151
|
Peres N, Lepski GA, Fogolin CS, Evangelista GCM, Flatow EA, de Oliveira JV, Pinho MP, Bergami-Santos PC, Barbuto JAM. Profiling of Tumor-Infiltrating Immune Cells and Their Impact on Survival in Glioblastoma Patients Undergoing Immunotherapy with Dendritic Cells. Int J Mol Sci 2024; 25:5275. [PMID: 38791312 PMCID: PMC11121326 DOI: 10.3390/ijms25105275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Glioblastomas (GBM) are the most common primary malignant brain tumors, comprising 2% of all cancers in adults. Their location and cellular and molecular heterogeneity, along with their highly infiltrative nature, make their treatment challenging. Recently, our research group reported promising results from a prospective phase II clinical trial involving allogeneic vaccination with dendritic cells (DCs). To date, six out of the thirty-seven reported cases remain alive without tumor recurrence. In this study, we focused on the characterization of infiltrating immune cells observed at the time of surgical resection. An analytical model employing a neural network-based predictive algorithm was used to ascertain the potential prognostic implications of immunological variables on patients' overall survival. Counterintuitively, immune phenotyping of tumor-associated macrophages (TAMs) has revealed the extracellular marker PD-L1 to be a positive predictor of overall survival. In contrast, the elevated expression of CD86 within this cellular subset emerged as a negative prognostic indicator. Fundamentally, the neural network algorithm outlined here allows a prediction of the responsiveness of patients undergoing dendritic cell vaccination in terms of overall survival based on clinical parameters and the profile of infiltrated TAMs observed at the time of tumor excision.
Collapse
Affiliation(s)
- Nataly Peres
- Department of Psychiatry, Medical School, Universidade de Sao Paulo, Sao Paulo 05403-010, Brazil;
| | - Guilherme A. Lepski
- LIM 26, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, Brazil
- Department of Neurosurgery, Eberhard-Karls University, 72074 Tuebingen, Germany
| | - Carla S. Fogolin
- Department of Immunology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil; (C.S.F.); (G.C.M.E.); (E.A.F.); (J.V.d.O.); (M.P.P.); (P.C.B.-S.); (J.A.M.B.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Gabriela C. M. Evangelista
- Department of Immunology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil; (C.S.F.); (G.C.M.E.); (E.A.F.); (J.V.d.O.); (M.P.P.); (P.C.B.-S.); (J.A.M.B.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Elizabeth A. Flatow
- Department of Immunology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil; (C.S.F.); (G.C.M.E.); (E.A.F.); (J.V.d.O.); (M.P.P.); (P.C.B.-S.); (J.A.M.B.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Jaqueline V. de Oliveira
- Department of Immunology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil; (C.S.F.); (G.C.M.E.); (E.A.F.); (J.V.d.O.); (M.P.P.); (P.C.B.-S.); (J.A.M.B.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Mariana P. Pinho
- Department of Immunology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil; (C.S.F.); (G.C.M.E.); (E.A.F.); (J.V.d.O.); (M.P.P.); (P.C.B.-S.); (J.A.M.B.)
| | - Patricia C. Bergami-Santos
- Department of Immunology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil; (C.S.F.); (G.C.M.E.); (E.A.F.); (J.V.d.O.); (M.P.P.); (P.C.B.-S.); (J.A.M.B.)
| | - José A. M. Barbuto
- Department of Immunology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil; (C.S.F.); (G.C.M.E.); (E.A.F.); (J.V.d.O.); (M.P.P.); (P.C.B.-S.); (J.A.M.B.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, Brazil
| |
Collapse
|
152
|
Jenkner S, Clark JM, Gronthos S, O’Hare Doig RL. Molars to Medicine: A Focused Review on the Pre-Clinical Investigation and Treatment of Secondary Degeneration following Spinal Cord Injury Using Dental Stem Cells. Cells 2024; 13:817. [PMID: 38786039 PMCID: PMC11119219 DOI: 10.3390/cells13100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Spinal cord injury (SCI) can result in the permanent loss of mobility, sensation, and autonomic function. Secondary degeneration after SCI both initiates and propagates a hostile microenvironment that is resistant to natural repair mechanisms. Consequently, exogenous stem cells have been investigated as a potential therapy for repairing and recovering damaged cells after SCI and other CNS disorders. This focused review highlights the contributions of mesenchymal (MSCs) and dental stem cells (DSCs) in attenuating various secondary injury sequelae through paracrine and cell-to-cell communication mechanisms following SCI and other types of neurotrauma. These mechanistic events include vascular dysfunction, oxidative stress, excitotoxicity, apoptosis and cell loss, neuroinflammation, and structural deficits. The review of studies that directly compare MSC and DSC capabilities also reveals the superior capabilities of DSC in reducing the effects of secondary injury and promoting a favorable microenvironment conducive to repair and regeneration. This review concludes with a discussion of the current limitations and proposes improvements in the future assessment of stem cell therapy through the reporting of the effects of DSC viability and DSC efficacy in attenuating secondary damage after SCI.
Collapse
Affiliation(s)
- Sandra Jenkner
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5000, Australia; (S.J.); (S.G.)
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide 5000, Australia;
| | - Jillian Mary Clark
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide 5000, Australia;
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5000, Australia
| | - Stan Gronthos
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5000, Australia; (S.J.); (S.G.)
- Mesenchymal Stem Cell Laboratory, Precision Medicine Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide 5000, Australia
| | - Ryan Louis O’Hare Doig
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide 5000, Australia;
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5000, Australia
| |
Collapse
|
153
|
Sikder S, Pierce D, Sarkar ER, McHugh C, Quinlan KGR, Giacomin P, Loukas A. Regulation of host metabolic health by parasitic helminths. Trends Parasitol 2024; 40:386-400. [PMID: 38609741 DOI: 10.1016/j.pt.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024]
Abstract
Obesity is a worldwide pandemic and major risk factor for the development of metabolic syndrome (MetS) and type 2 diabetes (T2D). T2D requires lifelong medical support to limit complications and is defined by impaired glucose tolerance, insulin resistance (IR), and chronic low-level systemic inflammation initiating from adipose tissue. The current preventative strategies include a healthy diet, controlled physical activity, and medication targeting hyperglycemia, with underexplored underlying inflammation. Studies suggest a protective role for helminth infection in the prevention of T2D. The mechanisms may involve induction of modified type 2 and regulatory immune responses that suppress inflammation and promote insulin sensitivity. In this review, the roles of helminths in counteracting MetS, and prospects for harnessing these protective mechanisms for the development of novel anti-diabetes drugs are discussed.
Collapse
Affiliation(s)
- Suchandan Sikder
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland 4878, Australia.
| | - Doris Pierce
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland 4878, Australia
| | - Eti R Sarkar
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland 4878, Australia; College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, Queensland 4878, Australia
| | - Connor McHugh
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland 4878, Australia; College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, Queensland 4878, Australia
| | - Kate G R Quinlan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Paul Giacomin
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland 4878, Australia; Macrobiome Therapeutics Pty Ltd, Cairns, Queensland 4878, Australia
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland 4878, Australia; Macrobiome Therapeutics Pty Ltd, Cairns, Queensland 4878, Australia
| |
Collapse
|
154
|
Wang C, Li Y, Wang L, Han Y, Gao X, Li T, Liu M, Dai L, Du R. SPP1 represents a therapeutic target that promotes the progression of oesophageal squamous cell carcinoma by driving M2 macrophage infiltration. Br J Cancer 2024; 130:1770-1782. [PMID: 38600327 PMCID: PMC11130281 DOI: 10.1038/s41416-024-02683-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Tumour-associated macrophages (TAMs) are an important component of the tumour microenvironment (TME). However, the crosstalk between oesophageal squamous cell carcinoma (ESCC) cells and TAMs remains largely unexplored. METHODS Clinical samples and the TCGA database were used to evaluate the relevance of SPP1 and TAM infiltration in ESCC. Mouse models were constructed to investigate the roles of macrophages educated by SPP1 in ESCC. Macrophage phenotypes were determined using qRT‒PCR and immunohistochemical staining. RNA sequencing was performed to elucidate the mechanism. RESULTS Increasing expression of SPP1 correlated with M2-like TAM accumulation in ESCC, and they both predicted poor prognosis in the ESCC cohort. Knockdown of SPP1 significantly inhibited the infiltration of M2 TAMs in xenograft tumours. In vivo mouse model experiments showed that SPP1-mediated education of macrophages plays an essential role in the progression of ESCC. Mechanistically, SPP1 recruited macrophages and promoted M2 polarisation via CD44/PI3K/AKT signalling activation and then induced VEGFA and IL6 secretion to sustain ESCC progression. Finally, blockade of SPP1 with RNA aptamer significantly inhibited tumour growth and M2 TAM infiltration in xenograft mouse models. CONCLUSIONS This study highlights SPP1-mediated crosstalk between ESCC cells and TAMs in ESCC. SPP1 could serve as a potential target in ESCC therapy.
Collapse
Affiliation(s)
- Chen Wang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Nuclear Medicine, Xinxiang Central Hospital, Xinxiang, 453002, Henan, China
| | - Yutong Li
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Pharmacology of Liver Diseases, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Linhong Wang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Pharmacology of Liver Diseases, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yu Han
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiaohui Gao
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Pharmacology of Liver Diseases, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Tiandong Li
- College of Public Health, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Man Liu
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, 450000, Henan, China
| | - Liping Dai
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Pharmacology of Liver Diseases, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Renle Du
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan Key Laboratory for Pharmacology of Liver Diseases, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- College of Public Health, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
155
|
Zhang Q, Hu C, Feng J, Long H, Wang Y, Wang P, Hu C, Yue Y, Zhang C, Liu Z, Zhou X. Anti-inflammatory mechanisms of neutrophil membrane-coated nanoparticles without drug loading. J Control Release 2024; 369:12-24. [PMID: 38508526 DOI: 10.1016/j.jconrel.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
Neutrophil membrane-coated nanoparticles (NM-NPs) are nanomedicines with traits of mimicking the surface properties and functions of neutrophils, which are the most abundant type of white blood cells in the human body. NM-NPs have been widely used as targeted drug delivery systems for various inflammatory diseases, but their intrinsic effects on inflammation are not fully characterized yet. This study found that NM-NPs could modulate inflammation by multiple mechanisms without drug loading. NM-NPs could inhibit the recruitment of neutrophils and macrophages to the inflamed site by capturing chemokines and blocking their adhesion to inflamed endothelial cells. After internalized by macrophages and other phagocytic cells, NM-NPs could alter their phenotype by phosphatidylserine and simultaneously degrade the sequestered and neutralized cytokines and chemokines by lysosomal degradation. Under these effects, NM-NPs exhibited significant anti-inflammatory effects on LPS-induced inflammatory liver injury in vivo without drug loading. Our study unveiled the anti-inflammatory effects and mechanisms of NM-NPs without drug loading, and provided new insights and evidence for understanding their biological effects and safety, as well as developing more effective and safe targeted drug delivery systems.
Collapse
Affiliation(s)
- Qing Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province 650032, China
| | - Chengyi Hu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Jinwei Feng
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Hongyan Long
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Ying Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Pan Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Chenglu Hu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yuqin Yue
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Chengyuan Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, China
| | - Zhirui Liu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing 400038, China.
| | - Xing Zhou
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, China; Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China.
| |
Collapse
|
156
|
Li J, Ren H, Zhang Z, Zhang J, Wei F. Macrophage M2 polarization promotes pulpal inflammation resolution during orthodontic tooth movement. J Cell Mol Med 2024; 28:e18350. [PMID: 38700030 PMCID: PMC11066858 DOI: 10.1111/jcmm.18350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/10/2024] [Accepted: 04/11/2024] [Indexed: 05/05/2024] Open
Abstract
Mechanical force induces hypoxia in the pulpal area by compressing the apical blood vessels of the pulp, triggering pulpal inflammation during orthodontic tooth movement. However, this inflammation tends to be restorable. Macrophages are recognized as pivotal immunoreactive cells in the dental pulp. Whether they are involved in the resolution of pulpal inflammation in orthodontic teeth remains unclear. In this study, we investigated macrophage polarization and its effects during orthodontic tooth movement. It was demonstrated that macrophages within the dental pulp polarized to M2 type and actively participated in the process of pulpal inflammation resolution. Inflammatory reactions were generated and vascularization occurred in the pulp during orthodontic tooth movement. Macrophages in orthodontic pulp show a tendency to polarize towards M2 type as a result of pulpal hypoxia. Furthermore, by blocking M2 polarization, we found that macrophage M2 polarization inhibits dental pulp-secreting inflammatory factors and enhances VEGF production. In conclusion, our findings suggest that macrophages promote pulpal inflammation resolution by enhancing M2 polarization and maintaining dental health during orthodontic tooth movement.
Collapse
Affiliation(s)
- Jichang Li
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of MedicineShandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesJinanShandongChina
| | - Huiying Ren
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of MedicineShandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesJinanShandongChina
| | - Zijie Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of MedicineShandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesJinanShandongChina
| | - Jin Zhang
- Department of Endodontics, School and Hospital of Stomatology, Cheeloo College of MedicineShandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesJinanShandongChina
| | - Fulan Wei
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of MedicineShandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesJinanShandongChina
| |
Collapse
|
157
|
Zhang YA, Li FW, Dong YX, Xie WJ, Wang HB. PPAR-γ regulates the polarization of M2 macrophages to improve the microenvironment for autologous fat grafting. FASEB J 2024; 38:e23613. [PMID: 38661048 DOI: 10.1096/fj.202400126r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/19/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
The unpredictable survival rate of autologous fat grafting (AFG) seriously affects its clinical application. Improving the survival rate of AFG has become an unresolved issue in plastic surgery. Peroxisome proliferator-activated receptor-γ (PPAR-γ) regulates the adipogenic differentiation of adipocytes, but the functional mechanism in AFG remains unclear. In this study, we established an animal model of AFG and demonstrated the superior therapeutic effect of PPAR-γ regulation in the process of AFG. From day 3 after fat grafting, the PPAR-γ agonist rosiglitazone group consistently showed better adipose integrity, fewer oil cysts, and fibrosis. Massive macrophage infiltration was observed after 7 days. At the same time, M2 macrophages begin to appear. At day 14, M2 macrophages gradually became the dominant cell population, which suppressed inflammation and promoted revascularization and fat regeneration. In addition, transcriptome sequencing showed that the differentially expressed genes in the Rosiglitazone group were associated with the pathways of adipose regeneration, differentiation, and angiogenesis; these results provide new ideas for clinical treatment.
Collapse
Affiliation(s)
- Ya-An Zhang
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Fang-Wei Li
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yun-Xian Dong
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Wen-Jie Xie
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Hai-Bin Wang
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
158
|
Dash SP, Gupta S, Sarangi PP. Monocytes and macrophages: Origin, homing, differentiation, and functionality during inflammation. Heliyon 2024; 10:e29686. [PMID: 38681642 PMCID: PMC11046129 DOI: 10.1016/j.heliyon.2024.e29686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024] Open
Abstract
Monocytes and macrophages are essential components of innate immune system and have versatile roles in homeostasis and immunity. These phenotypically distinguishable mononuclear phagocytes play distinct roles in different stages, contributing to the pathophysiology in various forms making them a potentially attractive therapeutic target in inflammatory conditions. Several pieces of evidence have supported the role of different cell surface receptors expressed on these cells and their downstream signaling molecules in initiating and perpetuating the inflammatory response. In this review, we discuss the current understanding of the monocyte and macrophage biology in inflammation, highlighting the role of chemoattractants, inflammasomes, and integrins in the function of monocytes and macrophages during events of inflammation. This review also covers the recent therapeutic interventions targeting these mononuclear phagocytes at the cellular and molecular levels.
Collapse
Affiliation(s)
- Shiba Prasad Dash
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Saloni Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Pranita P. Sarangi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| |
Collapse
|
159
|
Galili U, Li J, Schaer GL. Regeneration in Mice of Injured Skin, Heart, and Spinal Cord by α-Gal Nanoparticles Recapitulates Regeneration in Amphibians. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:730. [PMID: 38668224 PMCID: PMC11055133 DOI: 10.3390/nano14080730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
The healing of skin wounds, myocardial, and spinal cord injuries in salamander, newt, and axolotl amphibians, and in mouse neonates, results in scar-free regeneration, whereas injuries in adult mice heal by fibrosis and scar formation. Although both types of healing are mediated by macrophages, regeneration in these amphibians and in mouse neonates also involves innate activation of the complement system. These differences suggest that localized complement activation in adult mouse injuries might induce regeneration instead of the default fibrosis and scar formation. Localized complement activation is feasible by antigen/antibody interaction between biodegradable nanoparticles presenting α-gal epitopes (α-gal nanoparticles) and the natural anti-Gal antibody which is abundant in humans. Administration of α-gal nanoparticles into injuries of anti-Gal-producing adult mice results in localized complement activation which induces rapid and extensive macrophage recruitment. These macrophages bind anti-Gal-coated α-gal nanoparticles and polarize into M2 pro-regenerative macrophages that orchestrate accelerated scar-free regeneration of skin wounds and regeneration of myocardium injured by myocardial infarction (MI). Furthermore, injection of α-gal nanoparticles into spinal cord injuries of anti-Gal-producing adult mice induces recruitment of M2 macrophages, that mediate extensive angiogenesis and axonal sprouting, which reconnects between proximal and distal severed axons. Thus, α-gal nanoparticle treatment in adult mice mimics physiologic regeneration in amphibians. These studies further suggest that α-gal nanoparticles may be of significance in the treatment of human injuries.
Collapse
Affiliation(s)
- Uri Galili
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA; (J.L.); (G.L.S.)
| | | | | |
Collapse
|
160
|
Yuan Y, Zhang Y, Lu X, Li J, Wang M, Zhang W, Zheng M, Sun Z, Xing Y, Li Y, Qu Y, Jiao Y, Han H, Xie C, Mao T. Novel insights into macrophage immunometabolism in nonalcoholic steatohepatitis. Int Immunopharmacol 2024; 131:111833. [PMID: 38503012 DOI: 10.1016/j.intimp.2024.111833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
Nonalcoholic steatohepatitis (NASH), an inflammatory subtype of nonalcoholic fatty liver disease (NAFLD), is characterized by liver steatosis, inflammation, hepatocellular injury and different degrees of fibrosis, and has been becoming the leading cause of liver-related morbidity and mortality worldwide. Unfortunately, the pathogenesis of NASH has not been completely clarified, and there are no approved therapeutic drugs. Recent accumulated evidences have revealed the involvement of macrophage in the regulation of host liver steatosis, inflammation and fibrosis, and different phenotypes of macrophages have different metabolic characteristics. Therefore, targeted regulation of macrophage immunometabolism may contribute to the treatment and prognosis of NASH. In this review, we summarized the current evidences of the role of macrophage immunometabolism in NASH, especially focused on the related function conversion, as well as the strategies to promote its polarization balance in the liver, and hold promise for macrophage immunometabolism-targeted therapies in the treatment of NASH.
Collapse
Affiliation(s)
- Yali Yuan
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Ye Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Xinyu Lu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Junxiang Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Muyuan Wang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Wenji Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | | | | | - Yunqi Xing
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Yitong Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Yingdi Qu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Yao Jiao
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Haixiao Han
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Chune Xie
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China; Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, PR China.
| | - Tangyou Mao
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China.
| |
Collapse
|
161
|
Huang D, Zhang Z, Jian J, Jiang X, Gao J, Yang M, Ding X. Parecoxib sodium attenuates acute lung injury following burns by regulating M1/M2 macrophage polarization through the TLR4/NF-κB pathway. Eur J Pharmacol 2024; 968:176407. [PMID: 38365106 DOI: 10.1016/j.ejphar.2024.176407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/04/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
High temperature-induced burn injury often leads to an excessive inflammatory cascade resulting in multiple organ dysfunction syndrome, such as acute lung injury (ALI), in addition to skin tissue damage. As a specific COX2 inhibitor, parecoxib sodium suppresses the inflammatory response during burn injury. The effect of parecoxib sodium on ALI induced by burn injury and the associated molecular mechanism still need to be investigated. The role of parecoxib sodium in burn injury-induced ALI through the TLR4/NF-κB pathway was explored in the present study. A burn-induced ALI mouse model was constructed, and M1/M2 macrophages in lung tissue and markers involved in the TLR4/NF-κB signalling pathway were evaluated in bronchoalveolar lavage fluid (BALF) and MH-S mouse alveolar macrophages in vitro. The results indicated that parecoxib sodium attenuated lung injury after burn injury, decreased iNOS and TNF-α expression, increased IL-10 expression in BALF, and regulated the CD86-and CD206-mediated polarization of M1/M2 macrophages in lung tissue along with MH-S mouse alveolar macrophages. The effect of parecoxib sodium might be reversed by a TLR4 agonist. Overall, the results suggested that parecoxib sodium can regulate the polarization of M1/M2 macrophages through the TLR4/NF-κB pathway to attenuate ALI induced by skin burns.
Collapse
Affiliation(s)
- Dongxiao Huang
- Department of Anaesthesiology, Jiangnan University Medical Center, Wuxi No.2 People's Hospital, Wuxi, 214002, China
| | - Zhongjun Zhang
- Department of Anaesthesiology, The Affiliated Hospital of Jiangnan University, No.1000 Hefeng Road, Wuxi, 214122, China
| | - Jinjin Jian
- Department of Anaesthesiology, The Affiliated Hospital of Jiangnan University, No.1000 Hefeng Road, Wuxi, 214122, China
| | - Xuliang Jiang
- Department of Anesthesiology. Fudan University Shanghai Cancer Center, Shanghai, 200030, China
| | - Jie Gao
- Department of Anaesthesiology, The Affiliated Hospital of Jiangnan University, No.1000 Hefeng Road, Wuxi, 214122, China
| | - Minlie Yang
- Burn and Palstic Surgery, The Affiliated Hospital of Jiangnan University, No.1000 Hefeng Road, Wuxi, 214122, China.
| | - Xian Ding
- Department of Anaesthesiology, The Affiliated Hospital of Jiangnan University, No.1000 Hefeng Road, Wuxi, 214122, China.
| |
Collapse
|
162
|
Chen Y, Liu H, Sun Y. Effect of acute inflammatory reaction induced by biopsy on tumor microenvironment. J Cancer Res Clin Oncol 2024; 150:177. [PMID: 38578317 PMCID: PMC10997701 DOI: 10.1007/s00432-024-05704-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/04/2023] [Indexed: 04/06/2024]
Abstract
When it comes to the diagnosis of solid tumors, biopsy is always the gold standard. However, traumatic and inflammatory stimuli are so closely related to tumor initiation and development that the acute inflammatory response induced by biopsy can give rise to changes in the tumor microenvironment, including recruitment of immunosuppressive cells (M2 macrophages, Treg cells, Tumor-associated neutrophils) and secretion of inflammation-associated cytokines, to create immunosuppressive conditions that enable the increase of circulating tumor cells in the peripheral circulation and promote the metastatic spread of tumors after surgery. In this review, we discuss dynamic changes and inhibitory characteristics of biopsy on tumor microenvironment. By investigating its mechanism of action and summarizing the current therapeutic strategies for biopsy-induced tumor immunosuppressive microenvironment, the future of using biopsy-induced inflammation to improve the therapeutic effects and prognosis of patients is prospected.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Stomatology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Hualian Liu
- Department of Stomatology, The Third Affiliated Hospital of Soochow University, Changzhou, China.
| | - Yadong Sun
- Department of General Practice, Unit 94587 of the Chinese People's Liberation Army, Lianyungang, China
| |
Collapse
|
163
|
Kim SW, Kim CW, Moon YA, Kim HS. Reprogramming of tumor-associated macrophages by metabolites generated from tumor microenvironment. Anim Cells Syst (Seoul) 2024; 28:123-136. [PMID: 38577621 PMCID: PMC10993762 DOI: 10.1080/19768354.2024.2336249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/17/2024] [Indexed: 04/06/2024] Open
Abstract
The tumor microenvironment comprises both tumor and non-tumor stromal cells, including tumor-associated macrophages (TAMs), endothelial cells, and carcinoma-associated fibroblasts. TAMs, major components of non-tumor stromal cells, play a crucial role in creating an immunosuppressive environment by releasing cytokines, chemokines, growth factors, and immune checkpoint proteins that inhibit T cell activity. During tumors develop, cancer cells release various mediators, including chemokines and metabolites, that recruit monocytes to infiltrate tumor tissues and subsequently induce an M2-like phenotype and tumor-promoting properties. Metabolites are often overlooked as metabolic waste or detoxification products but may contribute to TAM polarization. Furthermore, macrophages display a high degree of plasticity among immune cells in the tumor microenvironment, enabling them to either inhibit or facilitate cancer progression. Therefore, TAM-targeting has emerged as a promising strategy in tumor immunotherapy. This review provides an overview of multiple representative metabolites involved in TAM phenotypes, focusing on their role in pro-tumoral polarization of M2.
Collapse
Affiliation(s)
- Seung Woo Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Chan Woo Kim
- Cancer Immunotherapy Evaluation Team, Non-Clinical Evaluation Center, Osong Medical Innovation Foundation (KBIO Health), Cheongju, Republic of Korea
| | - Young-Ah Moon
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Hong Seok Kim
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, Republic of Korea
| |
Collapse
|
164
|
Sun C, Zhan J, Li Y, Zhou C, Huang S, Zhu X, Huang K. Non-apoptotic regulated cell death mediates reprogramming of the tumour immune microenvironment by macrophages. J Cell Mol Med 2024; 28:e18348. [PMID: 38652105 PMCID: PMC11037416 DOI: 10.1111/jcmm.18348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/23/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024] Open
Abstract
Tumour immune microenvironment (TIME) plays an indispensable role in tumour progression, and tumour-associated macrophages (TAMs) are the most abundant immune cells in TIME. Non-apoptotic regulated cell death (RCD) can avoid the influence of tumour apoptosis resistance on anti-tumour immune response. Specifically, autophagy, ferroptosis, pyroptosis and necroptosis mediate the crosstalk between TAMs and tumour cells in TIME, thus reprogram TIME and affect the progress of tumour. In addition, although some achievements have been made in immune checkpoint inhibitors (ICIs), there is still defect that ICIs are only effective for some people because non-apoptotic RCD can bypass the apoptosis resistance of tumour. As a result, ICIs combined with targeting non-apoptotic RCD may be a promising solution. In this paper, the basic molecular mechanism of non-apoptotic RCD, the way in which non-apoptotic RCD mediates crosstalk between TAMs and tumour cells to reprogram TIME, and the latest research progress in targeting non-apoptotic RCD and ICIs are reviewed.
Collapse
Affiliation(s)
- Chengpeng Sun
- Department of NeurosurgeryThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP. R. China
- HuanKui Academy, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Jianhao Zhan
- HuanKui Academy, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Yao Li
- The First Clinical Medical College, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Chulin Zhou
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Shuo Huang
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Xingen Zhu
- Department of NeurosurgeryThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP. R. China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP. R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular DiseasesNanchangChina
- JXHC Key Laboratory of Neurological MedicineNanchangJiangxiP. R. China
| | - Kai Huang
- Department of NeurosurgeryThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP. R. China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP. R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular DiseasesNanchangChina
- JXHC Key Laboratory of Neurological MedicineNanchangJiangxiP. R. China
| |
Collapse
|
165
|
Aiello S, Benigni A, Remuzzi G. Tissue-Resident Macrophages in Solid Organ Transplantation: Harmful or Protective? JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1051-1061. [PMID: 38498808 DOI: 10.4049/jimmunol.2300625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/27/2023] [Indexed: 03/20/2024]
Abstract
Transplanted organs carry donor immune cells into the recipient, the majority of which are tissue-resident macrophages (TRMs). The role they play in guiding the fate of the transplanted organ toward acceptance or rejection remains elusive. TRMs originate from both embryonic and bone marrow-derived precursors. Embryo-derived TRMs retain the embryonic capability to proliferate, so they are able to self-renew and, theoretically, persist for extended periods of time after transplantation. Bone marrow-derived TRMs do not proliferate and must constantly be replenished by adult circulating monocytes. Recent studies have aimed to clarify the different roles and interactions between donor TRMs, recipient monocytes, and monocyte-derived macrophages (MFs) after organ transplantation. This review aims to shed light on how MFs affect the fate of a transplanted organ by differentiating between the role of donor TRMs and that of MFs derived from graft infiltrating monocytes.
Collapse
Affiliation(s)
- Sistiana Aiello
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Ariela Benigni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
166
|
Luo J, Li P, Dong M, Zhang Y, Lu S, Chen M, Zhou H, Lin N, Jiang H, Wang Y. SLC15A3 plays a crucial role in pulmonary fibrosis by regulating macrophage oxidative stress. Cell Death Differ 2024; 31:417-430. [PMID: 38374230 PMCID: PMC11043330 DOI: 10.1038/s41418-024-01266-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/21/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal and irreversible disease with few effective treatments. Alveolar macrophages (AMs) are involved in the development of IPF from the initial stages due to direct exposure to air and respond to external oxidative damage (a major inducement of pulmonary fibrosis). Oxidative stress in AMs plays an indispensable role in promoting fibrosis development. The oligopeptide histidine transporter SLC15A3, mainly expressed on the lysosomal membrane of macrophages and highly expressed in the lung, has proved to be involved in innate immune and antiviral signaling pathways. In this study, we demonstrated that during bleomycin (BLM)- or radiation-induced pulmonary fibrosis, the recruitment of macrophages induced an increase of SLC15A3 in the lung, and the deficiency of SLC15A3 protected mice from pulmonary fibrosis and maintained the homeostasis of the pulmonary microenvironment. Mechanistically, deficiency of SLC15A3 resisted oxidative stress in macrophages, and SLC15A3 interacted with the scaffold protein p62 to regulate its expression and phosphorylation activation, thereby regulating p62-nuclear factor erythroid 2-related factor 2 (NRF2) antioxidant stress pathway protein, which is related to the production of reactive oxygen species (ROS). Overall, our data provided a novel mechanism for targeting SLC15A3 to regulate oxidative stress in macrophages, supporting the therapeutic potential of inhibiting or silencing SLC15A3 for the precautions and treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jun Luo
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ping Li
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Clinical Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
| | - Minlei Dong
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yingqiong Zhang
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Shuanghui Lu
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Mingyang Chen
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hui Zhou
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Nengming Lin
- Department of Clinical Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
| | - Huidi Jiang
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Jinhua Institute of Zhejiang University, Jinhua, China.
| | - Yuqing Wang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China.
| |
Collapse
|
167
|
Lei M, Wan H, Song J, Lu Y, Chang R, Wang H, Zhou H, Zhang X, Liu C, Qu X. Programmable Electro-Assembly of Collagen: Constructing Porous Janus Films with Customized Dual Signals for Immunomodulation and Tissue Regeneration in Periodontitis Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305756. [PMID: 38189598 PMCID: PMC10987108 DOI: 10.1002/advs.202305756] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/22/2023] [Indexed: 01/09/2024]
Abstract
Currently available guided bone regeneration (GBR) films lack active immunomodulation and sufficient osteogenic ability- in the treatment of periodontitis, leading to unsatisfactory treatment outcomes. Challenges remain in developing simple, rapid, and programmable manufacturing methods for constructing bioactive GBR films with tailored biofunctional compositions and microstructures. Herein, the controlled electroassembly of collagen under the salt effect is reported, which enables the construction of porous films with precisely tunable porous structures (i.e., porosity and pore size). In particular, bioactive salt species such as the anti-inflammatory drug diclofenac sodium (DS) can induce and customize porous structures while enabling the loading of bioactive salts and their gradual release. Sequential electro-assembly under pre-programmed salt conditions enables the manufacture of a Janus composite film with a dense and DS-containing porous layer capable of multiple functions in periodontitis treatment, which provides mechanical support, guides fibrous tissue growth, and acts as a barrier preventing its penetration into bone defects. The DS-containing porous layer delivers dual bio-signals through its morphology and the released DS, inhibiting inflammation and promoting osteogenesis. Overall, this study demonstrates the potential of electrofabrication as a customized manufacturing platform for the programmable assembly of collagen for tailored functions to adapt to specific needs in regenerative medicine.
Collapse
Affiliation(s)
- Miao Lei
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistrySchool of materials science and engineeringEast China University of Science and TechnologyShanghai200237China
| | - Haoran Wan
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistrySchool of materials science and engineeringEast China University of Science and TechnologyShanghai200237China
| | - Jia Song
- Department of Dental Materials & Dental Medical Devices Testing CenterNMPA Key Laboratory for Dental MaterialsPeking University School and Hospital of StomatologyBeijing100081China
| | - Yanhui Lu
- Department of Dental Materials & Dental Medical Devices Testing CenterNMPA Key Laboratory for Dental MaterialsPeking University School and Hospital of StomatologyBeijing100081China
| | - Ronghang Chang
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistrySchool of materials science and engineeringEast China University of Science and TechnologyShanghai200237China
| | - Honglei Wang
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistrySchool of materials science and engineeringEast China University of Science and TechnologyShanghai200237China
| | - Hang Zhou
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistrySchool of materials science and engineeringEast China University of Science and TechnologyShanghai200237China
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing CenterNMPA Key Laboratory for Dental MaterialsPeking University School and Hospital of StomatologyBeijing100081China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistrySchool of materials science and engineeringEast China University of Science and TechnologyShanghai200237China
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistrySchool of materials science and engineeringEast China University of Science and TechnologyShanghai200237China
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell MetabolismEast China University of Science and TechnologyShanghai200237China
- Wenzhou Institute of Shanghai UniversityWenzhou325000China
| |
Collapse
|
168
|
Wu Y, Zhang P, Shi T, Cao D, Pan W. Deficiency of immunoglobulin IgSF6 enhances antibacterial effects by promoting endoplasmic reticulum stress and the inflammatory response in intestinal macrophages. Mucosal Immunol 2024; 17:288-302. [PMID: 38387824 DOI: 10.1016/j.mucimm.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/19/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Immunoglobulin superfamily (IgSF) members are known for their role as glycoproteins expressed on the surface of immune cells, enabling protein-protein interactions to sense external signals during immune responses. However, the functions of immunoglobulins localized within subcellular compartments have been less explored. In this study, we identified an endoplasmic reticulum (ER)-localized immunoglobulin, IgSF member 6 (IgSF6), that regulates ER stress and the inflammatory response in intestinal macrophages. Igsf6 expression is sustained by microbiota and significantly upregulated upon bacterial infection. Mice lacking Igsf6 displayed resistance to Salmonella typhimurium challenge but increased susceptibility to dextran sulfate sodium-induced colitis. Mechanistically, deficiency of Igsf6 enhanced inositol-requiring enzyme 1α/-X-box binding protein 1 pathway, inflammatory response, and reactive oxygen species production leading to increased bactericidal activity of intestinal macrophages. Inhibition of reactive oxygen species or inositol-requiring enzyme 1α-X-box binding protein 1 pathway reduced the advantage of Igsf6 deficiency in bactericidal capacity. Together, our findings provide insight into the role of IgSF6 in intestinal macrophages that modulate the ER stress response and maintain intestinal homeostasis.
Collapse
Affiliation(s)
- Yuting Wu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Panrui Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tianlu Shi
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Dan Cao
- Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Wen Pan
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
169
|
Hetta HF, Elsaghir A, Sijercic VC, Akhtar MS, Gad SA, Moses A, Zeleke MS, Alanazi FE, Ahmed AK, Ramadan YN. Mesenchymal stem cell therapy in diabetic foot ulcer: An updated comprehensive review. Health Sci Rep 2024; 7:e2036. [PMID: 38650719 PMCID: PMC11033295 DOI: 10.1002/hsr2.2036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/06/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024] Open
Abstract
Background Diabetes has evolved into a worldwide public health issue. One of the most serious complications of diabetes is diabetic foot ulcer (DFU), which frequently creates a significant financial strain on patients and lowers their quality of life. Up until now, there has been no curative therapy for DFU, only symptomatic relief or an interruption in the disease's progression. Recent studies have focused attention on mesenchymal stem cells (MSCs), which provide innovative and potential treatment candidates for several illnesses as they can differentiate into various cell types. They are mostly extracted from the placenta, adipose tissue, umbilical cord (UC), and bone marrow (BM). Regardless of their origin, they show comparable features and small deviations. Our goal is to investigate MSCs' therapeutic effects, application obstacles, and patient benefit strategies for DFU therapy. Methodology A comprehensive search was conducted using specific keywords relating to DFU, MSCs, and connected topics in the databases of Medline, Scopus, Web of Science, and PubMed. The main focus of the selection criteria was on English-language literature that explored the relationship between DFU, MSCs, and related factors. Results and Discussion Numerous studies are being conducted and have demonstrated that MSCs can induce re-epithelialization and angiogenesis, decrease inflammation, contribute to immunological modulation, and subsequently promote DFU healing, making them a promising approach to treating DFU. This review article provides a general snapshot of DFU (including clinical presentation, risk factors and etiopathogenesis, and conventional treatment) and discusses the clinical progress of MSCs in the management of DFU, taking into consideration the side effects and challenges during the application of MSCs and how to overcome these challenges to achieve maximum benefits. Conclusion The incorporation of MSCs in the management of DFU highlights their potential as a feasible therapeutic strategy. Establishing a comprehensive understanding of the complex relationship between DFU pathophysiology, MSC therapies, and related obstacles is essential for optimizing therapy outcomes and maximizing patient benefits.
Collapse
Affiliation(s)
- Helal F. Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative MedicineFaculty of Pharmacy, University of TabukTabukSaudi Arabia
- Department of Medical Microbiology and ImmunologyFaculty of Medicine, Assiut UniversityAssiutEgypt
| | - Alaa Elsaghir
- Department of Microbiology and ImmunologyFaculty of Pharmacy, Assiut UniversityAssiutEgypt
| | | | | | - Sayed A. Gad
- Faculty of Medicine, Assiut UniversityAssiutEgypt
| | | | - Mahlet S. Zeleke
- Menelik II Medical and Health Science College, Kotebe Metropolitan UniversityAddis AbabaEthiopia
| | - Fawaz E. Alanazi
- Department of Pharmacology and ToxicologyFaculty of Pharmacy, University of TabukTabukSaudi Arabia
| | | | - Yasmin N. Ramadan
- Department of Microbiology and ImmunologyFaculty of Pharmacy, Assiut UniversityAssiutEgypt
| |
Collapse
|
170
|
Choi JY, Seok HJ, Lee DH, Lee E, Kim TJ, Bae S, Shin I, Bae IH. Tumor-derived miR-6794-5p enhances cancer growth by promoting M2 macrophage polarization. Cell Commun Signal 2024; 22:190. [PMID: 38521953 PMCID: PMC10960442 DOI: 10.1186/s12964-024-01570-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/16/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Solid tumors promote tumor malignancy through interaction with the tumor microenvironment, resulting in difficulties in tumor treatment. Therefore, it is necessary to understand the communication between cells in the tumor and the surrounding microenvironment. Our previous study revealed the cancer malignancy mechanism of Bcl-w overexpressed in solid tumors, but no study was conducted on its relationship with immune cells in the tumor microenvironment. In this study, we sought to discover key factors in exosomes secreted from tumors overexpressing Bcl-w and analyze the interaction with the surrounding tumor microenvironment to identify the causes of tumor malignancy. METHODS To analyze factors affecting the tumor microenvironment, a miRNA array was performed using exosomes derived from cancer cells overexpressing Bcl-w. The discovered miRNA, miR-6794-5p, was overexpressed and the tumorigenicity mechanism was confirmed using qRT-PCR, Western blot, invasion, wound healing, and sphere formation ability analysis. In addition, luciferase activity and Ago2-RNA immunoprecipitation assays were used to study the mechanism between miR-6794-5p and its target gene SOCS1. To confirm the interaction between macrophages and tumor-derived miR-6794-5p, co-culture was performed using conditioned media. Additionally, immunohistochemical (IHC) staining and flow cytometry were performed to analyze macrophages in the tumor tissues of experimental animals. RESULTS MiR-6794-5p, which is highly expressed in exosomes secreted from Bcl-w-overexpressing cells, was selected, and it was shown that the overexpression of miR-6794-5p increased migratory ability, invasiveness, and stemness maintenance by suppressing the expression of the tumor suppressor SOCS1. Additionally, tumor-derived miR-6794-5p was delivered to THP-1-derived macrophages and induced M2 polarization by activating the JAK1/STAT3 pathway. Moreover, IL-10 secreted from M2 macrophages increased tumorigenicity by creating an immunosuppressive environment. The in vitro results were reconfirmed by confirming an increase in M2 macrophages and a decrease in M1 macrophages and CD8+ T cells when overexpressing miR-6794-5p in an animal model. CONCLUSIONS In this study, we identified changes in the tumor microenvironment caused by miR-6794-5p. Our study indicates that tumor-derived miR-6794-5p promotes tumor aggressiveness by inducing an immunosuppressive environment through interaction with macrophage.
Collapse
Affiliation(s)
- Jae Yeon Choi
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea
- Department of Life Science, Hanyang University, Seoul, Republic of Korea
| | - Hyun Jeong Seok
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea
| | - Dong Hyeon Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea
| | - Eunju Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea
| | - Tae-Jin Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea
| | - Sangwoo Bae
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea
| | - Incheol Shin
- Department of Life Science, Hanyang University, Seoul, Republic of Korea
| | - In Hwa Bae
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea.
| |
Collapse
|
171
|
Datta I, Bangi E. Senescent cells and macrophages cooperate through a multi-kinase signaling network to promote intestinal transformation in Drosophila. Dev Cell 2024; 59:566-578.e3. [PMID: 38309266 PMCID: PMC10939848 DOI: 10.1016/j.devcel.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/21/2023] [Accepted: 01/12/2024] [Indexed: 02/05/2024]
Abstract
Cellular senescence is a conserved biological process that plays a crucial and context-dependent role in cancer. The highly heterogeneous and dynamic nature of senescent cells and their small numbers in tissues make in vivo mechanistic studies of senescence challenging. As a result, how multiple senescence-inducing signals are integrated in vivo to drive senescence in only a small number of cells is unclear. Here, we identify cells that exhibit multiple features of senescence in a Drosophila model of intestinal transformation, which emerge in response to concurrent activation of AKT, JNK, and DNA damage signaling within transformed tissue. Eliminating senescent cells, genetically or by treatment with senolytic compounds, reduces overgrowth and improves survival. We find that senescent cells promote tumorigenesis by recruiting Drosophila macrophages to the transformed tissue, which results in non-autonomous activation of JNK signaling. These findings identify senescent cell-macrophage interactions as an important driver of epithelial transformation.
Collapse
Affiliation(s)
- Ishwaree Datta
- Department of Biological Science, Florida State University, Tallahassee, FL 32304, USA
| | - Erdem Bangi
- Department of Biological Science, Florida State University, Tallahassee, FL 32304, USA.
| |
Collapse
|
172
|
Liu J, Li F, Ouyang Y, Su Z, Chen D, Liang Z, Zhang Z, Lin R, Luo T, Guo L. Naringin-induced M2 macrophage polarization facilitates osteogenesis of BMSCs and improves cranial bone defect healing in rat. Arch Biochem Biophys 2024; 753:109890. [PMID: 38246327 DOI: 10.1016/j.abb.2024.109890] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/04/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Osteoimmunology has uncovered the critical role of the immune microenvironment in the bone healing process, with macrophages playing a central part in generating immune responses via chemokine production. Naringin, a flavanone glycoside extracted from various plants, has been shown to promote osteoblast differentiation, thereby enhancing bone formation and mitigating osteoporosis progression. Current research on the osteogenic mechanism primarily focuses on the direct impact of naringin on mesenchymal stem cells, while its indirect immunoregulatory effects remain elusive. In this study, we investigated the bone defect-enhancing effects of varying naringin concentrations in vivo using a cranial bone defect model in Sprague-Dawley rats. We assessed the osteoimmune modulation capacity of naringin by exposing lipopolysaccharide (LPS)-induced RAW 264.7 macrophages to different doses of naringin. To further elucidate the underlying osteogenic enhancement mechanism, Bone Marrow Stromal Cells (BMSCs) derived from mice were treated with conditioned media from naringin-treated macrophages. Our findings indicated that naringin promotes M2 phenotype polarization in macrophages, as evidenced by the downregulation of pro-inflammatory cytokines Inducible Nitric Oxide Synthase (iNOS), interleukin (IL)-1β, and Tumor Necrosis Factor (TNF)-α, and the upregulation of anti-inflammatory cytokine Transforming growth factor (TGF)-β. Transcriptome analysis revealed that differentially expressed genes were significantly enriched in osteoblast differentiation and anti-inflammatory response pathways in naringin-pretreated macrophages, with the cytokines signaling pathway being upregulated. The conditioned media from naringin-treated macrophages stimulated the expression of osteogenic-related genes Alkaline phosphatase (Alp), osteocalcin (Ocn), osteopontin (Opn), and Runt-related transcription factor (Runx) 2, as well as protein expression in BMSCs. In conclusion, naringin alleviates macrophage inflammation by promoting M2 phenotype polarization, which in turn enhances the osteogenic differentiation of BMSCs, contributing to its bone healing effects in vivo. These results suggest that naringin holds significant potential for improving bone defect healing through osteoimmune modulation.
Collapse
Affiliation(s)
- Jiaohong Liu
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Fuyao Li
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Yuanting Ouyang
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Zhikang Su
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Ding Chen
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Zitian Liang
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Zhiyi Zhang
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Ruofei Lin
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Tao Luo
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China.
| | - Lvhua Guo
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
173
|
Youssef N, Noureldein MH, Riachi ME, Haddad A, Eid AA. Macrophage polarization and signaling in diabetic kidney disease: a catalyst for disease progression. Am J Physiol Renal Physiol 2024; 326:F301-F312. [PMID: 38153850 DOI: 10.1152/ajprenal.00266.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/29/2023] [Accepted: 12/16/2023] [Indexed: 12/30/2023] Open
Abstract
Diabetic kidney disease (DKD) is a serious complication of diabetes affecting millions of people worldwide. Macrophages, a critical immune cell type, are central players in the development and progression of DKD. In this comprehensive review, we delve into the intricate role of macrophages in DKD, examining how they can become polarized into proinflammatory M1 or anti-inflammatory M2 phenotypes. We explore the signaling pathways involved in macrophage recruitment and polarization in the kidneys, including the key cytokines and transcription factors that promote M1 and M2 polarization. In addition, we discuss the latest clinical studies investigating macrophages in DKD and explore the potential of hypoglycemic drugs for modulating macrophage polarization. By gaining a deeper understanding of the mechanisms that regulate macrophage polarization in DKD, we may identify novel therapeutic targets for this debilitating complication of diabetes. This review provides valuable insights into the complex interplay between macrophages and DKD, shedding light on the latest developments in this important area of research. This review aims to enhance understanding of the role that macrophages play in the pathogenesis of DKD.
Collapse
Affiliation(s)
- Natalie Youssef
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- American University of Beirut Diabetes, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mohamed H Noureldein
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- American University of Beirut Diabetes, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mansour E Riachi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- American University of Beirut Diabetes, American University of Beirut Medical Center, Beirut, Lebanon
| | - Antony Haddad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- American University of Beirut Diabetes, American University of Beirut Medical Center, Beirut, Lebanon
| | - Assaad A Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- American University of Beirut Diabetes, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
174
|
Gonciarz W, Brzeziński M, Orłowska W, Wawrzyniak P, Lewandowski A, Narayanan VHB, Chmiela M. Spray-dried pH-sensitive chitosan microparticles loaded with Mycobacterium bovis BCG intended for supporting treatment of Helicobacter pylori infection. Sci Rep 2024; 14:4747. [PMID: 38413775 PMCID: PMC10899647 DOI: 10.1038/s41598-024-55353-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/22/2024] [Indexed: 02/29/2024] Open
Abstract
Gram-negative spiral-shaped Helicobacter pylori (Hp) bacteria induce the development of different gastric disorders. The growing resistance of Hp to antibiotics prompts to search for new therapeutic formulations. A promising candidate is Mycobacterium bovis BCG (BCG) with immunomodulatory properties. Biodegradable mucoadhesive chitosan is a good carrier for delivering BCG mycobacteria to the gastric mucosal environment. This study aimed to show whether BCG bacilli are able to increase the phagocytic activity of Cavia porcellus-guinea pig macrophages derived from the bone marrow towards fluorescently labeled Escherichia coli. Furthermore, to encapsulate live BCG bacilli, in spray-dried chitosan microparticles (CHI-MPs), and assess the pH-dependent release of mycobacteria in pH conditions mimicking gastric (acidic) or gut (alkaline) milieu. Microparticles (MPs) were made of chitosan and coated with Pluronic F-127-(Plur) or N-Acetyl-D-Glucosamine-(GlcNAc) to increase the MPs resistance to low pH or to increase anti-Hp effect, respectively. Spray-drying method was used for microencapsulation of live BCG. The biosafety of tested CHI-MPs has been confirmed using cell models in vitro and the model of guinea pig in vivo. The CHI-MPs loaded with BCG released live mycobacteria at pH 3.0 (CHI-GlcNAc-MPs) or pH 8.0. (CHI-Plur-MPs). The CHI-MPs loaded with live BCG can be used for per os inoculation of Cavia porcellus to check the effectiveness of delivered mycobacteria in increasing anti-H. pylori host response.
Collapse
Affiliation(s)
- Weronika Gonciarz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland.
| | - Marek Brzeziński
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-636, Lodz, Poland.
| | - Weronika Orłowska
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - Paweł Wawrzyniak
- Department of Environmental Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Stefana Zeromskiego 116, 90-924, Lodz, Poland
| | - Artur Lewandowski
- Department of Environmental Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Stefana Zeromskiego 116, 90-924, Lodz, Poland
| | - Vedha Hari B Narayanan
- Pharmaceutical Technology Laboratory, #214, ASK-II, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| |
Collapse
|
175
|
Liao W, Ni C, Ge R, Li Y, Jiang S, Yang W, Yan F. Nel-like Molecule Type 1 Combined with Gold Nanoparticles Modulates Macrophage Polarization, Osteoclastogenesis, and Oral Microbiota in Periodontitis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8442-8458. [PMID: 38335323 DOI: 10.1021/acsami.3c17862] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The disruption of host-microbe homeostasis and uncontrolled inflammatory response have been considered as vital causes for developing periodontitis, subsequently leading to an imbalance between the bone and immune system and the collapse of bone homeostasis. Consequently, strategies to modulate the immune response and bone metabolization have become a promising approach to prevent and treat periodontitis. In this study, we investigated the cooperative effects of Nel-like molecule type 1 (Nell-1) and gold nanoparticles (AuNPs) on macrophage polarization, osteoclast differentiation, and the corresponding functions in an experimental model of periodontitis in rats. Nell-1-combined AuNPs in in vitro studies were found to reduce the production of inflammatory factors (TNF-α, p < 0.0001; IL-6, p = 0.0012), modulate the ratio of M2/M1 macrophages by inducing macrophage polarization into the M2 phenotype, and inhibit cell fusion, maturation, and activity of osteoclasts. Furthermore, the local application of Nell-1-combined AuNPs in in vivo studies resulted in alleviation of damages to the periodontal and bone tissues, modulation of macrophage polarization and the activity of osteoclasts, and alteration of the periodontal microbiota, in which the relative abundance of the probiotic Bifidobacterium increased (p < 0.05). These findings reveal that Nell-1-combined AuNPs could be a promising drug candidate for the prevention and treatment of periodontitis. However, Nell-1-combined AuNPs did not show organ toxicity or impair the integrity of intestinal epithelium but alter the gut microbiota, leading to the dysbiosis of gut microbiota. The adverse impact of changes in gut microbiota needs to be further investigated. Nonetheless, this study provides a novel perspective and direction for the biological safety assessment of biomaterials in oral clinical applications.
Collapse
Affiliation(s)
- Wenzheng Liao
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210008, China
| | - Can Ni
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210008, China
| | - Ruiyang Ge
- Department of Periodontology, Hospital of Stomatology, Zunyi Medical University, Zunyi 563099, China
| | - Yanfen Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210008, China
| | - Shaoyun Jiang
- Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-Level Clinical Key Specialty; Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment; Shenzhen Clinical Research Center for Oral Diseases, Shenzhen 5180036, Guangdong, China
| | - Wenrong Yang
- School of Life and Environmental Science, Centre for Chemistry and Biotechnology, Deakin University, Geelong, Victoria 3216, Australia
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210008, China
| |
Collapse
|
176
|
Huang Y, Guo X, Wu Y, Chen X, Feng L, Xie N, Shen G. Nanotechnology's frontier in combatting infectious and inflammatory diseases: prevention and treatment. Signal Transduct Target Ther 2024; 9:34. [PMID: 38378653 PMCID: PMC10879169 DOI: 10.1038/s41392-024-01745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
Inflammation-associated diseases encompass a range of infectious diseases and non-infectious inflammatory diseases, which continuously pose one of the most serious threats to human health, attributed to factors such as the emergence of new pathogens, increasing drug resistance, changes in living environments and lifestyles, and the aging population. Despite rapid advancements in mechanistic research and drug development for these diseases, current treatments often have limited efficacy and notable side effects, necessitating the development of more effective and targeted anti-inflammatory therapies. In recent years, the rapid development of nanotechnology has provided crucial technological support for the prevention, treatment, and detection of inflammation-associated diseases. Various types of nanoparticles (NPs) play significant roles, serving as vaccine vehicles to enhance immunogenicity and as drug carriers to improve targeting and bioavailability. NPs can also directly combat pathogens and inflammation. In addition, nanotechnology has facilitated the development of biosensors for pathogen detection and imaging techniques for inflammatory diseases. This review categorizes and characterizes different types of NPs, summarizes their applications in the prevention, treatment, and detection of infectious and inflammatory diseases. It also discusses the challenges associated with clinical translation in this field and explores the latest developments and prospects. In conclusion, nanotechnology opens up new possibilities for the comprehensive management of infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Yujing Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiaohan Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yi Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xingyu Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lixiang Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Na Xie
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
177
|
Liu Y, Li S, Liu B, Zhang J, Wang C, Feng L. Maternal urban particulate matter (SRM 1648a) exposure disrupted the cellular immune homeostasis during early life: The potential attribution of altered placental transcriptome profile. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169432. [PMID: 38135080 DOI: 10.1016/j.scitotenv.2023.169432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
Ambient fine particular matter (PM2.5) exposure has been associated with numerous adverse effects including triggering functional disorders of the placenta and inducing immune imbalance in offspring. However, how maternal PM2.5 exposure impacts immune development during early life is not fully understood. In the current study, we exposed mice with low-, middle-, and high-dose PM2.5 during pregnancy to investigate the potential link between the transcriptional changes in the placenta and immune imbalance in mice offspring induced by PM2.5 exposures. Using flow cytometry, we found that the proportions of B cells, CD3+CD4+ T cells, CD3+CD8+ T cells, and macrophage (Mφ) cells were altered in the blood of PM2.5-exposed mice pups but not dendritic cells (DCs) and natural killer cells (NKs). Using bulk RNA sequencing, we found that PM2.5 exposure altered the transcriptional profile which indicated an inhibition of the complement and coagulation cascades in the placenta. Weighted gene co-expression network analysis (WGCNA) revealed the potential crosstalk between the perturbation of placental gene expression and the changes of immune cell subsets in pups on postnatal day 10 (PND10). Specifically, WGCNA identified a cluster of genes including Defb15, Defb20, Defb25, Cst8, Cst12, and Adam7 that might regulate the core immune cell types in PND10 pups. Although the underlying mechanisms of how maternal PM2.5 exposure induces peripheral lymphocyte disturbance in offspring still remain much unknown, our findings here shed light on the potential role of placental dysfunction in these adverse effects.
Collapse
Affiliation(s)
- Yongjie Liu
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Shuman Li
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Bin Liu
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Jun Zhang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Cuiping Wang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China; Department of Maternal and Child Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| | - Liping Feng
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China; Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, USA.
| |
Collapse
|
178
|
Wu Y, Teh YC, Chong SZ. Going Full TeRM: The Seminal Role of Tissue-Resident Macrophages in Organ Remodeling during Pregnancy and Lactation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:513-521. [PMID: 38315948 DOI: 10.4049/jimmunol.2300560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/23/2023] [Indexed: 02/07/2024]
Abstract
During pregnancy and lactation, the uterus and mammary glands undergo remarkable structural changes to perform their critical reproductive functions before reverting to their original dormant state upon childbirth and weaning, respectively. Underlying this incredible plasticity are complex remodeling processes that rely on coordinated decisions at both the cellular and tissue-subunit levels. With their exceptional versatility, tissue-resident macrophages play a variety of supporting roles in these organs during each stage of development, ranging from maintaining immune homeostasis to facilitating tissue remodeling, although much remains to be discovered about the identity and regulation of individual macrophage subsets. In this study, we review the increasingly appreciated contributions of these immune cells to the reproductive process and speculate on future lines of inquiry. Deepening our understanding of their interactions with the parenchymal or stromal populations in their respective niches may reveal new strategies to ameliorate complications in pregnancy and breastfeeding, thereby improving maternal health and well-being.
Collapse
Affiliation(s)
- Yixuan Wu
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ye Chean Teh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Shu Zhen Chong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| |
Collapse
|
179
|
Di JW, Wang YX, Ma RX, Luo ZJ, Chen WT, Liu WM, Yuan DY, Zhang YY, Wu YH, Chen CP, Liu J. Repositioning baloxavir marboxil as VISTA agonist that ameliorates experimental asthma. Cell Biol Toxicol 2024; 40:12. [PMID: 38340268 PMCID: PMC10858940 DOI: 10.1007/s10565-024-09852-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
V-type immunoglobulin domain-containing suppressor of T-cell activation (VISTA), a novel negative checkpoint regulator, plays an essential role in allergic pulmonary inflammation in mice. Treatment with a VISTA agonistic antibody could significantly improve asthma symptoms. Thus, for allergic asthma treatment, VISTA targeting may be a compelling approach. In this study, we examined the functional mechanism of VISTA in allergic pulmonary inflammation and screened the FDA-approved drugs for VISTA agonists. By using mass cytometry (CyTOF), we found that VISTA deficiency primarily increased lung macrophage infiltration in the OVA-induced asthma model, accompanied by an increased proportion of M1 macrophages (CD11b+F4/80+CD86+) and a decreased proportion of M2 macrophages (CD11b+F4/80+CD206+). Further in vitro studies showed that VISTA deficiency promoted M1 polarization and inhibited M2 polarization of bone marrow-derived macrophages (BMDMs). Importantly, we discovered baloxavir marboxil (BXM) as a VISTA agonist by virtual screening of FDA-approved drugs. The surface plasmon resonance (SPR) assays revealed that BXM (KD = 1.07 µM) as well as its active form, baloxavir acid (BXA) (KD = 0.21 µM), could directly bind to VISTA with high affinity. Notably, treatment with BXM significantly ameliorated asthma symptoms, including less lung inflammation, mucus secretion, and the generation of Th2 cytokines (IL-5, IL-13, and IL-4), which were dramatically attenuated by anti-VISTA monoclonal antibody treatment. BXM administration also reduced the pulmonary infiltration of M1 macrophages and raised M2 macrophages. Collectively, our study indicates that VISTA regulates pulmonary inflammation in allergic asthma by regulating macrophage polarization and baloxavir marboxil, and an old drug might be a new treatment for allergic asthma through targeting VISTA.
Collapse
Affiliation(s)
- Jian-Wen Di
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
| | - Yi-Xin Wang
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
| | - Rui-Xue Ma
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhi-Jie Luo
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
| | - Wen-Ting Chen
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
| | - Wan-Mei Liu
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
| | - Ding-Yi Yuan
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
| | - Yu-Ying Zhang
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
| | - Yin-Hao Wu
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
| | - Cai-Ping Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing, 401135, China.
| | - Jun Liu
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
180
|
He J, Tang MY, Liu LX, Kong CX, Chen W, Wang L, Zhi SB, Sun HW, Huang YC, Chen GY, Xin HB, Deng KY. Myeloid Deletion of Cdc42 Protects Liver From Hepatic Ischemia-Reperfusion Injury via Inhibiting Macrophage-Mediated Inflammation in Mice. Cell Mol Gastroenterol Hepatol 2024; 17:965-981. [PMID: 38342302 PMCID: PMC11047801 DOI: 10.1016/j.jcmgh.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND & AIMS Hepatic ischemia-reperfusion injury (HIRI) often occurs in liver surgery, such as partial hepatectomy and liver transplantation, in which myeloid macrophage-mediated inflammation plays a critical role. Cell division cycle 42 (Cdc42) regulates cell migration, cytoskeleton rearrangement, and cell polarity. In this study, we explore the role of myeloid Cdc42 in HIRI. METHODS Mouse HIRI models were established with 1-hour ischemia followed by 12-hour reperfusion in myeloid Cdc42 knockout (Cdc42mye) and Cdc42flox mice. Myeloid-derived macrophages were traced with RosamTmG fluorescent reporter under LyzCre-mediated excision. The experiments for serum or hepatic enzymic activities, histologic and immunologic analysis, gene expressions, flow cytometry analysis, and cytokine antibody array were performed. RESULTS Myeloid deletion of Cdc42 significantly alleviated hepatic damages with the reduction of hepatic necrosis and inflammation, and reserved hepatic functions following HIRI in mice. Myeloid Cdc42 deficiency suppressed the infiltration of myeloid macrophages, reduced the secretion of proinflammatory cytokines, restrained M1 polarization, and promoted M2 polarization of myeloid macrophages in livers. In addition, inactivation of Cdc42 promoted M2 polarization via suppressing the phosphorylation of STAT1 and promoting phosphorylation of STAT3 and STAT6 in myeloid macrophages. Furthermore, pretreatment with Cdc42 inhibitor, ML141, also protected mice from hepatic ischemia-reperfusion injury. CONCLUSIONS Inhibition or deletion of myeloid Cdc42 protects liver from HIRI via restraining the infiltration of myeloid macrophages, suppressing proinflammatory response, and promoting M2 polarization in macrophages.
Collapse
Affiliation(s)
- Jing He
- The National Engineering Research Center for Bioengineering Drugs and Technology, Institution of Translation Medicine, Nanchang University, Nanchang, Jiangxi, PR China
| | - Meng-Yu Tang
- College of Life Science, Nanchang University, Nanchang, Jiangxi, PR China
| | - Li-Xin Liu
- The National Engineering Research Center for Bioengineering Drugs and Technology, Institution of Translation Medicine, Nanchang University, Nanchang, Jiangxi, PR China; College of Pharmacy, Nanchang University, Nanchang, Jiangxi, PR China
| | - Chen-Xian Kong
- College of Life Science, Nanchang University, Nanchang, Jiangxi, PR China
| | - Wen Chen
- College of Life Science, Nanchang University, Nanchang, Jiangxi, PR China
| | - Lu Wang
- The National Engineering Research Center for Bioengineering Drugs and Technology, Institution of Translation Medicine, Nanchang University, Nanchang, Jiangxi, PR China
| | - Shao-Bin Zhi
- The National Engineering Research Center for Bioengineering Drugs and Technology, Institution of Translation Medicine, Nanchang University, Nanchang, Jiangxi, PR China
| | - Hong-Wei Sun
- The National Engineering Research Center for Bioengineering Drugs and Technology, Institution of Translation Medicine, Nanchang University, Nanchang, Jiangxi, PR China
| | - Yu-Chun Huang
- The National Engineering Research Center for Bioengineering Drugs and Technology, Institution of Translation Medicine, Nanchang University, Nanchang, Jiangxi, PR China
| | - Guo-Yu Chen
- The First Clinical Medical College, Nanchang University, Nanchang, Jiangxi, PR China
| | - Hong-Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and Technology, Institution of Translation Medicine, Nanchang University, Nanchang, Jiangxi, PR China; College of Life Science, Nanchang University, Nanchang, Jiangxi, PR China; College of Pharmacy, Nanchang University, Nanchang, Jiangxi, PR China.
| | - Ke-Yu Deng
- The National Engineering Research Center for Bioengineering Drugs and Technology, Institution of Translation Medicine, Nanchang University, Nanchang, Jiangxi, PR China; College of Life Science, Nanchang University, Nanchang, Jiangxi, PR China; College of Pharmacy, Nanchang University, Nanchang, Jiangxi, PR China.
| |
Collapse
|
181
|
Hu W, Lu Y, Duan Y, Yang Y, Wang M, Guo J, Xu J, Lu X, Ma Q. Regulation of Immune Inflammation and Promotion of Periodontal Bone Regeneration by Irisin-Loaded Bioactive Glass Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38315709 DOI: 10.1021/acs.langmuir.3c02894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Clinical solutions of bone defects caused by periodontitis involve surgical treatment and subsequent anti-infection treatment using antibiotics. Such a strategy faces a key challenge in that the excessive host immune response results in the damage of periodontal tissues. Consequently, it is of great importance to develop novel periodontitis treatment that allows the regulation of the host immune response and promotes the generation of periodontal tissues. Irisin has a good bone regeneration ability and could reduce the inflammatory reaction by regulating the differentiation of macrophages. In this study, we loaded irisin onto bioactive glass nanoparticles (BGNs) to prepare a composite, irisin-BGNs (IR-BGNs) with anti-inflammatory, bacteriostatic, and tissue regeneration functions, providing a novel idea for the design of ideal materials for repairing oral tissue defects caused by periodontitis. We also verified that the IR-BGNs had better anti-inflammatory properties on RAW264.7 cells compared to irisin and BGNs alone. Strikingly, when hPDLCs were stimulated with IR-BGNs, they exhibited increased expression of markers linked to osteogenesis, ALP activity, and mineralization ability in comparison to the negative control. Furthermore, on the basis of RNA sequencing results, we validated that the p38 pathway can contribute to the osteogenic differentiation of the IR-BGNs. This work may offer new thoughts on the design of ideal materials for repairing oral tissue defects.
Collapse
Affiliation(s)
- Wenzhu Hu
- . Department of General Dentistry, the Affiliated Stomatological Hospital of Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Yanlai Lu
- . Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yiyuan Duan
- . Department of General Dentistry, the Affiliated Stomatological Hospital of Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Yuxin Yang
- . Department of General Dentistry, the Affiliated Stomatological Hospital of Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Mingxin Wang
- . Department of General Dentistry, the Affiliated Stomatological Hospital of Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Jingyao Guo
- . Department of General Dentistry, the Affiliated Stomatological Hospital of Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Jing Xu
- . Department of General Dentistry, the Affiliated Stomatological Hospital of Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Xiaolin Lu
- . State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - Qian Ma
- . Department of General Dentistry, the Affiliated Stomatological Hospital of Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| |
Collapse
|
182
|
Miron RJ, Bohner M, Zhang Y, Bosshardt DD. Osteoinduction and osteoimmunology: Emerging concepts. Periodontol 2000 2024; 94:9-26. [PMID: 37658591 DOI: 10.1111/prd.12519] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/23/2023] [Accepted: 07/20/2023] [Indexed: 09/03/2023]
Abstract
The recognition and importance of immune cells during bone regeneration, including around bone biomaterials, has led to the development of an entire field termed "osteoimmunology," which focuses on the connection and interplay between the skeletal system and immune cells. Most studies have focused on the "osteogenic" capacity of various types of bone biomaterials, and much less focus has been placed on immune cells despite being the first cell type in contact with implantable devices. Thus, the amount of literature generated to date on this topic makes it challenging to extract needed information. This review article serves as a guide highlighting advancements made in the field of osteoimmunology emphasizing the role of the osteoimmunomodulatory properties of biomaterials and their impact on osteoinduction. First, the various immune cell types involved in bone biomaterial integration are discussed, including the prominent role of osteal macrophages (OsteoMacs) during bone regeneration. Thereafter, key biomaterial properties, including topography, wettability, surface charge, and adsorption of cytokines, growth factors, ions, and other bioactive molecules, are discussed in terms of their impact on immune responses. These findings highlight and recognize the importance of the immune system and osteoimmunology, leading to a shift in the traditional models used to understand and evaluate biomaterials for bone regeneration.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | | | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| | | |
Collapse
|
183
|
Pan Y, Zhang H, Liu Q, Wu H, Du S, Song W, Zhang F, Liu H. Photobiomodulation with 630-nm LED Inhibits M1 Macrophage Polarization via STAT1 Pathway Against Sepsis-Induced Acute Lung Injury. Photobiomodul Photomed Laser Surg 2024; 42:148-158. [PMID: 38301209 DOI: 10.1089/photob.2023.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Background: Sepsis-induced acute lung injury (ALI) is a clinical syndrome characterized by excessive uncontrolled inflammation. Photobiomodulation such as light-emitting diode (LED) irradiation has been used to attenuate inflammatory disease. Objective: The protective effect of 630 nm LED irradiation on sepsis-induced ALI remains unknown. The purpose of this study was to investigate the role of 630 nm LED irradiation in sepsis-induced ALI and its underlying mechanism. Methods and results: C57BL/6 mice were performed cecal ligation and puncture (CLP) for 12 h to generate experimental sepsis models. Histopathology analysis showed that alveolar injury, inflammatory cells infiltration, and hemorrhage were suppressed in CLP mice after 630 nm LED irradiation. The ratio of wet/dry weigh of lung tissue was significantly inhibited by irradiation. The number of leukocytes was reduced in bronchoalveolar lavage fluid. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) results and enzyme-linked immunosorbent assay showed that 630 nm LED irradiation significantly inhibited the mRNA and protein levels of M1 macrophage-related genes in the lung of CLP-induced septic mice. Meanwhile, LED irradiation significantly inhibited signal transducer and activator of transcription 1 (STAT1) phosphorylation in the lung of septic mice. In vitro experiments showed that 630 nm LED irradiation significantly inhibited M1 genes mRNA and protein expression in THP-1-derived M1 macrophages without affecting the cell viability. LED irradiation also significantly inhibited the level of STAT1 phosphorylation in THP-1-derived M1 macrophages. Conclusions: We concluded that 630 nm LED is promising as a treatment against ALI through inhibiting M1 macrophage polarization, which is associated with the downregulation of STAT1 phosphorylation.
Collapse
Affiliation(s)
- Yue Pan
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Harbin, P.R. China
- Departments of Laboratory Diagnosis, Daqing Oilfield General Hospital, Daqing, China
| | - Hanxu Zhang
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Harbin, P.R. China
| | - Qiannan Liu
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Harbin, P.R. China
| | - Hao Wu
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Harbin, P.R. China
| | - Siqi Du
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Harbin, P.R. China
| | - Wuqi Song
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Harbin, P.R. China
| | - Fengmin Zhang
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Harbin, P.R. China
| | - Hailiang Liu
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Harbin, P.R. China
| |
Collapse
|
184
|
Kwok CTK, Chow FWN, Cheung KYC, Zhang XY, Mok DKW, Kwan YW, Chan GHH, Leung GPH, Cheung KW, Lee SMY, Wang N, Li JJ, Seto SW. Medulla Tetrapanacis water extract alleviates inflammation and infection by regulating macrophage polarization through MAPK signaling pathway. Inflammopharmacology 2024; 32:393-404. [PMID: 37429999 DOI: 10.1007/s10787-023-01266-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/11/2023] [Indexed: 07/12/2023]
Abstract
Medulla Tetrapanacis (MT) is a commonly used herb to promote lactation and manage mastitis in lactating mothers. However, its anti-inflammatory and anti-bacterial effects are currently unknown. We hypothesized that MT water extract possesses anti-inflammatory and anti-bacterial effects by modulating macrophage polarization to reduce the release of inflammatory mediators and phagocytosis via inactivation of MAPKs pathways. The chemical composition of the MT water extract was analyzed by UPLC-Orbitrap-mass spectrometry. The anti-inflammatory and anti-bacterial properties of the MT water extract were examined using LPS-stimulated inflammation and Staphylococcus aureus infection model in RAW 264.7 cells, respectively. The underlying mechanism of action of the MT water extract was also investigated. We identified eight compounds by UPLC-Orbitrap-mass spectrometry that are abundant within the MT water extract. MT water extract significantly suppressed LPS-induced nitric oxide, TNF-α and IL-6 secretion in RAW 264.7 cells which was accompanied by the promotion of macrophage polarization from pro-inflammatory towards anti-inflammatory phenotypes. MT water extract significantly suppressed the LPS-induced MAPK activation. Finally, MT water extract decreased the phagocytic capacity of the RAW 264.7 cells against S. aureus infection. MT water extract could suppress LPS-induced inflammation by promoting macrophages towards an anti-inflammatory phenotype. In addition, MT also inhibited the growth of S. aureus.
Collapse
Affiliation(s)
- Carsten Tsun-Ka Kwok
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Franklin Wang-Ngai Chow
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Karry Yuen-Ching Cheung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xiao-Yi Zhang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Daniel Kam-Wah Mok
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Shenzhen, China
| | - Yiu-Wa Kwan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Gabriel Hoi-Huen Chan
- College of Professional and Continuing Education, The Hong Kong Polytechnic University, Hong Kong, China
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Ka-Wang Cheung
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, China
| | - Ning Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China
| | - Jing-Jing Li
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Sai-Wang Seto
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong, China.
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China.
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, 2751, Australia.
| |
Collapse
|
185
|
Feng Y, Hu X, Zhang Y, Wang Y. The Role of Microglia in Brain Metastases: Mechanisms and Strategies. Aging Dis 2024; 15:169-185. [PMID: 37307835 PMCID: PMC10796095 DOI: 10.14336/ad.2023.0514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/14/2023] [Indexed: 06/14/2023] Open
Abstract
Brain metastases and related complications are one of the major fatal factors in cancer. Patients with breast cancer, lung cancer, and melanoma are at a high risk of developing brain metastases. However, the mechanisms underlying the brain metastatic cascade remain poorly understood. Microglia, one of the major resident macrophages in the brain parenchyma, are involved in multiple processes associated with brain metastasis, including inflammation, angiogenesis, and immune modulation. They also closely interact with metastatic cancer cells, astrocytes, and other immune cells. Current therapeutic approaches against metastatic brain cancers, including small-molecule drugs, antibody-coupled drugs (ADCs), and immune-checkpoint inhibitors (ICIs), have compromised efficacy owing to the impermeability of the blood-brain barrier (BBB) and complex brain microenvironment. Targeting microglia is one of the strategies for treating metastatic brain cancer. In this review, we summarize the multifaceted roles of microglia in brain metastases and highlight them as potential targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Ying Feng
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xueqing Hu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yingru Zhang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
186
|
Zhao Q, Lai K. Role of immune inflammation regulated by macrophage in the pathogenesis of age-related macular degeneration. Exp Eye Res 2024; 239:109770. [PMID: 38145794 DOI: 10.1016/j.exer.2023.109770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Age-related macular degeneration (AMD) can lead to irreversible impairment of visual function, and the number of patients with AMD has been increasing globally. The immunoinflammatory theory is an important pathogenic mechanism of AMD, with macrophages serving as the primary inflammatory infiltrating cells in AMD lesions. Its powerful immunoinflammatory regulatory function has attracted considerable attention. Herein, we provide an overview of the involvement of macrophage-regulated immunoinflammation in different stages of AMD. Additionally, we summarize novel therapeutic approaches for AMD, focusing on targeting macrophages, such as macrophage/microglia modulators, reduction of macrophage aggregation in the subretinal space, modulation of macrophage effector function, macrophage phenotypic alterations, and novel biomimetic nanocomposites development based on macrophage-associated functional properties. We aimed to provide a basis and reference for the further exploration of AMD pathogenesis, developmental influences, and new therapeutic approaches.
Collapse
Affiliation(s)
- Qin Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, No.7 Jinsui Road, Guangzhou, 510060, China
| | - Kunbei Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, No.7 Jinsui Road, Guangzhou, 510060, China.
| |
Collapse
|
187
|
Baldeon-Gutierrez R, Ohkura N, Yoshiba K, Yoshiba N, Tohma A, Takeuchi R, Belal RSI, Edanami N, Takahara S, Gomez-Kasimoto S, Ida T, Noiri Y. Wound-healing Processes After Pulpotomy in the Pulp Tissue of Type 1 Diabetes Mellitus Model Rats. J Endod 2024; 50:196-204. [PMID: 37939821 DOI: 10.1016/j.joen.2023.10.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/23/2023] [Accepted: 10/29/2023] [Indexed: 11/10/2023]
Abstract
INTRODUCTION Patients with type 1 diabetes mellitus (DM1) tend to have delayed wound healing, even in the pulp tissue. We hypothesized that hyperglycemia affects odontoblast-like cell (OLC) differentiation and is involved in macrophage polarization. Accordingly, we evaluated dental pulp stem cell differentiation and macrophage phenotypes after pulpotomy. METHODS After modifying DM1 rat models by streptozotocin, 8-week-old rats' upper left first molars were pulpotomized with mineral trioxide aggregate. Meanwhile, the control group was administered saline. Immunohistochemical localization of nestin, osteopontin, α-smooth muscles (α-SMAs), and CD68 (pan-macrophage marker) was conducted 7 days after pulpotomy. The OLC differentiation stage was determined using double immunofluorescence of nestin and α-SMA. Double immunofluorescence of CD68 and iNOS was counted as M1 macrophages and CD68 and CD206 as M2 macrophages. Proliferating cell nuclear antigen and Thy-1 (CD90) were evaluated by immunofluorescence. RESULTS In DM1 rats, the reparative dentin bridge was not complete; however, the osteopontin-positive area did not differ significantly from that in controls. Proliferating cell nuclear antigen, indicative of cell proliferation, increased in positive cells in DM1 rats compared with controls. Double-positive cells for α-SMA and nestin indicated many immature OLCs in DM1. CD90 was positive only in controls. CD68-positive cells, especially M1 macrophages, were increased in DM1 rats, allowing the inflammatory stage to continue 7 days after pulpotomy. CONCLUSIONS The condition of DM1 model rats can interfere at various stages of the wound healing process, altering OLC differentiation and macrophage polarization. These findings highlight the importance of normal blood glucose concentrations during pulp wound healing.
Collapse
Affiliation(s)
- Rosa Baldeon-Gutierrez
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Naoto Ohkura
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | - Kunihiko Yoshiba
- Division of Oral Science for Health Promotion, Department of Oral Health and Welfare, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Nagako Yoshiba
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Aiko Tohma
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ryosuke Takeuchi
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Razi Saifullah Ibn Belal
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Naoki Edanami
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shintaro Takahara
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Susan Gomez-Kasimoto
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takako Ida
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuichiro Noiri
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
188
|
Zhou JY, Mei YK, Qian XN, Yao ZH, Zhu YW, Wei YW, Qiu J. Modulation of SEMA4D-modified titanium surface on M2 macrophage polarization via activation of Rho/ROCK-mediated lactate release of endothelial cells: In vitro and in vivo. Colloids Surf B Biointerfaces 2024; 234:113691. [PMID: 38070369 DOI: 10.1016/j.colsurfb.2023.113691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/23/2023] [Accepted: 12/02/2023] [Indexed: 02/09/2024]
Abstract
SEMA4D-modified titanium surfaces can indirectly regulate macrophages through endothelial cells to achieve an anti-inflammatory effect, which is beneficial for healing soft tissues around the gingival abutment. However, the mechanism of surface-induced cellular phenotypic changes in SEMA4D-modified titanium has not yet been elucidated. SEMA4D activates the RhoA signaling pathway in endothelial cells, which coordinates metabolism and cytoskeletal remodeling. This study hypothesized that endothelial cells inoculated on SEMA4D-modified titanium surfaces can direct M2 polarization of macrophages via metabolites. An indirect co-culture model of endothelial cells and macrophages was constructed in vitro, and specific inhibitors were employed. Subsequently, endothelial cell adhesion and migration, metabolic changes, Rho/ROCK1 expression, and inflammatory expression of macrophages were assessed via immunofluorescence microscopy, specific kits, qRT-PCR, and Western blotting. Moreover, an in vivo rat bilateral maxillary implant model was constructed to evaluate the soft tissue healing effect. The in vitro experiments showed that the SEMA4D group had stronger endothelial cell adhesion and migration, increased Rho/ROCK1 expression, and enhanced release of lactate. Additionally, decreased macrophage inflammatory expression was observed. In contrast, the inhibitor group partially suppressed lactate metabolism and motility, whereas increased inflammatory expression. The in vivo analyses indicated that the SEMA4D group had faster and better angiogenic and anti-inflammatory effects, especially in the early stage. In conclusion, via the Rho/ROCK1 signaling pathway, the SEMA4D-modified titanium surface promotes endothelial cell adhesion and migration and lactic acid release, then the paracrine lactic acid promotes the polarization of macrophages to M2, thus obtaining the dual effects of angiogenesis and anti-inflammation.
Collapse
Affiliation(s)
- Jie-Yi Zhou
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Yu-Kun Mei
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Xin-Na Qian
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Zheng-Hua Yao
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Ya-Wen Zhu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Yu-Wen Wei
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Jing Qiu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.
| |
Collapse
|
189
|
Jackson ND, Nyska A, Palmanovich E, Nyska M. The biointegration profile of fiber-reinforced plates following tibial implantation in sheep. J Orthop Res 2024; 42:360-372. [PMID: 37593823 DOI: 10.1002/jor.25682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/17/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Biointegrative, mineral fiber-reinforced bone fixation implants recently introduced in orthopedic surgery have expanded available treatment options for fractures and bone deformities. This new technology aims to address the disadvantages of permanent metallic implants while overcoming inherent concerns of adverse inflammatory reactions when using polymer-based orthopedic implants. The purpose of this double-arm preclinical study was to evaluate the safety, biocompatibility, and biointegration of fiber-reinforced plates, following implantation on the tibias of eight sheep. Left tibias underwent periosteal elevation, allowing for implant attachment directly onto the cortical surface; right tibia plates were implanted over intact periosteum. Microcomputed tomography and histopathology were performed at 13, 26, 52, 78, 104, and 134 weeks postimplantation. All animals were evaluated clinically at each time point, with no evidence of local adverse reactions. Histopathology demonstrated anti-inflammatory M2-like macrophages and multinucleated giant cells corresponding to implant bioabsorption, similar for both groups at each time point, and indicating expected implant biocompatibility. Inflammatory cells (i.e., eosinophils, lymphophyctes, plasma cells, and M1-like macrophages) were absent throughout the study. The bioabsorption process had started at 13 W, with the highest rate at 52-78 W. At 104 W, only residual polymer material was left (∼5% of implant area). Low amounts of mineral fibers were evident at 78 W and were absent (fully remodeled) by 104 W. At 134 W, implants at both sites were fully bioabsorbed. In conclusion, these new fiber-reinforced implants demonstrated bone remodeling and complete biointegration, with no adverse tissue response. Clinical significance: In this double-arm, 2.5-year study, a biointegrative, fiber-reinforced plate implanted on the tibias of sheep was fully absorbed within 134 weeks, with no adverse tissue reaction. Bioabsorption was similar, with or without periosteal elevation, mimicking conditions like those observed in traumatic injuries disrupting the periosteum, open reduction and internal fixation, or minimally invasive surgeries. These results demonstrate the feasibility, versatility, and safety of this new class of biointegrative bone implants. This newly developed technology avoids the complications of the removal of metal implants.
Collapse
|
190
|
Shuangshuang H, Mengmeng S, Lan Z, Fang Z, Yu L. Maimendong decoction regulates M2 macrophage polarization to suppress pulmonary fibrosis via PI3K/Akt/FOXO3a signalling pathway-mediated fibroblast activation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117308. [PMID: 37865276 DOI: 10.1016/j.jep.2023.117308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mai Men Dong decoction (MMDD), a traditional Chinese medicine formula, is relevant to ethnopharmacology due to its constituents and therapeutic properties. The formula contains herbs like Ophiopogon japonicus (Thunb.) Ker Gawl., Pinellia ternata (Thunb.) Makino, Panax ginseng C.A.Mey, Glycyrrhiza uralensis Fisch, and Ziziphus jujuba Mill, Oryza sativa L., which have been used for centuries in Chinese medicine. These herbs provide a comprehensive approach to treating respiratory conditions by addressing dryness, cough, and phlegm. Ethnopharmacological studies have explored the scientific basis of these herbs and identified active compounds that contribute to their medicinal effects. The traditional usage of MMDD by different ethnic groups reflects their knowledge and experiences. Examining this formula contributes to the understanding and development of ethnopharmacology. AIM OF THE STUDY In the case of pulmonary fibrosis (PF), treating it can be challenging due to the limited treatment options available. This study aimed to assess the potential of MMDD as a treatment for PF by targeting macrophages and the PI3K/Akt/FOXO3a signaling pathway. MATERIALS AND METHODS In a mouse model of PF, we investigated the effects of MMDD on inflammation, fibrosis, and M2 macrophage infiltration in lung tissue. Additionally, we examined the modulation of pro-fibrotic factors and key proteins in the PI3K/Akt/FOXO3a pathway. In vitro experiments involved inducing M2-type macrophages and assessing the impact of MMDD on fibroblast activation and the PI3K/Akt/FOXO3a pathway. RESULTS Results demonstrated that MMDD improved weight, reduced inflammation, and inhibited M2 macrophage infiltration in mouse lung tissue. It downregulated pro-fibrotic factors, such as TGF-β1 and PDGF-RB, as well as markers of fibroblast activation. MMDD also exhibited regulatory effects on key proteins in the PI3K/Akt/FOXO3a signaling pathway. CONCLUSIONS MMDD inhibited M2 macrophage polarization and released profibrotic factors that inhibited pulmonary fibrosis. As a result, the PI3K/Akt/FOXO3a signaling pathway is suppressed. MMDD is proving to be a successful treatment for PF. However, further research is needed to validate its effectiveness in clinical practice.
Collapse
Affiliation(s)
- He Shuangshuang
- School of Chinese Medicine, Beijing University of Chinese Medicine, China
| | - Shen Mengmeng
- School of Chinese North China University of Science and Technology, China
| | - Zhang Lan
- School of Chinese Medicine, Beijing University of Chinese Medicine, China
| | - Zhang Fang
- School of Chinese Medicine, Beijing University of Chinese Medicine, China
| | - Li Yu
- School of Chinese Medicine, Beijing University of Chinese Medicine, China.
| |
Collapse
|
191
|
Zuo J, Zhang TH, Peng C, Xu BJ, Dai O, Lu Y, Zhou QM, Xiong L. Essential oil from Ligusticum chuanxiong Hort. Alleviates lipopolysaccharide-induced neuroinflammation: Integrating network pharmacology and molecular mechanism evaluation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117337. [PMID: 37866462 DOI: 10.1016/j.jep.2023.117337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chuanxiong, the rhizome of Ligusticum chuanxiong Hort., is an ancient herbal medicine that has gained extensive popularity in alleviating migraines with satisfying therapeutic effects in China. As the major bioactive component of Chuanxiong, the essential oil also exerts a marked impact on the treatment of migraine. It is widely recognized that neuroinflammation contributes to migraine. However, it remains unknown whether Chuanxiong essential oil has anti-neuroinflammatory activity. AIM OF THE STUDY To explore the anti-neuroinflammatory properties of Chuanxiong essential oil and its molecular mechanisms by network pharmacology analysis and in vitro experiments. MATERIALS AND METHODS Gas chromatography-mass spectrometry (GC-MS) was used to identify the chemical components of Chuanxiong essential oil. Public databases were used to predict possible targets, build the protein-protein interaction network (PPI), and perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Moreover, cytological experiments, nitric oxide assay, enzyme-link immunosorbent assay, western blotting, and immunofluorescence assay were adopted to prove the critical signaling pathway in lipopolysaccharide (LPS)-induced BV2 cells. RESULTS Thirty-six compounds were identified from Chuanxiong essential oil by GC-MS, and their corresponding putative targets were predicted. The network pharmacology study identified 232 candidate targets of Chuanxiong essential oil in anti-neuroinflammation. Furthermore, Chuanxiong essential oil was found to potentially affect the C-type lectin receptor, FoxO, and NF-κB signaling pathways according to the KEGG analysis. Experimentally, we verified that Chuanxiong essential oil could significantly reduce the overproduction of inflammatory mediators and pro-inflammatory factors via the NF-κB signaling pathway. CONCLUSION Chuanxiong essential oil alleviates neuroinflammation through the NF-κB signaling pathway, which provides a theoretical foundation for a better understanding of the clinical application of Chuanxiong essential oil in migraine treatment.
Collapse
Affiliation(s)
- Jing Zuo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Tian-Hao Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Bin-Jie Xu
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Ou Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yan Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Qin-Mei Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Liang Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
192
|
Yuan S, Wang Y, Yang J, Tang Y, Wu W, Meng X, Jian Y, Lei Y, Liu Y, Tang C, Zhao Z, Zhao F, Liu W. Treadmill exercise can regulate the redox balance in the livers of APP/PS1 mice and reduce LPS accumulation in their brains through the gut-liver-kupffer cell axis. Aging (Albany NY) 2024; 16:1374-1389. [PMID: 38295303 PMCID: PMC10866404 DOI: 10.18632/aging.205432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/21/2023] [Indexed: 02/02/2024]
Abstract
A growing body of clinical data has shown that patients with Alzheimer's disease (AD) have symptoms such as liver dysfunction and microbial-gut-brain axis dysfunction in addition to brain pathology, presenting a systemic multisystemic pathogenesis. Considering the systemic benefits of exercise, here, we first observed the effects of long-term treadmill exercise on liver injuries in APP/PS1 transgenic AD mice and explored the potential mechanisms of the gut-liver-brain axis's role in mediating exercise's ability to reduce bacterial lipopolysaccharide (LPS) pathology in the brain. The results showed that the livers of the AD mice were in states of oxidative stress, while the mice after long-term treadmill exercise showed alleviation of their oxidative stress, their intestinal barriers were protected, and the ability of their Kupffer cells to hydrolyze LPS was improved, in addition to the accumulation of LPS in their brains being reduced. Notably, the livers of the AD mice were in immunosuppressed states, with lower pro-oxidative and antioxidative levels than the livers of the wild-type mice, while exercise increased both their oxidative and antioxidative levels. These results suggest that long-term exercise modulates hepatic redox homeostasis in AD mice, attenuates oxidative damage, and reduces the accumulation of LPS in the brain through the combined action of the intestine-liver-Kupffer cells.
Collapse
Affiliation(s)
- Shunling Yuan
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Yirong Wang
- Hunan Sports Vocational College, Changsha 410019, China
| | - Jialun Yang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Yingzhe Tang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Weijia Wu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Xiangyuan Meng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Ye Jian
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Yong Lei
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Yang Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Changfa Tang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Zhe Zhao
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Fei Zhao
- Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha 410199, China
| | - Wenfeng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| |
Collapse
|
193
|
Zheng Q, Chen C, Liu Y, Gao J, Li L, Yin C, Yuan X. Metal Nanoparticles: Advanced and Promising Technology in Diabetic Wound Therapy. Int J Nanomedicine 2024; 19:965-992. [PMID: 38293611 PMCID: PMC10826594 DOI: 10.2147/ijn.s434693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/14/2023] [Indexed: 02/01/2024] Open
Abstract
Diabetic wounds pose a significant challenge to public health, primarily due to insufficient blood vessel supply, bacterial infection, excessive oxidative stress, and impaired antioxidant defenses. The aforementioned condition not only places a significant physical burden on patients' prognosis, but also amplifies the economic strain on the medical system in treating diabetic wounds. Currently, the effectiveness of available treatments for diabetic wounds is limited. However, there is hope in the potential of metal nanoparticles (MNPs) to address these issues. MNPs exhibit excellent anti-inflammatory, antioxidant, antibacterial and pro-angiogenic properties, making them a promising solution for diabetic wounds. In addition, MNPs stimulate the expression of proteins that promote wound healing and serve as drug delivery systems for small-molecule drugs. By combining MNPs with other biomaterials such as hydrogels and chitosan, novel dressings can be developed and revolutionize the treatment of diabetic wounds. The present article provides a comprehensive overview of the research progress on the utilization of MNPs for treating diabetic wounds. Building upon this foundation, we summarize the underlying mechanisms involved in diabetic wound healing and discuss the potential application of MNPs as biomaterials for drug delivery. Furthermore, we provide an extensive analysis and discussion on the clinical implementation of dressings, while also highlighting future prospects for utilizing MNPs in diabetic wound management. In conclusion, MNPs represent a promising strategy for the treatment of diabetic wound healing. Future directions include combining other biological nanomaterials to synthesize new biological dressings or utilizing the other physicochemical properties of MNPs to promote wound healing. Synthetic biomaterials that contain MNPs not only play a role in all stages of diabetic wound healing, but also provide a stable physiological environment for the wound-healing process.
Collapse
Affiliation(s)
- Qinzhou Zheng
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| | - Cuimin Chen
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Yong Liu
- Center for Comparative Medicine, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Luxin Li
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| | - Chuan Yin
- Department of Gastroenterology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, People’s Republic of China
| | - Xiaohuan Yuan
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| |
Collapse
|
194
|
Bai X, Wang Y, Ma X, Yang Y, Deng C, Sun M, Lin C, Zhang L. Periodontal ligament cells-derived exosomes promote osteoclast differentiation via modulating macrophage polarization. Sci Rep 2024; 14:1465. [PMID: 38233593 PMCID: PMC10794214 DOI: 10.1038/s41598-024-52073-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/12/2024] [Indexed: 01/19/2024] Open
Abstract
Several studies have demonstrated that exosomes (Exos) are involved in the regulation of macrophage polarization and osteoclast differentiation. However, the characteristics as well as roles of exosomes from human periodontal ligament cells (hPDLCs-Exos) in M1/M2 macrophage polarization and osteoclast differentiation remain unclear. Here, periodontal ligament cells were successfully extracted by method of improved Type-I collagen enzyme digestion. hPDLCs-Exos were extracted by ultracentrifugation. hPDLCs-Exos were identified by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA) and western blotting (WB). Osteoclast differentiation was evaluated by real-time quantitative polymerase chain reaction (RT-qPCR), WB and tartrate-resistant acid phosphatase (TRAP) staining. M1/M2 macrophage polarization were evaluated by RT-qPCR and WB. The results showed hPDLCs-Exos promoted osteoclast differentiation and M2 macrophage polarization, but inhibited M1 macrophage polarization. Moreover, M1 macrophages inhibited osteoclast differentiation, whereas M2 macrophages promoted osteoclast differentiation. It has shown that hPDLCs-Exos promoted osteoclast differentiation by inhibiting M1 and promoting M2 macrophage polarization.
Collapse
Affiliation(s)
- Xinyi Bai
- School of Medical, NanKai University, Tianjin, 300071, China
- Department of Orthodontics, Tianjin Stomatological Hospital, Tianjin, 300041, China
| | - Yingxue Wang
- Tianjin Kanghui Hospital, Tianjin, Tianjin, 300385, China
| | - Xinyuan Ma
- Department of Orthodontics, Tianjin Stomatological Hospital, Tianjin, 300041, China
- School of Clinical Stomatology, Tianjin Medical University, Tianjin, 300070, China
| | | | - Cong Deng
- School of Medical, NanKai University, Tianjin, 300071, China
- Department of Orthodontics, Tianjin Stomatological Hospital, Tianjin, 300041, China
| | - Mengling Sun
- Department of Orthodontics, Tianjin Stomatological Hospital, Tianjin, 300041, China
- School of Clinical Stomatology, Tianjin Medical University, Tianjin, 300070, China
| | - Chen Lin
- Department of Orthodontics, Tianjin Stomatological Hospital, Tianjin, 300041, China.
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, China.
| | - Linkun Zhang
- Department of Orthodontics, Tianjin Stomatological Hospital, Tianjin, 300041, China.
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, China.
| |
Collapse
|
195
|
Chen L, Mei W, Song J, Chen K, Ni W, Wang L, Li Z, Ge X, Su L, Jiang C, Liu B, Dai C. CD163 protein inhibits lipopolysaccharide-induced macrophage transformation from M2 to M1 involved in disruption of the TWEAK-Fn14 interaction. Heliyon 2024; 10:e23223. [PMID: 38148798 PMCID: PMC10750081 DOI: 10.1016/j.heliyon.2023.e23223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023] Open
Abstract
Macrophages play a crucial role in regulating inflammation and innate immune responses, and their polarization into distinct phenotypes, such as M1 and M2, is involved in various diseases. However, the specific role of CD163, a scavenger receptor expressed by macrophages, in the transformation of M2 to M1 macrophages remains unclear. Here, dexamethasone-induced M2 macrophages were treated with lipopolysaccharide (LPS) to induce the transformation of M2 to M1 macrophages. We found that treatment with lipopolysaccharide (LPS) induced the transformation of M2-like macrophages to an M1-like phenotype, as evidenced by increased mRNA levels of Il1b and Tnf, decreased mRNA levels of Cd206 and Il10, and increased TNF-α secretion. Knockdown of CD163 enhanced the phenotypic features of M1 macrophages, while treatment with recombinant CD163 protein (rmCD163) inhibited the LPS-induced M2-to-M1 transformation. Furthermore, LPS stimulation resulted in the activation of P38, ERK, JNK, and NF-κB P65 signaling pathways, and this activation was increased after CD163 knockdown and suppressed after rmCD163 treatment during macrophage transformation. Additionally, we observed that LPS treatment reduced the expression of CD163 in dexamethasone-induced M2 macrophages, leading to a decrease in the CD163-TWEAK complex and an increase in the interaction between TWEAK and Fn14. Overall, our findings suggest that rmCD163 can inhibit the LPS-induced transformation of M2 macrophages to M1 by disrupting the TWEAK-Fn14 interaction and modulating the MAPK-NF-κB pathway.
Collapse
Affiliation(s)
- Linjian Chen
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Wanchun Mei
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Juan Song
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Kuncheng Chen
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Wei Ni
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Lin Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Zhaokai Li
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Xiaofeng Ge
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Liuhang Su
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Chenlu Jiang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Binbin Liu
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Cuilian Dai
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| |
Collapse
|
196
|
Kostecki KL, Iida M, Crossman BE, Salgia R, Harari PM, Bruce JY, Wheeler DL. Immune Escape Strategies in Head and Neck Cancer: Evade, Resist, Inhibit, Recruit. Cancers (Basel) 2024; 16:312. [PMID: 38254801 PMCID: PMC10814769 DOI: 10.3390/cancers16020312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Head and neck cancers (HNCs) arise from the mucosal lining of the aerodigestive tract and are often associated with alcohol use, tobacco use, and/or human papillomavirus (HPV) infection. Over 600,000 new cases of HNC are diagnosed each year, making it the sixth most common cancer worldwide. Historically, treatments have included surgery, radiation, and chemotherapy, and while these treatments are still the backbone of current therapy, several immunotherapies have recently been approved by the Food and Drug Administration (FDA) for use in HNC. The role of the immune system in tumorigenesis and cancer progression has been explored since the early 20th century, eventually coalescing into the current three-phase model of cancer immunoediting. During each of the three phases-elimination, equilibrium, and escape-cancer cells develop and utilize multiple strategies to either reach or remain in the final phase, escape, at which point the tumor is able to grow and metastasize with little to no detrimental interference from the immune system. In this review, we summarize the many strategies used by HNC to escape the immune system, which include ways to evade immune detection, resist immune cell attacks, inhibit immune cell functions, and recruit pro-tumor immune cells.
Collapse
Affiliation(s)
- Kourtney L. Kostecki
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (K.L.K.); (M.I.); (B.E.C.)
| | - Mari Iida
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (K.L.K.); (M.I.); (B.E.C.)
| | - Bridget E. Crossman
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (K.L.K.); (M.I.); (B.E.C.)
| | - Ravi Salgia
- Department of Medical Oncology and Experimental Therapeutics, Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA;
| | - Paul M. Harari
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (K.L.K.); (M.I.); (B.E.C.)
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA;
| | - Justine Y. Bruce
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA;
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Deric L. Wheeler
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (K.L.K.); (M.I.); (B.E.C.)
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA;
| |
Collapse
|
197
|
Mohammed RN, Aziz Sadat SA, Hassan SMA, Mohammed HF, Ramzi DO. Combinatorial Influence of Bone Marrow Aspirate Concentrate (BMAC) and Platelet-Rich Plasma (PRP) Treatment on Cutaneous Wound Healing in BALB/c Mice. J Burn Care Res 2024; 45:59-69. [PMID: 37262317 PMCID: PMC11023107 DOI: 10.1093/jbcr/irad080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Indexed: 06/03/2023]
Abstract
Bone marrow, a soft spongy tissue, is containing mesenchymal stem cells, that are well-recognized according to their self-renewability and stemness. Therefore, we hypothesized that bone marrow aspirate concentrate (BMAC) could have a pivotal influence on the process of wound healing in particular when it is combined with platelet-rich plasma (PRP). Thirty-six albino mice (BALB/c) were used in the study and they were grouped as negative-control, PRP treated, BMAC treated and BMAC plus PRP treated. An incisional wound (1 cm2) was made at the back of mouse and their wounds were treated according to their treatment plan and group allocations. Later, the skin at the treated wound sites was collected on days 7, 14, and 21 for histopathological investigation. The results showed that there was a statistically significant difference in BMAC+PRP-treated wounds over the rest of the treated groups in the acceleration of wound healing throughout the experiment by increasing the rate of wound contraction, re-epithelization process, and granulation tissue intensity with fluctuated infiltration in the number of the neutrophils, macrophages, and lymphocytes, also restoration of the epidermal and dermal thickness with less scarring and hair follicle regeneration vs to the negative-control, PRP and BMAC only treated groups. Our findings indicated that BMAC containing mesenchymal stem cells is an efficient approach, which can be used to enhance a smooth and physiopathological healing process, especially when it is used in combination with PRP.
Collapse
Affiliation(s)
- Rebar N Mohammed
- Medical Laboratory Analysis Department, College of Health Sciences, Cihan University of Sulaimaniya, Kurdistan Region, Iraq
- Department of Microbiology, College of Veterinary Medicine, University of Sulaimnai, Suleimanyah, Iraq
| | - Sadat Abdulla Aziz Sadat
- Department of Microbiology, College of Veterinary Medicine, University of Sulaimnai, Suleimanyah, Iraq
| | - Snur M A Hassan
- Department of Anatomy and Pathology, College of Veterinary Medicine, University of Sulaimnai, Suleimanyah, Iraq
| | - Hawraz Farhad Mohammed
- Department of Microbiology, College of Veterinary Medicine, University of Sulaimnai, Suleimanyah, Iraq
| | - Derin Omer Ramzi
- Department of Basic sciences, College of Veterinary Medicine, University of Sulaimnai, Suleimanyah, Iraq
| |
Collapse
|
198
|
Li Q, Lin L, Zhang C, Zhang H, Ma Y, Qian H, Chen XL, Wang X. The progression of inorganic nanoparticles and natural products for inflammatory bowel disease. J Nanobiotechnology 2024; 22:17. [PMID: 38172992 PMCID: PMC10763270 DOI: 10.1186/s12951-023-02246-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024] Open
Abstract
There is a growing body of evidence indicating a close association between inflammatory bowel disease (IBD) and disrupted intestinal homeostasis. Excessive production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), along with an increase in M1 proinflammatory macrophage infiltration during the activation of intestinal inflammation, plays a pivotal role in disrupting intestinal homeostasis in IBD. The overabundance of ROS/RNS can cause intestinal tissue damage and the disruption of crucial gut proteins, which ultimately compromises the integrity of the intestinal barrier. The proliferation of M1 macrophages contributes to an exaggerated immune response, further compromising the intestinal immune barrier. Currently, intestinal nanomaterials have gained widespread attention in the context of IBD due to their notable characteristics, including the ability to specifically target regions of interest, clear excess ROS/RNS, and mimic biological enzymes. In this review, we initially elucidated the gut microenvironment in IBD. Subsequently, we delineate therapeutic strategies involving two distinct types of nanomedicine, namely inorganic nanoparticles and natural product nanomaterials. Finally, we present a comprehensive overview of the promising prospects associated with the application of nanomedicine in future clinical settings for the treatment of IBD (graphic abstract). Different classes of nanomedicine are used to treat IBD. This review primarily elucidates the current etiology of inflammatory bowel disease and explores two prominent nanomaterial-based therapeutic approaches. First, it aims to eliminate excessive reactive oxygen species and reactive nitrogen species. Second, they focus on modulating the polarization of inflammatory macrophages and reducing the proportion of pro-inflammatory macrophages. Additionally, this article delves into the treatment of inflammatory bowel disease using inorganic metal nanomaterials and natural product nanomaterials.
Collapse
Affiliation(s)
- Qingrong Li
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Liting Lin
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Cong Zhang
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Hengguo Zhang
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Yan Ma
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Haisheng Qian
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
| | - Xianwen Wang
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.
| |
Collapse
|
199
|
Nóbrega AHL, Pimentel RS, Prado AP, Garcia J, Frozza RL, Bernardi A. Neuroinflammation in Glioblastoma: The Role of the Microenvironment in Tumour Progression. Curr Cancer Drug Targets 2024; 24:579-594. [PMID: 38310461 DOI: 10.2174/0115680096265849231031101449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/25/2023] [Accepted: 09/08/2023] [Indexed: 02/05/2024]
Abstract
Glioblastoma (GBM) stands as the most aggressive and lethal among the main types of primary brain tumors. It exhibits malignant growth, infiltrating the brain tissue, and displaying resistance toward treatment. GBM is a complex disease characterized by high degrees of heterogeneity. During tumour growth, microglia and astrocytes, among other cells, infiltrate the tumour microenvironment and contribute extensively to gliomagenesis. Tumour-associated macrophages (TAMs), either of peripheral origin or representing brain-intrinsic microglia, are the most numerous nonneoplastic populations in the tumour microenvironment in GBM. The complex heterogeneous nature of GBM cells is facilitated by the local inflammatory tumour microenvironment, which mostly induces tumour aggressiveness and drug resistance. The immunosuppressive tumour microenvironment of GBM provides multiple pathways for tumour immune evasion, contributing to tumour progression. Additionally, TAMs and astrocytes can contribute to tumour progression through the release of cytokines and activation of signalling pathways. In this review, we summarize the role of the microenvironment in GBM progression, focusing on neuroinflammation. These recent advancements in research of the microenvironment hold the potential to offer a promising approach to the treatment of GBM in the coming times.
Collapse
Affiliation(s)
| | - Rafael Sampaio Pimentel
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro/RJ, Brazil
| | - Ana Paula Prado
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro/RJ, Brazil
| | - Jenifer Garcia
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro/RJ, Brazil
| | - Rudimar Luiz Frozza
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro/RJ, Brazil
| | - Andressa Bernardi
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro/RJ, Brazil
| |
Collapse
|
200
|
Pan W, Zhang J, Zhang L, Zhang Y, Song Y, Han L, Tan M, Yin Y, Yang T, Jiang T, Li H. Comprehensive view of macrophage autophagy and its application in cardiovascular diseases. Cell Prolif 2024; 57:e13525. [PMID: 37434325 PMCID: PMC10771119 DOI: 10.1111/cpr.13525] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 07/13/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the primary drivers of the growing public health epidemic and the leading cause of premature mortality and economic burden worldwide. With decades of research, CVDs have been proven to be associated with the dysregulation of the inflammatory response, with macrophages playing imperative roles in influencing the prognosis of CVDs. Autophagy is a conserved pathway that maintains cellular functions. Emerging evidence has revealed an intrinsic connection between autophagy and macrophage functions. This review focuses on the role and underlying mechanisms of autophagy-mediated regulation of macrophage plasticity in polarization, inflammasome activation, cytokine secretion, metabolism, phagocytosis, and the number of macrophages. In addition, autophagy has been shown to connect macrophages and heart cells. It is attributed to specific substrate degradation or signalling pathway activation by autophagy-related proteins. Referring to the latest reports, applications targeting macrophage autophagy have been discussed in CVDs, such as atherosclerosis, myocardial infarction, heart failure, and myocarditis. This review describes a novel approach for future CVD therapies.
Collapse
Affiliation(s)
- Wanqian Pan
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Jun Zhang
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Lei Zhang
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yue Zhang
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yiyi Song
- Suzhou Medical College of Soochow UniversitySuzhouChina
| | - Lianhua Han
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Mingyue Tan
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yunfei Yin
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Tianke Yang
- Department of Ophthalmology, Eye Institute, Eye & ENT HospitalFudan UniversityShanghaiChina
- Department of OphthalmologyThe First Affiliated Hospital of USTC, University of Science and Technology of ChinaHefeiChina
| | - Tingbo Jiang
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Hongxia Li
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|