapse
Affiliation(s)
- Alina Paunescu
- Department of Ecology, Faculty of Science, University of Pitesti, 2 Targu din Vale Street, 110040, Pitesti, Romania
| | - Liliana Cristina Soare
- Department of Ecology, Faculty of Science, University of Pitesti, 2 Targu din Vale Street, 110040, Pitesti, Romania
| | - Radu Claudiu Fierascu
- National Research and Development Institute for Chemistry and Petrochemistry - ICECHIM, 202 Spl. Independentei, Sect. 6, 060021, Bucharest, Romania
| | - Irina Fierascu
- National Research and Development Institute for Chemistry and Petrochemistry - ICECHIM, 202 Spl. Independentei, Sect. 6, 060021, Bucharest, Romania.
| | - Maria Cristina Ponepal
- Department of Ecology, Faculty of Science, University of Pitesti, 2 Targu din Vale Street, 110040, Pitesti, Romania
| |
Collapse
|
155
|
Falfushynska HI, Gnatyshyna LL, Ivanina AV, Sokolova IM, Stoliar OB. Detoxification and cellular stress responses of unionid mussels Unio tumidus from two cooling ponds to combined nano-ZnO and temperature stress. CHEMOSPHERE 2018; 193:1127-1142. [PMID: 29874741 DOI: 10.1016/j.chemosphere.2017.11.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/30/2017] [Accepted: 11/16/2017] [Indexed: 06/08/2023]
Abstract
Bivalve mollusks from the cooling reservoirs of fuel power plants (PP) are acclimated to the chronic heating and chemical pollution. We investigated stress responses of the mussels from these ponds to determine their tolerance to novel environmental pollutant, zinc oxide nanoparticles (nZnO). Male Unio tumidus from the reservoirs of Dobrotvir and Burschtyn PPs (DPP and BPP), Ukraine were exposed for 14 days to nZnO (3.1 μM), Zn2+ (3.1 μM) at 18 °C, elevated temperature (T, 25 °C), or nZnO at 25 °C (nZnO + T). Control groups were held at 18 °C. Zn-containing exposures resulted in the elevated concentrations of total and Zn-bound metallothionein (MT and Zn-MT) in the digestive gland, an increase in the levels of non-metalated MT (up to 5 times) and alkali-labile phosphates and lysosomal membrane destabilization in hemocytes. A common signature of nZnO exposures was modulation of the multixenobiotic-resistance protein activity (a decrease in the digestive gland and increase in the gills). The origin of population strongly affected the cellular stress responses of mussels. DPP-mussels showed depletion of caspase-3 in the digestive gland and up-regulation of HSP70, HSP72 and HSP60 levels in the gill during most exposures, whereas in the BPP-mussels caspase-3 was up-regulated and HSPs either downregulated or maintained stable. BPP-mussels were less adapted to heating shown by a glutathione depletion at elevated temperature (25 °C). Comparison with the earlier studies on mussels from pristine habitats show that an integrative 'eco-exposome'-based approach is useful for the forecast of the biological responses to novel adverse effects on aquatic organisms.
Collapse
Affiliation(s)
- Halina I Falfushynska
- Research Laboratory of Comparative Biochemistry and Molecular Biology, Ternopil National Pedagogical University, Ternopil, Ukraine
| | - Lesya L Gnatyshyna
- Research Laboratory of Comparative Biochemistry and Molecular Biology, Ternopil National Pedagogical University, Ternopil, Ukraine; Department of General Chemistry, Ternopil State Medical University, Ternopil, Ukraine
| | - Anna V Ivanina
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| | - Inna M Sokolova
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock, Germany.
| | - Oksana B Stoliar
- Research Laboratory of Comparative Biochemistry and Molecular Biology, Ternopil National Pedagogical University, Ternopil, Ukraine.
| |
Collapse
|
156
|
|
157
|
Tolussi CE, Gomes ADO, Kumar A, Ribeiro CS, Lo Nostro FL, Bain PA, de Souza GB, Cuña RD, Honji RM, Moreira RG. Environmental pollution affects molecular and biochemical responses during gonadal maturation of Astyanax fasciatus (Teleostei: Characiformes: Characidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:926-934. [PMID: 28985654 DOI: 10.1016/j.ecoenv.2017.09.056] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
Endocrine disrupting compounds (EDCs) have the potential to alter fish reproduction at various levels of organization. The aim of this study was to assess the impact of a natural environment with heavily anthropogenic influence on the physiological processes involved in reproduction in the freshwater fish lambari (Astyanax fasciatus) using different biomarkers. Adult males and females were collected in different seasons from two distinct sites in the same watershed: Ponte Nova Reservoir (PN) considered a pristine or small anthropogenic influence reference point; and Billings Reservoir (Bil), subjected to a large anthropogenic impact. Biological indices, such as hepatosomatic index and gonadosomatic index (GSI), gonadal histomorphology, fecundity, and biomarkers such as plasma levels of estradiol (E2) as well as hepatic gene expression of its alfa nuclear receptor (ERα), were analyzed. Hepatic vitellogenin (VTG) gene expression was evaluated in both sexes, as an indicator of xenoestrogen exposure. Females collected at PN presented a typical annual variation reflected in GSI, whereas for those sampled at Bil the index did not change through the seasons. The higher concentration of E2 in males collected at Bil during spring/2013, together with the detection of VTG gene expression, suggest the presence of EDCs in the water. These EDCs may have also influenced fecundity of females from Bil, which was higher during winter and spring/2013. Gene expression of ERα and ovarian morphology did not differ between fish from both sites. Water conditions from Bil reservoir impacted by anthropic activity clearly interfered mainly with biomarkers of biological effect such as plasma E2 levels and absolute and relative fecundity, but also altered biomarkers of exposure as VTG gene expression. These facts support the notion that waterborne EDCs are capable of causing estrogenic activity in A. fasciatus.
Collapse
Affiliation(s)
- Carlos E Tolussi
- Laboratório de Metabolismo e Reprodução de Organismos Aquáticos, Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo. Rua do Matão, Trav.14, n° 321, 05508-090 São Paulo, SP, Brazil.
| | - Aline D Olio Gomes
- Laboratório de Metabolismo e Reprodução de Organismos Aquáticos, Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo. Rua do Matão, Trav.14, n° 321, 05508-090 São Paulo, SP, Brazil
| | - Anupama Kumar
- Environmental Contaminant Mitigation and Technologies Program, CSIRO Land and Water, Private Bag No. 2, Glen Osmond SA 5064, Australia
| | - Cristiele S Ribeiro
- Departamento de Biologia e Zootecnia, Universidade Estadual Paulista Júlio de Mesquita Filho, Campus de Ilha Solteira, Rua Monção, n°226, 15385-000 Ilha Solteira, Brazil
| | - Fabiana L Lo Nostro
- Laboratorio de Ecotoxicología Acuática, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires & IBBEA, CONICET-UBA, Ciudad Universitaria (C1428EHA), Buenos Aires, Argentina
| | - Peter A Bain
- Environmental Contaminant Mitigation and Technologies Program, CSIRO Land and Water, Private Bag No. 2, Glen Osmond SA 5064, Australia
| | - Gabriela B de Souza
- Centro de Aquicultura (CAUNESP). Universidade Estadual Paulista Júlio de Mesquita Filho, V. Acesso Prof. Paulo Donato Castelane s/n, 14884-900 Jaboticabal, SP, Brazil
| | - Rodrigo Da Cuña
- Laboratorio de Ecotoxicología Acuática, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires & IBBEA, CONICET-UBA, Ciudad Universitaria (C1428EHA), Buenos Aires, Argentina
| | - Renato M Honji
- Laboratório de Metabolismo e Reprodução de Organismos Aquáticos, Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo. Rua do Matão, Trav.14, n° 321, 05508-090 São Paulo, SP, Brazil
| | - Renata G Moreira
- Laboratório de Metabolismo e Reprodução de Organismos Aquáticos, Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo. Rua do Matão, Trav.14, n° 321, 05508-090 São Paulo, SP, Brazil
| |
Collapse
|
158
|
Rodríguez-Romero AJ, Rico-Sánchez AE, Catalá M, Sedeño-Díaz JE, López-López E. Mitochondrial activity in fern spores of Cyathea costaricensis as an indicator of the impact of land use and water quality in rivers running through cloud forests. CHEMOSPHERE 2017; 189:435-444. [PMID: 28957761 DOI: 10.1016/j.chemosphere.2017.09.094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/12/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
Early-warning biomarkers, such as mitochondrial activity, have become a key tool in ecosystem assessment. This study aims to evaluate the response of mitochondrial activity in spores of the autochthonous fern Cyathea costaricensis as a bioassessment tool concurrently with land use and physicochemical evaluation in 11 sites along Bobos River, Veracruz, Mexico, to assess river water quality. Bobos River is located in the Nautla basin, northeastern Veracruz (Mexico); the upper river runs through a protected natural area (Filobobos River and adjacent areas). The study involved three monitoring periods: February, June and September 2014. In each study site, physicochemical water quality parameters were recorded to calculate the Water Quality Index (WQI); also, study sites were characterized in terms of land use. Water samples were collected to perform bioassays where spores of C. costaricensis were exposed to samples to assess mitochondrial activity; a positive control exposure test was run under controlled conditions to maximize mitochondrial activity. A Principal Component Analysis was performed to correlate land-use attributes with environmental variables and mitochondrial activity. Three river sections were identified: the upper portion was characterized by the dominance of native vegetation, the highest WQI (in September), and the lowest mitochondrial activity (63.87%-77.47%), related to the geological nature of the basin and high hardness levels. Mitochondrial activity peaked in September (98.32% ± 9.01), likely resulting from nutrient enrichment in the rainy season, and was lowest in February (74.54% ± 1.60) (p < 0.05). Mitochondrial activity was found to be a good benchmark for the assessment of water quality, reflecting the effects of physicochemical characteristics. Mitochondrial activity showed changes along the river and between seasons, associated with environmental characteristics such as land use and the geological nature of the basin, as well as with those related to human impacts.
Collapse
Affiliation(s)
- Alexis Joseph Rodríguez-Romero
- Laboratorio de Evaluación de la Salud de los Ecosistemas Acuáticos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, C.P. 11340, Delegación Miguel Hidalgo, Ciudad de México, Mexico
| | - Axel Eduardo Rico-Sánchez
- Laboratorio de Evaluación de la Salud de los Ecosistemas Acuáticos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, C.P. 11340, Delegación Miguel Hidalgo, Ciudad de México, Mexico
| | - Myriam Catalá
- Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, c/ Tulipán s/n, E-28933, Móstoles (Madrid), Spain
| | - Jacinto Elías Sedeño-Díaz
- Coordinación Politécnica para la Sustentabilidad, Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional s/n, Esq. Wilfrido Massieu, Col. San Pedro Zacatenco, C.P. 07738, Delegación Gustavo A. Madero, Ciudad de México, Mexico
| | - Eugenia López-López
- Laboratorio de Evaluación de la Salud de los Ecosistemas Acuáticos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, C.P. 11340, Delegación Miguel Hidalgo, Ciudad de México, Mexico.
| |
Collapse
|
159
|
Cardoso DN, Silva ARR, Cruz A, Lourenço J, Neves J, Malheiro C, Mendo S, Soares AMVM, Loureiro S. The comet assay in Folsomia candida: A suitable approach to assess genotoxicity in collembolans. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:2514-2520. [PMID: 28411389 DOI: 10.1002/etc.3795] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/29/2016] [Accepted: 03/13/2017] [Indexed: 06/07/2023]
Abstract
The present study shows the comet assay technique being successfully applied for the first time to one of the most widely used soil organisms in standardized ecotoxicological tests, Folsomia candida, providing a step forward in assessing the genotoxicity induced by xenobiotics. Because collembolans have a high content of chitin, a new methodology was developed in which the heads of the collembolans were separated from the rest of the body, allowing the hemolymph to leak out. This procedure allows the cells to be released, and after lysis the genetic material is available for the comet assay. Among other key procedures, the use of 30 organisms (20- to 22-d-old adults) per replicate and the correct amount of cells with genetic material (translated as 10 μL of suspension) applied on the agarose gel were determinants for the success of the results obtained. The methodology was validated by exposing F. candida to a representative metallic element (cadmium) and a representative of organophosphates, the insecticide dimethoate, for a shorter time period of 10 d, compared with the 28 d for the International Organization for Standardization 11267 method. Within this method, the relatively low percentage of DNA damage (30%) observed in controls and the significant increase in terms of percentage of DNA damage for almost all the concentrations of dimethoate and Cd (reaching 52% and 56% of damage in the highest concentrations, respectively) confirmed the genotoxic effect of both compounds and validated this technique. The comet assay proved to be a sensitive technique to detect DNA strand breaks in collembolans' cells. Environ Toxicol Chem 2017;36:2514-2520. © 2017 SETAC.
Collapse
Affiliation(s)
- Diogo N Cardoso
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Ana Rita R Silva
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Andreia Cruz
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Joana Lourenço
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Joana Neves
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Catarina Malheiro
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Sónia Mendo
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Susana Loureiro
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| |
Collapse
|
160
|
Pham B, Miranda A, Allinson G, Nugegoda D. Evaluating the non-lethal effects of organophosphorous and carbamate insecticides on the yabby (Cherax destructor) using cholinesterase (AChE, BChE), Glutathione S-Transferase and ATPase as biomarkers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 143:283-288. [PMID: 28554137 DOI: 10.1016/j.ecoenv.2017.05.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/09/2017] [Accepted: 05/19/2017] [Indexed: 06/07/2023]
Abstract
The toxicity of two organophosphorus insecticides, chlorpyrifos (CPF), malathion (MAL), and one carbamate insecticide, methomyl (METH), to the yabby (Cherax destructor) was assessed by measuring cholinesterase (AChE, BChE), Glutathione S-Transferase (GST) and Na+/K+ATPase activity after 96h of exposure. Yabbies exposed to all three insecticides at 2 and 5µgL-1 exhibited significant AChE, BChE, GST and Na+/K+ATPase inhibition. Based on these enzyme inhibition tests, the toxicity of the three insecticides to C. destructor was CPF > MAL > METH. After 14 days of recovery the yabbies enzymatic activities of AChE, BChE, GST and Na+/K+ATPase was measured. Recovery of The enzyme activity recovery was faster after the exposure to METH than for the yabbies exposed to CPF and MAL. Slow recovery of enzyme activity could affect the physical activities of organisms and produce indirect effects on populations if such crayfish are less able to elude predators or search for food.
Collapse
Affiliation(s)
- Ben Pham
- School of Science, RMIT University, Bundoora West Campus, Victoria 3083, Australia.
| | - Ana Miranda
- School of Science, RMIT University, Bundoora West Campus, Victoria 3083, Australia
| | - Graeme Allinson
- School of Science, RMIT University, City Campus, Victoria 3001, Australia
| | - Dayanthi Nugegoda
- School of Science, RMIT University, Bundoora West Campus, Victoria 3083, Australia
| |
Collapse
|
161
|
Marques C, Roberto VP, Granadeiro L, Trindade M, Gavaia PJ, Laizé V, Cancela ML, Fernández I. The xenobiotic sensor PXR in a marine flatfish species (Solea senegalensis): Gene expression patterns and its regulation under different physiological conditions. MARINE ENVIRONMENTAL RESEARCH 2017; 130:187-199. [PMID: 28768576 DOI: 10.1016/j.marenvres.2017.07.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/06/2017] [Accepted: 07/21/2017] [Indexed: 06/07/2023]
Abstract
The pregnane X receptor (PXR) is a nuclear receptor belonging to the NR1I sub-family and a known master regulator of xenobiotic metabolism. New roles have been recently proposed in mammals through its activation by vitamin K (VK) such as regulation of glucose metabolism, bone homeostasis, reproduction, neuronal development and cognitive capacities. In marine fish species little is known about PXR and its potential roles. Here, expression patterns of pxr transcripts and conservation of protein domains were determined in the Senegalese sole (Solea senegalensis), a marine flatfish model species in aquatic ecotoxicology. In addition to a full coding sequence transcript (sspxr1), two variants lacking DNA and/or ligand binding domains (sspxr2 and sspxr3) were also identified. The expression of sspxr1 during early development and in adult tissues was ubiquitous, but highest levels were observed in liver, intestine and skin. Expression was also detected by in situ hybridization in chondrocytes and cells from the granular and inner nuclear layers in three month old fish. Finally, sspxr1 expression was shown to be differentially regulated under physiological conditions related with fasting, VK and warfarin metabolism. The present work provides new and basic knowledge regarding pxr sequence and expression patterns in a marine flatfish species to unveil the potential impact of xenobiotics on marine fish physiology, and will allow a better and more ecosystemic environmental risk assessment of different pollutants over the marine environments with the development of reporter assays using PXR sequences from evolutionary distantly marine species (such as vertebrate and invertebrate marine species).
Collapse
Affiliation(s)
- Carlos Marques
- Centro de Ciências do Mar do Algarve (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Vânia P Roberto
- Centro de Ciências do Mar do Algarve (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Luís Granadeiro
- Centro de Ciências do Mar do Algarve (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Marlene Trindade
- Centro de Ciências do Mar do Algarve (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Paulo J Gavaia
- Centro de Ciências do Mar do Algarve (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Departamento de Ciências Biomédicas e Medicina (DCBM), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Vincent Laizé
- Centro de Ciências do Mar do Algarve (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - M Leonor Cancela
- Centro de Ciências do Mar do Algarve (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Departamento de Ciências Biomédicas e Medicina (DCBM), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ignacio Fernández
- Centro de Ciências do Mar do Algarve (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
162
|
Hook SE, Kroon FJ, Greenfield PA, Warne MSJ, Smith RA, Turner RD. Hepatic transcriptomic profiles from barramundi, Lates calcarifer, as a means of assessing organism health and identifying stressors in rivers in northern Queensland. MARINE ENVIRONMENTAL RESEARCH 2017; 129:166-179. [PMID: 28601346 DOI: 10.1016/j.marenvres.2017.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 05/12/2017] [Accepted: 05/29/2017] [Indexed: 06/07/2023]
Abstract
Resource managers need to differentiate between sites with and without contaminants and those where contaminants cause impacts. Potentially, transcriptomes could be used to evaluate sites where contaminant-induced effects may occur, to identify causative stressors of effects and potential adverse outcomes. To test this hypothesis, the hepatic transcriptomes in Barramundi, a perciforme teleost fish, (Lates calcarifer) from two reference sites, two agriculturally impacted sites sampled during the dry season, and an impacted site sampled during the wet season were compared. The hepatic transcriptome was profiled using RNA-Seq. Multivariate analysis showed that transcriptomes were clustered based on site and by inference water quality, but not sampling time. The largest differences in transcriptomic profile were between reference sites and a site sampled during high run-off, showing that impacted sites can be identified via RNA-Seq. Transcripts with altered abundance were linked to xenobiotic metabolism, peroxisome proliferation and stress responses, indicating putative stressors with the potential for adverse outcomes in barramundi.
Collapse
Affiliation(s)
- Sharon E Hook
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Oceans and Atmosphere, Kirrawee, NSW 2232, Australia.
| | - Frederieke J Kroon
- Australian Institute of Marine Science, PMB 3, Townsville, Queensland 4810, Australia
| | - Paul A Greenfield
- CSIRO Oceans and Atmosphere North Ryde, New South Wales 2113, Australia
| | - Michael St J Warne
- Centre for Agroecology, Water and Resilience, Coventry University, United Kingdom; Queensland Department of Science, Information Technology, and Innovation, Brisbane, Queensland 4001, Australia; Australian Rivers Institute, Griffith University, Queensland 4111, Australia; National Research Centre for Environmental Toxicology (EnTox), University of Queensland, Queensland 4108, Australia
| | - Rachael A Smith
- Queensland Department of Science, Information Technology, and Innovation, Brisbane, Queensland 4001, Australia; Australian Rivers Institute, Griffith University, Queensland 4111, Australia
| | - Ryan D Turner
- Queensland Department of Science, Information Technology, and Innovation, Brisbane, Queensland 4001, Australia; Australian Rivers Institute, Griffith University, Queensland 4111, Australia
| |
Collapse
|
163
|
Madeira D, Vinagre C, Mendonça V, Diniz MS. Seasonal changes in stress biomarkers of an exotic coastal species - Chaetopleura angulata (Polyplacophora) - Implications for biomonitoring. MARINE POLLUTION BULLETIN 2017; 120:401-408. [PMID: 28502455 DOI: 10.1016/j.marpolbul.2017.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/26/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Knowledge on baseline values of stress biomarkers in natural conditions is urgent due to the need of reference values for monitoring purposes. Here we assessed the cellular stress response of the chiton Chaetopleura angulata in situ. Biomarkers commonly used in environmental monitoring (heat shock protein 70kDa, total ubiquitin, catalase, glutathione-S-transferase, superoxide-dismutase, lipid peroxidation) were analyzed in the digestive system, gills and muscle of C. angulata, under spring and summer conditions in order to assess seasonal tissue-specific responses. Season had an effect on all targeted organs, especially affecting the digestive system which displayed clear seasonal clusters. The respective Integrated Biomarker Response (IBR) showed a 7.2-fold seasonal difference. Muscle and gills showed similar IBRs between seasons making them appropriate organs to monitor chemical pollution as they were less responsive to seasonal variation. The most stable biomarkers in these organs were ubiquitin and superoxide-dismutase thus being reliable for monitoring purposes.
Collapse
Affiliation(s)
- Diana Madeira
- UCIBIO - Requimte, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; Department of Biology & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - Catarina Vinagre
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande 1749-016, Lisboa, Portugal.
| | - Vanessa Mendonça
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande 1749-016, Lisboa, Portugal.
| | - Mário Sousa Diniz
- UCIBIO - Requimte, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
164
|
Hiki K, Nakajima F, Tobino T. Application of cDNA-AFLP to biomarker exploration in a non-model species Grandidierella japonica. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 140:206-213. [PMID: 28260686 DOI: 10.1016/j.ecoenv.2017.02.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 06/06/2023]
Abstract
Biomarkers of exposure can be used to identify specific contaminants that are adversely affecting aquatic organisms. However, it remains prohibitively costly to investigate multiple novel biomarkers of exposure in a non-model species, despite the development of next-generation sequencing technology. In this study, we focused on the use of cDNA-amplified fragment length polymorphism (AFLP) as a cost-effective biomarker discovery tool to test whether it could identify biomarkers of exposure in the non-model amphipod species Grandidierella japonica. Loci were identified that were differentially expressed in amphipods exposed to reference chemicals (Cu, Zn, and nicotine) and to an environmental sample (road dust) at sublethal concentrations. Eight loci were shown to respond consistently to nicotine at different concentrations, but not to Cu or Zn. Some of the loci also responded to an environmental road dust sample containing nicotine. These findings suggest that loci identified using cDNA-AFLP could be used as biomarkers of nicotine exposure in environmental samples with complex matrices. Further studies with other organisms and toxicants are needed, but we have demonstrated that the use of cDNA-AFLP to identify biomarkers for ecotoxicological studies of non-model species is at least feasible.
Collapse
Affiliation(s)
- Kyoshiro Hiki
- Department of Urban Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Fumiyuki Nakajima
- Department of Urban Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tomohiro Tobino
- Environmental Science Center, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| |
Collapse
|
165
|
Jerome FC, Hassan A, Omoniyi-Esan GO, Odujoko OO, Chukwuka AV. Metal uptake, oxidative stress and histopathological alterations in gills and hepatopancreas of Callinectes amnicola exposed to industrial effluent. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 139:179-193. [PMID: 28135665 DOI: 10.1016/j.ecoenv.2017.01.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 01/11/2017] [Accepted: 01/18/2017] [Indexed: 06/06/2023]
Abstract
Metal uptake by biota due to elevated environmental concentrations elicits oxidative stress and could lead to pathological outcomes. The relationship between the histopathological profile of hepatopancreas and gills and altered biochemical features (antioxidant enzymes i.e. GSH, GPx, CAT, SOD, lipid peroxidation (MDA) and serum protein) in the blue crab, Callinectes amnicola from contaminated parts of the Lagos Lagoon was investigated. Monthly crab, sediment and surface water samples were taken from effluent receiving areas of the Lagos lagoon i.e. Makoko, Okobaba, Iddo, Ikoyi and Mid-lagoon (control site) over an 18-month period and analyzed for metal levels (Pb, Cd, Zn and Cu). Significantly higher levels of GPx and lower levels of Pb, Zn and Cu was recorded in gills and hepatopancreas of crabs from the mid-lagoon compared to crabs from other sites. Reaction patterns of gills across the different sites of the lagoon included regressive (ranging from epithelial lifting, disruption of pilaster cells, detached cuticle to focal necrosis) and circulatory disruptions (oedema); increased activity of GSH and GPx in gills were positively correlated with lesions of lower importance factor. Reaction patterns in hepatopancreas were more regressive including vacuolation/infiltration of fatty lobules, necrosis, granuloma, disintegrated lumen, atrophied tubules and loss of lobular hepatocyte structure; increased activity of GSH, GPx and CAT were positively correlated with lesions of low importance factor in the hepatopancreas. Findings show that lesions in both gills and hepatopancreas of the blue crab could be associated with uptake of metals, depleted antioxidant activity and incidence of lipid peroxidation in tissue.
Collapse
Affiliation(s)
- Fisayo C Jerome
- Fisheries Resource Department, Marine Biology Section, Nigerian Institute for Oceanography and Marine Research (NIOMR), Lagos, Nigeria
| | - Adesola Hassan
- Parasitology Research unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Ganiat O Omoniyi-Esan
- Department of Morbid Anatomy and Forensic Medicine, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Oluwole O Odujoko
- Department of Morbid Anatomy and Forensic Medicine, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Azubuike Victor Chukwuka
- Department of Environmental Quality Control (EQC), Conservation Unit, National Environmental Standards and Regulations Enforcement Agency (NESREA), Osogbo, Nigeria.
| |
Collapse
|
166
|
A protocol for identifying suitable biomarkers to assess fish health: A systematic review. PLoS One 2017; 12:e0174762. [PMID: 28403149 PMCID: PMC5389625 DOI: 10.1371/journal.pone.0174762] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 03/15/2017] [Indexed: 12/25/2022] Open
Abstract
Background Biomarkers have been used extensively to provide the connection between external levels of contaminant exposure, internal levels of tissue contamination, and early adverse effects in organisms. Objectives To present a three-step protocol for identifying suitable biomarkers to assess fish health in coastal and marine ecosystems, using Gladstone Harbour (Australia) as a case study. Methods Prior to applying our protocol, clear working definitions for biomarkers were developed to ensure consistency with the global literature on fish health assessment. First, contaminants of concern were identified based on the presence of point and diffuse sources of pollution and available monitoring data for the ecosystem of interest. Second, suitable fish species were identified using fisheries dependent and independent data, and prioritised based on potential pathways of exposure to the contaminants of concern. Finally, a systematic and critical literature review was conducted on the use of biomarkers to assess the health of fish exposed to the contaminants of concern. Results/Discussion We present clear working definitions for bioaccumulation markers, biomarkers of exposure, biomarkers of effect and biomarkers of susceptibility. Based on emission and concentration information, seven metals were identified as contaminants of concern for Gladstone Harbour. Twenty out of 232 fish species were abundant enough to be potentially suitable for biomarker studies; five of these were prioritised based on potential pathways of exposure and susceptibility to metals. The literature search on biomarkers yielded 5,035 articles, of which 151met the inclusion criteria. Based on our review, the most suitable biomarkers include bioaccumulation markers, biomarkers of exposure (CYP1A, EROD, SOD, LPOX, HSP, MT, DNA strand breaks, micronuclei, apoptosis), and biomarkers of effect (histopathology, TAG:ST). Conclusion Our protocol outlines a clear pathway to identify suitable biomarkers to assess fish health in coastal and marine ecosystems, which can be applied to biomarker studies in aquatic ecosystems around the world.
Collapse
|
167
|
Diaz de Cerio O, Bilbao E, Ruiz P, Pardo BG, Martínez P, Cajaraville MP, Cancio I. Hepatic gene transcription profiles in turbot (Scophthalmus maximus) experimentally exposed to heavy fuel oil nº 6 and to styrene. MARINE ENVIRONMENTAL RESEARCH 2017; 123:14-24. [PMID: 27846414 DOI: 10.1016/j.marenvres.2016.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/04/2016] [Accepted: 11/08/2016] [Indexed: 06/06/2023]
Abstract
Oil and chemical spills in the marine environment, although sporadic, are highly dangerous to biota inhabiting coastal and estuarine areas. Effects of spilled compounds in exposed organisms occur at different biological organization levels: from molecular, cellular or tissue levels to the physiological one. The present study aims to determine the specific hepatic gene transcription profiles observed in turbot juveniles under exposure to fuel oil n °6 and styrene vs controls using an immune enriched turbot (Scophthalmus maximus) oligo-microarray containing 2716 specific gene probes. After 3 days of exposure, fuel oil specifically induced aryl hydrocarbon receptor mediated transcriptional response through up-regulation of genes, such as ahrr and cyp1a1. More gene transcripts were regulated after 14 days of exposure involved in ribosomal biosynthesis, immune modulation, and oxidative response among the most significantly regulated functional pathways. On the contrary, gene transcription alterations caused by styrene did not highlight any significantly regulated molecular or metabolic pathway. This was also previously reported at cell and tissue level where no apparent responses were distinguishable. For the fuel oil experiment, obtained specific gene profiles could be related to changes in cell-tissue organization in the same individuals, such as increased hepatocyte vacuolization, decrease in melano-macrophage centers and the regulation of leukocyte numbers. In conclusion, the mode of action reflected by gene transcription profiles analyzed hereby in turbot livers could be linked with the responses previously reported at higher biological organization levels. Molecular alterations described hereby could be preceding observed alterations at cell and tissue levels.
Collapse
Affiliation(s)
- Oihane Diaz de Cerio
- CBET Research Group, Dept. of Zoology and Animal Cell Biology, Fac. Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), E-48080 Bilbao, PO Box 644, Basque Country, Spain
| | - Eider Bilbao
- CBET Research Group, Dept. of Zoology and Animal Cell Biology, Fac. Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), E-48080 Bilbao, PO Box 644, Basque Country, Spain
| | - Pamela Ruiz
- CBET Research Group, Dept. of Zoology and Animal Cell Biology, Fac. Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), E-48080 Bilbao, PO Box 644, Basque Country, Spain
| | - Belén G Pardo
- Departamento de Xenética, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, 27002, Spain
| | - Paulino Martínez
- Departamento de Xenética, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, 27002, Spain
| | - Miren P Cajaraville
- CBET Research Group, Dept. of Zoology and Animal Cell Biology, Fac. Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), E-48080 Bilbao, PO Box 644, Basque Country, Spain
| | - Ibon Cancio
- CBET Research Group, Dept. of Zoology and Animal Cell Biology, Fac. Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), E-48080 Bilbao, PO Box 644, Basque Country, Spain.
| |
Collapse
|
168
|
Son J, Lee YS, Lee SE, Shin KI, Cho K. Bioavailability and Toxicity of Copper, Manganese, and Nickel in Paronychiurus kimi (Collembola), and Biomarker Discovery for Their Exposure. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 72:142-152. [PMID: 27858106 DOI: 10.1007/s00244-016-0328-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/03/2016] [Indexed: 06/06/2023]
Abstract
Bioavailability and toxicity of Cu, Mn, and Ni in Paronychiurus kimi were investigated after 28 days of exposure to OECD artificial soil spiked with these metals. Uptake and effect of Cu, Mn, and Ni on the reproduction of P. kimi were related to different metal fractions (water-soluble, 0.01 M CaCl2-extractable or porewater metal concentrations). Cu and Mn concentrations in P. kimi increased with increasing Cu and Mn concentrations in the soil, while Ni contents in P. kimi reached a plateau at a concentration higher than 200 mg/kg in soil. Both uptake and juvenile production related well to different metal fractions, suggesting that these metal fractions are suitable for assessing bioavailability and toxicity of metals in P. kimi. When toxicity for reproduction was compared, as reflected by EC50 values, the order of metal toxicity varied depending upon how exposure concentration was expressed. Moreover, the results of proteomic analysis showed that several proteins involved in the immune system, neuronal outgrowth, and metal ion binding were up-regulated in P. kimi following short-term (7 days) exposure to sublethal level (corresponding to 50% of the EC50) of Cu, Mn, or Ni, respectively. This suggests that the ecotoxicoproteomic approach seems to be a promising tool for early exposure warnings below which significant adverse effects are unlikely to occur. This study demonstrated that a combination of chemical and biological measures can provide information about metal bioavailability and toxicity to which P. kimi has been exposed.
Collapse
Affiliation(s)
- Jino Son
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 136-701, Korea
| | - Yun-Sik Lee
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 136-701, Korea
| | - Sung-Eun Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, Korea
| | - Key-Il Shin
- Department of Statistics, Hankuk University of Foreign Studies, Yongin-Si, 17035, Korea
| | - Kijong Cho
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 136-701, Korea.
| |
Collapse
|
169
|
Hook SE, Kroon FJ, Metcalfe S, Greenfield PA, Moncuquet P, McGrath A, Smith R, Warne MSJ, Turner RD, McKeown A, Westcott DA. Global transcriptomic profiling in barramundi (Lates calcarifer) from rivers impacted by differing agricultural land uses. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:103-112. [PMID: 27219023 DOI: 10.1002/etc.3505] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/23/2015] [Accepted: 05/22/2016] [Indexed: 06/05/2023]
Abstract
Most catchments discharging into the Great Barrier Reef lagoon have elevated loads of suspended sediment, nutrients, and pesticides, including photosystem II inhibiting herbicides, associated with upstream agricultural land use. To investigate potential impacts of declining water quality on fish physiology, RNA sequencing (RNASeq) was used to characterize and compare the hepatic transcriptomes of barramundi (Lates calcarifer) captured from 2 of these tropical river catchments in Queensland, Australia. The Daintree and Tully Rivers differ in upstream land uses, as well as sediment, nutrient, and pesticide loads, with the area of agricultural land use and contaminant loads lower in the Daintree. In fish collected from the Tully River, transcripts involved in fatty acid metabolism, amino acid metabolism, and citrate cycling were also more abundant, suggesting elevated circulating cortisol concentrations, whereas transcripts involved in immune responses were less abundant. Fish from the Tully also had an increased abundance of transcripts associated with xenobiotic metabolism. Previous laboratory-based studies observed similar patterns in fish and amphibians exposed to the agricultural herbicide atrazine. If these transcriptomic patterns are manifested at the whole organism level, the differences in water quality between the 2 rivers may alter fish growth and fitness. Environ Toxicol Chem 2017;36:103-112. © 2016 SETAC.
Collapse
Affiliation(s)
- Sharon E Hook
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Kirrawee, New South Wales, Australia
| | - Frederieke J Kroon
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Suzanne Metcalfe
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Dutton Park, Queensland, Australia
| | - Paul A Greenfield
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, New South Wales, Australia
| | - Philippe Moncuquet
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Acton, Australian Capital Territory, Australia
| | - Annette McGrath
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Acton, Australian Capital Territory, Australia
| | - Rachael Smith
- Queensland Department of Science, Information Technology, and Innovation, Brisbane, Queensland, Australia
| | - Michael St J Warne
- Queensland Department of Science, Information Technology, and Innovation, Brisbane, Queensland, Australia
| | - Ryan D Turner
- Queensland Department of Science, Information Technology, and Innovation, Brisbane, Queensland, Australia
| | - Adam McKeown
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Smithfield, Queensland, Australia
| | - David A Westcott
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Atherton, Queensland, Australia
| |
Collapse
|
170
|
Oliveira LFD, Cabral MT, Vieira CED, Antoniazzi MH, Risso WE, Martinez CBDR. Metals bioaccumulation and biomarkers responses in the Neotropical freshwater clam Anodontites trapesialis: Implications for monitoring coal mining areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 571:983-991. [PMID: 27453135 DOI: 10.1016/j.scitotenv.2016.07.086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/04/2016] [Accepted: 07/12/2016] [Indexed: 06/06/2023]
Abstract
As one of the most impactful industries, coal mining can promote several alterations at surrounding environment. In surface water, elevated concentrations of metals like Mn, Zn, Fe and Al are often observed. Thus, the aim of this study was to investigate the bioaccumulation and the sub-lethal effects of these metals on various organs of the Neotropical bivalve Anodontites trapesialis confined along a stream located near a coal mine, in order to assess a set of biomarkers that could be used for effectively monitoring coal mining areas. Clams were caged, for 96h, at two sites located upstream (Up1 and Up2) and two sites downstream (Dw1 and Dw2) from the mine. Metals bioaccumulation was determined in gills, mantle, digestive gland, muscle and hemolymph and the following biomarkers were measured in A. trapesialis tissues: total antioxidant capacity against peroxyl radicals, metallothionein content, lipid peroxidation (LPO), proteins carbonylation, glutathione S-transferase activity, superoxide dismutase activity and acetylcholinesterase (AChE) activity. The results showed that Al and Fe bioaccumulation in the gills and hemolymph, Al bioaccumulation in the mantle and muscle, increased LPO in the gills (Dw1 and Dw2) and mantle (Dw1), as well as reduced AChE activity in the muscle (Dw1 and Dw2) should be considered effective biomarkers for monitoring coal mining areas. A. trapesialis proved to be an efficient biological model, considering that biomarkers responses were observed in the clams after only 96h of confinement at Dw sites, accordingly this species could be a good candidate for monitoring Neotropical freshwaters.
Collapse
Affiliation(s)
- Luciana Fernandes de Oliveira
- Laboratório de Ecofisiologia Animal - Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, C.P. 10011, CEP: 86051-970 Londrina, Paraná, Brasil
| | - Millena Terezinha Cabral
- Laboratório de Ecofisiologia Animal - Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, C.P. 10011, CEP: 86051-970 Londrina, Paraná, Brasil
| | - Carlos Eduardo Delfino Vieira
- Laboratório de Ecofisiologia Animal - Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, C.P. 10011, CEP: 86051-970 Londrina, Paraná, Brasil
| | - Matheus Henrique Antoniazzi
- Laboratório de Ecofisiologia Animal - Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, C.P. 10011, CEP: 86051-970 Londrina, Paraná, Brasil
| | - Wagner Ezequiel Risso
- Laboratório de Ecofisiologia Animal - Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, C.P. 10011, CEP: 86051-970 Londrina, Paraná, Brasil
| | - Claudia Bueno Dos Reis Martinez
- Laboratório de Ecofisiologia Animal - Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, C.P. 10011, CEP: 86051-970 Londrina, Paraná, Brasil.
| |
Collapse
|
171
|
Giraudo M, Bruneau A, Gendron AD, Brodeur P, Pilote M, Marcogliese DJ, Gagnon C, Houde M. Integrated spatial health assessment of yellow perch (Perca flavescens) populations from the St. Lawrence River, Quebec, Canada) part A: physiological parameters and pathogen assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:18073-18084. [PMID: 27259956 DOI: 10.1007/s11356-016-7002-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 05/27/2016] [Indexed: 06/05/2023]
Abstract
A multi-disciplinary approach was used to evaluate the health of yellow perch (Perca flavescens) in the St. Lawrence River (Quebec, Canada), which is experiencing a severe population decline in the downstream portion of the river. Physiological parameters, liver alterations, trace metal concentrations, parasite prevalence and abundance, stable isotope composition, and the presence/absence of the viral hemorragic septicemia virus (VHSV) were evaluated in perch collected at six sites along the river: Lake St. François, Lake St. Louis (north and south), Beauregard Island, and Lake St. Pierre (north and south). Trace metal concentrations in surface water were higher in Lake St. Louis and downstream of a major urban wastewater treatment plant discharge, indicating that this effluent was a significant source of Cu, As, Ag, Zn, and Cd. Levels of Pb in surface water exceeded thresholds for the protection of aquatic life in Lake St. Louis and were negatively correlated with body condition index in this lake. In Lake St. Pierre, Cu, Ag, and Cd bioaccumulated significantly in perch liver and lower body condition index and greater liver damage were observed compared to upstream sites. Parasite analyses indicated a higher abundance of metacercariae of the trematodes Apophallus brevis and Diplostomum spp. in Lake St. Louis, and VHSV was not detected in the liver of yellow perch for all studied sites. Overall, results suggested that the global health of yellow perch from Lake St. Pierre is lower compared to upstream studied sites, which could contribute to the documented population collapse at this site.
Collapse
Affiliation(s)
- Maeva Giraudo
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate, 105 McGill Street, Montreal, QC, H2Y 2E7, Canada.
| | - Audrey Bruneau
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate, 105 McGill Street, Montreal, QC, H2Y 2E7, Canada
| | - Andrée D Gendron
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate, 105 McGill Street, Montreal, QC, H2Y 2E7, Canada
| | - Philippe Brodeur
- Ministère des Forêts, de la Faune et des Parcs, Direction de la gestion de la faune de la Mauricie et du Centre-du-Québec, 100, rue Laviolette, bureau 207, Trois-Rivières, QC, G9A 5S9, Canada
| | - Martin Pilote
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate, 105 McGill Street, Montreal, QC, H2Y 2E7, Canada
| | - David J Marcogliese
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate, 105 McGill Street, Montreal, QC, H2Y 2E7, Canada
| | - Christian Gagnon
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate, 105 McGill Street, Montreal, QC, H2Y 2E7, Canada
| | - Magali Houde
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate, 105 McGill Street, Montreal, QC, H2Y 2E7, Canada
| |
Collapse
|
172
|
van der Meer JR. Towards improved biomonitoring tools for an intensified sustainable multi-use environment. Microb Biotechnol 2016; 9:658-65. [PMID: 27468753 PMCID: PMC4993185 DOI: 10.1111/1751-7915.12395] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 07/10/2016] [Indexed: 11/28/2022] Open
Abstract
The increasing use of our environment for multiple contrasting activities (e.g. fisheries, tourism) will have to be accompanied by improved monitoring of environmental quality, to avoid transboundary conflicts and ensure long-term sustainable intensified usage. Biomonitoring approaches are appropriate for this, since they can integrate biological effects of environmental exposure rather than measure individual compound concentrations. Recent advances in biomonitoring concepts and tools focus on single-cell assays and purified biological components that can be miniaturized and integrated in automated systems. Despite these advances, we are still very far from being able to deploy bioassays routinely in environmental monitoring, mostly because of lack of experience in interpreting responses and insufficient robustness of the biosensors for their environmental application. Further future challenges include broadening the spectrum of detectable compounds by biosensors, accelerate response times and combining sample pretreatment strategies with bioassays.
Collapse
|
173
|
Ramsden R, Gallagher EP. Dual NRF2 paralogs in Coho salmon and their antioxidant response element targets. Redox Biol 2016; 9:114-123. [PMID: 27470083 PMCID: PMC5068245 DOI: 10.1016/j.redox.2016.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/24/2016] [Accepted: 07/01/2016] [Indexed: 12/13/2022] Open
Abstract
The transcription factor NFE2L2 (Nuclear Factor, Erythroid 2-Like 2, or NRF2) plays a key role in maintaining the redox state within cells. Characterization of this pathway has extended to fish, most notably zebrafish (Danio rerio), in which two paralogs of the transcription factor exist: Nrf2a, an activator, and Nrf2b, a negative regulator during embryogenesis. Only one ARE target has been thoroughly delineated in zebrafish, and this deviated from the canonical sequence derived from studies in mammals. In general, the mechanistic pathway has not been characterized in non-model aquatic organisms that are commonly exposed to environmental pollutants. The current study compares the zebrafish paralogs to those found in a non-model teleost, the ecologically important salmonid, Oncorhnychus kisutch (coho salmon). Two salmon paralogs, Nrf2A and -2B, described here were found to possess only slightly greater identity between one another (84% of amino acids) than to the singleton ortholog of the esocid Esox lucius (80–82%), the nearest non-salmonid outgroup. Unlike one of the zebrafish forms, each is a strong activating factor based on sequence homology and in vitro testing. To uncover functional target AREs in coho, promoter flanking sequences were isolated for five genes that protect cells against oxidative stress: heme oxygenase 1, peroxiredoxin 1, glutamate-cysteine ligase, and the glutathione S-transferases pi and rho (hmox1, prdx1, gclc, gstp, and gstr). All except gstr had functional elements and all fit the standard mammalian-derived canonical sequence, unlike the motif found in zebrafish gstp. Expression studies demonstrate the presence of both Nrf2 paralogs in multiple organs, although in differing ratios. Collectively, our findings extend the conservation of Nrf2 and the ARE to salmonids, and should help inform future work in teleosts on mechanisms of redox control, as well as responsiveness of this pathway and its downstream antioxidant gene targets to chemical exposures in the environment. Salmon possess dual paralogs of Nrf2 (Nfe2l2). The paralogs are disproportionately expressed among tissues. Antioxidant response elements in salmon follow canonical mammalian motifs.
Collapse
Affiliation(s)
- Richard Ramsden
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Evan P Gallagher
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
174
|
Roland K, Kestemont P, Dieu M, Raes M, Silvestre F. Using a novel “Integrated Biomarker Proteomic” index to assess the effects of freshwater pollutants in European eel peripheral blood mononuclear cells. J Proteomics 2016; 137:83-96. [DOI: 10.1016/j.jprot.2016.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 12/30/2015] [Accepted: 01/05/2016] [Indexed: 01/04/2023]
|