151
|
Jensen B, van den Berg G, van den Doel R, Oostra RJ, Wang T, Moorman AFM. Development of the hearts of lizards and snakes and perspectives to cardiac evolution. PLoS One 2013; 8:e63651. [PMID: 23755108 PMCID: PMC3673951 DOI: 10.1371/journal.pone.0063651] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/04/2013] [Indexed: 12/16/2022] Open
Abstract
Birds and mammals both developed high performance hearts from a heart that must have been reptile-like and the hearts of extant reptiles have an unmatched variability in design. Yet, studies on cardiac development in reptiles are largely old and further studies are much needed as reptiles are starting to become used in molecular studies. We studied the growth of cardiac compartments and changes in morphology principally in the model organism corn snake (Pantherophis guttatus), but also in the genotyped anole (Anolis carolinenis and A. sagrei) and the Philippine sailfin lizard (Hydrosaurus pustulatus). Structures and chambers of the formed heart were traced back in development and annotated in interactive 3D pdfs. In the corn snake, we found that the ventricle and atria grow exponentially, whereas the myocardial volumes of the atrioventricular canal and the muscular outflow tract are stable. Ventricular development occurs, as in other amniotes, by an early growth at the outer curvature and later, and in parallel, by incorporation of the muscular outflow tract. With the exception of the late completion of the atrial septum, the adult design of the squamate heart is essentially reached halfway through development. This design strongly resembles the developing hearts of human, mouse and chicken around the time of initial ventricular septation. Subsequent to this stage, and in contrast to the squamates, hearts of endothermic vertebrates completely septate their ventricles, develop an insulating atrioventricular plane, shift and expand their atrioventricular canal toward the right and incorporate the systemic and pulmonary venous myocardium into the atria.
Collapse
Affiliation(s)
- Bjarke Jensen
- Department of Bioscience-Zoophysiology, Aarhus University, Aarhus, Denmark.
| | | | | | | | | | | |
Collapse
|
152
|
Shi L, Goenezen S, Haller S, Hinds MT, Thornburg KL, Rugonyi S. Alterations in pulse wave propagation reflect the degree of outflow tract banding in HH18 chicken embryos. Am J Physiol Heart Circ Physiol 2013; 305:H386-96. [PMID: 23709601 DOI: 10.1152/ajpheart.00100.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hemodynamic conditions play a critical role in embryonic cardiovascular development, and altered blood flow leads to congenital heart defects. Chicken embryos are frequently used as models of cardiac development, with abnormal blood flow achieved through surgical interventions such as outflow tract (OFT) banding, in which a suture is tightened around the heart OFT to restrict blood flow. Banding in embryos increases blood pressure and alters blood flow dynamics, leading to cardiac malformations similar to those seen in human congenital heart disease. In studying these hemodynamic changes, synchronization of data to the cardiac cycle is challenging, and alterations in the timing of cardiovascular events after interventions are frequently lost. To overcome this difficulty, we used ECG signals from chicken embryos (Hamburger-Hamilton stage 18, ∼3 days of incubation) to synchronize blood pressure measurements and optical coherence tomography images. Our results revealed that, after 2 h of banding, blood pressure and pulse wave propagation strongly depend on band tightness. In particular, while pulse transit time in the heart OFT of control embryos is ∼10% of the cardiac cycle, after banding (35% to 50% band tightness) it becomes negligible, indicating a faster OFT pulse wave velocity. Pulse wave propagation in the circulation is likewise affected; however, pulse transit time between the ventricle and dorsal aorta (at the level of the heart) is unchanged, suggesting an overall preservation of cardiovascular function. Changes in cardiac pressure wave propagation are likely contributing to the extent of cardiac malformations observed in banded hearts.
Collapse
Affiliation(s)
- Liang Shi
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | | | | | |
Collapse
|
153
|
Sylva M, van den Hoff MJB, Moorman AFM. Development of the human heart. Am J Med Genet A 2013; 164A:1347-71. [PMID: 23633400 DOI: 10.1002/ajmg.a.35896] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 01/07/2013] [Indexed: 11/12/2022]
Abstract
Molecular and genetic studies around the turn of this century have revolutionized the field of cardiac development. We now know that the primary heart tube, as seen in the early embryo contains little more than the precursors for the left ventricle, whereas the precursor cells for the remainder of the cardiac components are continuously added, to both the venous and arterial pole of the heart tube, from a single center of growth outside the heart. While the primary heart tube is growing by addition of cells, it does not show significant cell proliferation, until chamber differentiation and expansion starts locally in the tube, by which the chambers balloon from the primary heart tube. The transcriptional repressors Tbx2 and Tbx3 locally repress the chamber-specific program of gene expression, by which these regions are allowed to differentiate into the distinct components of the conduction system. Molecular genetic lineage analyses have been extremely valuable to assess the distinct developmental origin of the various component parts of the heart, which currently can be unambiguously identified by their unique molecular phenotype. Despite the enormous advances in our knowledge on cardiac development, even the most common congenital cardiac malformations are only poorly understood. The challenge of the newly developed molecular genetic techniques is to unveil the basic gene regulatory networks underlying cardiac morphogenesis.
Collapse
Affiliation(s)
- Marc Sylva
- Department of Anatomy, Embryology & Physiology, Academic Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
154
|
Bruneau BG. Signaling and transcriptional networks in heart development and regeneration. Cold Spring Harb Perspect Biol 2013; 5:a008292. [PMID: 23457256 DOI: 10.1101/cshperspect.a008292] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The mammalian heart is the first functional organ, the first indicator of life. Its normal formation and function are essential for fetal life. Defects in heart formation lead to congenital heart defects, underscoring the finesse with which the heart is assembled. Understanding the regulatory networks controlling heart development have led to significant insights into its lineage origins and morphogenesis and illuminated important aspects of mammalian embryology, while providing insights into human congenital heart disease. The mammalian heart has very little regenerative potential, and thus, any damage to the heart is life threatening and permanent. Knowledge of the developing heart is important for effective strategies of cardiac regeneration, providing new hope for future treatments for heart disease. Although we still have an incomplete picture of the mechanisms controlling development of the mammalian heart, our current knowledge has important implications for embryology and better understanding of human heart disease.
Collapse
Affiliation(s)
- Benoit G Bruneau
- Gladstone Institute of Cardiovascular Disease, San Francisco, California 94158, and Department of Pediatrics and Cardiovascular Research Institute, University of California, San Francisco, California 94158, USA.
| |
Collapse
|
155
|
Sherif HMF. The developing pulmonary veins and left atrium: implications for ablation strategy for atrial fibrillation. Eur J Cardiothorac Surg 2013; 44:792-9. [PMID: 23447471 DOI: 10.1093/ejcts/ezt098] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The majority of cases of atrial fibrillation (AF) are the result of triggers originating in the area of the pulmonary veins. The reason for the predilection for that area remains unclear. We sought to examine the different mechanisms responsible for this observation through an extensive search of the medical literature, examining the development of the pulmonary veins, genetics of AF and left to -right cardiac chamber differentiation. Results confirm that the LAA is anatomically and embryologically different from other areas of the atrial walls and develops under distinct genetic and transcriptional pathways. Findings support an ablation strategy whose primary focus should be the creation of a 'box' lesion set, plus additional lines to prevent propagation to the left atrial appendage, the isthmus of the left atrium and the right atrium are likely to be more effective than simple pulmonary vein isolation.
Collapse
Affiliation(s)
- Hisham M F Sherif
- Department of Cardiac Surgery, Christiana Hospital, Christiana Care Health System, Newark, DL, USA
| |
Collapse
|
156
|
Miyanishi H, Okubo K, Nobata S, Takei Y. Natriuretic peptides in developing medaka embryos: implications in cardiac development by loss-of-function studies. Endocrinology 2013. [PMID: 23183183 DOI: 10.1210/en.2012-1730] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cardiac natriuretic peptides (NPs), atrial NP (ANP) and B-type NP (BNP), and their receptor, guanylyl cyclase (GC)-A have attracted attention of many basic and clinical researchers because of their potent renal and cardiovascular actions. In this study, we used medaka, Oryzias latipes, as a model species to pursue the physiological functions of NPs because it is a suitable model for developmental analyses. Medaka has two ligands, BNP and C-type NP3 (CNP3) (but not ANP), that have greater affinity for the two O. latipes GC-A receptors (OLGC), OLGC7 and OLGC2, respectively. CNP3 is the ancestral molecule of cardiac NPs. Initially, we examined developmental expression of cardiac NP/receptor combinations, BNP/OLGC7 and CNP3/OLGC2, using quantitative real-time PCR and in situ hybridization. BNP and CNP3 mRNA increased at stages 25 (onset of ventricular formation) and 22 (appearance of heart anlage), respectively, whereas both receptor mRNAs increased at as early as stage 12. BNP/OLGC7 transcripts were found in arterial/ventricular tissues and CNP3/OLGC2 transcripts in venous/atrial tissues by in situ hybridization. Thus, BNP and CNP3 can act locally on cardiac myocytes in a paracrine/autocrine fashion. Double knockdown of BNP/OLGC7 genes impaired ventricular development by causing hypoplasia of ventricular myocytes as evidenced by reduced bromodeoxyuridine incorporation. CNP3 knockdown induced hypertrophy of atria and activated the renin-angiotensin system. Collectively, it appears that BNP is important for normal ventricular, whereas CNP3 is important for normal atrial development and performance, a role usually taken by ANP in other vertebrates. The current study provides new insights into the role of cardiac NPs in cardiac development in vertebrates.
Collapse
Affiliation(s)
- Hiroshi Miyanishi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan.
| | | | | | | |
Collapse
|
157
|
Harmelink C, Peng Y, DeBenedittis P, Chen H, Shou W, Jiao K. Myocardial Mycn is essential for mouse ventricular wall morphogenesis. Dev Biol 2013; 373:53-63. [PMID: 23063798 PMCID: PMC3508168 DOI: 10.1016/j.ydbio.2012.10.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 09/11/2012] [Accepted: 10/04/2012] [Indexed: 01/27/2023]
Abstract
MYCN is a highly conserved transcription factor with multifaceted roles in development and disease. Mutations in MYCN are associated with Feingold syndrome, a developmental disorder characterized in part by congenital heart defects. Mouse models have helped elucidate MYCN functions; however its cardiac-specific roles during development remain unclear. We employed a Cre/loxp strategy to uncover the specific activities of MYCN in the developing mouse myocardium. Myocardial deletion of Mycn resulted in a thin-myocardial wall defect with dramatically reduced trabeculation. The mutant heart defects strongly resemble the phenotype caused by disruption of BMP10 and Neuregulin-1 (NRG1) signaling pathways, two central mediators of myocardial wall development. Our further examination showed that expression of MYCN is regulated by both BMP and NRG1 signaling. The thin-wall defect in mutant hearts is caused by a reduction in both cell proliferation and cell size. MYCN promotes cardiomyocyte proliferation through regulating expression of cell cycle regulators (including CCND1, CCND2, and ID2) and promotes cardiomyocyte growth through regulating expression of p70S6K. In addition, expression of multiple sarcomere proteins is altered in Mycn myocardial-inactivation embryos, indicating its essential role for proper cardiomyocyte differentiation. In summary, Mycn acts downstream of BMP and NRG1 cardiogenic signaling pathways to promote normal myocardial wall morphogenesis.
Collapse
Affiliation(s)
- Cristina Harmelink
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294
| | - Yin Peng
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294
| | - Paige DeBenedittis
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294
| | - Hanying Chen
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Weinian Shou
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Kai Jiao
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
158
|
Al Naieb S, Happel CM, Yelbuz TM. A detailed atlas of chick heart development in vivo. Ann Anat 2012; 195:324-341. [PMID: 23623231 DOI: 10.1016/j.aanat.2012.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 10/09/2012] [Accepted: 10/10/2012] [Indexed: 10/27/2022]
Abstract
Various model organisms such as mouse, xenopus, or zebrafish embryos have been studied in the past to gain insight into the complex processes driving normal and abnormal development of the vertebrate heart. Despite the fact that the chicken embryo has been a favored classic model system used by embryologists and cardiovascular scientists for centuries to illustrate the principles of basic vertebrate embryology and cardiovascular development, so far, no one has provided a thorough documentation of heart development in this model from early visual stages to the stage of a completely formed heart with (a) images and (b) video recordings of beating hearts. However, in vivo documentation of heart development stages is indispensable because the initially tubular embryonic heart not only undergoes dramatic morphological changes, but also intriguing functional changes during cardiogenesis, which, only if they follow and remain within the normal developmental pathway, lead to the establishment of the normal four-chambered heart. In this work we present the first reference catalogue of cardiac development in vivo with (1) 25 plates of high resolution colour images in different views from Hamburger-Hamilton (HH)-stage 12 (day 2, relatively straight heart tube, early myocardial contractions) through HH-stage 35 (day 9, four-chambered heart) in end-diastole and end-systole, including a plate with an overview of all these stages; (2) collection of 82 video recordings of beating hearts in different views corresponding to the stages shown in the plates.
Collapse
Affiliation(s)
- Sarah Al Naieb
- Department of Pediatric Cardiology and Intensive Care Medicine, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany.
| | - Christoph M Happel
- Department of Pediatric Cardiology and Intensive Care Medicine, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany.
| | - T Mesud Yelbuz
- Department of Pediatric Cardiology and Intensive Care Medicine, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany.
| |
Collapse
|
159
|
Evolution and development of the building plan of the vertebrate heart. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:783-94. [PMID: 23063530 DOI: 10.1016/j.bbamcr.2012.10.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/01/2012] [Accepted: 10/03/2012] [Indexed: 12/11/2022]
Abstract
Early cardiac development involves the formation of a heart tube, looping of the tube and formation of chambers. These processes are highly similar among all vertebrates, which suggest the existence of evolutionary conservation of the building plan of the heart. From the jawless lampreys to man, T-box transcription factors like Tbx5 and Tbx20 are fundamental for heart formation, whereas Tbx2 and Tbx3 repress chamber formation on the sinu-atrial and atrioventricular borders. Also, electrocardiograms from different vertebrates are alike, even though the fish heart only has two chambers whereas the mammalian heart has four chambers divided by septa and in addition has much higher heart rates. We conclude that most features of the high-performance hearts of mammals and birds can be traced back to less developed traits in the hearts of ectothermic vertebrates. This article is part of a Special Issue entitled: Cardiomyocyte biology: Cardiac pathways of differentiation, metabolism and contraction.
Collapse
|
160
|
Staudt D, Stainier D. Uncovering the molecular and cellular mechanisms of heart development using the zebrafish. Annu Rev Genet 2012; 46:397-418. [PMID: 22974299 DOI: 10.1146/annurev-genet-110711-155646] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the past 20 years, the zebrafish has emerged as a powerful model organism for studying cardiac development. Its ability to survive without an active circulation and amenability to forward genetics has led to the identification of numerous mutants whose study has helped elucidate new mechanisms in cardiac development. Furthermore, its transparent, externally developing embryos have allowed detailed cellular analyses of heart development. In this review, we discuss the molecular and cellular processes involved in zebrafish heart development from progenitor specification to development of the valve and the conduction system. We focus on imaging studies that have uncovered the cellular bases of heart development and on zebrafish mutants with cardiac abnormalities whose study has revealed novel molecular pathways in cardiac cell specification and tissue morphogenesis.
Collapse
Affiliation(s)
- David Staudt
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA
| | | |
Collapse
|
161
|
Norden J, Kispert A. Wnt/Ctnnb1 Signaling and the Mesenchymal Precursor Pools of the Heart. Trends Cardiovasc Med 2012; 22:118-22. [DOI: 10.1016/j.tcm.2012.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/05/2012] [Accepted: 07/06/2012] [Indexed: 02/01/2023]
|
162
|
Normal and abnormal development of the cardiac conduction system; implications for conduction and rhythm disorders in the child and adult. Differentiation 2012; 84:131-48. [DOI: 10.1016/j.diff.2012.04.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 04/16/2012] [Indexed: 11/20/2022]
|
163
|
Xavier-Neto J, Trueba SS, Stolfi A, Souza HM, Sobreira TJP, Schubert M, Castillo HA. An unauthorized biography of the second heart field and a pioneer/scaffold model for cardiac development. Curr Top Dev Biol 2012; 100:67-105. [PMID: 22449841 DOI: 10.1016/b978-0-12-387786-4.00003-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The identification of subpharyngeal cardiac precursors has had a strong influence on the way we think about early cardiac development. From this discovery was born the concept of multiple heart fields. Early support for the concept came from gene expression, genetic retrospective fate mapping, and gene targeting studies, which collectively suggested the existence of a second heart field (SHF) on the basis of specific Islet-1 (Isl-1) expression, presence of two cardiac ancestral lineages, and compatible cardiac knockout phenotypes, respectively. A decade after the original studies, support for the SHF concept is dwindling. This is because in all bilaterian models studied, Isl expression in heart progenitors is not SHF-specific, because lineage data are best explained by alternative models including an older, truly ancestral, lineage of cardiac pioneers with unrestricted contribution to all cardiac segments and, finally, because the inflow-to-outflow segmental nature of the early vertebrate peristaltic heart has been reaffirmed with novel, less invasive, methodologies. Altogether, the paradigms derived from the discovery of subpharyngeal cardiac progenitors helped us shift from relatively simple models, which rely predominantly either on patterning, gene expression patterns or lineages, to a much more sophisticated body of knowledge in which all these parameters must be accounted. Thus, it is well possible that due consideration of the key elements contained in the inflow/outflow, pioneer/scaffold, ballooning, and SHF hypotheses may provide us with a unified framework of the early stages of cardiac development. Here, we advance into this direction by suggesting an intuitive model of early heart development based on the concept of an inflow/outflow scaffold erected by cardiac pioneers, one that is required to assemble all the subsequent cell contribution that emigrates from cardiac progenitor areas.
Collapse
Affiliation(s)
- José Xavier-Neto
- Brazilian National Laboratory for Biosciences, Brazilian Association for Synchrotron Light Technology, Rua Giuseppe Máximo Scolfaro, Campinas, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
164
|
Marcela SG, Cristina RMM, Angel PGM, Manuel AM, Sofía DC, Patricia DLRS, Bladimir RR, Concepción SG. Chronological and morphological study of heart development in the rat. Anat Rec (Hoboken) 2012; 295:1267-90. [PMID: 22715162 DOI: 10.1002/ar.22508] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/04/2012] [Accepted: 04/21/2012] [Indexed: 11/08/2022]
Abstract
Adult and embryonic laboratory rats have been used as a mammalian model organism in biomedical research, descriptive and experimental cardiac embryology, and experimental teratology. There have been, however, considerable variations and discrepancies concerning the developmental staging of the rat embryo in the reported literature, which have resulted in several controversies and inconsistencies. Therefore, we carried out a careful anatomical and histological study of rat cardiac morphogenesis from the premorphogenetic period to the mature heart in a newborn pup. A correlation between the chronology and morphological features of the heart and embryo or newborn was made. We provide a simple and comprehensive guide relating the developmental timing and fate of the embryonic components of the heart and their morphological changes in the rat based on in vivo labeling studies in the chick. We also compare the timing of heart development in rats, humans, and mice.
Collapse
Affiliation(s)
- Salazar García Marcela
- Laboratorio de Investigación en Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México Federico Gómez, México
| | | | | | | | | | | | | | | |
Collapse
|
165
|
Formation, contraction, and mechanotransduction of myofribrils in cardiac development: clues from genetics. Biochem Res Int 2012; 2012:504906. [PMID: 22720160 PMCID: PMC3376475 DOI: 10.1155/2012/504906] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 04/11/2012] [Accepted: 04/15/2012] [Indexed: 01/24/2023] Open
Abstract
Congenital heart disease (CHD) is the most common birth defect in humans. It is a leading infant mortality factor worldwide, caused by defective cardiac development. Mutations in transcription factors, signalling and structural molecules have been shown to contribute to the genetic component of CHD. Recently, mutations in genes encoding myofibrillar proteins expressed in the embryonic heart have also emerged as an important genetic causative factor of the disease, which implies that the contraction of the early heart primordium contributes to its morphogenesis. This notion is supported by increasing evidence suggesting that not only contraction but also formation, mechanosensing, and mechanotransduction of the cardiac myofibrillar proteins influence heart development. In this paper, we summarize the genetic clues supporting this idea.
Collapse
|
166
|
Organogenesis of the vertebrate heart. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:17-29. [DOI: 10.1002/wdev.68] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
167
|
Grammes F, Rørvik KA, Thomassen MS, Berge RK, Takle H. Genome wide response to dietary tetradecylthioacetic acid supplementation in the heart of Atlantic Salmon (Salmo salar L). BMC Genomics 2012; 13:180. [PMID: 22577878 PMCID: PMC3483216 DOI: 10.1186/1471-2164-13-180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 04/13/2012] [Indexed: 11/10/2022] Open
Abstract
Background Under-dimensioned hearts causing functional problems are associated with higher mortality rates in intensive Atlantic salmon aquaculture. Previous studies have indicated that tetradecylthioacetic acid (TTA) induces cardiac growth and also stimulates transcription of peroxisome proliferator activated receptors (PPAR) αand βin the Atlantic salmon heart. Since cardiac and transcriptional responses to feed are of high interest in aquaculture, the objective of this study was to characterize the transcriptional mechanisms induced by TTA in the heart of Atlantic salmon. Results Atlantic salmon were kept at sea for 17 weeks. During the first 8 weeks the fish received a TTA supplemented diet. Using microarrays, profound transcriptional effects were observed in the heart at the end of the experiment, 9 weeks after the feeding of TTA stopped. Approximately 90% of the significant genes were expressed higher in the TTA group. Hypergeometric testing revealed the over-representation of 35 gene ontology terms in the TTA fed group. The GO terms were generally categorized into cardiac performance, lipid catabolism, glycolysis and TCA cycle. Conclusions Our results indicate that TTA has profound effects on cardiac performance based on results from microarray and qRT-PCR analysis. The gene expression profile favors a scenario of ”physiological”lright hypertrophy recognized by increased oxidative fatty acid metabolism, glycolysis and TCA cycle activity as well as cardiac growth and contractility in the heart ventricle. Increased cardiac efficiency may offer significant benefits in the demanding Aquaculture situations.
Collapse
|
168
|
Saito Y, Kojima T, Takahashi N. Mab21l2 is essential for embryonic heart and liver development. PLoS One 2012; 7:e32991. [PMID: 22412967 PMCID: PMC3297618 DOI: 10.1371/journal.pone.0032991] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 02/06/2012] [Indexed: 12/01/2022] Open
Abstract
During mouse embryogenesis, proper formation of the heart and liver is especially important and is crucial for embryonic viability. In this study, we showed that Mab21l2 was expressed in the trabecular and compact myocardium, and that deletion of Mab21l2 resulted in a reduction of the trabecular myocardium and thinning of the compact myocardium. Mab21l2-deficient embryonic hearts had decreased expression of genes that regulate cell proliferation and apoptosis of cardiomyocytes. These results show that Mab21l2 functions during heart development by regulating the expression of such genes. Mab21l2 was also expressed in the septum transversum mesenchyme (STM). Epicardial progenitor cells are localized to the anterior surface of the STM (proepicardium), and proepicardial cells migrate onto the surface of the heart and form the epicardium, which plays an important role in heart development. The rest of the STM is essential for the growth and survival of hepatoblasts, which are bipotential progenitors for hepatocytes and cholangiocytes. Proepicardial cells in Mab21l2-deficient embryos had defects in cell proliferation, which led to a small proepicardium, in which α4 integrin expression, which is essential for the migration of proepicardial cells, was down-regulated, suggesting that defects occurred in its migration. In Mab21l2-deficient embryos, epicardial formation was defective, suggesting that Mab21l2 plays important roles in epicardial formation through the regulation of the cell proliferation of proepicardial cells and the migratory process of proepicardial cells. Mab21l2-deficient embryos also exhibited hypoplasia of the STM surrounding hepatoblasts and decreased hepatoblast proliferation with a resultant loss of defective morphogenesis of the liver. These findings demonstrate that Mab21l2 plays a crucial role in both heart and liver development through STM formation.
Collapse
Affiliation(s)
| | | | - Naoki Takahashi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
169
|
Barnett P, van den Boogaard M, Christoffels V. Localized and temporal gene regulation in heart development. Curr Top Dev Biol 2012; 100:171-201. [PMID: 22449844 DOI: 10.1016/b978-0-12-387786-4.00004-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The heart is a structurally complex and functionally heterogeneous organ. The repertoire of genes active in a given cardiac cell defines its shapes and function. This process of localized or heterogeneous gene expression is regulated to a large extent at the level of transcription, dictating the degree particular genes in a cell are active. Therefore, errors in the regulation of localized gene expression are at the basis of misregulation of the delicate process of heart development and function. In this review, we provide an overview of the origin of the different components of the vertebrate heart, and discuss our current understanding of the regulation of localized gene expression in the developing heart. We will also discuss where future research may lead to gain more insight into this process, which should provide much needed insight into the dysregulation of heart development and function, and the etiology of congenital defects.
Collapse
Affiliation(s)
- Phil Barnett
- Department of Anatomy, Embryology and Physiology, Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
170
|
Taubenschmid J, Weitzer G. Mechanisms of cardiogenesis in cardiovascular progenitor cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 293:195-267. [PMID: 22251563 PMCID: PMC7615846 DOI: 10.1016/b978-0-12-394304-0.00012-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Self-renewing cells of the vertebrate heart have become a major subject of interest in the past decade. However, many researchers had a hard time to argue against the orthodox textbook view that defines the heart as a postmitotic organ. Once the scientific community agreed on the existence of self-renewing cells in the vertebrate heart, their origin was again put on trial when transdifferentiation, dedifferentiation, and reprogramming could no longer be excluded as potential sources of self-renewal in the adult organ. Additionally, the presence of self-renewing pluripotent cells in the peripheral blood challenges the concept of tissue-specific stem and progenitor cells. Leaving these unsolved problems aside, it seems very desirable to learn about the basic biology of this unique cell type. Thus, we shall here paint a picture of cardiovascular progenitor cells including the current knowledge about their origin, basic nature, and the molecular mechanisms guiding proliferation and differentiation into somatic cells of the heart.
Collapse
Affiliation(s)
- Jasmin Taubenschmid
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
171
|
Cua CL, Feltes TF. Echocardiographic evaluation of the single right ventricle in congenital heart disease: results of new techniques. Circ J 2011; 76:22-31. [PMID: 22139360 DOI: 10.1253/circj.cj-11-1267] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Right ventricular (RV) function is increasingly recognized as having prognostic significance in various disease processes. The current gold standard for noninvasive measurement of RV function is cardiac magnetic resonance imaging; however, because of practical considerations, echocardiography remains the most often used modality for evaluating the RV. In the past, because of its complex morphology, echocardiographic assessment of the RV was usually qualitative in nature. Current advances in echocardiographic techniques have been able to overcome some of the previous limitations and thus quantification of RV function is increasingly being performed. In addition, recent echocardiographic guidelines for evaluating the RV have been published to aid in standardizing practice. The evaluation of RV function almost certainly has no greater importance than in the congenital heart population, especially in those patients that have a single RV acting as the systemic ventricle. As this complex population continues to increase in number, accurate and precise evaluation of RV function will be a major issue in determining clinical care.
Collapse
Affiliation(s)
- Clifford L Cua
- Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA.
| | | |
Collapse
|
172
|
Young DA, DeQuach JA, Christman KL. Human cardiomyogenesis and the need for systems biology analysis. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2011; 3:666-80. [PMID: 21197666 PMCID: PMC3282989 DOI: 10.1002/wsbm.141] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease remains the leading cause of death in the Western world and myocardial infarction is one of the primary facets of this disease. The limited natural self-renewal of cardiac muscle following injury and restricted supply of heart transplants has encouraged researchers to investigate other means to stimulate regeneration of damaged myocardium. The plasticity of stem cells toward multiple lineages offers the potential to repair the heart following injury. Embryonic stem cells have been extensively studied for their ability to differentiate into early cardiomyocytes, however, the pathway has only been partially defined and inadequate efficiency limits their clinical applicability. Some studies have shown cardiomyogenesis from adult mesenchymal stem cells, from both bone marrow and adipose tissue, but their differentiation pathway remains poorly detailed and these results remain controversial. Despite promising results using stem cells in animal models of cardiac injury, the driving mechanisms behind their differentiation down a cardiomyogenic pathway have yet to be determined. Currently, there is a paucity of information regarding cardiomyogenesis on the systemic level. Stem cell differentiation results from multiple signaling parameters operating in a tightly regulated spatiotemporal pattern. Investigating this phenomenon from a systems biology perspective could unveil the abstruse mechanisms controlling cardiomyogenesis that would otherwise require extensive in vitro testing.
Collapse
Affiliation(s)
- D Adam Young
- Department of Bioengineering, University of California, San Diego, CA, USA
| | | | | |
Collapse
|
173
|
Deletion of exon 20 of the Familial Dysautonomia gene Ikbkap in mice causes developmental delay, cardiovascular defects, and early embryonic lethality. PLoS One 2011; 6:e27015. [PMID: 22046433 PMCID: PMC3203942 DOI: 10.1371/journal.pone.0027015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 10/07/2011] [Indexed: 01/07/2023] Open
Abstract
Familial Dysautonomia (FD) is an autosomal recessive disorder that affects 1/3,600 live births in the Ashkenazi Jewish population, and leads to death before the age of 40. The disease is characterized by abnormal development and progressive degeneration of the sensory and autonomic nervous system. A single base pair substitution in intron 20 of the Ikbkap gene accounts for 98% of FD cases, and results in the expression of low levels of the full-length mRNA with simultaneous expression of an aberrantly spliced mRNA in which exon 20 is missing. To date, there is no animal model for the disease, and the essential cellular functions of IKAP - the protein encoded by Ikbkap - remain unknown. To better understand the normal function of IKAP and in an effort to generate a mouse model for FD, we have targeted the mouse Ikbkap gene by homologous recombination. We created two distinct alleles that result in either loss of Ikbkap expression, or expression of an mRNA lacking only exon 20. Homozygosity for either mutation leads to developmental delay, cardiovascular and brain malformations, accompanied with early embryonic lethality. Our analyses indicate that IKAP is essential for expression of specific genes involved in cardiac morphogenesis, and that cardiac failure is the likely cause of abnormal vascular development and embryonic lethality. Our results also indicate that deletion of exon 20 abolishes gene function. This implies that the truncated IKAP protein expressed in FD patients does not retain any significant biological function.
Collapse
|
174
|
Relationship between electroanatomical voltage mapping characteristics and breakout site of ventricular activation in idiopathic ventricular tachyarrhythmia originating from the right ventricular outflow tract septum. J Interv Card Electrophysiol 2011; 33:135-41. [DOI: 10.1007/s10840-011-9623-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 09/04/2011] [Indexed: 11/25/2022]
|
175
|
Amodio V, Tevy MF, Traina C, Ghosh TK, Capovilla M. Transactivation in Drosophila of human enhancers by human transcription factors involved in congenital heart diseases. Dev Dyn 2011; 241:190-9. [PMID: 21990232 PMCID: PMC3326377 DOI: 10.1002/dvdy.22763] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2011] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The human transcription factors (TFs) GATA4, NKX2.5 and TBX5 form part of the core network necessary to build a human heart and are involved in Congenital Heart Diseases (CHDs). The human natriuretic peptide precursor A (NPPA) and α-myosin heavy chain 6 (MYH6) genes are downstream effectors involved in cardiogenesis that have been demonstrated to be in vitro targets of such TFs. RESULTS To study the interactions between these human TFs and their target enhancers in vivo, we overexpressed them in the whole Drosophila cardiac tube using the UAS/GAL4 system. We observed that all three TFs up-regulate their natural target enhancers in Drosophila and cause developmental defects when overexpressed in eyes and wings. CONCLUSIONS A strong potential of the present model might be the development of combinatorial and mutational assays to study the interactions between human TFs and their natural target promoters, which are not easily undertaken in tissue culture cells because of the variability in transfection efficiency, especially when multiple constructs are used. Thus, this novel system could be used to determine in vivo the genetic nature of the human mutant forms of these TFs, setting up a powerful tool to unravel the molecular genetic mechanisms that lead to CHDs.
Collapse
Affiliation(s)
- Vincenzo Amodio
- Dulbecco Telethon Institute, Department of Biology and Evolution, University of Ferrara, Ferrara, Italy
| | | | | | | | | |
Collapse
|
176
|
Differential role of Nkx2-5 in activation of the atrial natriuretic factor gene in the developing versus failing heart. Mol Cell Biol 2011; 31:4633-45. [PMID: 21930795 DOI: 10.1128/mcb.05940-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Atrial natriuretic factor (ANF) is abundantly expressed in atrial cardiomyocytes throughout ontogeny and in ventricular cardiomyocytes in the developing heart. However, during cardiac failure and hypertrophy, ANF expression can reappear in adult ventricular cardiomyocytes. The transcription factor Nkx2-5 is one of the major transactivators of the ANF gene in the developing heart. We identified Nkx2-5 binding at three 5' regulatory elements (kb -34, -31, and -21) and at the proximal ANF promoter by ChIP assay using neonatal mouse cardiomyocytes. 3C analysis revealed close proximity between the distal elements and the promoter region. A 5.8-kb fragment consisting of these elements transactivated a reporter gene in vivo recapitulating endogenous ANF expression, which was markedly reduced in tamoxifen-inducible Nkx2-5 gene knockout mice. However, expression of a reporter gene was increased and expanded toward the outer compact layer in the absence of the transcription repressor Hey2, similar to endogenous ANF expression. Functional Nkx2-5 and Hey2 binding sites separated by 59 bp were identified in the -34 kb element in neonatal cardiomyocytes. In adult hearts, this fragment did not respond to pressure overload, and ANF was induced in the absence of Nkx2-5. These results demonstrate that Nkx2-5 and its responsive cis-regulatory DNA elements are essential for ANF expression selectively in the developing heart.
Collapse
|
177
|
Costa MW, Lee S, Furtado MB, Xin L, Sparrow DB, Martinez CG, Dunwoodie SL, Kurtenbach E, Mohun T, Rosenthal N, Harvey RP. Complex SUMO-1 regulation of cardiac transcription factor Nkx2-5. PLoS One 2011; 6:e24812. [PMID: 21931855 PMCID: PMC3171482 DOI: 10.1371/journal.pone.0024812] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 08/22/2011] [Indexed: 01/04/2023] Open
Abstract
Reversible post-translational protein modifications such as SUMOylation add complexity to cardiac transcriptional regulation. The homeodomain transcription factor Nkx2-5/Csx is essential for heart specification and morphogenesis. It has been previously suggested that SUMOylation of lysine 51 (K51) of Nkx2-5 is essential for its DNA binding and transcriptional activation. Here, we confirm that SUMOylation strongly enhances Nkx2-5 transcriptional activity and that residue K51 of Nkx2-5 is a SUMOylation target. However, in a range of cultured cell lines we find that a point mutation of K51 to arginine (K51R) does not affect Nkx2-5 activity or DNA binding, suggesting the existence of additional Nkx2-5 SUMOylated residues. Using biochemical assays, we demonstrate that Nkx2-5 is SUMOylated on at least one additional site, and this is the predominant site in cardiac cells. The second site is either non-canonical or a "shifting" site, as mutation of predicted consensus sites and indeed every individual lysine in the context of the K51R mutation failed to impair Nkx2-5 transcriptional synergism with SUMO, or its nuclear localization and DNA binding. We also observe SUMOylation of Nkx2-5 cofactors, which may be critical to Nkx2-5 regulation. Our data reveal highly complex regulatory mechanisms driven by SUMOylation to modulate Nkx2-5 activity.
Collapse
Affiliation(s)
- Mauro W Costa
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Boheler KR, Joodi RN, Qiao H, Juhasz O, Urick AL, Chuppa SL, Gundry RL, Wersto RP, Zhou R. Embryonic stem cell-derived cardiomyocyte heterogeneity and the isolation of immature and committed cells for cardiac remodeling and regeneration. Stem Cells Int 2011; 2011:214203. [PMID: 21912557 PMCID: PMC3168772 DOI: 10.4061/2011/214203] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Accepted: 06/14/2011] [Indexed: 11/23/2022] Open
Abstract
Pluripotent stem cells represent one promising source for cell replacement therapy in heart, but differentiating embryonic stem cell-derived cardiomyocytes (ESC-CMs) are highly heterogeneous and show a variety of maturation states. In this study, we employed an ESC clonal line that contains a cardiac-restricted ncx1 promoter-driven puromycin resistance cassette together with a mass culture system to isolate ESC-CMs that display traits characteristic of very immature CMs. The cells display properties of proliferation, CM-restricted markers, reduced mitochondrial mass, and hypoxia-resistance. Following transplantation into rodent hearts, bioluminescence imaging revealed that immature cells, but not more mature CMs, survived for at least one month following injection. These data and comparisons with more mature cells lead us to conclude that immature hypoxia resistant ESC-CMs can be isolated in mass in vitro and, following injection into heart, form grafts that may mediate long-term recovery of global and regional myocardial contractile function following infarction.
Collapse
Affiliation(s)
- Kenneth R Boheler
- Molecular Cardiology and Stem Cell Unit, Laboratory of Cardiovascular Sciences, National Institute of Aging, NIH, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Bruneau BG. Atrial natriuretic factor in the developing heart: a signpost for cardiac morphogenesis. Can J Physiol Pharmacol 2011; 89:533-7. [PMID: 21806510 DOI: 10.1139/y11-051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The developing heart forms during the early stages of embryogenesis, and misregulated heart development results in congenital heart defects (CHDs). To understand the molecular basis of CHDs, a deep understanding of the morphological and genetic basis of heart development is necessary. Atrial Natriuretic Factor (ANF) is an important and extremely sensitive marker for specific regions of the developing heart, as well as for disturbances in the patterning of the heart. This review summarizes the dynamic expression of ANF in the developing heart and its usefulness in understanding the early molecular defects underlying CHDs.
Collapse
Affiliation(s)
- Benoit G Bruneau
- Gladstone Institute of Cardiovascular Disease, 1650 Owens Street, San Francisco, CA 94158, USA.
| |
Collapse
|
180
|
Abstract
The transcriptional regulation orchestrating the development of the heart is increasingly recognized to play an essential role in the regulation of ion channel and gap junction gene expression and consequently the proper generation and conduction of the cardiac electrical impulse. This has led to the realization that in some instances, abnormal cardiac electrical function and arrhythmias in the postnatal heart may stem from a developmental abnormality causing maintained (epigenetic) changes in gene regulation. The role of developmental genes in the regulation of cardiac electrical function is further underscored by recent genome-wide association studies that provide strong evidence that common genetic variation, at loci harbouring these genes, modulates electrocardiographic indices of conduction and repolarization and susceptibility to arrhythmia. Here we discuss recent findings and provide background insight into these complex mechanisms.
Collapse
Affiliation(s)
- Alex V Postma
- Heart Failure Research Center, Academic Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
181
|
Sizarov A, Ya J, de Boer BA, Lamers WH, Christoffels VM, Moorman AFM. Formation of the building plan of the human heart: morphogenesis, growth, and differentiation. Circulation 2011; 123:1125-35. [PMID: 21403123 DOI: 10.1161/circulationaha.110.980607] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Aleksander Sizarov
- Heart Failure Research Center, Academic Medical Center, Amsterdam, Netherlands
| | | | | | | | | | | |
Collapse
|
182
|
Aanhaanen WTJ, Moorman AFM, Christoffels VM. Origin and development of the atrioventricular myocardial lineage: insight into the development of accessory pathways. ACTA ACUST UNITED AC 2011; 91:565-77. [PMID: 21630423 DOI: 10.1002/bdra.20826] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/11/2011] [Accepted: 03/14/2011] [Indexed: 12/16/2022]
Abstract
Defects originating from the atrioventricular canal region are part of a wide spectrum of congenital cardiovascular malformations that frequently affect newborns. These defects include partial or complete atrioventricular septal defects, atrioventricular valve defects, and arrhythmias, such as atrioventricular re-entry tachycardia, atrioventricular nodal block, and ventricular preexcitation. Insight into the cellular origin of the atrioventricular canal myocardium and the molecular mechanisms that control its development will aid in the understanding of the etiology of the atrioventricular defects. This review discusses current knowledge concerning the origin and fate of the atrioventricular canal myocardium, the molecular mechanisms that determine its specification and differentiation, and its role in the development of certain malformations such as those that underlie ventricular preexcitation.
Collapse
Affiliation(s)
- Wim T J Aanhaanen
- Heart Failure Research Center, Academic Medical Center, Meibergdreef 15, Amsterdam, The Netherlands
| | | | | |
Collapse
|
183
|
van Weerd JH, Koshiba-Takeuchi K, Kwon C, Takeuchi JK. Epigenetic factors and cardiac development. Cardiovasc Res 2011; 91:203-11. [PMID: 21606181 DOI: 10.1093/cvr/cvr138] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Congenital heart malformations remain the leading cause of death related to birth defects. Recent advances in developmental and regenerative cardiology have shed light on a mechanistic understanding of heart development that is controlled by a transcriptional network of genetic and epigenetic factors. This article reviews the roles of chromatin remodelling factors important for cardiac development with the current knowledge of cardiac morphogenesis, regeneration, and direct cardiac differentiation. In the last 5 years, critical roles of epigenetic factors have been revealed in the cardiac research field.
Collapse
Affiliation(s)
- Jan Hendrick van Weerd
- Cardiovascular Regeneration, Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
184
|
Boogerd CJJ, Wong LYE, van den Boogaard M, Bakker ML, Tessadori F, Bakkers J, 't Hoen PAC, Moorman AF, Christoffels VM, Barnett P. Sox4 mediates Tbx3 transcriptional regulation of the gap junction protein Cx43. Cell Mol Life Sci 2011; 68:3949-61. [PMID: 21538160 PMCID: PMC3214269 DOI: 10.1007/s00018-011-0693-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 12/01/2010] [Accepted: 04/14/2011] [Indexed: 11/28/2022]
Abstract
Tbx3, a T-box transcription factor, regulates key steps in development of the heart and other organ systems. Here, we identify Sox4 as an interacting partner of Tbx3. Pull-down and nuclear retention assays verify this interaction and in situ hybridization reveals Tbx3 and Sox4 to co-localize extensively in the embryo including the atrioventricular and outflow tract cushion mesenchyme and a small area of interventricular myocardium. Tbx3, SOX4, and SOX2 ChIP data, identify a region in intron 1 of Gja1 bound by all tree proteins and subsequent ChIP experiments verify that this sequence is bound, in vivo, in the developing heart. In a luciferase reporter assay, this element displays a synergistic antagonistic response to co-transfection of Tbx3 and Sox4 and in vivo, in zebrafish, drives expression of a reporter in the heart, confirming its function as a cardiac enhancer. Mechanistically, we postulate that Sox4 is a mediator of Tbx3 transcriptional activity.
Collapse
Affiliation(s)
- C J J Boogerd
- Heart Failure Research Centre, Academic Medical Centre, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Bajolle F. Embryologie cardiaque. Arch Pediatr 2011. [DOI: 10.1016/s0929-693x(11)71006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
186
|
Normal and abnormal development of pulmonary veins: State of the art and correlation with clinical entities. Int J Cardiol 2011; 147:13-24. [DOI: 10.1016/j.ijcard.2010.07.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 06/17/2010] [Accepted: 07/04/2010] [Indexed: 11/19/2022]
|
187
|
Boogerd CJJ, Moorman AFM, Barnett P. Expression of muscle segment homeobox genes in the developing myocardium. Anat Rec (Hoboken) 2010; 293:998-1001. [PMID: 20225205 DOI: 10.1002/ar.21112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Msx1 and Msx2 are essential for the development of many organs. In the heart, they act redundantly in development of the cardiac cushions. Additionally, Msx2 is expressed in the developing conduction system. However, the exact expression of Msx1 has not been established. We show that Msx1 is expressed in the cardiac cushions, but not in the myocardium. In Msx2-null mice, Msx1 is not ectopically expressed in the myocardium. The absence of myocardial defects in the Msx2 knock-out can therefore not be attributed to a redundant action of Msx1 in the myocardium.
Collapse
Affiliation(s)
- Cornelis J J Boogerd
- Heart Failure Research Center, Academic Medical Center of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
188
|
Abstract
The myocardium of the heart is composed of multiple highly specialized myocardial lineages, including those of the ventricular and atrial myocardium, and the specialized conduction system. Specification and maturation of each of these lineages during heart development is a highly ordered, ongoing process involving multiple signaling pathways and their intersection with transcriptional regulatory networks. Here, we attempt to summarize and compare much of what we know about specification and maturation of myocardial lineages from studies in several different vertebrate model systems. To date, most research has focused on early specification, and although there is still more to learn about early specification, less is known about factors that promote subsequent maturation of myocardial lineages required to build the functioning adult heart.
Collapse
Affiliation(s)
- Sylvia M. Evans
- Skaggs School of Pharmacy and Pharmaceutical Sciences Department of Medicine University of California San Diego 9500 Gilman Drive La Jolla CA 92093
| | - Deborah Yelon
- Division of Biological Sciences University of California, San Diego 9500 Gilman Drive La Jolla, CA 92093
| | - Frank L. Conlon
- Department of Genetics 220 Fordham Hall Medical Drive University of North Carolina Chapel Hill, NC 27599-3280
| | - Margaret L. Kirby
- Departments of Pediatrics and Cell Biology 403 Jones Building Research Drive Duke University Durham, NC 27710
| |
Collapse
|
189
|
Medioni C, Bertrand N, Mesbah K, Hudry B, Dupays L, Wolstein O, Washkowitz AJ, Papaioannou VE, Mohun TJ, Harvey RP, Zaffran S. Expression of Slit and Robo genes in the developing mouse heart. Dev Dyn 2010; 239:3303-11. [PMID: 20941780 PMCID: PMC2996720 DOI: 10.1002/dvdy.22449] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Development of the mammalian heart is mediated by complex interactions between myocardial, endocardial, and neural crest-derived cells. Studies in Drosophila have shown that the Slit-Robo signaling pathway controls cardiac cell shape changes and lumen formation of the heart tube. Here, we demonstrate by in situ hybridization that multiple Slit ligands and Robo receptors are expressed in the developing mouse heart. Slit3 is the predominant ligand transcribed in the early mouse heart and is expressed in the ventral wall of the linear heart tube and subsequently in chamber but not in atrioventricular canal myocardium. Furthermore, we identify that the homeobox gene Nkx2-5 is required for early ventral restriction of Slit3 and that the T-box transcription factor Tbx2 mediates repression of Slit3 in nonchamber myocardium. Our results suggest that patterned Slit-Robo signaling may contribute to the control of oriented cell growth during chamber morphogenesis of the mammalian heart.
Collapse
Affiliation(s)
- Caroline Medioni
- Institute of Developmental Biology and Cancer, CNRS UMR 6543, Faculté des Sciences, Parc Valrose Nice, France
| | - Nicolas Bertrand
- Inserm UMR_S910, Université de la Méditerranée, Faculté de Médecine de la Timone, Marseille, France
| | - Karim Mesbah
- Developmental Biology Institute of Marseille-Luminy, CNRS UMR 6216, Université de la Méditerranée, Campus de Luminy Case 907, Marseille, France
| | - Bruno Hudry
- Developmental Biology Institute of Marseille-Luminy, CNRS UMR 6216, Université de la Méditerranée, Campus de Luminy Case 907, Marseille, France
| | - Laurent Dupays
- Division of Developmental Biology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom
| | - Orit Wolstein
- Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Andrew J. Washkowitz
- Department of Genetics and Development, Columbia University Medical Center, New York, New York
| | - Virginia E. Papaioannou
- Department of Genetics and Development, Columbia University Medical Center, New York, New York
| | - Timothy J. Mohun
- Division of Developmental Biology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom
| | - Richard P. Harvey
- Victor Chang Cardiac Research Institute, Sydney, Australia
- Faculties of Life Sciences and Medicine, University of New South Wales, Kensington, Australia
| | - Stéphane Zaffran
- Inserm UMR_S910, Université de la Méditerranée, Faculté de Médecine de la Timone, Marseille, France
| |
Collapse
|
190
|
Brown K, Doss MX, Legros S, Artus J, Hadjantonakis AK, Foley AC. eXtraembryonic ENdoderm (XEN) stem cells produce factors that activate heart formation. PLoS One 2010; 5:e13446. [PMID: 20975998 PMCID: PMC2958120 DOI: 10.1371/journal.pone.0013446] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Accepted: 09/16/2010] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Initial specification of cardiomyocytes in the mouse results from interactions between the extraembryonic anterior visceral endoderm (AVE) and the nascent mesoderm. However the mechanism by which AVE activates cardiogenesis is not well understood, and the identity of specific cardiogenic factors in the endoderm remains elusive. Most mammalian studies of the cardiogenic potential of the endoderm have relied on the use of cell lines that are similar to the heart-inducing AVE. These include the embryonal-carcinoma-derived cell lines, END2 and PYS2. The recent development of protocols to isolate eXtraembryonic ENdoderm (XEN) stem cells, representing the extraembryonic endoderm lineage, from blastocyst stage mouse embryos offers new tools for the genetic dissection of cardiogenesis. METHODOLOGY/PRINCIPAL FINDINGS Here, we demonstrate that XEN cell-conditioned media (CM) enhances cardiogenesis during Embryoid Body (EB) differentiation of mouse embryonic stem (ES) cells in a manner comparable to PYS2-CM and END2-CM. Addition of CM from each of these three cell lines enhanced the percentage of EBs that formed beating areas, but ultimately, only XEN-CM and PYS2-CM increased the total number of cardiomyocytes that formed. Furthermore, our observations revealed that both contact-independent and contact-dependent factors are required to mediate the full cardiogenic potential of the endoderm. Finally, we used gene array comparison to identify factors in these cell lines that could mediate their cardiogenic potential. CONCLUSIONS/SIGNIFICANCE These studies represent the first step in the use of XEN cells as a molecular genetic tool to study cardiomyocyte differentiation. Not only are XEN cells functionally similar to the heart-inducing AVE, but also can be used for the genetic dissection of the cardiogenic potential of AVE, since they can be isolated from both wild type and mutant blastocysts. These studies further demonstrate the importance of both contact-dependent and contact-independent factors in cardiogenesis and identify potential heart-inducing proteins in the endoderm.
Collapse
Affiliation(s)
- Kemar Brown
- Greenberg Division of Cardiology, Weill Cornell Medical College, New York, New York, United States of America
| | - Michael Xavier Doss
- Greenberg Division of Cardiology, Weill Cornell Medical College, New York, New York, United States of America
| | - Stephanie Legros
- Greenberg Division of Cardiology, Weill Cornell Medical College, New York, New York, United States of America
| | - Jérôme Artus
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York, United States of America
| | | | - Ann C. Foley
- Greenberg Division of Cardiology, Weill Cornell Medical College, New York, New York, United States of America
| |
Collapse
|
191
|
Causes and mechanisms of intrauterine hypoxia and its impact on the fetal cardiovascular system: a review. Int J Pediatr 2010; 2010:401323. [PMID: 20981293 PMCID: PMC2963133 DOI: 10.1155/2010/401323] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 08/04/2010] [Accepted: 09/16/2010] [Indexed: 11/17/2022] Open
Abstract
Until today the role of oxygen in the development of the fetus remains controversially discussed. It is still believed that lack of oxygen in utero might be responsible for some of the known congenital cardiovascular malformations. Over the last two decades detailed research has given us new insights and a better understanding of embryogenesis and fetal growth. But most importantly it has repeatedly demonstrated that oxygen only plays a minor role in the early intrauterine development. After organogenesis has taken place hypoxia becomes more important during the second and third trimester of pregnancy when fetal growth occurs. This review will briefly adress causes and mechanisms leading to intrauterine hypoxia and their impact on the fetal cardiovascular system.
Collapse
|
192
|
Asai R, Kurihara Y, Fujisawa K, Sato T, Kawamura Y, Kokubo H, Tonami K, Nishiyama K, Uchijima Y, Miyagawa-Tomita S, Kurihara H. Endothelin receptor type A expression defines a distinct cardiac subdomain within the heart field and is later implicated in chamber myocardium formation. Development 2010; 137:3823-33. [PMID: 20929948 DOI: 10.1242/dev.054015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The avian and mammalian heart originates from two distinct embryonic regions: an early differentiating first heart field and a dorsomedially located second heart field. It remains largely unknown when and how these subdivisions of the heart field divide into regions with different fates. Here, we identify in the mouse a subpopulation of the first (crescent-forming) field marked by endothelin receptor type A (Ednra) gene expression, which contributes to chamber myocardium through a unique type of cell behavior. Ednra-lacZ/EGFP-expressing cells arise in the ventrocaudal inflow region of the early linear heart tube, converge to the midline, move anteriorly along the outer curvature and give rise to chamber myocardium mainly of the left ventricle and both atria. This movement was confirmed by fluorescent dye-labeling and transplantation experiments. The Ednra-lacZ/EGFP-expressing subpopulation is characterized by the presence of Tbx5-expressing cells. Ednra-null embryonic hearts often demonstrate hypoplasia of the ventricular wall, low mitotic activity and decreased Tbx5 expression with reciprocal expansion of Tbx2 expression. Conversely, endothelin 1 stimulates ERK phosphorylation and Tbx5 expression in the early embryonic heart. These results indicate that early Ednra expression defines a subdomain of the first heart field contributing to chamber formation, in which endothelin 1/Ednra signaling is involved. The present finding provides an insight into how subpopulations within the crescent-forming (first) heart field contribute to the coordination of heart morphogenesis through spatiotemporally defined cell movements.
Collapse
Affiliation(s)
- Rieko Asai
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Okamoto N, Akimoto N, Hidaka N, Shoji S, Sumida H. Formal genesis of the outflow tracts of the heart revisited: previous works in the light of recent observations. Congenit Anom (Kyoto) 2010; 50:141-58. [PMID: 20608949 DOI: 10.1111/j.1741-4520.2010.00286.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The formal genesis of the great arteries continues to be controversial due to the lack of consensus of septation of the developing outflow tract. In order to make it clear how the great arteries are generated, we have re-examined our previous papers which emphasized the formation of the aorta and pulmonary trunk, concept of the aorticopulmonary septum, formation of the leaflets of semilunar valves, morphogenesis of the crista supraventricularis, programmed cell death and rotation of the outflow tract. In the present paper, we compare outcomes gained from the re-examination of our previous papers with prevalent interpretations of the arterial trunk. We obtained conclusions as follows: (i) The elongation of the fourth and sixth aortic arch arteries, which sprout from the wall of the aortic sac at the expense of the distal truncus, contributes to the formation of the aorta and pulmonary trunk; (ii) Smooth muscle cells of the tunica media of the arterial trunks do not arise from the transformation of the myocardial cells of the truncus wall (not 'arterialization'); (iii) Truncus swellings are divided into two parts: distal and proximal. The former contributes to the separation of the orifices of arterial trunks ('aorticopulmonary septum'). The latter contributes to the formation of the leaflets of the semilunar valves of the aorta and pulmonary trunk; (iv) The origin of the myocardial cells of the crista supraventricularis is a wall of the conus originated from secondary/anterior heart fields; and (v) There has been no acceptable proof that rotation and counterclockwise rotation are involved.
Collapse
Affiliation(s)
- Naomasa Okamoto
- Hiroshima University and Miyazaki University, Hiroshima, Japan
| | | | | | | | | |
Collapse
|
194
|
Chinchilla A, Lozano E, Daimi H, Esteban FJ, Crist C, Aranega AE, Franco D. MicroRNA profiling during mouse ventricular maturation: a role for miR-27 modulating Mef2c expression. Cardiovasc Res 2010; 89:98-108. [PMID: 20736237 DOI: 10.1093/cvr/cvq264] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
AIMS non-coding RNA has been recently demonstrated to be a novel mechanism for modulation of gene expression at the post-transcriptional level. The importance of microRNAs in the cardiovascular system is now apparent. Mutations of distinct microRNAs have provided evidence for fundamental roles of microRNAs during cardiovascular development. However, there is limited information about global microRNA profiles during mouse heart development. In this study, we have gained insight from the expression profiles of microRNAs during mouse ventricular development by microarray and qRT-PCR analysis. METHODS AND RESULTS our microarray analysis reveals that relatively few microRNAs display either increasing or decreasing expression profiles during ventricular chamber formation. Interestingly, most of the differentially expressed microRNAs display a rather discrete peak of expression at particular developmental stages. Furthermore, we demonstrate that microRNA-27b (miR-27b) displays an overt myocardial expression during heart development and that the transcription factor-encoding gene Mef2c is an miR-27b target. CONCLUSION our data present a comprehensive profile of microRNA expression during ventricular maturation, providing an entry point for investigation of the functional roles of the most abundantly and differentially expressed microRNAs during cardiogenesis.
Collapse
Affiliation(s)
- Ana Chinchilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain
| | | | | | | | | | | | | |
Collapse
|
195
|
Lai D, Liu X, Forrai A, Wolstein O, Michalicek J, Ahmed I, Garratt AN, Birchmeier C, Zhou M, Hartley L, Robb L, Feneley MP, Fatkin D, Harvey RP. Neuregulin 1 sustains the gene regulatory network in both trabecular and nontrabecular myocardium. Circ Res 2010; 107:715-27. [PMID: 20651287 DOI: 10.1161/circresaha.110.218693] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RATIONALE The cardiac gene regulatory network (GRN) is controlled by transcription factors and signaling inputs, but network logic in development and it unraveling in disease is poorly understood. In development, the membrane-tethered signaling ligand Neuregulin (Nrg)1, expressed in endocardium, is essential for ventricular morphogenesis. In adults, Nrg1 protects against heart failure and can induce cardiomyocytes to divide. OBJECTIVE To understand the role of Nrg1 in heart development through analysis of null and hypomorphic Nrg1 mutant mice. METHODS AND RESULTS Chamber domains were correctly specified in Nrg1 mutants, although chamber-restricted genes Hand1 and Cited1 failed to be activated. The chamber GRN subsequently decayed with individual genes exhibiting decay patterns unrelated to known patterning boundaries. Both trabecular and nontrabecular myocardium were affected. Network demise was spatiotemporally dynamic, the most sensitive region being the central part of the left ventricle, in which the GRN underwent complete collapse. Other regions were partially affected with graded sensitivity. In vitro, Nrg1 promoted phospho-Erk1/2-dependent transcription factor expression, cardiomyocyte maturation and cell cycle inhibition. We monitored cardiac pErk1/2 in embryos and found that expression was Nrg1-dependent and levels correlated with cardiac GRN sensitivity in mutants. CONCLUSIONS The chamber GRN is fundamentally labile and dependent on signaling from extracardiac sources. Nrg1-ErbB1/4-Erk1/2 signaling critically sustains elements of the GRN in trabecular and nontrabecular myocardium, challenging our understanding of Nrg1 function. Transcriptional decay patterns induced by reduced Nrg1 suggest a novel mechanism for cardiac transcriptional regulation and dysfunction in disease, potentially linking biomechanical feedback to molecular pathways for growth and differentiation.
Collapse
Affiliation(s)
- Donna Lai
- Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool St, Darlinghurst 2010, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
The Cardiac Pacemaker and Conduction System Develops From Embryonic Myocardium that Retains Its Primitive Phenotype. J Cardiovasc Pharmacol 2010; 56:6-15. [DOI: 10.1097/fjc.0b013e3181e775d3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
197
|
Kawamura Y, Ishiwata T, Takizawa M, Ishida H, Asano Y, Nonoyama S. Fetal and neonatal development of Ca2+ transients and functional sarcoplasmic reticulum in beating mouse hearts. Circ J 2010; 74:1442-50. [PMID: 20526040 DOI: 10.1253/circj.cj-09-0793] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND It is generally accepted that Ca(2+)-induced Ca(2+) release is not the predominant mechanism during embryonic stages. Most studies have been conducted either on primary cultures or acutely isolated cells, in which an apparent reduction of ryanodine receptor density and alterations in the cell shape have been reported. The aim of the present study was to investigate developmental changes in Ca(2+) transients using whole hearts of mouse embryos and neonates. METHODS AND RESULTS Fluo-3 fluorescence signals from stimulated whole hearts were detected using a photomultiplier and stored as Ca(2+) transients. The upstroke and decay of Ca(2+) transients became more rapid from the late embryonic stages to the neonatal stage. After thapsigargin application (an inhibitor of the sarcoplasmic Ca(2+)-ATPase [SERCA]), time to 50% relaxation (T(50)) of Ca(2+) transients was significantly prolonged. There were no significant changes in T(50) after Ru360 application (an inhibitor of mitochondrial Ca(2+) uniporter). The rate of increase in the amplitude of Ca(2+) transients after caffeine application became larger during developmental stages. CONCLUSIONS Ca(2+) homeostasis developmentally changes from a slow rise and decay of Ca(2+) transients to rapid kinetics after the mid-embryonic stage. SERCA began to contribute significantly to Ca(2+) homeostasis at early embryonic stages and sarcoplasmic reticulum Ca(2+) contents increased from embryonic to neonatal stages, whereas mitochondrial Ca(2+) uptake did not contribute to Ca(2+) transients on a beat-to-beat basis.
Collapse
Affiliation(s)
- Yoichi Kawamura
- Department of Pediatrics, National Defense Medical College, Tokorozawa, Japan
| | | | | | | | | | | |
Collapse
|
198
|
López-Sánchez C, Bártulos O, Martínez-Campos E, Gañán C, Valenciano AI, García-Martínez V, De Pablo F, Hernández-Sánchez C. Tyrosine hydroxylase is expressed during early heart development and is required for cardiac chamber formation. Cardiovasc Res 2010; 88:111-20. [PMID: 20525643 DOI: 10.1093/cvr/cvq179] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS Tyrosine hydroxylase (TH) is the first and rate-limiting enzyme in catecholamine biosynthesis. Whereas the neuroendocrine roles of cathecolamines postnatally are well known, the presence and function of TH in organogenesis is unclear. The aim of this study was to define the expression of TH during cardiac development and to unravel the role it may play in heart formation. METHODS AND RESULTS We studied TH expression in chick embryos by whole mount in situ hybridization and by quantitative reverse transcription-polymerase chain reaction and analysed TH activity by high-performance liquid chromatography. We used gain- and loss-of-function models to characterize the role of TH in early cardiogenesis. We found that TH expression was enriched in the cardiac field of gastrulating chick embryos. By stage 8, TH mRNA was restricted to the splanchnic mesoderm of both endocardial tubes and was subsequently expressed predominantly in the myocardial layer of the atrial segment. Overexpression of TH led to increased atrial myosin heavy chain (AMHC1) and T-box 5 gene (Tbx5) expression in the ventricular region and induced bradyarrhythmia. Similarly, addition of l-3,4-dihydroxyphenylalanine (l-DOPA) or dopamine induced ectopic expression of cardiac transcription factors (cNkx2.5, Tbx5) and AMHC1 as well as sarcomere formation. Conversely, blockage of dopamine biosynthesis and loss of TH activity decreased AMHC1 and Tbx5 expression, whereas exposure to retinoic acid (RA) induced TH expression in parallel to that of AMHC1 and Tbx5. Concordantly, inhibition of endogenous RA synthesis decreased TH expression as well as that of AMHC1 and Tbx5. CONCLUSION TH is expressed in a dynamic pattern during the primitive heart tube formation. TH induces cardiac differentiation in vivo and it is a key regulator of the heart patterning, conferring atriogenic identity.
Collapse
|
199
|
Deacon DC, Nevis KR, Cashman TJ, Zhou Y, Zhao L, Washko D, Guner-Ataman B, Burns CG, Burns CE. The miR-143-adducin3 pathway is essential for cardiac chamber morphogenesis. Development 2010; 137:1887-96. [PMID: 20460367 DOI: 10.1242/dev.050526] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Discovering the genetic and cellular mechanisms that drive cardiac morphogenesis remains a fundamental goal, as three-dimensional architecture greatly impacts functional capacity. During development, accurately contoured chambers balloon from a primitive tube in a process characterized by regional changes in myocardial cell size and shape. How these localized changes are achieved remains elusive. Here, we show in zebrafish that microRNA-143 (miR-143) is required for chamber morphogenesis through direct repression of adducin3 (add3), which encodes an F-actin capping protein. Knockdown of miR-143 or disruption of the miR-143-add3 interaction inhibits ventricular cardiomyocyte F-actin remodeling, which blocks their normal growth and elongation and leads to ventricular collapse and decreased contractility. Using mosaic analyses, we find that miR-143 and add3 act cell-autonomously to control F-actin dynamics and cell morphology. As proper chamber emergence relies on precise control of cytoskeletal polymerization, Add3 represents an attractive target to be fine-tuned by both uniform signals, such as miR-143, and undiscovered localized signals. Together, our data uncover the miR-143-add3 genetic pathway as essential for cardiac chamber formation and function through active adjustment of myocardial cell morphology.
Collapse
Affiliation(s)
- Dekker C Deacon
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Abrahams A, Parker MI, Prince S. The T-box transcription factor Tbx2: its role in development and possible implication in cancer. IUBMB Life 2010; 62:92-102. [PMID: 19960541 DOI: 10.1002/iub.275] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tbx2 is a member of the T-box family of transcription factors that are crucial in embryonic development. Recent studies suggest that T-box factors may also play a role in controlling cell cycle progression and in the genesis of cancer. Tbx2 has been implicated in several developmental processes such as coordinating cell fate, patterning and morphogenesis of a wide range of tissues and organs including limbs, kidneys, lungs, mammary glands, heart, and craniofacial structures. Importantly, Tbx2 is overexpressed in several cancers including melanoma, small cell lung carcinoma, breast, pancreatic, liver, and bladder cancers and can suppress senescence, a cellular process, which serves as a barrier to cancer development. This review presents a state of the art overview of the role and regulation of Tbx2 in early embryonic development and in cancer.
Collapse
Affiliation(s)
- Amaal Abrahams
- Faculty of Health Sciences, Department of Human Biology, University of Cape Town, Observatory, Cape Town, South Africa
| | | | | |
Collapse
|