151
|
Leng T, Liu A, Wang Y, Chen X, Zhou S, Li Q, Zhu W, Zhou Y, Su X, Huang Y, Yin W, Qiu P, Hu H, Xiong ZG, Zhang J, Yan G. Naturally occurring marine steroid 24-methylenecholestane-3β,5α,6β,19-tetraol functions as a novel neuroprotectant. Steroids 2016; 105:96-105. [PMID: 26631550 DOI: 10.1016/j.steroids.2015.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/02/2015] [Accepted: 11/19/2015] [Indexed: 12/13/2022]
Abstract
Steroids have been shown to have multiple effects on the nervous system including neuroprotective activities, and they have the potential to be used for the treatment of neurodegenerative diseases. In this current study, we tested the hypothesis that the marine steroid 24-methylenecholestane-3β,5α,6β,19-tetraol (Tetrol) has a neuroprotective effect. (1) We synthesized Tetrol through a multiple step reaction starting from hyodeoxycholic acid (HDCA). (2) We then evaluated the neuroprotective effect of Tetrol with a glutamate-induced neuronal injury model in vitro. Tetrol concentration dependently increased the survival rate of cerebellar granule neurons challenged with toxic concentration of glutamate. Consistently, Tetrol significantly decreased glutamate-induced lactate dehydrogenase (LDH) release with a threshold concentration of 2.5 μM. (3) We further evaluated the neuroprotective effect of Tetrol in a middle cerebral artery occlusion (MCAO)-induced cerebral ischemia model in rat. Tetrol, at a dose of 12 mg/kg, significantly decreased MCAO-induced infarction volume by ∼50%. (4) Finally, we probed the mechanism and found that Tetrol concentration dependently attenuated N-methyl-d-aspartate (NMDA)-induced intracellular calcium ([Ca(2+)]i) increase with an IC50 of 7.8±0.62 μM, and inhibited NMDA currents in cortical neurons with an IC50 of 10.28±0.71 μM. Taken together, we have synthesized and characterized Tetrol as a novel neuroprotectant through negative modulation of NMDA receptors.
Collapse
Affiliation(s)
- Tiandong Leng
- Department of Pharmacology, Zhongshan Medical College, Sun Yat-Sen University, 74 Zhongshan Road II, Guangzhou, GD 510080, China; Neuroscience Institute, Morehouse School of Medicine, 720 Westview Dr SW, Atlanta, GA 30329, USA
| | - Ailing Liu
- Department of Pharmacology, Zhongshan Medical College, Sun Yat-Sen University, 74 Zhongshan Road II, Guangzhou, GD 510080, China
| | - Youqiong Wang
- Department of Pharmacology, Zhongshan Medical College, Sun Yat-Sen University, 74 Zhongshan Road II, Guangzhou, GD 510080, China
| | - Xinying Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, GD 510006, China
| | - Shujia Zhou
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, GD 510006, China
| | - Qun Li
- Department of Pharmacology, Zhongshan Medical College, Sun Yat-Sen University, 74 Zhongshan Road II, Guangzhou, GD 510080, China
| | - Wenbo Zhu
- Department of Pharmacology, Zhongshan Medical College, Sun Yat-Sen University, 74 Zhongshan Road II, Guangzhou, GD 510080, China
| | - Yuehan Zhou
- Department of Pharmacology, Zhongshan Medical College, Sun Yat-Sen University, 74 Zhongshan Road II, Guangzhou, GD 510080, China
| | - Xingwen Su
- Department of Pharmacology, Zhongshan Medical College, Sun Yat-Sen University, 74 Zhongshan Road II, Guangzhou, GD 510080, China
| | - Yijun Huang
- Department of Pharmacology, Zhongshan Medical College, Sun Yat-Sen University, 74 Zhongshan Road II, Guangzhou, GD 510080, China
| | - Wei Yin
- Department of Pharmacology, Zhongshan Medical College, Sun Yat-Sen University, 74 Zhongshan Road II, Guangzhou, GD 510080, China
| | - Pengxin Qiu
- Department of Pharmacology, Zhongshan Medical College, Sun Yat-Sen University, 74 Zhongshan Road II, Guangzhou, GD 510080, China
| | - Haiyan Hu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, GD 510006, China
| | - Zhi-gang Xiong
- Neuroscience Institute, Morehouse School of Medicine, 720 Westview Dr SW, Atlanta, GA 30329, USA
| | - Jingxia Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, GD 510006, China.
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan Medical College, Sun Yat-Sen University, 74 Zhongshan Road II, Guangzhou, GD 510080, China.
| |
Collapse
|
152
|
Rahmani B, Ghasemi R, Dargahi L, Ahmadiani A, Haeri A. Neurosteroids; potential underpinning roles in maintaining homeostasis. Gen Comp Endocrinol 2016; 225:242-250. [PMID: 26432100 DOI: 10.1016/j.ygcen.2015.09.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/14/2015] [Accepted: 09/28/2015] [Indexed: 12/31/2022]
Abstract
The neuroactive steroids which are synthesized in the brain and nervous system are known as "Neurosteroids". These steroids have crucial functions such as contributing to the myelination and organization of the brain connectivity. Under the stressful circumstances, the concentrations of neurosteroid products such as allopregnanolone (ALLO) and allotetrahydrodeoxycorticosterone (THDOC) alter. It has been suggested that these stress-derived neurosteroids modulate the physiological response to stress. Moreover, it has been demonstrated that the hypothalamic-pituitary-adrenal (HPA) axis mediates the physiological adaptation following stress in order to maintain homeostasis. Although several regulatory pathways have been introduced, the exact role of neurosteroids in controlling HPA axis is not clear to date. In this review, we intend to discern specific pathways associated with regulation of HPA axis in which neuroactive steroids have the main role. In this respect, we propose pathways that may be initiated after neurosteroidogenesis in different brain subregions following acute stress which are potentially capable of activating or inhibiting the HPA axis.
Collapse
Affiliation(s)
- Behrouz Rahmani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ghasemi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ali Haeri
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
153
|
Sun Y, Haapanen K, Li B, Zhang W, Van de Water J, Gershwin ME. Women and primary biliary cirrhosis. Clin Rev Allergy Immunol 2016; 48:285-300. [PMID: 25241227 DOI: 10.1007/s12016-014-8449-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Primary biliary cirrhosis occurs more frequently in women, and previous studies indicated that the average age of primary biliary cirrhosis (PBC) onset makes pregnancy in PBC patients uncommon. However, more recently, improved diagnostic testing has enabled detection of PBC in younger women, including those of childbearing age. This has led investigators to become increasingly interested in the relationship between the ontogeny of PBC and pregnancy. Published cases indicate that the typical age for pregnant women to be diagnosed with PBC is in the early 30s, and that during gestation, pruritus and jaundice are the most common symptoms. During gestation, susceptible women may experience onset of PBC resulting from the drastic changes in female hormones; this would include not only the mitochondrial damage due to accumulation of bile acids but also changes in the immune response during the different stages of pregnancy that might play an important role in the breakdown of self-tolerance. The mechanisms underlying the potential relationship between PBC and pregnancy warrant further investigation. For women first diagnosed with PBC during gestation, or those for whom first appearance of a flare up occurs during and postpartum, investigation of the immune response throughout gestation could provide new avenues for immunologic therapeutic intervention and the discovery of new treatment strategies for PBC.
Collapse
Affiliation(s)
- Ying Sun
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6510, Davis, CA, 95616, USA
| | | | | | | | | | | |
Collapse
|
154
|
Kuver A, Smith SS. Flumazenil decreases surface expression of α4β2δ GABAA receptors by increasing the rate of receptor internalization. Brain Res Bull 2015; 120:131-43. [PMID: 26592470 DOI: 10.1016/j.brainresbull.2015.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 11/15/2015] [Accepted: 11/18/2015] [Indexed: 11/25/2022]
Abstract
Increases in expression of α4βδ GABAA receptors (GABARs), triggered by fluctuations in the neurosteroid THP (3α-OH-5α[β]-pregnan-20-one), are associated with changes in mood and cognition. We tested whether α4βδ trafficking and surface expression would be altered by in vitro exposure to flumazenil, a benzodiazepine ligand which reduces α4βδ expression in vivo. We first determined that flumazenil (100 nM-100 μM, IC50=∼1 μM) acted as a negative modulator, reducing GABA (10 μM)-gated current in the presence of 100 nM THP (to increase receptor efficacy), assessed with whole cell patch clamp recordings of recombinant α4β2δ expressed in HEK-293 cells. Surface expression of recombinant α4β2δ receptors was detected using a 3XFLAG reporter at the C-terminus of α4 (α4F) using confocal immunocytochemical techniques following 48 h exposure of cells to GABA (10 μM)+THP (100 nM). Flumazenil (10 μM) decreased surface expression of α4F by ∼60%, while increasing its intracellular accumulation, after 48 h. Reduced surface expression of α4β2δ after flumazenil treatment was confirmed by decreases in the current responses to 100 nM of the GABA agonist gaboxadol. Flumazenil-induced decreases in surface expression of α4β2δ were prevented by the dynamin blocker, dynasore, and by leupeptin, which blocks lysosomal enzymes, suggesting that flumazenil is acting to increase endocytosis and lysosomal degradation of the receptor. Flumazenil increased the rate of receptor removal from the cell surface by 2-fold, assessed using botulinum toxin B to block insertion of new receptors. These findings may suggest new therapeutic strategies for regulation of α4β2δ expression using flumazenil.
Collapse
Affiliation(s)
- Aarti Kuver
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA
| | - Sheryl S Smith
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA.
| |
Collapse
|
155
|
Hoirisch-Clapauch S, Nardi AE. Improvement of Psychotic Symptoms and the Role of Tissue Plasminogen Activator. Int J Mol Sci 2015; 16:27550-60. [PMID: 26593907 PMCID: PMC4661911 DOI: 10.3390/ijms161126053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/12/2015] [Accepted: 11/12/2015] [Indexed: 01/17/2023] Open
Abstract
Tissue plasminogen activator (tPA) mediates a number of processes that are pivotal for synaptogenesis and remodeling of synapses, including proteolysis of the brain extracellular matrix, degradation of adhesion molecules, activation of neurotrophins, and activation of the N-methyl-d-aspartate receptor. Abnormalities in these processes have been consistently described in psychotic disorders. In this paper, we review the physiological roles of tPA, focusing on conditions characterized by low tPA activity, which are prevalent in schizophrenia. We then describe how tPA activity is influenced by lifestyle interventions and nutritional supplements that may ameliorate psychotic symptoms. Next, we analyze the role of tPA in the mechanism of action of hormones and medications effective in mitigating psychotic symptoms, such as pregnenolone, estrogen, oxytocin, dopamine D3 receptor antagonists, retinoic acid, valproic acid, cannabidiol, sodium nitroprusside, N-acetyl cysteine, and warfarin. We also review evidence that tPA participates in the mechanism by which electroconvulsive therapy and cigarette smoking may reduce psychotic symptoms.
Collapse
Affiliation(s)
- Silvia Hoirisch-Clapauch
- Department of Hematology, Hospital Federal dos Servidores do Estado, Ministry of Health, Rio de Janeiro CEP 20221-903, Brazil.
| | - Antonio E Nardi
- Institute of Psychiatry, Federal University of Rio de Janeiro, and National Institute for Translational Medicine, INCT-TM CEP 22290-140, Brazil.
| |
Collapse
|
156
|
Quinn TA, Ratnayake U, Dickinson H, Castillo-Melendez M, Walker DW. Ontogenetic Change in the Regional Distribution of Dehydroepiandrosterone-Synthesizing Enzyme and the Glucocorticoid Receptor in the Brain of the Spiny Mouse (Acomys cahirinus). Dev Neurosci 2015; 38:54-73. [PMID: 26501835 DOI: 10.1159/000438986] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/24/2015] [Indexed: 11/19/2022] Open
Abstract
The androgen dehydroepiandrosterone (DHEA) has trophic and anti-glucocorticoid actions on brain growth. The adrenal gland of the spiny mouse (Acomys cahirinus) synthesizes DHEA. The aim of this study was to determine whether the brain of this precocial species is also able to produce DHEA de novo during fetal, neonatal and adult life. The expression of P450c17 and cytochrome b5 (Cytb5), the enzyme and accessory protein responsible for the synthesis of DHEA, was determined in fetal, neonatal and adult brains by immunocytochemistry, and P450c17 bioactivity was determined by the conversion of pregnenolone to DHEA. Homogenates of fetal brain produced significantly more DHEA after 48 h in culture (22.46 ± 2.0 ng/mg tissue) than adult brain homogenates (5.04 ± 2.0 ng/mg tissue; p < 0.0001). P450c17 and Cytb5 were co-expressed in fetal neurons but predominantly in oligodendrocytes and white matter tracts in the adult brain. Because DHEA modulates glucocorticoids actions, the expression of the glucocorticoid receptor (GR) was also determined. In the brainstem, medulla, midbrain, and cerebellum, the predominant GR localization changed from neurons in the fetal brain to oligodendrocytes and white matter tracts in the adult brain. The change of expression of P450c17, Cytb5 and GR proteins with cell type, brain region and developmental age indicates that DHEA is an endogenous neurosteroid in this species that may have important trophic and stress-modifying actions during both prenatal and postnatal life.
Collapse
Affiliation(s)
- Tracey A Quinn
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Vic., Australia
| | | | | | | | | |
Collapse
|
157
|
Di Mauro M, Tozzi A, Calabresi P, Pettorossi VE, Grassi S. Neo-synthesis of estrogenic or androgenic neurosteroids determine whether long-term potentiation or depression is induced in hippocampus of male rat. Front Cell Neurosci 2015; 9:376. [PMID: 26483631 PMCID: PMC4591489 DOI: 10.3389/fncel.2015.00376] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/08/2015] [Indexed: 11/17/2022] Open
Abstract
Estrogenic and androgenic steroids synthesized in the brain may rapidly modulate synaptic plasticity interacting with specific membrane receptors. We explored by electrophysiological recordings in hippocampal slices of male rat the influence of 17β-estradiol (E2) and 5α-dihydrotestosterone (DHT) neo-synthesis on the synaptic changes induced in the CA1 region. Induction of long-term depression (LTD) and depotentiation (DP) by low frequency stimulation (LFS, 15 min-1 Hz) and of long-term potentiation (LTP) by high frequency stimulation (HFS, 1 s-100 Hz), medium (MFS, 1 s-50 Hz), or weak (WFS, 1 s-25 Hz) frequency stimulation was assayed under inhibitors of enzymes converting testosterone (T) into DHT (5α-reductase) and T into E2 (P450-aromatase). We found that LFS-LTD depends on DHT synthesis, since it was fully prevented under finasteride, an inhibitor of DHT synthesis, and rescued by exogenous DHT, while the E2 synthesis was not involved. Conversely, the full development of HFS-LTP requires the synthesis of E2, as demonstrated by the LTP reduction observed under letrozole, an inhibitor of E2 synthesis, and its full rescue by exogenous E2. For intermediate stimulation protocols DHT, but not E2 synthesis, was involved in the production of a small LTP induced by WFS, while the E2 synthesis was required for the MFS-dependent LTP. Under the combined block of DHT and E2 synthesis all stimulation frequencies induced partial LTP. Overall, these results indicate that DHT is required for converting the partial LTP into LTD whereas E2 is needed for the full expression of LTP, evidencing a key role of the neo-synthesis of sex neurosteroids in determining the direction of synaptic long-term effects.
Collapse
Affiliation(s)
- Michela Di Mauro
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia e Biochimica, Università di Perugia Perugia, Italy
| | - Alessandro Tozzi
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia e Biochimica, Università di Perugia Perugia, Italy ; Fondazione Santa Lucia - I.R.C.C.S. Roma, Italy
| | - Paolo Calabresi
- Fondazione Santa Lucia - I.R.C.C.S. Roma, Italy ; Dipartimento di Medicina, Clinica Neurologica, Università di Perugia Perugia, Italy
| | - Vito Enrico Pettorossi
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia e Biochimica, Università di Perugia Perugia, Italy
| | - Silvarosa Grassi
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia e Biochimica, Università di Perugia Perugia, Italy
| |
Collapse
|
158
|
Rossetti MF, Varayoud J, Moreno-Piovano GS, Luque EH, Ramos JG. Environmental enrichment attenuates the age-related decline in the mRNA expression of steroidogenic enzymes and reduces the methylation state of the steroid 5α-reductase type 1 gene in the rat hippocampus. Mol Cell Endocrinol 2015; 412:330-8. [PMID: 26021641 DOI: 10.1016/j.mce.2015.05.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/20/2015] [Accepted: 05/20/2015] [Indexed: 12/16/2022]
Abstract
We analyzed the effects of aging and environmental enrichment on the mRNA expression and DNA methylation state of steroidogenic enzymes in the hippocampus. The effects of aging were evaluated by comparing young adult (90-day-old) and middle-aged (450-day-old) female Wistar rats. To elucidate the effects of environmental enrichment, a subgroup of middle-aged rats exposed to sensory and social stimulation for 105 days was compared to rats housed under standard laboratory conditions. Aging decreased the transcription of neurosteroidogenic-related genes and increased the promoter methylation state of cytochrome P450 side chain cleavage, 3α-hydroxysteroid dehydrogenase (3α-HSD) and 5α-reductase-1. Exposure of middle-aged rats to environmental enrichment increased mRNA levels of 5α-reductase-1, 3α-HSD and cytochrome P450 17α-hydroxylase/c17,20-lyase and decreased the methylation state of the 5α-reductase-1 gene. Thus, sensory and social stimulation attenuate the age-related decline in the mRNA expression of hippocampal steroidogenic enzymes. Epigenetic mechanisms associated with differential promoter methylation could be involved.
Collapse
Affiliation(s)
- María F Rossetti
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina
| | - Guillermo S Moreno-Piovano
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina
| | - Jorge G Ramos
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| |
Collapse
|
159
|
Kumar A, Kumari S, Majhi RK, Swain N, Yadav M, Goswami C. Regulation of TRP channels by steroids: Implications in physiology and diseases. Gen Comp Endocrinol 2015; 220:23-32. [PMID: 25449179 DOI: 10.1016/j.ygcen.2014.10.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 10/09/2014] [Accepted: 10/10/2014] [Indexed: 01/26/2023]
Abstract
While effects of different steroids on the gene expression and regulation are well established, it is proven that steroids can also exert rapid non-genomic actions in several tissues and cells. In most cases, these non-genomic rapid effects of steroids are actually due to intracellular mobilization of Ca(2+)- and other ions suggesting that Ca(2+) channels are involved in such effects. Transient Receptor Potential (TRP) ion channels or TRPs are the largest group of non-selective and polymodal ion channels which cause Ca(2+)-influx in response to different physical and chemical stimuli. While non-genomic actions of different steroids on different ion channels have been established to some extent, involvement of TRPs in such functions is largely unexplored. In this review, we critically analyze the literature and summarize how different steroids as well as their metabolic precursors and derivatives can exert non-genomic effects by acting on different TRPs qualitatively and/or quantitatively. Such effects have physiological repercussion on systems such as in sperm cells, immune cells, bone cells, neuronal cells and many others. Different TRPs are also endogenously expressed in diverse steroid-producing tissues and thus may have importance in steroid synthesis as well, a process which is tightly controlled by the intracellular Ca(2+) concentrations. Tissue and cell-specific expression of TRP channels are also regulated by different steroids. Understanding of the crosstalk between TRP channels and different steroids may have strong significance in physiological, endocrinological and pharmacological context and in future these compounds can also be used as potential biomedicine.
Collapse
Affiliation(s)
- Ashutosh Kumar
- School of Biology, National Institute of Science Education and Research, Sachivalaya Marg, Bhubaneswar, Orissa 751005, India
| | - Shikha Kumari
- School of Biology, National Institute of Science Education and Research, Sachivalaya Marg, Bhubaneswar, Orissa 751005, India
| | - Rakesh Kumar Majhi
- School of Biology, National Institute of Science Education and Research, Sachivalaya Marg, Bhubaneswar, Orissa 751005, India
| | - Nirlipta Swain
- School of Biology, National Institute of Science Education and Research, Sachivalaya Marg, Bhubaneswar, Orissa 751005, India
| | - Manoj Yadav
- School of Biology, National Institute of Science Education and Research, Sachivalaya Marg, Bhubaneswar, Orissa 751005, India
| | - Chandan Goswami
- School of Biology, National Institute of Science Education and Research, Sachivalaya Marg, Bhubaneswar, Orissa 751005, India.
| |
Collapse
|
160
|
Frick KM, Kim J, Tuscher JJ, Fortress AM. Sex steroid hormones matter for learning and memory: estrogenic regulation of hippocampal function in male and female rodents. Learn Mem 2015; 22:472-93. [PMID: 26286657 PMCID: PMC4561402 DOI: 10.1101/lm.037267.114] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/09/2015] [Indexed: 01/24/2023]
Abstract
Ample evidence has demonstrated that sex steroid hormones, such as the potent estrogen 17β-estradiol (E2), affect hippocampal morphology, plasticity, and memory in male and female rodents. Yet relatively few investigators who work with male subjects consider the effects of these hormones on learning and memory. This review describes the effects of E2 on hippocampal spinogenesis, neurogenesis, physiology, and memory, with particular attention paid to the effects of E2 in male rodents. The estrogen receptors, cell-signaling pathways, and epigenetic processes necessary for E2 to enhance memory in female rodents are also discussed in detail. Finally, practical considerations for working with female rodents are described for those investigators thinking of adding females to their experimental designs.
Collapse
Affiliation(s)
- Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Jaekyoon Kim
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Jennifer J Tuscher
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Ashley M Fortress
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| |
Collapse
|
161
|
Bennett GA, Palliser HK, Shaw JC, Walker D, Hirst JJ. Prenatal Stress Alters Hippocampal Neuroglia and Increases Anxiety in Childhood. Dev Neurosci 2015; 37:533-45. [DOI: 10.1159/000437302] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/30/2015] [Indexed: 11/19/2022] Open
Abstract
Prenatal stress has been associated with detrimental outcomes of pregnancy, including altered brain development leading to behavioural pathologies. The neurosteroid allopregnanolone has been implicated in mediating some of these adverse outcomes following prenatal stress due to its potent inhibitory and anxiolytic effects on the brain. The aims of the current study were to characterise key markers for brain development as well as behavioural parameters, adrenocortical responses to handling and possible neurosteroid influences towards outcomes in guinea pig offspring in childhood. Pregnant guinea pig dams were exposed to strobe light for 2 h (9-11 a.m.) on gestational days 50, 55, 60, and 65 and were left to deliver spontaneously at term and care for their litter. Behavioural testing (open-field test, object exploration test) of the offspring was performed at postnatal day 18 (with salivary cortisol and DHEA measured), and brains were collected at post-mortem on day 21. Markers of brain development myelin basic protein (MBP) and glial fibrillary acidic protein (GFAP) were assessed via immunohistochemistry, and the neurosteroid allopregnanolone and its rate-limiting enzymes 5α-reductase types 1 and 2 (5αR1/2) were measured in neonatal brains by radioimmunoassay, reverse transcriptase polymerase chain reaction (RT-PCR), and Western blot, respectively. Brain-derived neurotrophic factor protein was measured as a marker of synaptic plasticity, and GABAA receptor subunit expression was also assessed using RT-PCR. Neonates born from mothers stressed during late pregnancy showed a reduction in both MBP (p < 0.01) and GFAP (p < 0.05) expression in the CA1 region of the hippocampus at 21 days of age. Pups of prenatally stressed pregnancies also showed higher levels of anxiety and neophobic behaviours at the equivalent of childhood (p < 0.05). There were no significant changes observed in allopregnanolone levels, 5αR1/2 expression, or GABAA receptor subunit expression in prenatally stressed neonates compared to controls. This study shows alterations in markers of myelination and reactive astrocytes in the hippocampus of offspring exposed to prenatal stress. These changes are also observed in offspring that show increased anxiety behaviours at the equivalent of childhood, which indicates ongoing structural and functional postnatal changes after prenatal stress exposure.
Collapse
|
162
|
Vierk R, Bayer J, Freitag S, Muhia M, Kutsche K, Wolbers T, Kneussel M, Sommer T, Rune GM. Structure-function-behavior relationship in estrogen-induced synaptic plasticity. Horm Behav 2015; 74:139-48. [PMID: 26012713 DOI: 10.1016/j.yhbeh.2015.05.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/23/2015] [Accepted: 05/17/2015] [Indexed: 01/06/2023]
Abstract
This article is part of a Special Issue "Estradiol and Cognition". In estrogen-induced synaptic plasticity, a correlation of structure, function and behavior in the hippocampus has been widely established. 17ß-estradiol has been shown to increase dendritic spine density on hippocampal neurons and is accompanied by enhanced long-term potentiation and improved performance of animals in hippocampus-dependent memory tests. After inhibition of aromatase, the final enzyme of estradiol synthesis, with letrozole we consistently found a strong and significant impairment of long-term potentiation (LTP) in female mice as early as after six hours of treatment. LTP impairment was followed by loss of hippocampal spine synapses in the hippocampal CA1 area. Interestingly, these effects were not found in male animals. In the Morris water maze test, chronic administration of letrozole did not alter spatial learning and memory in either female or male mice. In humans, analogous effects of estradiol on hippocampal morphology and physiology were observed using neuroimaging techniques. However, similar to our findings in mice, an effect of estradiol on memory performance has not been consistently observed.
Collapse
Affiliation(s)
- R Vierk
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - J Bayer
- Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - S Freitag
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20151 Hamburg, Germany
| | - M Muhia
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20151 Hamburg, Germany
| | - K Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - T Wolbers
- Center for Behavioral Brain Sciences, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - M Kneussel
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20151 Hamburg, Germany
| | - T Sommer
- Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| | - G M Rune
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| |
Collapse
|
163
|
Pallarès M, Llidó A, Mòdol L, Vallée M, Darbra S. Finasteride administration potentiates the disruption of prepulse inhibition induced by forced swim stress. Behav Brain Res 2015; 289:55-60. [DOI: 10.1016/j.bbr.2015.04.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/09/2015] [Accepted: 04/13/2015] [Indexed: 12/31/2022]
|
164
|
Daniel JM, Witty CF, Rodgers SP. Long-term consequences of estrogens administered in midlife on female cognitive aging. Horm Behav 2015; 74:77-85. [PMID: 25917862 PMCID: PMC4573273 DOI: 10.1016/j.yhbeh.2015.04.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/08/2015] [Accepted: 04/12/2015] [Indexed: 12/15/2022]
Abstract
This article is part of a Special Issue "Estradiol and cognition". Many of the biochemical, structural, and functional changes that occur as the female brain ages are influenced by changes in levels of estrogens. Administration of estrogens begun during a critical window near menopause is hypothesized to prevent or delay age-associated cognitive decline. However, due to potential health risks women often limit use of estrogen therapy to a few years to treat menopausal symptoms. The long-term consequences for the brain of short-term use of estrogens are unknown. Interestingly, there are preliminary data to suggest that short-term use of estrogens during the menopausal transition may afford long-term cognitive benefits to women as they age. Thus, there is the intriguing possibility that short-term estrogen therapy may provide lasting benefits to the brain and cognition. The focus of the current review is an examination of the long-term impact for cognition of midlife use of estrogens. We review data from our lab and others indicating that the ability of midlife estrogens to impact estrogen receptors in the hippocampus may contribute to its ability to exert lasting impacts on cognition in aging females.
Collapse
Affiliation(s)
- Jill M Daniel
- Department of Psychology, Tulane University New Orleans, LA 70118, USA; Program in Neuroscience, Tulane University New Orleans, LA 70118, USA.
| | - Christine F Witty
- Program in Neuroscience, Tulane University New Orleans, LA 70118, USA
| | | |
Collapse
|
165
|
Haraguchi S, Yamamoto Y, Suzuki Y, Hyung Chang J, Koyama T, Sato M, Mita M, Ueda H, Tsutsui K. 7α-Hydroxypregnenolone, a key neuronal modulator of locomotion, stimulates upstream migration by means of the dopaminergic system in salmon. Sci Rep 2015. [PMID: 26220247 PMCID: PMC4518220 DOI: 10.1038/srep12546] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Salmon migrate upstream against an opposing current in their natal river. However, the molecular mechanisms that stimulate upstream migratory behavior are poorly understood. Here, we show that 7α-hydroxypregnenolone (7α-OH PREG), a newly identified neuronal modulator of locomotion, acts as a key factor for upstream migration in salmon. We first identified 7α-OH PREG and cytochrome P450 7α-hydroxylase (P4507α), a steroidogenic enzyme producing 7α-OH PREG, in the salmon brain and then found that 7α-OH PREG synthesis in the brain increases during upstream migration. Subsequently, we demonstrated that 7α-OH PREG increases upstream migratory behavior of salmon. We further found that 7α-OH PREG acts on dopamine neurons in the magnocellular preoptic nucleus during upstream migration. Thus, 7α-OH PREG stimulates upstream migratory behavior through the dopaminergic system in salmon. These findings provide new insights into the molecular mechanisms of fish upstream migration.
Collapse
Affiliation(s)
- Shogo Haraguchi
- 1] Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan [2] Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | - Yuzo Yamamoto
- 1] Field Science Center for Northern Biosphere, Hokkaido University, Hokkaido, Japan [2] Current address: Demonstration Laboratory, Marine Ecology Research Institute, Niigata, Japan
| | - Yuko Suzuki
- Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Joon Hyung Chang
- Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Teppei Koyama
- Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Miku Sato
- Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Masatoshi Mita
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | - Hiroshi Ueda
- Field Science Center for Northern Biosphere, Hokkaido University, Hokkaido, Japan
| | - Kazuyoshi Tsutsui
- Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| |
Collapse
|
166
|
MacKenzie G, Maguire J. Neurosteroids and GABAergic signaling in health and disease. Biomol Concepts 2015; 4:29-42. [PMID: 25436563 DOI: 10.1515/bmc-2012-0033] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 10/12/2012] [Indexed: 11/15/2022] Open
Abstract
Endogenous neurosteroids such as allopregnanolone, allotetrahydrodeoxycorticosterone, and androstanediol are synthesized either de novo in the brain from cholesterol or are generated from the local metabolism of peripherally derived progesterone or corticosterone. Fluctuations in neurosteroid concentrations are important in the regulation of a number of physiological responses including anxiety and stress, reproductive, and sexual behaviors. These effects are mediated in part by the direct binding of neurosteroids to γ-aminobutyric acid type-A receptors (GABAARs), resulting in the potentiation of GABAAR-mediated currents. Extrasynaptic GABAARs containing the δ subunit, which contribute to the tonic conductance, are particularly sensitive to low nanomolar concentrations of neurosteroids and are likely their preferential target. Considering the large charge transfer generated by these persistently open channels, even subtle changes in neurosteroid concentrations can have a major impact on neuronal excitability. Consequently, aberrant levels of neurosteroids have been implicated in numerous disorders, including, but not limited to, anxiety, neurodegenerative diseases, alcohol abuse, epilepsy, and depression. Here we review the modulation of GABAAR by neurosteroids and the consequences for health and disease.
Collapse
|
167
|
Injury of the developing cerebellum: a brief review of the effects of endotoxin and asphyxial challenges in the late gestation sheep fetus. THE CEREBELLUM 2015; 13:777-86. [PMID: 25241881 DOI: 10.1007/s12311-014-0602-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The vulnerability of the fetal and newborn brain to events in utero or at birth that cause damage arising from perturbations of cerebral blood flow and metabolism, such as the accumulation of free radicals and excitatory transmitters to neurotoxic levels, has received considerable attention over the last few decades. Attention has usually been on the damage to cerebral structures, particularly, periventricular white matter. The rapid growth of the cerebellum in the latter half of fetal life in species with long gestations, such as the human and sheep, suggests that this may be a particularly important time for the development of cerebellar structure and function. In this short review, we summarize data from recent studies with fetal sheep showing that the developing cerebellum is particularly sensitive to infectious processes, chronic hypoxia and asphyxia. The data demonstrates that the cerebellum should be further studied in insults of this nature as it responds differently to the remainder of the brain. Damage to this region of the brain has implications not only for the development of motor control and posture, but also for higher cognitive processes and the subsequent development of complex behaviours, such as learning, memory and attention.
Collapse
|
168
|
Lin CJ, Fan-Chiang YC, Dufour S, Chang CF. Activation of brain steroidogenesis and neurogenesis during the gonadal differentiation in protandrous black porgy, Acanthopagrus schlegelii. Dev Neurobiol 2015; 76:121-36. [PMID: 25980979 DOI: 10.1002/dneu.22303] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/09/2015] [Accepted: 05/07/2015] [Indexed: 02/05/2023]
Abstract
The early brain development, at the time of gonadal differentiation was investigated using a protandrous teleost, black porgy. This natural model of monosex juvenile fish avoids the potential complexity of sexual dimorphism. Brain neurogenesis was evaluated by histological analyses of the diencephalon, at the time of testicular differentiation (in fish between 90 and 150 days after hatching). Increases in the number of both Nissl-stained total brain cells, and Pcna-immunostained proliferative brain cells were observed in specific area of the diencephalon, such as ventromedialis thalami and posterior preoptic area, revealing brain cell proliferation. qPCR analyses showed significantly higher expression of the radial glial cell marker blbp and neuron marker bdnf. Strong immunohistochemical staining of Blbp and extended cellular projections were observed. A peak expression of aromatase (cyp19a1b), as well as an increase in estradiol (E2 ) content were also detected in the early brain. These data demonstrate that during gonadal differentiation, the early brain exhibits increased E2 synthesis, cell proliferation, and neurogenesis. To investigate the role of E2 in early brain, undifferentiated fish were treated with E2 or aromatase inhibitor (AI). E2 treatment upregulated brain cyp19a1b and blbp expression, and enhanced brain cell proliferation. Conversely, AI reduced brain cell proliferation. Castration experiment did not influence the brain gene expression patterns and the brain cell number. Our data clearly support E2 biosynthesis in the early brain, and that brain E2 induces neurogenesis. These peak activity patterns in the early brain occur at the time of gonad differentiation but are independent of the gonads.
Collapse
Affiliation(s)
- Chien-Ju Lin
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Yi-Chun Fan-Chiang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Sylvie Dufour
- Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS 7208/IRD 207/UPMC/UCBN, Muséum National D'histoire Naturelle, Paris, France
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 20224, Taiwan.,Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan
| |
Collapse
|
169
|
Acaz-Fonseca E, Duran JC, Carrero P, Garcia-Segura LM, Arevalo MA. Sex differences in glia reactivity after cortical brain injury. Glia 2015; 63:1966-1981. [DOI: 10.1002/glia.22867] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 12/11/2022]
Affiliation(s)
| | - Juan C. Duran
- Consejo Superior De Investigaciones Cientificas (CSIC); Instituto Cajal; Madrid Spain
| | - Paloma Carrero
- Consejo Superior De Investigaciones Cientificas (CSIC); Instituto Cajal; Madrid Spain
| | - Luis M. Garcia-Segura
- Consejo Superior De Investigaciones Cientificas (CSIC); Instituto Cajal; Madrid Spain
| | - M. Angeles Arevalo
- Consejo Superior De Investigaciones Cientificas (CSIC); Instituto Cajal; Madrid Spain
| |
Collapse
|
170
|
Bertin J, Dury AY, Ke Y, Ouellet J, Labrie F. Accurate and sensitive liquid chromatography/tandem mass spectrometry simultaneous assay of seven steroids in monkey brain. Steroids 2015; 98:37-48. [PMID: 25697058 DOI: 10.1016/j.steroids.2015.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/23/2015] [Accepted: 02/07/2015] [Indexed: 10/24/2022]
Abstract
BACKGROUND Following its secretion mainly by the adrenal glands, dehydroepiandrosterone (DHEA) acts primarily in the cells/tissues which express the enzymes catalyzing its intracellular conversion into sex steroids by the mechanisms of intracrinology. Although reliable assays of endogenous serum steroids are now available using mass spectrometry (MS)-based technology, sample preparation from tissue matrices remains a challenge. This is especially the case with high lipid-containing tissues such as the brain. With the combination of a UPLC system with a sensitive tandem MS, it is now possible to measure endogenous unconjugated steroids in monkey brain tissue. METHODS A Shimadzu UPLC LC-30AD system coupled to a tandem MS AB Sciex Qtrap 6500 system was used. RESULTS The lower limits of quantifications are achieved at 250 pg/mL for DHEA, 200 pg/mL for 5-androstenediol (5-diol), 12 pg/mL for androstenedione (4-dione), 50 pg/mL for testosterone (Testo), 10 pg/mL for dihydrotestosterone (DHT), 4 pg/mL for estrone (E1) and 1 pg/mL for estradiol (E2). The linearity and accuracy of quality controls (QCs) and endogenous quality controls (EndoQCs) are according to the guidelines of the regulatory agencies for all seven compounds. CONCLUSION We describe a highly sensitive, specific and robust LC-MS/MS method for the simultaneous measurement of seven unconjugated steroids in monkey brain tissue. The single and small amount of sample required using a relatively simple preparation method should be useful for steroid assays in various peripheral tissues and thus help analysis of the role of locally-made sex steroids in the regulation of specific physiological functions.
Collapse
Affiliation(s)
- Jonathan Bertin
- EndoCeutics Inc., 2795 Laurier Blvd, Suite 500, Quebec City, QC G1V 4M7, Canada
| | - Alain Y Dury
- EndoCeutics Inc., 2795 Laurier Blvd, Suite 500, Quebec City, QC G1V 4M7, Canada
| | - Yuyong Ke
- EndoCeutics Inc., 2795 Laurier Blvd, Suite 500, Quebec City, QC G1V 4M7, Canada
| | - Johanne Ouellet
- EndoCeutics Inc., 2795 Laurier Blvd, Suite 500, Quebec City, QC G1V 4M7, Canada
| | - Fernand Labrie
- EndoCeutics Inc., 2795 Laurier Blvd, Suite 500, Quebec City, QC G1V 4M7, Canada.
| |
Collapse
|
171
|
Pinto A, Malacrida B, Oieni J, Serafini MM, Davin A, Galbiati V, Corsini E, Racchi M. DHEA modulates the effect of cortisol on RACK1 expression via interference with the splicing of the glucocorticoid receptor. Br J Pharmacol 2015; 172:2918-27. [PMID: 25626076 PMCID: PMC4439885 DOI: 10.1111/bph.13097] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/21/2014] [Accepted: 01/21/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Dehydroepiandrosterone (DHEA) is thought to be an anti-glucocorticoid hormone known to be fully functional in young people but deficient in aged humans. Our previous data suggest that DHEA not only counteracts the effect of cortisol on RACK1 expression, a protein required both for the correct functioning of immune cells and for PKC-dependent pathway activation, but also modulates the inhibitory effect of cortisol on LPS-induced cytokine production. The purpose of this study was to investigate the effect of DHEA on the splicing mechanism of the human glucocorticoid receptor (GR). EXPERIMENTAL APPROACH The THP1 monocytic cell line was used as a cellular model. Cytokine production was measured by specific elisa. Western blot and real-time RT-PCR were used, where appropriate, to determine the effect of DHEA on GRs, serine/arginine-rich proteins (SRp), and RACK1 protein and mRNA. Small-interfering RNA was used to down-regulate GRβ. KEY RESULTS DHEA induced a dose-related up-regulation of GRβ and GRβ knockdown completely prevented DHEA-induced RACK1 expression and modulation of cytokine release. Moreover, we showed that DHEA influenced the expression of some components of the SRps found within the spliceosome, the main regulators of the alternative splicing of the GR gene. CONCLUSIONS AND IMPLICATIONS These data contribute to our understanding of the mechanism of action of DHEA and its effect on the immune system and as an anti-glucocorticoid agent.
Collapse
Affiliation(s)
- Antonella Pinto
- Department of Drug Sciences – Pharmacology, University of PaviaPavia, Italy
| | - Beatrice Malacrida
- Department of Drug Sciences – Pharmacology, University of PaviaPavia, Italy
| | - Jacopo Oieni
- Department of Drug Sciences – Pharmacology, University of PaviaPavia, Italy
| | | | | | - Valentina Galbiati
- Laboratory of Toxicology, DiSFeB, Università degli Studi di MilanoMilan, Italy
| | - Emanuela Corsini
- Laboratory of Toxicology, DiSFeB, Università degli Studi di MilanoMilan, Italy
| | - Marco Racchi
- Department of Drug Sciences – Pharmacology, University of PaviaPavia, Italy
| |
Collapse
|
172
|
Oyola MG, Zuloaga DG, Carbone D, Malysz AM, Acevedo-Rodriguez A, Handa RJ, Mani SK. CYP7B1 Enzyme Deletion Impairs Reproductive Behaviors in Male Mice. Endocrinology 2015; 156:2150-61. [PMID: 25849728 PMCID: PMC4430609 DOI: 10.1210/en.2014-1786] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In addition to androgenic properties mediated via androgen receptors, dihydrotestosterone (DHT) also regulates estrogenic functions via an alternate pathway. These estrogenic functions of DHT are mediated by its metabolite 5α-androstane-3β, 17β-diol (3β-diol) binding to estrogen receptor β (ERβ). CYP7B1 enzyme converts 3β-diol to inactive 6α- or 7α-triols and plays an important role as a regulator of estrogenic functions mediated by 3β-diol. Using a mutant mouse carrying a null mutation for the CYP7B1 gene (CYP7B1KO), we examined the contribution of CYP7B1 on physiology and behavior. Male, gonadectomized (GDX) CYP7B1KO and their wild type (WT) littermates were assessed for their behavioral phenotype, anxiety-related behavioral measures, and hypothalamic pituitary adrenal axis reactivity. No significant effects of genotype were evident in anxiety-like behaviors in open field (OFA), light-dark (L/D) exploration, and elevated plus maze (EPM). T significantly reduced open arm time on the EPM while not affecting L/D exploratory and OFA behaviors in CYP7B1KO and WT littermates. T also attenuated the corticosterone response to EPM in both genotypes. In GDX animals, T was able to reinstate male-specific reproductive behaviors (latencies and number of mounts, intromission, and ejaculations) in the WT but not in the CYP7B1KO mice. The male reproductive behavior defect in CYP7B1KO seems to be due to their inability to distinguish olfactory cues from a behavioral estrus female. CYP7B1KO mice also showed a reduction in androgen receptor mRNA expression in the olfactory bulb. Our findings suggest a novel role for the CYP7B1 enzyme in the regulation of male reproductive behaviors.
Collapse
Affiliation(s)
- Mario G Oyola
- Department of Neuroscience (M.G.O., A.A.-R., S.K.M.), Molecular & Cellular Biology (A.M.M., S.K.M.), Memory and Brain Research Center (M.G.O., A.M.M., A.A.-R., S.K.M.), Baylor College of Medicine, Houston, Texas 77030; and Department Of Basic Medical Sciences (D.G.Z., D.C., R.J.H.), University of Arizona College of Medicine, Phoenix, Arizona 85004
| | | | | | | | | | | | | |
Collapse
|
173
|
Brandt N, Vierk R, Fester L, Zhou L, Imholz P, Rune GM. [Gender and the effects of steroid hormones in the central nervous system]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2015; 57:1054-60. [PMID: 25091372 DOI: 10.1007/s00103-014-2014-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Degenerative diseases of the central nervous system, the incidence and prevalence of which vary between men and women, often manifest in the hippocampus. Neurosteroids are hormones that are synthesized in the CNS, and it is here that they exert their influence. Estrogen and testosterone are examples of neurosteroid hormones. In the hippocampus, an area of the brain closely associated with learning and memory, the local synthesis of estrogen in females, but not in males, is essential for the plasticity and stability of the synapses. The inhibition of estrogen synthesis in the female hippocampus causes a reduction in long-term potentiation (LTP), an electrophysiological parameter of learning and memory, thus resulting in a significant loss of synapses. In light of this, the fact that estrogen has been attributed with many neuroprotective functions in degenerative diseases of the CNS suggests that therapeutic concepts involving the use of estrogen are possibly only effective in women, but not in men. These findings similarly provide a basis for explaining the gender dimorphism that has been found in certain degenerative illnesses of the CNS.
Collapse
Affiliation(s)
- N Brandt
- Institut für Neuroanatomie, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Deutschland
| | | | | | | | | | | |
Collapse
|
174
|
Abstract
OBJECTIVE To provide an overview of the preclinical literature on progesterone for neuroprotection after traumatic brain injury and to describe unique features of developmental brain injury that should be considered when evaluating the therapeutic potential for progesterone treatment after pediatric traumatic brain injury. DATA SOURCES National Library of Medicine PubMed literature review. STUDY SELECTION The mechanisms of neuroprotection by progesterone are reviewed, and the preclinical literature using progesterone treatment in adult animal models of traumatic brain injury is summarized. Unique features of the developing brain that could either enhance or limit the efficacy of neuroprotection by progesterone are discussed, and the limited preclinical literature using progesterone after acute injury to the developing brain is described. Finally, the current status of clinical trials of progesterone for adult traumatic brain injury is reviewed. DATA EXTRACTION AND DATA SYNTHESIS Progesterone is a pleiotropic agent with beneficial effects on secondary injury cascades that occur after traumatic brain injury, including cerebral edema, neuroinflammation, oxidative stress, and excitotoxicity. More than 40 studies have used progesterone for treatment after traumatic brain injury in adult animal models, with results summarized in tabular form. However, very few studies have evaluated progesterone in pediatric animal models of brain injury. To date, two human phase II trials of progesterone for adult traumatic brain injury have been published, and two multicenter phase III trials are underway. CONCLUSIONS The unique features of the developing brain from that of a mature adult brain make it necessary to independently study progesterone in clinically relevant, immature animal models of traumatic brain injury. Additional preclinical studies could lead to the development of a novel neuroprotective therapy that could reduce the long-term disability in head-injured children and could potentially provide benefit in other forms of pediatric brain injury (global ischemia, stroke, and statue epilepticus).
Collapse
|
175
|
Barth C, Villringer A, Sacher J. Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods. Front Neurosci 2015; 9:37. [PMID: 25750611 PMCID: PMC4335177 DOI: 10.3389/fnins.2015.00037] [Citation(s) in RCA: 404] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 01/26/2015] [Indexed: 12/21/2022] Open
Abstract
Sex hormones have been implicated in neurite outgrowth, synaptogenesis, dendritic branching, myelination and other important mechanisms of neural plasticity. Here we review the evidence from animal experiments and human studies reporting interactions between sex hormones and the dominant neurotransmitters, such as serotonin, dopamine, GABA and glutamate. We provide an overview of accumulating data during physiological and pathological conditions and discuss currently conceptualized theories on how sex hormones potentially trigger neuroplasticity changes through these four neurochemical systems. Many brain regions have been demonstrated to express high densities for estrogen- and progesterone receptors, such as the amygdala, the hypothalamus, and the hippocampus. As the hippocampus is of particular relevance in the context of mediating structural plasticity in the adult brain, we put particular emphasis on what evidence could be gathered thus far that links differences in behavior, neurochemical patterns and hippocampal structure to a changing hormonal environment. Finally, we discuss how physiologically occurring hormonal transition periods in humans can be used to model how changes in sex hormones influence functional connectivity, neurotransmission and brain structure in vivo.
Collapse
Affiliation(s)
- Claudia Barth
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany ; Clinic of Cognitive Neurology, University of Leipzig Leipzig, Germany ; Leipzig Research Center for Civilization Diseases, University of Leipzig Leipzig, Germany ; Integrated Research and Treatment Center Adiposity Diseases, University of Leipzig Leipzig, Germany ; Berlin School of Mind and Brain, Mind and Brain Institute Berlin, Germany
| | - Julia Sacher
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany ; Clinic of Cognitive Neurology, University of Leipzig Leipzig, Germany
| |
Collapse
|
176
|
Yan M, Liu AL, Zhou SJ, Tang LP, Ou YQ, Yin W, Chen XY, Su XW, Qiu PX, Huang YJ, Zhang JX, Yan GM, Leng TD. Characterization of a Synthetic Steroid 24-keto-cholest-5-en-3β, 19-diol as a Neuroprotectant. CNS Neurosci Ther 2015; 21:486-95. [PMID: 25678034 DOI: 10.1111/cns.12378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Neuroactive steroids represent promising candidates for the treatment of neurological disorders. Our previous studies identified an endogenous steroid cholestane-3β, 5α, 6β-triol (Triol) as a novel neuroprotectant. AIM We aimed to identify a potent candidate for stroke treatment through a screening of Triol analogs. METHODS Hypoxia- and glutamate-induced neuronal injury models in vitro, middle cerebral artery occlusion (MCAO)-induced cerebral ischemia model in vivo, fluorescein diacetate (FDA) for alive and propidium iodide (PI) for dead staining, LDH assay, and calcium imaging techniques were used. RESULTS 24-keto-cholest-5-en-3β, 19-diol (Diol) showed the most potent neuroprotective effect among the screened structurally related compounds. FDA and PI staining showed that Diol concentration dependently increased the survival rate of cerebellar granule neurons (CGNs) challenged with glutamate or hypoxia, with an effective threshold concentration of 2.5 μM. Consistently, the quantitative LDH release assay showed the same concentration-dependent protection in both models. Diol, at 10 μM, potently decreased glutamate- and hypoxia-induced LDH release from 51.6 to 18.2% and 62.1 to 21.7%, respectively, which values are close to the normal LDH release (~16-18%). Moreover, we found Diol effectively decreased MCAO-induced infarction volume in mice from ~23% to 7%, at a dose of 6 mg/kg. We further explored the underlying mechanism and found that Diol attenuated NMDA-induced intracellular calcium ([Ca(2+) ]i ) increase in cortical neurons, suggesting a negative modulatory effect on NMDA receptor. CONCLUSION Taken together, we identified Diol as a potent neuroprotectant. It may represent a novel and promising neuroprotectant for stroke intervention.
Collapse
Affiliation(s)
- Min Yan
- Department of Pharmacology, Zhongshan Medical College, Sun Yat-Sen University, Guangzhou, China
| | - Ai-Ling Liu
- Department of Pharmacology, Zhongshan Medical College, Sun Yat-Sen University, Guangzhou, China
| | - Shu-Jia Zhou
- School of pharmaceutical sciences, Sun Yat-Sen University, Guangzhou, China
| | - Li-Peng Tang
- Department of Pharmacology, Zhongshan Medical College, Sun Yat-Sen University, Guangzhou, China
| | - Yan-Qiu Ou
- Department of Cardiovascular Epidemiology, Guangdong General Hospital, Guangzhou, China
| | - Wei Yin
- Department of Pharmacology, Zhongshan Medical College, Sun Yat-Sen University, Guangzhou, China
| | - Xin-Ying Chen
- School of pharmaceutical sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xing-Wen Su
- Department of Pharmacology, Zhongshan Medical College, Sun Yat-Sen University, Guangzhou, China
| | - Peng-Xin Qiu
- Department of Pharmacology, Zhongshan Medical College, Sun Yat-Sen University, Guangzhou, China
| | - Yi-Jun Huang
- Department of Pharmacology, Zhongshan Medical College, Sun Yat-Sen University, Guangzhou, China
| | - Jing-Xia Zhang
- School of pharmaceutical sciences, Sun Yat-Sen University, Guangzhou, China
| | - Guang-Mei Yan
- Department of Pharmacology, Zhongshan Medical College, Sun Yat-Sen University, Guangzhou, China
| | - Tian-Dong Leng
- Department of Pharmacology, Zhongshan Medical College, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
177
|
5α-Reduced neurosteroids sex-dependently reverse central prenatal programming of neuroendocrine stress responses in rats. J Neurosci 2015; 35:666-77. [PMID: 25589761 PMCID: PMC4293416 DOI: 10.1523/jneurosci.5104-13.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Maternal social stress during late pregnancy programs hypothalamo-pituitary-adrenal (HPA) axis hyper-responsiveness to stressors, such that adult prenatally stressed (PNS) offspring display exaggerated HPA axis responses to a physical stressor (systemic interleukin-1β; IL-1β) in adulthood, compared with controls. IL-1β acts via a noradrenergic relay from the nucleus tractus solitarii (NTS) to corticotropin releasing hormone neurons in the paraventricular nucleus (PVN). Neurosteroids can reduce HPA axis responses, so allopregnanolone and 3β-androstanediol (3β-diol; 5α-reduced metabolites of progesterone and testosterone, respectively) were given subacutely (over 24 h) to PNS rats to seek reversal of the "programmed" hyper-responsive HPA phenotype. Allopregnanolone attenuated ACTH responses to IL-1β (500 ng/kg, i.v.) in PNS females, but not in PNS males. However, 3β-diol normalized HPA axis responses to IL-1β in PNS males. Impaired testosterone and progesterone metabolism or increased secretion in PNS rats was indicated by greater plasma testosterone and progesterone concentrations in male and female PNS rats, respectively. Deficits in central neurosteroid production were indicated by reduced 5α-reductase mRNA levels in both male and female PNS offspring in the NTS, and in the PVN in males. In PNS females, adenovirus-mediated gene transfer was used to upregulate expression of 5α-reductase and 3α-hydroxysteroid dehydrogenase mRNAs in the NTS, and this normalized hyperactive HPA axis responses to IL-1β. Thus, downregulation of neurosteroid production in the brain may underlie HPA axis hyper-responsiveness in prenatally programmed offspring, and administration of 5α-reduced steroids acutely to PNS rats overrides programming of hyperactive HPA axis responses to immune challenge in a sex-dependent manner.
Collapse
|
178
|
Seljeset S, Laverty D, Smart TG. Inhibitory Neurosteroids and the GABAA Receptor. DIVERSITY AND FUNCTIONS OF GABA RECEPTORS: A TRIBUTE TO HANNS MÖHLER, PART A 2015; 72:165-87. [DOI: 10.1016/bs.apha.2014.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
179
|
Pluchino N, Drakopoulos P, Bianchi-Demicheli F, Wenger JM, Petignat P, Genazzani AR. Neurobiology of DHEA and effects on sexuality, mood and cognition. J Steroid Biochem Mol Biol 2015; 145:273-80. [PMID: 24892797 DOI: 10.1016/j.jsbmb.2014.04.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/14/2014] [Accepted: 04/20/2014] [Indexed: 10/25/2022]
Abstract
Dehydroepiandrosterone (DHEA) and its sulfate ester, DHEAS, are the most abundant steroid hormones in the humans. However, their physiological significance, their mechanisms of action and their possible roles as treatment are not fully clarified. Biological actions of DHEA(S) in the brain involve neuroprotection, neurite growth, neurogenesis and neuronal survival, apoptosis, catecholamine synthesis and secretion, as well as anti-oxidant, anti-inflammatory and antiglucocorticoid effects. In addition, DHEA affects neurosteroidogenis and endorphin synthesis/release. We also demonstrated in a model of ovariectomized rats that DHEA therapy increases proceptive behaviors, already after 1 week of treatment, affecting central function of sexual drive. In women, the analyses of clinical outcomes are far from being conclusive and many issues should still be addressed. Although DHEA preparations have been available in the market since the 1990s, there are very few definitive reports on the biological functions of this steroid. We demonstrate that 1 year DHEA administration at the dose of 10mg provided a significant improvement in comparison with vitamin D in sexual function and in frequency of sexual intercourse in early postmenopausal women. Among symptomatic women, the spectrum of symptoms responding to DHEA requires further investigation, to define the type of sexual symptoms (e.g. decreased sexual function or hypoactive sexual desire disorder) and the degree of mood/cognitive symptoms that could be responsive to hormonal treatment. In this regard, our findings are promising, although they need further exploration with a larger and more representative sample size. This article is part of a Special Issue entitled: Essential role of DHEA.
Collapse
Affiliation(s)
- N Pluchino
- Division of Gynecology and Obstetrics, University Hospital of Geneva, Geneva, Switzerland.
| | - P Drakopoulos
- Division of Gynecology and Obstetrics, University Hospital of Geneva, Geneva, Switzerland
| | - F Bianchi-Demicheli
- Division of Gynecology and Obstetrics, University Hospital of Geneva, Geneva, Switzerland
| | - J M Wenger
- Division of Gynecology and Obstetrics, University Hospital of Geneva, Geneva, Switzerland
| | - P Petignat
- Division of Gynecology and Obstetrics, University Hospital of Geneva, Geneva, Switzerland
| | - A R Genazzani
- Division of Gynecology and Obstetrics, University of Pisa, Pisa, Italy
| |
Collapse
|
180
|
Spanic T, Fabjan T, Majdic G. Expression levels of mRNA for neurosteroidogenic enzymes 17β-HSD, 5α-reductase, 3α-HSD and cytochrome P450 aromatase in the fetal wild type and SF-1 knockout mouse brain. Endocr Res 2015; 40:44-8. [PMID: 25111584 DOI: 10.3109/07435800.2014.933974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The presence of steroidogenic enzymes in the brain suggests de novo synthesis of steroid hormones in the brain. The current study was designed to determine the developmental profiles of cytochrome p450 aromatase (cyp19), 17β-hydroxysteroid dehydrogenase (17β-HSD), 5α-reductase type I and 3α-hydroxysteroid dehydrogenase (3α-HSD) mRNA expression levels in the fetal mouse brain and potential influence of peripheral steroids, and the steroidogenic factor 1 (SF-1) gene on their expression. Brains were collected from WT and SF-1 knockout male and female fetuses at embryonic (E) days E12, E14, E16, and E18. Quantitative PCR analyses revealed age related increases in the expression levels of 17β-HSD and 5α-reductase. Differences between genotypes in the expression levels of 17β-HSD and 5α-reductase were detected on E14, with reduced levels of expression in SF-1 KO males and females for 17β-HSD and only between females for 5α-reductase. Expression of 3α-HSD mRNA did not differ significantly between sexes, age groups or genotypes with the exception of SF-1 KO males, which had an unexplained increase in mRNA for this enzyme on day E18. Expression of cyp19 was at the limit of detection and could not be analyzed effectively. There were no sex differences and, with the exception of small difference on E14 for 17β-HSD and 5α-reductase, no differences between genotypes. The results suggest that gonadal steroids do not influence the production of neurosteroids in the fetal brain, nor does SF-1 play a major role in the regulation of steroidogenic enzyme expression in the brain.
Collapse
Affiliation(s)
- Tanja Spanic
- Center for Animal Genomics, Veterinary Faculty, University of Ljubljana , Ljubljana , Slovenia
| | | | | |
Collapse
|
181
|
Soma KK, Rendon NM, Boonstra R, Albers HE, Demas GE. DHEA effects on brain and behavior: insights from comparative studies of aggression. J Steroid Biochem Mol Biol 2015; 145:261-72. [PMID: 24928552 DOI: 10.1016/j.jsbmb.2014.05.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/09/2014] [Accepted: 05/15/2014] [Indexed: 12/24/2022]
Abstract
Historically, research on the neuroendocrinology of aggression has been dominated by the paradigm that the brain receives sex steroid hormones, such as testosterone (T), from the gonads, and then these gonadal hormones modulate behaviorally relevant neural circuits. While this paradigm has been extremely useful for advancing the field, recent studies reveal important alternatives. For example, most vertebrate species are seasonal breeders, and many species show aggression outside of the breeding season, when the gonads are regressed and circulating levels of gonadal steroids are relatively low. Studies in diverse avian and mammalian species suggest that adrenal dehydroepiandrosterone (DHEA), an androgen precursor and prohormone, is important for the expression of aggression when gonadal T synthesis is low. Circulating DHEA can be converted into active sex steroids within the brain. In addition, the brain can synthesize sex steroids de novo from cholesterol, thereby uncoupling brain steroid levels from circulating steroid levels. These alternative mechanisms to provide sex steroids to specific neural circuits may have evolved to avoid the costs of high circulating T levels during the non-breeding season. Physiological indicators of season (e.g., melatonin) may allow animals to switch from one neuroendocrine mechanism to another across the year. DHEA and neurosteroids are likely to be important for the control of multiple behaviors in many species, including humans. These studies yield fundamental insights into the regulation of DHEA secretion, the mechanisms by which DHEA affects behavior, and the brain regions and neural processes that are modulated by DHEA. It is clear that the brain is an important site of DHEA synthesis and action. This article is part of a Special Issue entitled 'Essential role of DHEA'.
Collapse
Affiliation(s)
- Kiran K Soma
- Departments of Psychology and Zoology, Graduate Program in Neuroscience, and the Brain Research Centre, University of British Columbia, Vancouver, BC, Canada V6T 1Z4.
| | - Nikki M Rendon
- Department of Biology, Program in Neuroscience, and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| | - Rudy Boonstra
- Centre for Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada M1C 1A4
| | - H Elliott Albers
- Neuroscience Institute, and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303, USA
| | - Gregory E Demas
- Department of Biology, Program in Neuroscience, and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
182
|
Nakamura Y, Darnieder LM, Deeb TZ, Moss SJ. Regulation of GABAARs by phosphorylation. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2015; 72:97-146. [PMID: 25600368 PMCID: PMC5337123 DOI: 10.1016/bs.apha.2014.11.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
γ-Aminobutyric acid type A receptors (GABAARs) are the principal mediators of fast synaptic inhibition in the brain as well as the low persistent extrasynaptic inhibition, both of which are fundamental to proper brain function. Thus unsurprisingly, deficits in GABAARs are implicated in a number of neurological disorders and diseases. The complexity of GABAAR regulation is determined not only by the heterogeneity of these receptors but also by its posttranslational modifications, the foremost, and best characterized of which is phosphorylation. This review will explore the details of this dynamic process, our understanding of which has barely scratched the surface. GABAARs are regulated by a number of kinases and phosphatases, and its phosphorylation plays an important role in governing its trafficking, expression, and interaction partners. Here, we summarize the progress in understanding the role phosphorylation plays in the regulation of GABAARs. This includes how phosphorylation can affect the allosteric modulation of GABAARs, as well as signaling pathways that affect GABAAR phosphorylation. Finally, we discuss the dysregulation of GABAAR phosphorylation and its implication in disease processes.
Collapse
|
183
|
Fortress AM, Heisler JD, Frick KM. The mTOR and canonical Wnt signaling pathways mediate the mnemonic effects of progesterone in the dorsal hippocampus. Hippocampus 2014; 25:616-29. [DOI: 10.1002/hipo.22398] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Ashley M. Fortress
- Department of Psychology; University of Wisconsin-Milwaukee; Milwaukee Wisconsin
| | - John D. Heisler
- Department of Psychology; University of Wisconsin-Milwaukee; Milwaukee Wisconsin
| | - Karyn M. Frick
- Department of Psychology; University of Wisconsin-Milwaukee; Milwaukee Wisconsin
| |
Collapse
|
184
|
Barros LA, Tufik S, Andersen ML. The role of progesterone in memory: an overview of three decades. Neurosci Biobehav Rev 2014; 49:193-204. [PMID: 25434881 DOI: 10.1016/j.neubiorev.2014.11.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 11/18/2014] [Accepted: 11/20/2014] [Indexed: 12/24/2022]
Abstract
Memory comprises acquisition, consolidation and retrieval of information. Many substances can influence these different phases. It is well demonstrated that sex hormones, mainly estrogen, impact cognitive function. More recently, progesterone has also been documented as playing an important role in cognition, since it influences brain regions involved in memory. Currently, many women are under hormone treatment, which contain progesterone to decrease the risk of development of endometrial cancer. This affords the opportunity to study the real effects of this hormonal replacement on cognition. There are many contradictory results regarding the role of progesterone in memory. Therefore, the aim of this review was to synthesize these studies using the new perspective of the influence of hormone replacement on cognition in women.
Collapse
Affiliation(s)
- L A Barros
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros, 925, Vila Clementino, São Paulo, SP, Brazil
| | - S Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros, 925, Vila Clementino, São Paulo, SP, Brazil
| | - M L Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros, 925, Vila Clementino, São Paulo, SP, Brazil.
| |
Collapse
|
185
|
Fry JP, Li KY, Devall AJ, Cockcroft S, Honour JW, Lovick TA. Fluoxetine elevates allopregnanolone in female rat brain but inhibits a steroid microsomal dehydrogenase rather than activating an aldo-keto reductase. Br J Pharmacol 2014; 171:5870-80. [PMID: 25161074 PMCID: PMC4290723 DOI: 10.1111/bph.12891] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 07/03/2014] [Accepted: 08/18/2014] [Indexed: 12/20/2022] Open
Abstract
Background and Purpose Fluoxetine, a selective serotonin reuptake inhibitor, elevates brain concentrations of the neuroactive progesterone metabolite allopregnanolone, an effect suggested to underlie its use in the treatment of premenstrual dysphoria. One report showed fluoxetine to activate the aldo-keto reductase (AKR) component of 3α-hydroxysteroid dehydrogenase (3α-HSD), which catalyses production of allopregnanolone from 5α-dihydroprogesterone. However, this action was not observed by others. The present study sought to clarify the site of action for fluoxetine in elevating brain allopregnanolone. Experimental Approach Adult male rats and female rats in dioestrus were treated with fluoxetine and their brains assayed for allopregnanolone and its precursors, progesterone and 5α-dihydroprogesterone. Subcellular fractions of rat brain were also used to investigate the actions of fluoxetine on 3α-HSD activity in both the reductive direction, producing allopregnanolone from 5α-dihydroprogesterone, and the reverse oxidative direction. Fluoxetine was also tested on these recombinant enzyme activities expressed in HEK cells. Key Results Short-term treatment with fluoxetine increased brain allopregnanolone concentrations in female, but not male, rats. Enzyme assays on native rat brain fractions and on activities expressed in HEK cells showed fluoxetine did not affect the AKR producing allopregnanolone from 5α-dihydroprogesterone but did inhibit the microsomal dehydrogenase oxidizing allopregnanolone to 5α-dihydroprogesterone. Conclusions and Implications Fluoxetine elevated allopregnanolone in female rat brain by inhibiting its oxidation to 5α-dihydroprogesterone by a microsomal dehydrogenase. This is a novel site of action for fluoxetine, with implications for the development of new agents and/or dosing regimens to raise brain allopregnanolone.
Collapse
Affiliation(s)
- J P Fry
- Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), London, UK
| | | | | | | | | | | |
Collapse
|
186
|
Sexual neurosteroids and synaptic plasticity in the hippocampus. Brain Res 2014; 1621:162-9. [PMID: 25452021 DOI: 10.1016/j.brainres.2014.10.033] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 10/18/2014] [Indexed: 11/23/2022]
Abstract
Sexual neurosteroids (SN), namely 17β-estradiol (E2) and 5α-dehydrotestosterone (DHT), are synthesized in the hippocampus, where they induce circuit modifications by changing the number of excitatory spine synapses in a paracrine and sex-specific manner. The mechanisms of this sex-specific synapse turnover, which are likely to affect cognitive functions, are poorly understood. We found that hippocampal neurons synthesize estradiol, which maintains LTP and synapses in females but not in males. In females, inhibition of estradiol synthesis results in impairment of LTP and synapse loss. These effects were not seen in males. The essential role of local estrogen on the stability and maintenance of connectivity in the hippocampus is consistent with age-related cognitive decline in women after menopause. In male animals the regulation of synaptic stability and plasticity by locally synthesized sexual steroids remains to be clarified. This article is part of a Special Issue entitled SI: Brain and Memory.
Collapse
|
187
|
Dvela-Levitt M, Ami HCB, Rosen H, Shohami E, Lichtstein D. Ouabain improves functional recovery following traumatic brain injury. J Neurotrauma 2014; 31:1942-7. [PMID: 25007121 DOI: 10.1089/neu.2014.3544] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The cardiac steroid ouabain binds to Na(+), K(+)-ATPase and inhibits its activity. Administration of the compound to animals and humans causes an increase in the force of contraction of heart muscle and stabilizes heart rate. In addition, this steroid promotes the growth of cardiac, vascular, and neuronal cells both in vitro and in vivo. We studied the effects of ouabain on mouse recovery following closed head injury (CHI), a model for traumatic brain injury. We show that chronic (three times a week), but not acute, intraperitoneal administration of a low dose (1 μg/kg) of ouabain significantly improves mouse recovery and functional outcome. The improvement in mouse performance was accompanied by a decrease in lesion size, estimated 43 d following the trauma. In addition, mice that underwent CHI and were treated with ouabain showed an increase in the number of proliferating cells in the subventricular zone and in the area surrounding the site of injury. Determination of the identity of the proliferating cells in the area surrounding the trauma showed that whereas there was no change in the proliferation of endothelial cells or astrocytes, neuronal cell proliferation almost doubled in the ouabain-treated mice in comparison with that of the vehicle animals. These results point to a neuroprotective effects of low doses of ouabain and imply its involvement in brain recovery and neuronal regeneration. This suggests that ouabain and maybe other cardiac steroids may be used for the treatment of traumatic brain injury.
Collapse
Affiliation(s)
- Moran Dvela-Levitt
- 1 Department of Medical Neurobiology, The Hebrew University-Hadassah Medical School , Jerusalem, Israel
| | | | | | | | | |
Collapse
|
188
|
Neuroprotection by the synthetic neurosteroid enantiomers ent-PREGS and ent-DHEAS against Aβ₂₅₋₃₅ peptide-induced toxicity in vitro and in vivo in mice. Psychopharmacology (Berl) 2014; 231:3293-3312. [PMID: 24481566 PMCID: PMC4188413 DOI: 10.1007/s00213-014-3435-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 12/19/2013] [Indexed: 10/25/2022]
Abstract
RATIONALE Pregnenolone sulfate (PREGS) and dehydroepiandrosterone sulphate (DHEAS) are pro-amnesic, anti-amnesic and neuroprotective steroids in rodents. In Alzheimer's disease (AD) patient's brains, their low concentrations are correlated with high levels of Aβ and tau proteins. The unnatural enantiomer ent-PREGS enhanced memory in rodents. We investigated here whether ent-PREGS and ent-DHEAS could be neuroprotective in AD models. OBJECTIVE The effects of PREGS, ent-PREGS, DHEAS and ent-DHEAS against Aβ25-35 peptide-induced toxicity were examined in vitro on B104 neuroblastoma cells and in vivo in mice. METHODS B104 cells pretreated with the steroids before Aβ25-35 were analysed by flow cytometry measuring cell viability and death processes. Mice injected intracerebroventricularly with Aβ25-35 and the steroids were analysed for their memory abilities. Additionally, lipid peroxidation levels in the hippocampus were measured. RESULTS ent-PREGS and PREGS significantly attenuated the Aβ25-35-induced decrease in cell viability. Both steroids prevented the Aβ25-35-induced increase in late apoptotic cells. PREGS further attenuated the ratio of necrotic cells. ent-DHEAS and DHEAS significantly reduced the Aβ25-35-induced toxicity and prevented the cells from entering late apoptosis and necrosis. All steroids stimulated neurite outgrowth per se and prevented the Aβ25-35-induced decrease. In vivo, ent-PREGS and ent-DHEAS significantly attenuated the Aβ25-35-induced decrease in memory (spontaneous alternation and passive avoidance) and an increase in lipid peroxidation levels. In contrast to the natural steroids, both enantiomers prevented amnesia when injected 6 h before Aβ25-35 in contrast to the natural steroids. CONCLUSION The unnatural steroids ent-PREGS and ent-DHEAS are potent neuroprotective agents and could be effective therapeutical tools in AD.
Collapse
|
189
|
Maldonado-Devincci AM, Beattie MC, Morrow DH, McKinley RE, Cook JB, O’Buckley TK, Morrow AL. Reduction of circulating and selective limbic brain levels of (3α,5α)-3-hydroxy-pregnan-20-one (3α,5α-THP) following forced swim stress in C57BL/6J mice. Psychopharmacology (Berl) 2014; 231:3281-92. [PMID: 24744202 PMCID: PMC4335654 DOI: 10.1007/s00213-014-3552-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/16/2014] [Indexed: 01/12/2023]
Abstract
RATIONALE Stress activates the hypothalamic-pituitary-adrenal (HPA) axis, and GABAergic neuroactive steroids contribute to homeostatic regulation of this circuitry. Acute forced swim stress (FSS) increases plasma, cortical, and hypothalamic (3α,5α)-3-hydroxy-pregnan-20-one (3α,5α-THP) levels in rats. However, there have not been systemic investigations of acute stress on changes in plasma and brain levels of 3α,5α-THP in mouse models. OBJECTIVES The present experiments aimed to assess circulating and local brain levels of 3α,5α-THP following acute FSS in C57BL/6J mice. METHODS Mice were exposed to FSS (10 min), and 50 min later, blood and brains were collected. Circulating pregnenolone and 3α,5α-THP levels were assessed in serum. Free-floating brain sections (40 μm, four to five sections/region) were immunostained and analyzed in cortical and limbic brain structures. RESULTS FSS decreased circulating 3α,5α-THP (-41.6 ± 10.4 %) and reduced 3α,5α-THP immunolabeling in the paraventricular nucleus of the hypothalamus (-15.2 ± 5.7 %), lateral amygdala (LA, -31.1 ± 13.4 %), and nucleus accumbens (NAcc) shell (-31.9 ± 14.6). Within the LA, vesicular glutamate transporter 1 (VGLUT1) and vesicular GABA transporter were localized in 3α,5α-THP-positively stained cells, while in the NAcc shell, only VGLUT1 was localized in 3α,5α-THP-positively stained cells, suggesting that both glutamatergic and GABAergic cells within the LA are 3α,5α-THP-positive, while in the NAcc shell, 3α,5α-THP only localizes to glutamatergic cells. CONCLUSIONS The decrease in circulating and brain levels of 3α,5α-THP may be due to alterations in the biosynthesis/metabolism or changes in the regulation of the HPA axis following FSS. Changes in GABAergic neuroactive steroids in response to stress likely mediate functional adaptations in neuronal activity. This may provide a potential targeted therapeutic avenue to address maladaptive stress responsivity.
Collapse
Affiliation(s)
- Antoniette M. Maldonado-Devincci
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC 27599, USA,Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew C. Beattie
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC 27599, USA
| | - Danielle H. Morrow
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC 27599, USA
| | - Raechel E. McKinley
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC 27599, USA
| | - Jason B. Cook
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC 27599, USA,Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Todd K. O’Buckley
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC 27599, USA
| | - A. Leslie Morrow
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC 27599, USA,Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
190
|
Molina-Carballo A, Justicia-Martínez F, Moreno-Madrid F, Cubero-Millán I, Machado-Casas I, Moreno-García L, León J, Luna-Del-Castillo JDD, Uberos J, Muñoz-Hoyos A. Differential responses of two related neurosteroids to methylphenidate based on ADHD subtype and the presence of depressive symptomatology. Psychopharmacology (Berl) 2014; 231:3635-45. [PMID: 24599397 DOI: 10.1007/s00213-014-3514-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/15/2014] [Indexed: 11/25/2022]
Abstract
RATIONALE Attention deficit with hyperactivity disorder is a neurodevelopmental disorder associated with alterations in the prefrontal cortex via dopaminergic and noradrenergic neurotransmission. Neurosteroids (e.g. allopregnanolone and dehydroepiandrosterone) modulate the release of multiple neurotransmitters. OBJECTIVE This study aims to determine the baseline concentrations and daily variations in allopregnanolone and dehydroepiandrosterone in children with attention deficit hyperactivity disorder (ADHD) and to determine the effect of chronic administration of methylphenidate on clinical symptoms and on the concentrations of these two neurosteroids. METHODS We included 148 children aged 5 to 14 years, subdivided into two groups: ADHD group (n = 107, with a diagnosis of ADHD (DSM-IV-TR criteria), further classified in subtypes by an "attention deficit and hyperactivity scale" and subgroups by the "Children's Depression Inventory") and a control group (n = 41). The clinical workup included blood samples that were drawn at 20:00 and 09:00 hours, at inclusion in both groups, and after 4.61 ± 2.29 months of treatment only in the ADHD group, for measurements for allopregnanolone and dehydroepiandrosterone. Factorial analysis, adjusted for age and gender, was performed by using Stata 12.0. RESULTS Methylphenidate induced the doubling of allopregnanolone levels in the predominantly inattentive ADHD patients without depressive symptoms (27.26 ± 12.90 vs. 12.67 ± 6.22 ng/ml, morning values). Although without statistical differences, baseline dehydroepiandrosterone levels were higher and slightly increased after methylphenidate in the ADHD subtype with depressive symptoms (7.74 ± 11.46 vs. 6.18 ± 5.99 ng/ml, in the morning), opposite to the lower baseline levels, and further decrease after methylphenidate in the inattentive subtype with depressive symptoms. CONCLUSIONS Different neurosteroids may have different baseline concentrations and differential responses to methylphenidate treatment as a function of ADHD subtype and subgroup. These differential responses may be a clinical marker of ADHD subtype and/or co-morbidities.
Collapse
Affiliation(s)
- Antonio Molina-Carballo
- Servicio de Neuropediatría, Neuropsicología y Atención Temprana, Unidad de Gestión Clínica de Pediatría, Hospital Clínico San Cecilio, Complejo Hospitalario Granada, Granada, Spain,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Tsutsui K, Haraguchi S. Breakthrough in neuroendocrinology by discovering novel neuropeptides and neurosteroids: 2. Discovery of neurosteroids and pineal neurosteroids. Gen Comp Endocrinol 2014; 205:11-22. [PMID: 24704561 DOI: 10.1016/j.ygcen.2014.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Bargmann-Scharrer's discovery of "neurosecretion" in the first half of the 20th century has since matured into the scientific discipline of neuroendocrinology. Identification of novel neurohormones, such as neuropeptides and neurosteroids, is essential for the progress of neuroendocrinology. Our studies over the past two decades have significantly broadened the horizons of this field of research by identifying novel neuropeptides and neurosteroids in vertebrates that have opened new lines of scientific investigation in neuroendocrinology. We have established de novo synthesis and functions of neurosteroids in the brain of various vertebrates. Recently, we discovered 7α-hydroxypregnenolone (7α-OH PREG), a novel bioactive neurosteroid that acts as a key regulator for inducing locomotor behavior by means of the dopaminergic system. We further discovered that the pineal gland, an endocrine organ located close to the brain, is an important site of production of neurosteroids de novo from cholesterol (CHOL). The pineal gland secretes 7α-OH PREG and 3α,5α-tetrahydroprogesterone (3α,5α-THP; allopregnanolone) that are involved in locomotor rhythms and neuronal survival, respectively. Subsequently, we have demonstrated their mode of action and functional significance. This review summarizes the discovery of these novel neurosteroids and its contribution to the progress of neuroendocrinology.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo 162-8480, Japan.
| | - Shogo Haraguchi
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo 162-8480, Japan
| |
Collapse
|
192
|
Comenencia-Ortiz E, Moss SJ, Davies PA. Phosphorylation of GABAA receptors influences receptor trafficking and neurosteroid actions. Psychopharmacology (Berl) 2014; 231:3453-65. [PMID: 24847959 PMCID: PMC4135009 DOI: 10.1007/s00213-014-3617-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 05/02/2014] [Indexed: 01/06/2023]
Abstract
RATIONALE Gamma-aminobutyric acid type A receptors (GABAARs) are the principal mediators of inhibitory transmission in the mammalian central nervous system. GABAARs can be localized at post-synaptic inhibitory specializations or at extrasynaptic sites. While synaptic GABAARs are activated transiently following the release of GABA from presynaptic vesicles, extrasynaptic GABAARs are typically activated continuously by ambient GABA concentrations and thus mediate tonic inhibition. The tonic inhibitory currents mediated by extrasynaptic GABAARs control neuronal excitability and the strength of synaptic transmission. However, the mechanisms by which neurons control the functional properties of extrasynaptic GABAARs had not yet been explored. OBJECTIVES We review GABAARs, how they are assembled and trafficked, and the role phosphorylation has on receptor insertion and membrane stabilization. Finally, we review the modulation of GABAARs by neurosteroids and how GABAAR phosphorylation can influence the actions of neurosteroids. CONCLUSIONS Trafficking and stability of functional channels to the membrane surface are critical for inhibitory efficacy. Phosphorylation of residues within GABAAR subunits plays an essential role in the assembly, trafficking, and cell surface stability of GABAARs. Neurosteroids are produced in the brain and are highly efficacious allosteric modulators of GABAAR-mediated current. This allosteric modulation by neurosteroids is influenced by the phosphorylated state of the GABAAR which is subunit dependent, adding temporal and regional variability to the neurosteroid response. Possible links between neurosteroid actions, phosphorylation, and GABAAR trafficking remain to be explored, but potential novel therapeutic targets may exist for numerous neurological and psychological disorders which are linked to fluctuations in neurosteroid levels and GABAA subunit expression.
Collapse
|
193
|
Gong QH, Smith SS. Characterization of neurosteroid effects on hyperpolarizing current at α4β2δ GABAA receptors. Psychopharmacology (Berl) 2014; 231:3525-35. [PMID: 24740493 PMCID: PMC4135043 DOI: 10.1007/s00213-014-3538-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/10/2014] [Indexed: 11/28/2022]
Abstract
RATIONALE The neurosteroid 3α,5β-THP (3α-OH-5β-pregnan-20-one, pregnanolone) is a modulator of the GABAA receptor (GABAR), with α4β2δ GABARs the most sensitive. However, the effects of 3α,5β-THP at α4β2δ are polarity-dependent: 3α,5β-THP potentiates depolarizing current, as has been widely reported, but decreases hyperpolarizing current by accelerating desensitization. OBJECTIVES The present study further characterized 3α,5β-THP inhibition of hyperpolarizing current at this receptor and compared effects of other related steroids at α4β2δ GABARs. METHODS α4β2δ GABARs were expressed in HEK-293 cells, and agonist-gated current recorded with whole cell voltage-clamp techniques using a theta tube to rapidly apply agonist before and after application of neurosteroids. RESULTS The GABA-modulatory steroids (30 nM) 3α,5α-THP (3α-OH-5α-pregnan-20-one, allopregnanolone) and THDOC (3α,21-dihydroxy-5α-pregnan-20-one) inhibited hyperpolarizing GABA (10 μM)-gated current at α4β2δ GABARs similar to 3α,5β-THP, while the inactive 3β,5β-THP isomer had no effect. Greater inhibition was seen for current gated by the high efficacy agonist gaboxadol (THIP, 100 μM) than for GABA (0.1-1000 μM), consistent with an effect of 3α,5β-THP on desensitization. Inhibitory effects of the steroid were not seen under low [Cl(-)] conditions or in the presence of calphostin C (500 nM), an inhibitor of protein kinase C. Chimeras swapping the IL (intracellular loop) of α4 with α1, when expressed with β2 and δ, produced receptors (α[414]β2δ) which were not inhibited by 3α,5β-THP when GABA-gated current was hyperpolarizing, while α[141]β2δ exhibited steroid-induced polarity-dependent modulation. CONCLUSIONS These findings suggest that numerous neurosteroids exhibit polarity-dependent effects at α4β2δ GABARs, which are dependent upon protein kinase C and the IL of α4.
Collapse
Affiliation(s)
- Qi Hua Gong
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY 10023 U.S.A
| | - Sheryl S. Smith
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY 10023 U.S.A
| |
Collapse
|
194
|
Neurosteroids Allopregnanolone Sulfate and Pregnanolone Sulfate Have Diverse Effect on the α Subunit of the Neuronal Voltage-gated Sodium Channels Nav1.2, Nav1.6, Nav1.7, and Nav1.8 Expressed in Xenopus Oocytes. Anesthesiology 2014; 121:620-31. [DOI: 10.1097/aln.0000000000000296] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abstract
Background:
The neurosteroids allopregnanolone and pregnanolone are potent positive modulators of γ-aminobutyric acid type A receptors. Antinociceptive effects of allopregnanolone have attracted much attention because recent reports have indicated the potential of allopregnanolone as a therapeutic agent for refractory pain. However, the analgesic mechanisms of allopregnanolone are still unclear. Voltage-gated sodium channels (Nav) are thought to play important roles in inflammatory and neuropathic pain, but there have been few investigations on the effects of allopregnanolone on sodium channels.
Methods:
Using voltage-clamp techniques, the effects of allopregnanolone sulfate (APAS) and pregnanolone sulfate (PAS) on sodium current were examined in Xenopus oocytes expressing Nav1.2, Nav1.6, Nav1.7, and Nav1.8 α subunits.
Results:
APAS suppressed sodium currents of Nav1.2, Nav1.6, and Nav1.7 at a holding potential causing half-maximal current in a concentration-dependent manner, whereas it markedly enhanced sodium current of Nav1.8 at a holding potential causing maximal current. Half-maximal inhibitory concentration values for Nav1.2, Nav1.6, and Nav1.7 were 12 ± 4 (n = 6), 41 ± 2 (n = 7), and 131 ± 15 (n = 5) μmol/l (mean ± SEM), respectively. The effects of PAS were lower than those of APAS. From gating analysis, two compounds increased inactivation of all α subunits, while they showed different actions on activation of each α subunit. Moreover, two compounds showed a use-dependent block on Nav1.2, Nav1.6, and Nav1.7.
Conclusion:
APAS and PAS have diverse effects on sodium currents in oocytes expressing four α subunits. APAS inhibited the sodium currents of Nav1.2 most strongly.
Collapse
|
195
|
Hippocampal estradiol synthesis and its significance for hippocampal synaptic stability in male and female animals. Neuroscience 2014; 274:24-32. [DOI: 10.1016/j.neuroscience.2014.05.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 04/23/2014] [Accepted: 05/04/2014] [Indexed: 01/18/2023]
|
196
|
Neurosteroids and their role in sex-specific epilepsies. Neurobiol Dis 2014; 72 Pt B:198-209. [PMID: 24960208 DOI: 10.1016/j.nbd.2014.06.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 05/11/2014] [Accepted: 06/14/2014] [Indexed: 01/21/2023] Open
Abstract
Neurosteroids are involved in sex-specific epilepsies. Allopregnanolone and related endogenous neurosteroids in the brain control excessive neuronal excitability and seizure susceptibility. Neurosteroids activate GABA-A receptors, especially extrasynaptic αγδ-GABA-A receptor subtypes that mediate tonic inhibition and thus dampen network excitability. Our studies over the past decade have shown that neurosteroids are broad-spectrum anticonvulsants and confer seizure protection in various animal models. Neurosteroids also exert antiepileptogenic effects. There is emerging evidence on a critical role for neurosteroids in the pathophysiology of the sex-specific forms of epilepsies such as catamenial epilepsy, a menstrual cycle-related seizure disorder in women. Catamenial epilepsy is a neuroendocrine condition in which seizures are clustered around specific points in the menstrual cycle, most often around the perimenstrual or periovulatory period. Apart from ovarian hormones, fluctuations in neurosteroid levels could play a critical role in this gender-specific epilepsy. Neurosteroids also regulate the plasticity of synaptic and extrasynaptic GABA-A receptors in the hippocampus and other regions involved in epilepsy pathology. Based on these studies, we proposed a neurosteroid replacement therapy for catamenial epilepsy. Thus, neurosteroids are novel drug targets for pharmacotherapy of epilepsy.
Collapse
|
197
|
Ericsson M, Fallahsharoudi A, Bergquist J, Kushnir MM, Jensen P. Domestication effects on behavioural and hormonal responses to acute stress in chickens. Physiol Behav 2014; 133:161-9. [DOI: 10.1016/j.physbeh.2014.05.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 04/28/2014] [Accepted: 05/20/2014] [Indexed: 10/25/2022]
|
198
|
Tsutsui K, Haraguchi S. Biosynthesis and biological action of pineal allopregnanolone. Front Cell Neurosci 2014; 8:118. [PMID: 24834027 PMCID: PMC4017145 DOI: 10.3389/fncel.2014.00118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 04/14/2014] [Indexed: 12/02/2022] Open
Abstract
The pineal gland transduces photoperiodic changes to the neuroendocrine system by rhythmic secretion of melatonin. We recently provided new evidence that the pineal gland is a major neurosteroidogenic organ and actively produces a variety of neurosteroids de novo from cholesterol in birds. Notably, allopregnanolone is a major pineal neurosteroid that is far more actively produced in the pineal gland than the brain and secreted by the pineal gland in juvenile birds. Subsequently, we have demonstrated the biological action of pineal allopregnanolone on Purkinje cells in the cerebellum during development in juvenile birds. Pinealectomy (Px) induces apoptosis of Purkinje cells, whereas allopregnanolone administration to Px chicks prevents cell death. Furthermore, Px increases the number of Purkinje cells that express active caspase-3, a crucial mediator of apoptosis, and allopregnanolone administration to Px chicks decreases the number of Purkinje cells expressing active caspase-3. It thus appears that pineal allopregnanolone prevents cell death of Purkinje cells by suppressing the activity of caspase-3 during development. This paper highlights new aspects of the biosynthesis and biological action of pineal allopregnanolone.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University Tokyo, Japan
| | - Shogo Haraguchi
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University Tokyo, Japan
| |
Collapse
|
199
|
Frye CA, Koonce CJ, Walf AA. Novel receptor targets for production and action of allopregnanolone in the central nervous system: a focus on pregnane xenobiotic receptor. Front Cell Neurosci 2014; 8:106. [PMID: 24782710 PMCID: PMC3988369 DOI: 10.3389/fncel.2014.00106] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 03/25/2014] [Indexed: 12/05/2022] Open
Abstract
Neurosteroids are cholesterol-based hormones that can be produced in the brain, independent of secretion from peripheral endocrine glands, such as the gonads and adrenals. A focus in our laboratory for over 25 years has been how production of the pregnane neurosteroid, allopregnanolone, is regulated and the novel (i.e., non steroid receptor) targets for steroid action for behavior. One endpoint of interest has been lordosis, the mating posture of female rodents. Allopregnanolone is necessary and sufficient for lordosis, and the brain circuitry underlying it, such as actions in the midbrain ventral tegmental area (VTA), has been well-characterized. Published and recent findings supporting a dynamic role of allopregnanolone are included in this review. First, contributions of ovarian and adrenal sources of precursors of allopregnanolone, and the requisite enzymatic actions for de novo production in the central nervous system will be discussed. Second, how allopregnanolone produced in the brain has actions on behavioral processes that are independent of binding to steroid receptors, but instead involve rapid modulatory actions via neurotransmitter targets (e.g., γ-amino butyric acid-GABA, N-methyl-D-aspartate- NMDA) will be reviewed. Third, a recent focus on characterizing the role of a promiscuous nuclear receptor, pregnane xenobiotic receptor (PXR), involved in cholesterol metabolism and expressed in the VTA, as a target for allopregnanolone and how this relates to both actions and production of allopregnanolone will be addressed. For example, allopregnanolone can bind PXR and knocking down expression of PXR in the midbrain VTA attenuates actions of allopregnanolone via NMDA and/or GABAA for lordosis. Our understanding of allopregnanolone’s actions in the VTA for lordosis has been extended to reveal the role of allopregnanolone for broader, clinically-relevant questions, such as neurodevelopmental processes, neuropsychiatric disorders, epilepsy, and aging.
Collapse
Affiliation(s)
- Cheryl A Frye
- Department of Psychology, The University at Albany-SUNY Albany, NY, USA ; Department of Biological Sciences, The University at Albany-SUNY Albany, NY, USA ; The Centers for Neuroscience, The University at Albany-SUNY Albany, NY, USA ; Life Sciences Research, The University at Albany-SUNY Albany, NY, USA ; Department of Chemistry and Biochemistry, The University of Alaska-Fairbanks Fairbanks, AK, USA ; Institute of Arctic Biology, The University of Alaska-Fairbanks Fairbanks, AK, USA ; IDeA Network of Biomedical Excellence (INBRE), The University of Alaska-Fairbanks Fairbanks, AK, USA
| | - Carolyn J Koonce
- Department of Psychology, The University at Albany-SUNY Albany, NY, USA ; Institute of Arctic Biology, The University of Alaska-Fairbanks Fairbanks, AK, USA ; IDeA Network of Biomedical Excellence (INBRE), The University of Alaska-Fairbanks Fairbanks, AK, USA
| | - Alicia A Walf
- Department of Psychology, The University at Albany-SUNY Albany, NY, USA ; Institute of Arctic Biology, The University of Alaska-Fairbanks Fairbanks, AK, USA ; IDeA Network of Biomedical Excellence (INBRE), The University of Alaska-Fairbanks Fairbanks, AK, USA
| |
Collapse
|
200
|
Brunton PJ, Russell JA, Hirst JJ. Allopregnanolone in the brain: protecting pregnancy and birth outcomes. Prog Neurobiol 2014; 113:106-36. [PMID: 24012715 DOI: 10.1016/j.pneurobio.2013.08.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/12/2013] [Accepted: 08/25/2013] [Indexed: 01/09/2023]
Abstract
A successful pregnancy requires multiple adaptations in the mother's brain that serve to optimise foetal growth and development, protect the foetus from adverse prenatal programming and prevent premature delivery of the young. Pregnancy hormones induce, organise and maintain many of these adaptations. Steroid hormones play a critical role and of particular importance is the progesterone metabolite and neurosteroid, allopregnanolone. Allopregnanolone is produced in increasing amounts during pregnancy both in the periphery and in the maternal and foetal brain. This review critically examines a role for allopregnanolone in both the maternal and foetal brain during pregnancy and development in protecting pregnancy and birth outcomes, with particular emphasis on its role in relation to stress exposure at this time. Late pregnancy is associated with suppressed stress responses. Thus, we begin by considering what is known about the central mechanisms in the maternal brain, induced by allopregnanolone, that protect the foetus(es) from exposure to harmful levels of maternal glucocorticoids as a result of stress during pregnancy. Next we discuss the central mechanisms that prevent premature secretion of oxytocin and consider a role for allopregnanolone in minimising the risk of preterm birth. Allopregnanolone also plays a key role in the foetal brain, where it promotes development and is neuroprotective. Hence we review the evidence about disruption to neurosteroid production in pregnancy, through prenatal stress or other insults, and the immediate and long-term adverse consequences for the offspring. Finally we address whether progesterone or allopregnanolone treatment can rescue some of these deficits in the offspring.
Collapse
Affiliation(s)
- Paula J Brunton
- Division of Neurobiology, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Scotland, UK.
| | - John A Russell
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Scotland, UK
| | - Jonathan J Hirst
- Mothers and Babies Research Centre, School of Biomedical Sciences, University of Newcastle, Newcastle, N.S.W., Australia
| |
Collapse
|