151
|
The haptoglobin-CD163-heme oxygenase-1 pathway for hemoglobin scavenging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:523652. [PMID: 23781295 PMCID: PMC3678498 DOI: 10.1155/2013/523652] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/09/2013] [Accepted: 05/13/2013] [Indexed: 12/30/2022]
Abstract
The haptoglobin- (Hp-) CD163-heme oxygenase-1 (HO-1) pathway is an efficient captor-receptor-enzyme system to circumvent the hemoglobin (Hb)/heme-induced toxicity during physiological and pathological hemolyses. In this pathway, Hb tightly binds to Hp leading to CD163-mediated uptake of the complex in macrophages followed by lysosomal Hp-Hb breakdown and HO-1-catalyzed conversion of heme into the metabolites carbon monoxide (CO), biliverdin, and iron. The plasma concentration of Hp is a limiting factor as evident during accelerated hemolysis, where the Hp depletion may cause serious Hb-induced toxicity and put pressure on backup protecting systems such as the hemopexin-CD91-HO pathway. The Hp-CD163-HO-1 pathway proteins are regulated by the acute phase mediator interleukin-6 (IL-6), but other regulatory factors indicate that this upregulation is a counteracting anti-inflammatory response during inflammation. The heme metabolites including bilirubin converted from biliverdin have overall an anti-inflammatory effect and thus reinforce the anti-inflammatory efficacy of the Hp-CD163-HO-1 pathway. Future studies of animal models of inflammation should further define the importance of the pathway in the anti-inflammatory response.
Collapse
|
152
|
Moriasi C, Subramaniam D, Awasthi S, Ramalingam S, Anant S. Prevention of colitis-associated cancer: natural compounds that target the IL-6 soluble receptor. Anticancer Agents Med Chem 2013; 12:1221-38. [PMID: 22583410 DOI: 10.2174/187152012803833080] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 01/20/2012] [Accepted: 01/20/2012] [Indexed: 12/17/2022]
Abstract
The risk of developing colorectal cancer increases in patients with inflammatory bowel disease (IBD) and a growing body of evidence shows the critical role of interleukin (IL-6) in this process. IL-6 is both a pro- and anti-inflammatory cytokine whose effects are mediated through activation of STAT3. Recent studies have also demonstrated that IL-6 trans-signaling through its soluble receptor occurs in IBD and cancer. IL-6 trans-signaling therefore is emerging as an attractive approach to diminish the inflammatory signals in conditions of chronic inflammation. The purpose of cancer chemoprevention is to either delay the onset or progression from precancerous lesions. Natural compounds because of their low toxicity render themselves excellent candidates that can be administered over the lifetime of an individual. With the focus of managing IBD over a long time and preventing onset of colitis-associated cancer, we believe that there should be increased research focus on identifying chemopreventive compounds that can render themselves to long term use possibly for the lifetime of predisposed individuals. Here, we review the role of IL-6 signaling in IBD and colitis-associated cancer and underscore the importance of searching for natural compounds that would target the IL-6 trans-signaling pathway as a way to diminish chronic inflammatory conditions in the gastrointestinal tract and possibly hamper the progression to colon cancer. We propose that effective screening and identification of natural chemopreventive compounds that target IL-6 trans-signaling has important implications for the development of optimal strategies against cancer development triggered by inflammation.
Collapse
Affiliation(s)
- Cate Moriasi
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | |
Collapse
|
153
|
Xu HW, Huang YJ, Xie ZY, Lin L, Guo YC, Zhuang ZR, Lin XP, Zhou W, Li M, Huang HH, Wei XL, Man K, Zhang GJ. The expression of cytoglobin as a prognostic factor in gliomas: a retrospective analysis of 88 patients. BMC Cancer 2013; 13:247. [PMID: 23688241 PMCID: PMC3663650 DOI: 10.1186/1471-2407-13-247] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 05/16/2013] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Evidence suggests that cytoglobin (Cygb) may function as a tumor suppressor gene. METHODS We immunohistochemically evaluated the expression of Cygb, phosphatidylinositol-3 kinase (PI-3K), phosphorylated (p)-Akt, Interleukin-6 (IL-6), tumor necrosis factor-α (TNFα) and vascular endothelial growth factor (VEGF) in 88 patients with 41 high-grade gliomas and 47 low-grade gliomas. Intratumoral microvessel density (IMD) was also determined and associated with clinicopathological factors. RESULTS Low expression of Cygb was significantly associated with the higher histological grading and tumor recurrence. A significant negative correlation emerged between Cygb expression and PI3K, p-Akt, IL-6, TNFα or VEGF expression. Cygb expression was negatively correlated with IMD. There was a positive correlation between PI3K, p-Akt, IL-6, TNFα and VEGF expression with IMD.High histologic grade, tumor recurrence, decreased Cygb expression, increased PI3K expression, increased p-Akt expression and increased VEGF expression correlated with patients' overall survival in univariate analysis. However, only histological grading and Cygb expression exhibited a relationship with survival of patients as independent prognostic factors of glioma by multivariate analysis. CONCLUSIONS Cygb loss may contribute to tumor recurrence and a worse prognosis in gliomas. Cygb may serve as an independent predictive factor for prognosis of glioma patients.
Collapse
Affiliation(s)
- Hong-Wu Xu
- Department of Neurosurgery, Second Affiliated Hospital of Shantou University Medical College, North Dongxia Rd, Shantou, Guangdong, 515041, China
- Research Center for Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, North Dongxia Rd, Shantou, Guangdong, 515041, China
| | - Yue-Jun Huang
- Research Center for Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, North Dongxia Rd, Shantou, Guangdong, 515041, China
- Department of pediatrics, Second Affiliated Hospital of Shantou University Medical College, North Dongxia Rd, Shantou, Guangdong, 515041, China
| | - Ze-Yu Xie
- Department of Neurosurgery, Second Affiliated Hospital of Shantou University Medical College, North Dongxia Rd, Shantou, Guangdong, 515041, China
| | - Lan Lin
- Department of Neurosurgery, Second Affiliated Hospital of Shantou University Medical College, North Dongxia Rd, Shantou, Guangdong, 515041, China
| | - Yan-Chun Guo
- Department of Neurosurgery, Second Affiliated Hospital of Shantou University Medical College, North Dongxia Rd, Shantou, Guangdong, 515041, China
| | - Ze-Rui Zhuang
- Department of Neurosurgery, Second Affiliated Hospital of Shantou University Medical College, North Dongxia Rd, Shantou, Guangdong, 515041, China
| | - Xin-Peng Lin
- Department of Neurosurgery, Second Affiliated Hospital of Shantou University Medical College, North Dongxia Rd, Shantou, Guangdong, 515041, China
| | - Wen Zhou
- Department of Neurosurgery, Second Affiliated Hospital of Shantou University Medical College, North Dongxia Rd, Shantou, Guangdong, 515041, China
| | - Mu Li
- Department of Neurosurgery, Second Affiliated Hospital of Shantou University Medical College, North Dongxia Rd, Shantou, Guangdong, 515041, China
| | - Hai-Hua Huang
- Department of pathology, Second Affiliated Hospital of Shantou University Medical College, North Dongxia Rd, Shantou, Guangdong, 515041, China
| | - Xiao-Long Wei
- Department of pathology, Cancer Hospital of Shantou University Medical College, Raoping Rd, Shantou, Guangdong, 515031, China
| | - Kwan Man
- Department of Surgery and Centre for Cancer Research, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Guo-Jun Zhang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Raoping Rd, Shantou, Guangdong, 515031, China
| |
Collapse
|
154
|
Intratracheal IL-6 protects against lung inflammation in direct, but not indirect, causes of acute lung injury in mice. PLoS One 2013; 8:e61405. [PMID: 23667439 PMCID: PMC3648558 DOI: 10.1371/journal.pone.0061405] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/09/2013] [Indexed: 02/06/2023] Open
Abstract
Introduction Serum and bronchoalveolar fluid IL-6 are increased in patients with acute respiratory distress syndrome (ARDS) and predict prolonged mechanical ventilation and poor outcomes, although the role of intra-alveolar IL-6 in indirect lung injury is unknown. We investigated the role of endogenous and exogenous intra-alveolar IL-6 in AKI-mediated lung injury (indirect lung injury), intraperitoneal (IP) endotoxin administration (indirect lung injury) and, for comparison, intratracheal (IT) endotoxin administration (direct lung injury) with the hypothesis that IL-6 would exert a pro-inflammatory effect in these causes of acute lung inflammation. Methods Bronchoalveolar cytokines (IL-6, CXCL1, TNF-α, IL-1β, and IL-10), BAL fluid neutrophils, lung inflammation (lung cytokines, MPO activity [a biochemical marker of neutrophil infiltration]), and serum cytokines were determined in adult male C57Bl/6 mice with no intervention or 4 hours after ischemic AKI (22 minutes of renal pedicle clamping), IP endotoxin (10 µg), or IT endotoxin (80 µg) with and without intratracheal (IT) IL-6 (25 ng or 200 ng) treatment. Results Lung inflammation was similar after AKI, IP endotoxin, and IT endotoxin. BAL fluid IL-6 was markedly increased after IT endotoxin, and not increased after AKI or IP endotoxin. Unexpectedly, IT IL-6 exerted an anti-inflammatory effect in healthy mice characterized by reduced BAL fluid cytokines. IT IL-6 also exerted an anti-inflammatory effect in IT endotoxin characterized by reduced BAL fluid cytokines and lung inflammation; IT IL-6 had no effect on lung inflammation in AKI or IP endotoxin. Conclusion IL-6 exerts an anti-inflammatory effect in direct lung injury from IT endotoxin, yet has no role in the pathogenesis or treatment of indirect lung injury from AKI or IP endotoxin. Since intra-alveolar inflammation is important in the pathogenesis of direct, but not indirect, causes of lung inflammation, IT anti-inflammatory treatments may have a role in direct, but not indirect, causes of ARDS.
Collapse
|
155
|
Balanis N, Wendt MK, Schiemann BJ, Wang Z, Schiemann WP, Carlin CR. Epithelial to mesenchymal transition promotes breast cancer progression via a fibronectin-dependent STAT3 signaling pathway. J Biol Chem 2013; 288:17954-67. [PMID: 23653350 DOI: 10.1074/jbc.m113.475277] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We previously established that overexpression of the EGF receptor (EGFR) is sufficient to induce tumor formation by otherwise nontransformed mammary epithelial cells, and that the initiation of epithelial-mesenchymal transition (EMT) is capable of increasing the invasion and metastasis of these cells. Using this breast cancer (BC) model, we find that in addition to EGF, adhesion to fibronectin (FN) activates signal transducer and activator of transcription 3 (STAT3) through EGFR-dependent and -independent mechanisms. Importantly, EMT facilitated a signaling switch from SRC-dependent EGFR:STAT3 signaling in pre-EMT cells to EGFR-independent FN:JAK2:STAT3 signaling in their post-EMT counterparts, thereby sensitizing these cells to JAK2 inhibition. Accordingly, human metastatic BC cells that failed to activate STAT3 downstream of EGFR did display robust STAT3 activity upon adhesion to FN. Furthermore, FN enhanced outgrowth in three-dimensional organotypic cultures via a mechanism that is dependent upon β1 integrin, Janus kinase 2 (JAK2), and STAT3 but not EGFR. Collectively, our data demonstrate that matrix-initiated signaling is sufficient to drive STAT3 activation, a reaction that is facilitated by EMT during BC metastatic progression.
Collapse
Affiliation(s)
- Nikolas Balanis
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|
156
|
A protective role of IL-30 via STAT and ERK signaling pathways in macrophage-mediated inflammation. Biochem Biophys Res Commun 2013; 435:306-12. [DOI: 10.1016/j.bbrc.2013.03.136] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 03/27/2013] [Indexed: 01/26/2023]
|
157
|
Sinyakova NA, Kondaurova EM, Kulikov AV, Naumenko VS, Tikhonova MA, Popova NK. Distribution of Il6st mRNA and gp130 glycoprotein in various brain structures of mice that differ in intensity of exaggerated freezing reaction (catalepsy). Mol Biol 2013. [DOI: 10.1134/s002689331303014x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
158
|
Fang XX, Jiang XL, Han XH, Peng YP, Qiu YH. Neuroprotection of interleukin-6 against NMDA-induced neurotoxicity is mediated by JAK/STAT3, MAPK/ERK, and PI3K/AKT signaling pathways. Cell Mol Neurobiol 2013; 33:241-51. [PMID: 23161148 PMCID: PMC11497919 DOI: 10.1007/s10571-012-9891-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 11/05/2012] [Indexed: 12/30/2022]
Abstract
We have previously shown that interleukin-6 (IL-6) has neuroprotective effect against N-methyl-D-aspartate (NMDA)-induced excitotoxicity. The current study aimed to reveal signal transduction pathways involved in the IL-6 neuroprotection. Cerebellar granule neurons (CGNs) from postnatal 8-day infant rats were exposed to IL-6 (120 ng/ml) for 8 days and stimulated with NMDA (100 μM) for 15 or 30 min. Dynamic intracellular Ca(2+) fluorescence intensity, cytosolic Ca(2+)-dependent phospholipase A2 (cPLA2) expression, and apoptosis and necrosis in cultured CGNs were measured by laser scanning confocal microscope, real-time PCR and Western blot, and annexin V-FITC/propidium iodide staining, respectively. NMDA stimulation of neurons evoked an intracellular Ca(2+) overload, an upregulated expression of cPLA2, and an increase in cell death. Chronic IL-6 exposure prevented the NMDA-evoked neuronal Ca(2+) overload, cPLA2 expression upregulation, and apoptosis and necrosis. Anti-gp130 monoclonal antibody (mAb), a blocker of gp130 that is a 130-kDa signal-transducing β-subunit of IL-6 receptor complex, blocked these effects of IL-6 preventing NMDA neurotoxicity. AG490, PD98059, or LY294002, inhibitors specific for the intracellular signals, JAK, MAPK, and PI3K, respectively, partially blocked these IL-6 neuroprotective effects. Phosphorylation levels of STAT3, ERK1/2, and AKT, the downstream proteins for these enzymes of JAK, MAPK, and PI3K, respectively, were elevated by IL-6 pretreatment. The enhanced activation of STAT3, ERK1/2, and AKT by IL-6 was abolished by AG490, PD98059, and LY294002, respectively. Anti-gp130 mAb attenuated the activation of all the three detected signaling molecules. The present findings suggest that IL-6 neuroprotection is jointly mediated by the cellular signal transduction pathways, gp130-JAK-STAT3, gp130-MAPK-ERK, and gp130-PI3K-AKT.
Collapse
Affiliation(s)
- Xiao-Xia Fang
- Department of Physiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001 China
| | - Xiao-Lin Jiang
- Department of Physiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001 China
| | - Xin-Hua Han
- Department of Physiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001 China
| | - Yu-Ping Peng
- Department of Physiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001 China
| | - Yi-Hua Qiu
- Department of Physiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001 China
| |
Collapse
|
159
|
Gibeon D, Menzies-Gow AN. Targeting interleukins to treat severe asthma. Expert Rev Respir Med 2013; 6:423-39. [PMID: 22971067 DOI: 10.1586/ers.12.38] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Severe asthma is thought to be a heterogeneous disease with different phenotypes predicated primarily on the nature of the inflammatory cell infiltrate and response to corticosteroid therapy. This group of patients often has refractory disease with an associated increase in morbidity and mortality, and there remains a need for better therapies for severe asthmatics. Inflammatory changes in asthma are driven by immune mechanisms, within which interleukins play an integral role. Interleukins are cell-signaling cytokines that are produced by a variety of cells, predominantly T cells. Knowledge about their actions has improved the understanding of the pathogenesis of asthma and provided potential targets for novel therapies. To date, this has not translated into clinical use. However, there are ongoing clinical trials that use monoclonal antibodies for various interleukins, some of which have shown to be promising in Phase II studies.
Collapse
|
160
|
Avouac J, Cagnard N, Distler JH, Schoindre Y, Ruiz B, Couraud PO, Uzan G, Boileau C, Chiocchia G, Allanore Y. Insights into the pathogenesis of systemic sclerosis based on the gene expression profile of progenitor-derived endothelial cells. ACTA ACUST UNITED AC 2013; 63:3552-62. [PMID: 21769840 DOI: 10.1002/art.30536] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To determine the gene expression profile of endothelial cells derived from the endothelial progenitor cells (EPCs) of patients with systemic sclerosis (SSc). METHODS Microarray experiments were performed on Affymetrix GeneChip Human Exon 1.0 ST Arrays in unstimulated and hypoxia-stimulated EPC-derived cells from patients with SSc and control subjects. Followup of the raised hypotheses was performed ex vivo by immunohistochemical analysis of skin tissue. RESULTS Signals from 92 probe sets and 188 probe sets were different in unstimulated and hypoxia-stimulated cells, respectively, from patients with SSc compared with controls. Within the largest groups of genes related to cell-cell interaction and vascular remodeling, down-regulation of tumor necrosis factor ligand superfamily member 10 (TNFSF10) and homeobox A9 (HOX-A9) was confirmed by real-time polymerase chain reaction and Western blots in EPC-derived cells and by immunohistochemistry in SSc skin tissue. Signals from 221 and 307 probe sets were different in unstimulated and hypoxia-stimulated cells, respectively, from patients with diffuse cutaneous SSc compared with patients with limited cutaneous SSc. Within the largest group of genes related to the inflammatory response, differential expression of TNFα-induced protein 3 and prostaglandin-endoperoxide synthase 2 was observed in EPC-derived cells and skin tissue from patients with SSc. CONCLUSION Our data revealed important gene expression changes in EPC-derived endothelial cells from patients with SSc, characterized by a proadhesive, proinflammatory, and activated phenotype. Differential expression in lesional SSc skin tissue of new targets, such as TNF family members and HOX-A9, may contribute to the pathogenesis of SSc and deserves more in-depth exploration.
Collapse
Affiliation(s)
- Jérôme Avouac
- Université Paris Descartes and Hôpital Cochin, AP-HP, and INSERM U1016, Cochin Institut, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Christie KJ, Turnley AM. Regulation of endogenous neural stem/progenitor cells for neural repair-factors that promote neurogenesis and gliogenesis in the normal and damaged brain. Front Cell Neurosci 2013; 6:70. [PMID: 23346046 PMCID: PMC3548228 DOI: 10.3389/fncel.2012.00070] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/30/2012] [Indexed: 01/17/2023] Open
Abstract
Neural stem/precursor cells in the adult brain reside in the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the dentate gyrus in the hippocampus. These cells primarily generate neuroblasts that normally migrate to the olfactory bulb (OB) and the dentate granule cell layer respectively. Following brain damage, such as traumatic brain injury, ischemic stroke or in degenerative disease models, neural precursor cells from the SVZ in particular, can migrate from their normal route along the rostral migratory stream (RMS) to the site of neural damage. This neural precursor cell response to neural damage is mediated by release of endogenous factors, including cytokines and chemokines produced by the inflammatory response at the injury site, and by the production of growth and neurotrophic factors. Endogenous hippocampal neurogenesis is frequently also directly or indirectly affected by neural damage. Administration of a variety of factors that regulate different aspects of neural stem/precursor biology often leads to improved functional motor and/or behavioral outcomes. Such factors can target neural stem/precursor proliferation, survival, migration and differentiation into appropriate neuronal or glial lineages. Newborn cells also need to subsequently survive and functionally integrate into extant neural circuitry, which may be the major bottleneck to the current therapeutic potential of neural stem/precursor cells. This review will cover the effects of a range of intrinsic and extrinsic factors that regulate neural stem/precursor cell functions. In particular it focuses on factors that may be harnessed to enhance the endogenous neural stem/precursor cell response to neural damage, highlighting those that have already shown evidence of preclinical effectiveness and discussing others that warrant further preclinical investigation.
Collapse
Affiliation(s)
- Kimberly J Christie
- Neural Regeneration Laboratory, Department of Anatomy and Neuroscience, Centre for Neuroscience Research, The University of Melbourne Parkville, VIC, Australia
| | | |
Collapse
|
162
|
Blätke MA, Dittrich A, Rohr C, Heiner M, Schaper F, Marwan W. JAK/STAT signalling – an executable model assembled from molecule-centred modules demonstrating a module-oriented database concept for systems and synthetic biology. MOLECULAR BIOSYSTEMS 2013; 9:1290-307. [DOI: 10.1039/c3mb25593j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
163
|
Govitvattana N, Osathanon T, Taebunpakul S, Pavasant P. IL-6 regulated stress-induced Rex-1 expression in stem cells from human exfoliated deciduous teeth. Oral Dis 2012; 19:673-82. [DOI: 10.1111/odi.12052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/08/2012] [Accepted: 11/24/2012] [Indexed: 12/11/2022]
Affiliation(s)
| | | | - S Taebunpakul
- Pediatric Dentistry Section; Phramongkutklao Hospital; Bangkok; Thailand
| | | |
Collapse
|
164
|
Lee SJ, Borsting E, Declèves AE, Singh P, Cunard R. Podocytes express IL-6 and lipocalin 2/ neutrophil gelatinase-associated lipocalin in lipopolysaccharide-induced acute glomerular injury. Nephron Clin Pract 2012; 121:e86-96. [PMID: 23234871 PMCID: PMC4012854 DOI: 10.1159/000345151] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/04/2012] [Indexed: 12/22/2022] Open
Abstract
Background/Aims Acute kidney injury (AKI) contributes to significant morbidity and mortality in the intensive care unit (ICU). Plasma levels of interleukin (IL)-6 predict the development of AKI and are associated with higher mortality in ICU patients with AKI. Most studies in AKI have focused on the tubulo-interstitium, despite evidence of glomerular involvement. In the following study, our goals were to investigate the expression of IL-6 and its downstream mediators in septic-induced AKI. Methods Podocytes were treated in vitro with lipopolysaccharide (LPS) and mice were treated with LPS, and we evaluated IL-6 expression by real-time PCR, ELISA and in situ RNA hybridization. Results Following LPS stimulation, IL-6 is rapidly and highly induced in cultured podocytes and in vivo in glomeruli and infiltrating leukocytes. Surprisingly, in direct response to exogenous IL-6, podocytes produce lipocalin-2/neutrophil gelatinase-associated lipocalin (Lcn2/Ngal). LPS also potently induces Lcn2/Ngal expression in podocytes in culture and in glomeruli in vivo. Intense Lcn2/Ngal expression is also observed in IL-6 knockout mice, suggesting that while IL-6 may be sufficient to induce glomerular Lcn2/Ngal expression, it is not essential. Conclusions The glomerulus is involved in septic AKI, and we demonstrate that podocytes secrete key mediators of AKI including IL-6 and Lcn2/Ngal.
Collapse
Affiliation(s)
- Sarah J Lee
- Research Service and Division of Nephrology-Hypertension, Veterans Affairs San Diego Healthcare System, Veterans Medical Research Foundation, San Diego, CA 92161, USA
| | | | | | | | | |
Collapse
|
165
|
Tormo AJ, Letellier MC, Sharma M, Elson G, Crabé S, Gauchat JF. IL-6 activates STAT5 in T cells. Cytokine 2012; 60:575-82. [DOI: 10.1016/j.cyto.2012.07.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 06/28/2012] [Accepted: 07/02/2012] [Indexed: 01/10/2023]
|
166
|
Rebuilding the balance of STAT1 and STAT3 signalings by fusaruside, a cerebroside compound, for the treatment of T-cell-mediated fulminant hepatitis in mice. Biochem Pharmacol 2012; 84:1164-73. [DOI: 10.1016/j.bcp.2012.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 07/27/2012] [Accepted: 08/09/2012] [Indexed: 01/13/2023]
|
167
|
Murakami M, Hirano T. The pathological and physiological roles of IL-6 amplifier activation. Int J Biol Sci 2012; 8:1267-80. [PMID: 23136555 PMCID: PMC3491450 DOI: 10.7150/ijbs.4828] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 08/14/2012] [Indexed: 12/12/2022] Open
Abstract
The NFκB-triggered positive feedback loop for IL-6 signaling in type 1 collagen+ non-immune cells (IL-6 amplifier) was first discovered to be a synergistic signal that is activated following IL-17A and IL-6 stimulation in type 1 collagen+ non-immune cells. Subsequent disease models have shown that it can also be stimulated by the simultaneous activation of NFκB and STAT3, functions as a local chemokine inducer, and acts as a mechanism for local inflammation, particularly chronic ones like rheumatoid arthritis and a multiple sclerosis. Moreover, we have recently shown that hyper activation of the IL-6 amplifier via regional neural activation establishes a gateway for immune cells including autoreactive T cells to pass the blood-brain barrier at dorsal vessels in 5(th) lumbar cord. Here we review how the IL-6 amplifier is activated by neural activation and the physiological relevance of the gateway to the central nervous system. Accumulating evidences continues to suggest that the IL-6 amplifier offers a potential molecular mechanism for the relationship between neural activation and the development of inflammatory diseases, which could establish a new interdisciplinary field that fuses neurology and immunology.
Collapse
Affiliation(s)
- Masaaki Murakami
- Laboratory of Developmental Immunology, JST-CREST, Graduate School of Frontier Biosciences, and WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.
| | | |
Collapse
|
168
|
Lee J, Roh KB, Kim SC, Lee J, Park D. Soy peptide-induced stem cell proliferation: involvement of ERK and TGF-β1. J Nutr Biochem 2012; 23:1341-51. [DOI: 10.1016/j.jnutbio.2011.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 07/11/2011] [Accepted: 08/15/2011] [Indexed: 01/05/2023]
|
169
|
da Silva Krause M, Bittencourt A, Homem de Bittencourt PI, McClenaghan NH, Flatt PR, Murphy C, Newsholme P. Physiological concentrations of interleukin-6 directly promote insulin secretion, signal transduction, nitric oxide release, and redox status in a clonal pancreatic β-cell line and mouse islets. J Endocrinol 2012; 214:301-11. [PMID: 22761278 DOI: 10.1530/joe-12-0223] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Interleukin-6 (IL6) has recently been reported to promote insulin secretion in a glucagon-like peptide-1-dependent manner. Herein, the direct effects of IL6 (at various concentrations from 0 to 1000 pg/ml) on pancreatic β-cell metabolism, AMP-activated protein kinase (AMPK) signaling, insulin secretion, nitrite release, and redox status in a rat clonal β-cell line and mouse islets are reported. Chronic insulin secretion (in μg/mg protein per 24 h) was increased from 128·7±7·3 (no IL6) to 178·4±7·7 (at 100 pg/ml IL6) in clonal β-cells and increased significantly in islets incubated in the presence of 5·5 mM glucose for 2 h, from 0·148 to 0·167±0·003 ng/islet. Pretreatment with IL6 also induced a twofold increase in basal and nutrient-stimulated insulin secretion in subsequent 20 min static incubations. IL6 enhanced both glutathione (GSH) and glutathione disulphide (GSSG) by nearly 20% without changing intracellular redox status (GSSG/GSH). IL6 dramatically increased iNOS expression (by ca. 100-fold) with an accompanying tenfold rise in nitrite release in clonal β-cells. Phosphorylated AMPK levels were elevated approximately twofold in clonal β-cells and mouse islet cells. Calmodulin-dependent protein kinase kinase levels (CaMKK), an upstream kinase activator of AMPK, were also increased by 50% after IL6 exposure (in β-cells and islets). Our data have demonstrated that IL6 can stimulate β-cell-dependent insulin secretion via direct cell-based mechanisms. AMPK, CaMKK (an upstream kinase activator of AMPK), and the synthesis of nitric oxide appear to alter cell metabolism to benefit insulin secretion. In summary, IL6 exerts positive effects on β-cell signaling, metabolism, antioxidant status, and insulin secretion.
Collapse
|
170
|
Abstract
Inflammation is a hallmark of stroke pathology. The cytokines, tumor necrosis factor (TNF), interleukin (IL)-1, and IL-6, modulate tissue injury in experimental stroke and are therefore potential targets in future stroke therapy. The effect of these cytokines on infarct evolution depends on their availability in the ischemic penumbra in the early phase after stroke onset, corresponding to the therapeutic window (<4.5 hours), which is similar in human and experimental stroke. This review summarizes a large body of literature on the spatiotemporal and cellular production of TNF, IL-1, and IL-6, focusing on the early phase in experimental and human stroke. We also review studies of cytokines in blood and cerebrospinal fluid in stroke. Tumor necrosis factor and IL-1 are upregulated early in peri-infarct microglia. Newer literature suggests that IL-6 is produced by microglia, in addition to neurons. Tumor necrosis factor- and IL-1-producing macrophages infiltrate the infarct and peri-infarct with a delay. This information is discussed in the context of suggestions that neuronal sensitivity to ischemia may be modulated by cytokines. The fact that TNF and IL-1, and suppossedly also IL-6, are produced by microglia within the therapeutic window place these cells centrally in potential future stroke therapy.
Collapse
Affiliation(s)
- Kate Lykke Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | | |
Collapse
|
171
|
Lepeule J, Baccarelli A, Motta V, Cantone L, Litonjua AA, Sparrow D, Vokonas PS, Schwartz J. Gene promoter methylation is associated with lung function in the elderly: the Normative Aging Study. Epigenetics 2012; 7:261-9. [PMID: 22430802 DOI: 10.4161/epi.7.3.19216] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Lung function is a strong predictor of mortality. While inflammatory markers have been associated with lung function decrease, pathways are still poorly understood and epigenetic changes may participate in lung function decline mechanisms. We studied the cross-sectional association between DNA methylation in nine inflammatory genes and lung function in a cohort of 756 elderly men living in the metropolitan area of Boston. Participants donated a blood sample for DNA methylation analysis and underwent spirometry at each visit every 3 to 5 y from 1999-2006. We used separate multivariate mixed effects regression models to study the association between each lung function measurement and DNA methylation within each gene. Decreased CRAT, F3 and TLR2 methylation was significantly associated with lower lung function. One interquartile range (IQR) decrease in DNA methylation was associated with lower forced vital capacity (FVC) and forced expiratory volume in one second (FEV 1), respectively by 2.94% (p < 10 (-4)) and 2.47% (p < 10 (-3)) for F3, and by 2.10% (p < 10 (-2)) and 2.42% (p < 10 (-3)) for TLR2. Decreased IFNγ and IL6 methylation was significantly associated with better lung function. One IQR decrease in DNA methylation was associated with higher FEV 1 by 1.75% (p = 0.02) and 1.67% (p = 0.05) for IFNγ and IL6, respectively. These data demonstrate that DNA methylation may be part of the biological processes underlying the lung function decline and that IFNγ and IL6 may have ambivalent roles through activation of negative feedback.
Collapse
Affiliation(s)
- Johanna Lepeule
- Exposure, Epidemiology and Risk Program, Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
172
|
Cohen S, Shachar I. Cytokines as regulators of proliferation and survival of healthy and malignant peripheral B cells. Cytokine 2012; 60:13-22. [PMID: 22784632 DOI: 10.1016/j.cyto.2012.06.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/21/2012] [Accepted: 06/04/2012] [Indexed: 12/31/2022]
Abstract
Adaptive immunity depends on the production and maintenance of a pool of mature peripheral lymphocytes throughout life. The signals regulating the survival of mature splenic B cells have become a major focus in recent studies of B cell immunology. Lasting B cell persistence in the periphery is dependent on survival signals that are transduced by cell surface receptors. Cytokines have been shown to play a critical role in maintaining lymphocyte homeostasis. This review focuses on the role of cytokines and their receptors in the regulation of peripheral B cell survival, with an emphasis on those that have received relatively less attention in the literature.
Collapse
Affiliation(s)
- Sivan Cohen
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
173
|
Abstract
Cytokines and other peptides are secreted from skeletal muscles in response to exercise and function as hormones either locally within the muscle or by targeting distant organs. Such proteins are recognized as myokines, with the prototype myokine being IL-6. Several studies have established a role of these muscle-derived factors as important contributors of the beneficial effects of exercise, and the myokines are central to our understanding of the cross talk during and after exercise between skeletal muscles and other organs. In a study into the mechanisms of a newly defined myokine, CXCL-1, we found that CXCL-1 overexpression increases muscular fatty acid oxidation with concomitant attenuation of diet-induced fat accumulation in the adipose tissue. Clearly this study adds to the concept of myokines playing an important role in mediating the whole-body adaptive effects of exercise through the regulation of skeletal muscle metabolism. Yet, myokines also contribute to whole-body metabolism by directly signaling to distant organs, regulating metabolic processes in liver and adipose tissue. Thus accumulating data shows that myokines play an important role in restoring a healthy cellular environment, reducing low-grade inflammation and thereby preventing metabolic related diseases like insulin resistance and cancer.
Collapse
|
174
|
Schéle E, Fekete C, Egri P, Füzesi T, Palkovits M, Keller É, Liposits Z, Gereben B, Karlsson-Lindahl L, Shao R, Jansson JO. Interleukin-6 receptor α is co-localised with melanin-concentrating hormone in human and mouse hypothalamus. J Neuroendocrinol 2012; 24:930-43. [PMID: 22295972 DOI: 10.1111/j.1365-2826.2012.02286.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Interleukin (IL)-6 deficient mice develop mature-onset obesity. Furthermore, i.c.v. administration of IL-6 increases energy expenditure, suggesting that IL-6 centrally regulates energy homeostasis. To investigate whether it would be possible for IL-6 to directly influence the energy homeostasis via hypothalamic regulation in humans and rodents, we mapped the distribution of the ligand binding IL-6 receptor α (IL-6Rα) in this brain region. In the human hypothalamus, IL-6Rα-immunoreactivity was detected in perikarya and first-order dendrites of neurones. The IL-6Rα-immunoreactive (-IR) neurones were observed posterior to the level of the interventricular foramen. There, IL-6Rα-IR neurones were located in the lateral hypothalamic, perifornical, dorsal and posterior hypothalamic areas, the hypothalamic dorsomedial nucleus and in the zona incerta. In the caudal part of the hypothalamus, the density of the IL-6Rα-IR neurones gradually increased. Double-labelling immunofluorescent studies demonstrated that IL-6Rα immunoreactivity was localised in the same neurones as the orexigenic neuropeptide, melanin-concentrating hormone (MCH). By contrast, IL-6Rα-immunoreactivity was not observed in the orexin B-IR neurones. To determine whether the observed expression of IL-6Rα is evolutionary conserved, we studied the co-localisation of IL-6Rα with MCH and orexin in the mouse hypothalamus, where IL-6Rα-immunoreactivity was present in numerous MCH-IR and orexin-IR neurones. Our data demonstrate that the MCH neurones of the human hypothalamus, as well as the MCH and orexin neurones of the mouse hypothalamus, contain IL-6Rα. This opens up the possibility that IL-6 influences the energy balance through the MCH neurones in humans, and both MCH and orexin neurones in mice.
Collapse
Affiliation(s)
- E Schéle
- Institute of Neuroscience and Physiology/Endocrinology, The Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Davalli AM, Perego C, Folli FB. The potential role of glutamate in the current diabetes epidemic. Acta Diabetol 2012; 49:167-83. [PMID: 22218826 DOI: 10.1007/s00592-011-0364-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 12/19/2011] [Indexed: 12/27/2022]
Abstract
In the present article, we propose the perspective that abnormal glutamate homeostasis might contribute to diabetes pathogenesis. Previous reports and our recent data indicate that chronically high extracellular glutamate levels exert direct and indirect effects that might participate in the progressive loss of β-cells occurring in both T1D and T2D. In addition, abnormal glutamate homeostasis may impact all the three accelerators of the "accelerator hypothesis" and could partially explain the rising frequency of T1D and T2D.
Collapse
Affiliation(s)
- Alberto M Davalli
- Diabetes and Endocrinology Unit, Department of Internal Medicine, San Raffaele Scientific Institute, 20132, Milan, Italy.
| | | | | |
Collapse
|
176
|
Cai Q, Lin J, Wei L, Zhang L, Wang L, Zhan Y, Zeng J, Xu W, Shen A, Hong Z, Peng J. Hedyotis diffusa Willd inhibits colorectal cancer growth in vivo via inhibition of STAT3 signaling pathway. Int J Mol Sci 2012; 13:6117-6128. [PMID: 22754353 PMCID: PMC3382778 DOI: 10.3390/ijms13056117] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/03/2012] [Accepted: 05/10/2012] [Indexed: 01/15/2023] Open
Abstract
Signal Transducer and Activator of Transcription 3 (STAT3), a common oncogenic mediator, is constitutively activated in many types of human cancers; therefore it is a major focus in the development of novel anti-cancer agents. Hedyotis diffusa Willd has been used as a major component in several Chinese medicine formulas for the clinical treatment of colorectal cancer (CRC). However, the precise mechanism of its anti-tumor activity remains largely unclear. Using a CRC mouse xenograft model, in the present study we evaluated the effect of the ethanol extract of Hedyotis diffusa Willd (EEHDW) on tumor growth in vivo and investigated the underlying molecular mechanisms. We found that EEHDW reduced tumor volume and tumor weight, but had no effect on body weight gain in CRC mice, demonstrating that EEHDW can inhibit CRC growth in vivo without apparent adverse effect. In addition, EEHDW treatment suppressed STAT3 phosphorylation in tumor tissues, which in turn resulted in the promotion of cancer cell apoptosis and inhibition of proliferation. Moreover, EEHDW treatment altered the expression pattern of several important target genes of the STAT3 signaling pathway, i.e., decreased expression of Cyclin D1, CDK4 and Bcl-2 as well as up-regulated p21 and Bax. These results suggest that suppression of the STAT3 pathway might be one of the mechanisms by which EEHDW treats colorectal cancer.
Collapse
Affiliation(s)
- Qiaoyan Cai
- Academy of Integrative Medicine Biomedical Research Center, Fujian University of Traditional Chinese Medicine, 1 Huatuo Road, Minhou Shangjie, Fuzhou 350108, China; E-Mails: (Q.C.); (J.L.); (L.W.); (L.Z.); (L.W.); (Y.Z.); (J.Z.); (A.S.); (Z.H.)
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Huatuo Road, Minhou Shangjie, Fuzhou 350108, China
| | - Jiumao Lin
- Academy of Integrative Medicine Biomedical Research Center, Fujian University of Traditional Chinese Medicine, 1 Huatuo Road, Minhou Shangjie, Fuzhou 350108, China; E-Mails: (Q.C.); (J.L.); (L.W.); (L.Z.); (L.W.); (Y.Z.); (J.Z.); (A.S.); (Z.H.)
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Huatuo Road, Minhou Shangjie, Fuzhou 350108, China
| | - Lihui Wei
- Academy of Integrative Medicine Biomedical Research Center, Fujian University of Traditional Chinese Medicine, 1 Huatuo Road, Minhou Shangjie, Fuzhou 350108, China; E-Mails: (Q.C.); (J.L.); (L.W.); (L.Z.); (L.W.); (Y.Z.); (J.Z.); (A.S.); (Z.H.)
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Huatuo Road, Minhou Shangjie, Fuzhou 350108, China
| | - Ling Zhang
- Academy of Integrative Medicine Biomedical Research Center, Fujian University of Traditional Chinese Medicine, 1 Huatuo Road, Minhou Shangjie, Fuzhou 350108, China; E-Mails: (Q.C.); (J.L.); (L.W.); (L.Z.); (L.W.); (Y.Z.); (J.Z.); (A.S.); (Z.H.)
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Huatuo Road, Minhou Shangjie, Fuzhou 350108, China
| | - Lili Wang
- Academy of Integrative Medicine Biomedical Research Center, Fujian University of Traditional Chinese Medicine, 1 Huatuo Road, Minhou Shangjie, Fuzhou 350108, China; E-Mails: (Q.C.); (J.L.); (L.W.); (L.Z.); (L.W.); (Y.Z.); (J.Z.); (A.S.); (Z.H.)
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Huatuo Road, Minhou Shangjie, Fuzhou 350108, China
| | - Youzhi Zhan
- Academy of Integrative Medicine Biomedical Research Center, Fujian University of Traditional Chinese Medicine, 1 Huatuo Road, Minhou Shangjie, Fuzhou 350108, China; E-Mails: (Q.C.); (J.L.); (L.W.); (L.Z.); (L.W.); (Y.Z.); (J.Z.); (A.S.); (Z.H.)
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Huatuo Road, Minhou Shangjie, Fuzhou 350108, China
| | - Jianwei Zeng
- Academy of Integrative Medicine Biomedical Research Center, Fujian University of Traditional Chinese Medicine, 1 Huatuo Road, Minhou Shangjie, Fuzhou 350108, China; E-Mails: (Q.C.); (J.L.); (L.W.); (L.Z.); (L.W.); (Y.Z.); (J.Z.); (A.S.); (Z.H.)
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Huatuo Road, Minhou Shangjie, Fuzhou 350108, China
| | - Wei Xu
- Department of Pharmacology, Fujian University of Traditional Chinese Medicine, 1 Huatuo Road, Minhou Shangjie, Fuzhou 350108, China; E-Mail:
| | - Aling Shen
- Academy of Integrative Medicine Biomedical Research Center, Fujian University of Traditional Chinese Medicine, 1 Huatuo Road, Minhou Shangjie, Fuzhou 350108, China; E-Mails: (Q.C.); (J.L.); (L.W.); (L.Z.); (L.W.); (Y.Z.); (J.Z.); (A.S.); (Z.H.)
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Huatuo Road, Minhou Shangjie, Fuzhou 350108, China
| | - Zhenfeng Hong
- Academy of Integrative Medicine Biomedical Research Center, Fujian University of Traditional Chinese Medicine, 1 Huatuo Road, Minhou Shangjie, Fuzhou 350108, China; E-Mails: (Q.C.); (J.L.); (L.W.); (L.Z.); (L.W.); (Y.Z.); (J.Z.); (A.S.); (Z.H.)
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Huatuo Road, Minhou Shangjie, Fuzhou 350108, China
| | - Jun Peng
- Academy of Integrative Medicine Biomedical Research Center, Fujian University of Traditional Chinese Medicine, 1 Huatuo Road, Minhou Shangjie, Fuzhou 350108, China; E-Mails: (Q.C.); (J.L.); (L.W.); (L.Z.); (L.W.); (Y.Z.); (J.Z.); (A.S.); (Z.H.)
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Huatuo Road, Minhou Shangjie, Fuzhou 350108, China
| |
Collapse
|
177
|
Macrophage-stimulated cardiac fibroblast production of IL-6 is essential for TGF β/Smad activation and cardiac fibrosis induced by angiotensin II. PLoS One 2012; 7:e35144. [PMID: 22574112 PMCID: PMC3344835 DOI: 10.1371/journal.pone.0035144] [Citation(s) in RCA: 217] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 03/08/2012] [Indexed: 11/19/2022] Open
Abstract
Interleukin-6 (IL-6) is an important cytokine participating in multiple biologic activities in immune regulation and inflammation. IL-6 has been associated with cardiovascular remodeling. However, the mechanism of IL-6 in hypertensive cardiac fibrosis is still unclear. Angiotensin II (Ang II) infusion in mice increased IL-6 expression in the heart. IL-6 knockout (IL-6-/-) reduced Ang II-induced cardiac fibrosis: 1) Masson trichrome staining showed that Ang II infusion significantly increased fibrotic areas of the wild-type mouse heart, which was greatly suppressed in IL-6-/- mice and 2) immunohistochemistry staining showed decreased expression of α-smooth muscle actin (α-SMA), transforming growth factor β1 (TGF-β1) and collagen I in IL-6-/- mouse heart. The baseline mRNA expression of IL-6 in cardiac fibroblasts was low and was absent in cardiomyocytes or macrophages; however, co-culture of cardiac fibroblasts with macrophages significantly increased IL-6 production and expression of α-SMA and collagen I in fibroblasts. Moreover, TGF-β1 expression and phosphorylation of TGF-β downstream signal Smad3 was stimulated by co-culture of macrophages with cardiac fibroblasts, while IL-6 neutralizing antibody decreased TGF-β1 expression and Smad3 phosphorylation in co-culture of macrophage and fibroblast. Taken together, our results indicate that macrophages stimulate cardiac fibroblasts to produce IL-6, which leads to TGF-β1 production and Smad3 phosphorylation in cardiac fibroblasts and thus stimulates cardiac fibrosis.
Collapse
|
178
|
High-dose curcuminoids are efficacious in the reduction in symptoms and signs of oral lichen planus. J Am Acad Dermatol 2012; 66:752-60. [DOI: 10.1016/j.jaad.2011.04.022] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 04/18/2011] [Accepted: 04/28/2011] [Indexed: 11/21/2022]
|
179
|
Underwood PC, Chamarthi B, Williams JS, Sun B, Vaidya A, Raby BA, Lasky-Su J, Hopkins PN, Adler GK, Williams GH. Replication and meta-analysis of the gene-environment interaction between body mass index and the interleukin-6 promoter polymorphism with higher insulin resistance. Metabolism 2012; 61:667-71. [PMID: 22075267 PMCID: PMC3461261 DOI: 10.1016/j.metabol.2011.09.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 09/26/2011] [Accepted: 09/28/2011] [Indexed: 12/20/2022]
Abstract
Insulin resistance (IR) is a complex disorder caused by an interplay of both genetic and environmental factors. Recent studies identified a significant interaction between body mass index (BMI) and the rs1800795 polymorphism of the interleukin-6 gene that influences both IR and onset of type 2 diabetes mellitus, with obese individuals homozygous for the C allele demonstrating the highest level of IR and greatest risk for type 2 diabetes mellitus. Replication of a gene-environment interaction is important to confirm the validity of the initial finding and extend the generalizability of the results to other populations. Thus, the objective of this study was to replicate this gene-environment interaction on IR in a hypertensive population and perform a meta-analysis with prior published results. The replication analysis was performed using white individuals with hypertension from the Hypertensive Pathotype cohort (N = 311), genotyped for rs1800795. Phenotype studies were conducted after participants consumed 2 diets--high sodium (200 mmol/d) and low sodium (10 mmol/d)--for 7 days each. Measurements for plasma glucose, insulin, and interleukin-6 were obtained after 8 hours of fasting. Insulin resistance was characterized by the homeostatic model assessment (HOMA-IR). In Hypertensive Pathotype, BMI was a significant effect modifier of the relationship between rs1800795 and HOMA-IR; higher BMI was associated with higher HOMA-IR among homozygote CC individuals when compared with major allele G carriers (P = .003). Furthermore, the meta-analysis in 1028 individuals confirmed the result, demonstrating the same significant interaction between rs1800795 and BMI on HOMA-IR (P = 1.05 × 10(-6)). This rare replication of a gene-environment interaction extends the generalizability of the results to hypertension while highlighting this polymorphism as a marker of IR in obese individuals.
Collapse
Affiliation(s)
- Patricia C Underwood
- Division of Endocrinology, Diabetes, and HTN, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Zhu J, Carver W. Effects of interleukin-33 on cardiac fibroblast gene expression and activity. Cytokine 2012; 58:368-79. [PMID: 22445500 DOI: 10.1016/j.cyto.2012.02.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 01/26/2012] [Accepted: 02/15/2012] [Indexed: 01/01/2023]
Abstract
Interleukin-33 (IL-33) is a recently described member of the interleukin-1 (IL-1) family. It is produced by diverse cell types in response to a variety of stresses including hemorrhage and increased mechanical load. Though only relatively recently discovered, IL-33 has been shown to participate in several pathological processes including promoting type 2 T helper cell-associated autoimmune diseases. In contrast, IL-33 has been also found to have protective effects in cardiovascular diseases. Recent studies have illustrated that IL-33 attenuates cardiac fibrosis induced by increased cardiovascular load in mice (transaortic constriction). Since cardiac fibrosis is largely dependent on increased production of extracellular matrix by cardiac fibroblasts, we hypothesized that IL-33 directly inhibits pro-fibrotic activities of these cells. Experiments have been carried out with isolated rat cardiac fibroblasts to evaluate the effects of IL-33 on the modulation of cardiac fibroblast gene expression and function to test this hypothesis. The expression of the IL-33 receptor, interleukin-1 receptor-like 1 (ST2), was detected at the mRNA and protein levels in isolated adult rat cardiac fibroblasts. Subsequently, the effects of IL-33 treatment (0-100 ng/ml) on the expression of extracellular matrix proteins and pro-inflammatory cytokines/chemokines were examined as well as the effects on rat cardiac fibroblast activities including proliferation, collagen gel contraction and migration. While IL-33 did not directly inhibit collagen I and collagen III production, it yielded a dose-dependent increase in the expression of interleukin-6 and monocyte chemotactic protein-1. Treatment of rat cardiac fibroblasts with IL-33 also impaired the migratory activity of these cells. Further experiments illustrated that IL-33 rapidly activated multiple signaling pathways including extracellular signal-regulated kinases, p38 mitogen-activated protein kinase, c-Jun N-terminal kinases and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) in a dose-dependent manner. Experiments were carried out with pharmacological inhibitors to determine the role of specific signaling pathways in the response of fibroblasts to IL-33. These experiments illustrated that the activation of p38 mitogen-activated protein kinase and extracellular signal-regulated kinases are critical to the increased production of interleukin-6 and monocyte chemotactic protein-1 in response to IL-33. These studies suggest that IL-33 has an important role in the modulation of fibroblast function and gene expression. Surprisingly, IL-33 had no effect on the expression of genes encoding extracellular matrix components or on proliferation, markers typical of fibrosis. The major effects of IL-33 detected in these studies included inhibition of cell migration and activation of cytokine/chemokine expression. The previously reported inhibition of cardiac fibrosis may include more complicated mechanisms that involve other cardiac cell types. Future studies aimed at determining the effects of IL-33 on other cardiac cell types are warranted.
Collapse
Affiliation(s)
- Jinyu Zhu
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29208, USA.
| | | |
Collapse
|
181
|
Fowler KD, Kuchroo VK, Chakraborty AK. A model for how signal duration can determine distinct outcomes of gene transcription programs. PLoS One 2012; 7:e33018. [PMID: 22427931 PMCID: PMC3302786 DOI: 10.1371/journal.pone.0033018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 02/03/2012] [Indexed: 11/19/2022] Open
Abstract
The reason why IL-6 induces a pro-inflammatory response, while IL-10 induces an anti-inflammatory response, despite both cytokines activating the same transcription factor, STAT3, is not well understood. It is known that IL-6 induces a transient STAT3 signal and that IL-10 induces a sustained STAT3 signal due to the STAT3-induced inhibitor SOCS3's ability to bind to the IL-6R and not the IL-10R. We sought to develop a general transcriptional network that is capable of translating sustained signals into one response, while translating transient signals into a second response. The general structure of such a network is that the transcription factor STAT3 can induce both an inflammatory response and an anti-inflammatory response by inducing two different genes. The anti-inflammatory gene can bind to and inhibit the inflammatory gene's production and the inflammatory gene can bind to its own promoter and induce its own transcription in the absence of the signal. One prediction that can be made from such a network is that in SOCS3-/- mice, where IL-6 induces a sustained STAT3 signal, that IL-6 would act as an anti-inflammatory cytokine, which has indeed been observed experimentally in the literature.
Collapse
Affiliation(s)
- Kevin D. Fowler
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Vijay K. Kuchroo
- Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Arup K. Chakraborty
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts, United States of America
| |
Collapse
|
182
|
Sakimoto T, Sugaya S, Ishimori A, Sawa M. Anti-inflammatory effect of IL-6 receptor blockade in corneal alkali burn. Exp Eye Res 2012; 97:98-104. [PMID: 22551515 DOI: 10.1016/j.exer.2012.02.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/31/2012] [Accepted: 02/27/2012] [Indexed: 12/21/2022]
Abstract
We investigated the effect of soluble IL-6R (sIL-6R) blockade on corneal inflammation. Topical instillation of either anti-IL-6R antibody (MR16-1) or phosphate buffered saline (PBS) was applied after wounding BALB/c mice corneas with alkali burn. The vascularized area was significantly reduced in the MR16-1 group. The immunoreactivity of phosphorylated STAT3, Gr-1, and F4/80 diminished significantly in the MR16-1 group. Laser capture microdissection resulted in a significant down-regulation of the mRNA expressions of ICAM-1, MCP-1, and VEGF-A in the corneal stroma of the MR16-1 group. Adding a combination of recombinant IL-6 and sIL-6R resulted in a significant increase in the release of VEGF from human corneal fibroblasts. As the infiltration of inflammatory cells, the expression of phosphorylated STAT3, and the expressions of inflammatory-related molecules in the experimental model of corneal inflammation were significantly inhibited by topical instillation of MR16-1, we deduce that IL-6 trans-signaling plays a significant role in ocular surface inflammation and that the blockade of IL-6R contributes to the reduction in corneal inflammation.
Collapse
Affiliation(s)
- Tohru Sakimoto
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, 30-1 Oyaguchi Kamimachi, Itabashi-ku, Tokyo 173-8610, Japan.
| | | | | | | |
Collapse
|
183
|
Serrano-Marco L, Barroso E, El Kochairi I, Palomer X, Michalik L, Wahli W, Vázquez-Carrera M. The peroxisome proliferator-activated receptor (PPAR) β/δ agonist GW501516 inhibits IL-6-induced signal transducer and activator of transcription 3 (STAT3) activation and insulin resistance in human liver cells. Diabetologia 2012; 55:743-51. [PMID: 22179221 DOI: 10.1007/s00125-011-2401-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 11/10/2011] [Indexed: 12/22/2022]
Abstract
AIM/HYPOTHESIS IL-6 induces insulin resistance by activating signal transducer and activator of transcription 3 (STAT3) and upregulating the transcription of its target gene SOCS3. Here we examined whether the peroxisome proliferator-activated receptor (PPAR)β/δ agonist GW501516 prevented activation of the IL-6-STAT3-suppressor of cytokine signalling 3 (SOCS3) pathway and insulin resistance in human hepatic HepG2 cells. METHODS Studies were conducted with human HepG2 cells and livers from mice null for Pparβ/δ (also known as Ppard) and wild-type mice. RESULTS GW501516 prevented IL-6-dependent reduction in insulin-stimulated v-akt murine thymoma viral oncogene homologue 1 (AKT) phosphorylation and in IRS-1 and IRS-2 protein levels. In addition, treatment with this drug abolished IL-6-induced STAT3 phosphorylation of Tyr⁷⁰⁵ and Ser⁷²⁷ and prevented the increase in SOCS3 caused by this cytokine. Moreover, GW501516 prevented IL-6-dependent induction of extracellular-related kinase 1/2 (ERK1/2), a serine-threonine protein kinase involved in serine STAT3 phosphorylation; the livers of Pparβ/δ-null mice showed increased Tyr⁷⁰⁵- and Ser⁷²⁷-STAT3 as well as phospho-ERK1/2 levels. Furthermore, drug treatment prevented the IL-6-dependent reduction in phosphorylated AMP-activated protein kinase (AMPK), a kinase reported to inhibit STAT3 phosphorylation on Tyr⁷⁰⁵. In agreement with the recovery in phospho-AMPK levels observed following GW501516 treatment, this drug increased the AMP/ATP ratio and decreased the ATP/ADP ratio. CONCLUSIONS/INTERPRETATION Overall, our findings show that the PPARβ/δ activator GW501516 prevents IL-6-induced STAT3 activation by inhibiting ERK1/2 phosphorylation and preventing the reduction in phospho-AMPK levels. These effects of GW501516 may contribute to the prevention of cytokine-induced insulin resistance in hepatic cells.
Collapse
Affiliation(s)
- L Serrano-Marco
- Pharmacology Unit, Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, Institut de Biomedicina de la UB, Diagonal 643, E-08028 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
184
|
Asharani P, Sethu S, Lim HK, Balaji G, Valiyaveettil S, Hande MP. Differential regulation of intracellular factors mediating cell cycle, DNA repair and inflammation following exposure to silver nanoparticles in human cells. Genome Integr 2012; 3:2. [PMID: 22321936 PMCID: PMC3305596 DOI: 10.1186/2041-9414-3-2] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 02/10/2012] [Indexed: 01/02/2023] Open
Abstract
Background Investigating the cellular and molecular signatures in eukaryotic cells following exposure to nanoparticles will further our understanding on the mechanisms mediating nanoparticle induced effects. This study illustrates the molecular effects of silver nanoparticles (Ag-np) in normal human lung cells, IMR-90 and human brain cancer cells, U251 with emphasis on gene expression, induction of inflammatory mediators and the interaction of Ag-np with cytosolic proteins. Results We report that silver nanoparticles are capable of adsorbing cytosolic proteins on their surface that may influence the function of intracellular factors. Gene and protein expression profiles of Ag-np exposed cells revealed up regulation of many DNA damage response genes such as Gadd 45 in both the cell types and ATR in cancer cells. Moreover, down regulation of genes necessary for cell cycle progression (cyclin B and cyclin E) and DNA damage response/repair (XRCC1 and 3, FEN1, RAD51C, RPA1) was observed in both the cell lines. Double strand DNA damage was observed in a dose dependant manner as evidenced in γH2AX foci assay. There was a down regulation of p53 and PCNA in treated cells. Cancer cells in particular showed a concentration dependant increase in phosphorylated p53 accompanied by the cleavage of caspase 3 and PARP. Our results demonstrate the involvement of NFκB and MAP kinase pathway in response to Ag-np exposure. Up regulation of pro-inflammatory cytokines such as interleukins (IL-8, IL-6), macrophage colony stimulating factor, macrophage inflammatory protein in fibroblasts following Ag-np exposure were also observed. Conclusion In summary, Ag-np can modulate gene expression and protein functions in IMR-90 cells and U251 cells, leading to defective DNA repair, proliferation arrest and inflammatory response. The observed changes could also be due to its capability to adsorb cytosolic proteins on its surface.
Collapse
Affiliation(s)
- Pv Asharani
- Department of Chemistry, Faculty of Science, 3 Science Drive 3, National University of Singapore, 117543, Singapore.
| | | | | | | | | | | |
Collapse
|
185
|
Luckett-Chastain LR, Ihnat MA, Mickle-Kawar BM, Gallucci RM. SOCS3 modulates interleukin-6R signaling preference in dermal fibroblasts. J Interferon Cytokine Res 2012; 32:207-15. [PMID: 22313262 DOI: 10.1089/jir.2011.0086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AIMS This study aims to investigate the mechanisms in the apparent preference for mitogen-activated protein kinase /ERK signaling through interleukin (IL)-6R in dermal fibroblasts. METHODS Dermal fibroblasts isolated from IL-6KO mice were pretreated with specific ERK or STAT3 chemical inhibitors or SOCS3 specific siRNA and treated with rmIL-6. Phosphorylation was monitored via enzyme-linked immunosorbent assay or immunohistology. SOCS3 interaction with p120Ras-Gap was examined by co-immunoprecipitation and Western blot. Expression of MMP2 mRNA was assessed via real-time quantitative polymerase chain reaction. RESULTS A dose response phosphorylation of ERK1/2 occurred while no STAT3 activation (p-Tyr705) was induced after IL-6 treatment, despite an increase in Ser727 phosphorylation. Inhibition of STAT3 in fibroblasts potentiated IL-6R induced ERK phosphorylation and vice versa. Phosphorylated SOCS3 and p120 RasGAP co-immunoprecipitated in response to IL-6 treatment. SOCS3 siRNA knockdown allowed STAT3 phosphorylation after rmIL-6 treatment. Chemical inhibition of IL-6R signaling altered the IL-6 modulated mRNA expression of MMP-2. CONCLUSIONS SOCS3 interaction with p120 Ras-Gap plays a role in determining the preference for IL-6R signaling through ERK in dermal fibroblasts. This study provides insight into the pleiotropic nature of IL-6 and the selective signaling mechanism elicited by the IL-6R system in dermal fibroblasts. It may further indicate a method for manipulation of IL-6R function.
Collapse
Affiliation(s)
- Lerin R Luckett-Chastain
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73126, USA
| | | | | | | |
Collapse
|
186
|
Vargas MF, Tapia-Pizarro AA, Henríquez SP, Quezada M, Salvatierra AM, Noe G, Munroe DJ, Velasquez LA, Croxatto HB. Effect of single post-ovulatory administration of levonorgestrel on gene expression profile during the receptive period of the human endometrium. J Mol Endocrinol 2012; 48:25-36. [PMID: 22052941 DOI: 10.1530/jme-11-0094] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The hypothesis that levonorgestrel (LNG) used as an emergency contraceptive interferes with endometrial receptivity remains unproven. We compared the endometrial gene expression profile during the receptive period after administering a single dose of LNG 1.5 mg or placebo on day 1 of the luteal phase. An endometrial biopsy was done on day LH+7 or LH+8 and samples were taken from seven volunteers, each one contributing with one cycle treated with placebo and another with LNG. The expression of 20 383 genes was determined using cDNA microarrays. Real-time RT-PCR was used 1) to confirm the differences found in DNA microarray analysis and 2) to determine the effect of LNG on transcript levels of C3, C4BPα, COX2, MAOA, S100A4, and SERPINB9, known to be upregulated during receptivity, and on cPLA2α, JAK1, JNK1, CTSL1, and GSTP1, known to respond to mifepristone. Additional endometrial biopsies were done during the pre-receptive (LH+3) and receptive (LH+7) period and samples were taken from eight untreated volunteers in order to determine the changes associated with acquisition of receptivity of 14 genes. Mean levels of PAEP, TGM2, CLU, IGF2, and IL6ST mRNAs increased after administering LNG while those of HGD, SAT1, EVA1, LOC90133, ANXA1, SLC25A29, CYB5A, CRIP1, and SLC39A14 decreased. Except for the level of ANXA1 transcript, all changes remained within the range observed in untreated controls, and none of the transcripts responding to mifepristone changed in response to LNG. Post-ovulatory administration of LNG caused minimal changes in gene expression profiling during the receptive period. Neither the magnitude nor the nature or direction of the changes endorses the hypothesis that LNG interferes with endometrial receptivity.
Collapse
Affiliation(s)
- M F Vargas
- Universidad Santiago de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Salvadó L, Serrano-Marco L, Barroso E, Palomer X, Vázquez-Carrera M. Targeting PPARβ/δ for the treatment of type 2 diabetes mellitus. Expert Opin Ther Targets 2012; 16:209-23. [DOI: 10.1517/14728222.2012.658370] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
188
|
Kasimanickam RK, Kasimanickam VR, Haldorson GJ, Tibary A. Effect of tocopherol supplementation during last trimester of pregnancy on mRNA abundances of interleukins and angiogenesis in ovine placenta and uterus. Reprod Biol Endocrinol 2012; 10:4. [PMID: 22269218 PMCID: PMC3398327 DOI: 10.1186/1477-7827-10-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 01/23/2012] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Interleukins (IL) play an important role in angiogenesis. Tocopherol possesses immunomodulating effect in addition to antioxidant property. The objective of this study was to determine whether gamma tocopherol's (gT) angiogenic activity in placental network is enhanced via promoting interleukins. METHODS Pregnant ewes (N=18) were supplemented, orally, with 500 mg of alpha tocopherol (aT; N=6) or 1,000 mg of gT (N=7) or placebo (CON; N=5) once daily from 107 to 137 days post breeding. Uterine and placental tissue samples were obtained at the end of supplementation to evaluate relative mRNA expressions of IL-1b, IL-6, IL-8, Tumor Necrosis Factor (TNF) alpha, Vascular Endothelial Growth Factor (VEGF), kinase insert domain receptor (KDR; VGFR2; a type III receptor tyrosine kinase), and soluble fms-like tyrosine kniase-1 (sFlt1 or sVEGFR1) in uterus, caruncle and cotyledon. RESULTS Oral supplementation of gT increased IL-6, IL-8, KDR and VEGF mRNA abundances whereas sFlt1 mRNA abundance was suppressed in uterus, caruncle and cotyledon, compared to aT and placebo treated ewes (P<0.05). The TNF alpha and IL-1b mRNA abundances were suppressed in uterus, caruncle and cotyledon but TNF alpha is higher in gT group compared to aT group (P<0.05), whereas IL-1b was similar between treatment groups (P>0.1). CONCLUSIONS Gamma tocopherol supplementation increased IL-6, IL-8, and KDR mRNA abundances and suppressed sFlt1 and TNFalpha mRNA abundances thereby increased VEGF mRNA expression and angiogenesis in placental vascular network during late gestation. It is plausible that the angiogenic effect of gamma tocopherol in placental vascular network is exerted via an alternate path by enhancing IL-6 and IL-8.
Collapse
Affiliation(s)
| | | | - Gary J Haldorson
- College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Ahmed Tibary
- College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
189
|
Zhao X, Boenisch O, Yeung M, Mfarrej B, Yang S, Turka LA, Sayegh MH, Iacomini J, Yuan X. Critical role of proinflammatory cytokine IL-6 in allograft rejection and tolerance. Am J Transplant 2012; 12:90-101. [PMID: 21992708 DOI: 10.1111/j.1600-6143.2011.03770.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The proinflammatory cytokine IL-6 plays an important role in controlling T-cell differentiation, especially the development of Th17 and regulatory T cells. To determine the function of IL-6 in regulating allograft rejection and tolerance, BALB/c cardiac grafts were transplanted into wild-type or IL-6-deficient C57BL/6 mice. We observed that production of IL-6 and IFN-γ was upregulated during allograft rejection in untreated wild-type mice. In IL-6-deficient mice, IFN-γ production was greater than that observed in wild-type controls, suggesting that IL-6 production affects Th1/Th2 balance during allograft rejection. CD28-B7 blockade by CTLA4-Ig inhibited IFN-γ production in C57BL/6 recipients, but had no effect on the production of IL-6. Although wild-type C57BL/6 recipients treated with CTLA4-Ig rejected fully MHC-mismatched BALB/c heart transplants, treatment of IL-6-deficient mice with CTLA4-Ig resulted in graft acceptance. Allograft acceptance appeared to result from the combined effect of costimulatory molecule blockade and IL-6-deficiency, which limited the differentiation of effector cells and promoted the migration of regulatory T cells into the grafts. These data suggest that the blockade of IL-6, or its signaling pathway, when combined with strategies that inhibit Th1 responses, has a synergistic effect on the promotion of allograft acceptance. Thus, targeting the effects of IL-6 production may represent an important part of costimulation blockade-based strategies to promote allograft acceptance and tolerance.
Collapse
Affiliation(s)
- X Zhao
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Dittrich A, Quaiser T, Khouri C, Görtz D, Mönnigmann M, Schaper F. Model-driven experimental analysis of the function of SHP-2 in IL-6-induced Jak/STAT signaling. MOLECULAR BIOSYSTEMS 2012; 8:2119-34. [DOI: 10.1039/c2mb05488d] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
191
|
Silveira FP, Nicoluzzi JE, Saucedo Júnior NS, Silveira F, Nicollelli GM, Maranhão BSDA. Avaliação dos níveis séricos de interleucina-6 e interleucina-10 nos pacientes submetidos à colecistectomia laparoscópica versus convencional. Rev Col Bras Cir 2012; 39:33-40. [DOI: 10.1590/s0100-69912012000100008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 05/16/2011] [Indexed: 01/06/2023] Open
Abstract
OBJETIVO: Correlacionar a dosagem sérica pré-operatória e pós-operatória de interleucina-6 (IL-6) e interleucina-10 (IL-10) entre pacientes submetidos à colecistectomia laparotômica versus videolaparoscópica. MÉTODOS: De um total de 20 pacientes, 18 foram incluídos no estudo, sendo nove submetidos à colecistectomia laparoscópica e os outros nove utilizando a técnica laparotômica. As concentrações séricas de IL-6 e IL-10 foram dosadas em ambos os grupos. As amostras de sangue foram obtidas nos tempos de 24 horas no pré-operatório, quatro, 12 e 24 horas após o procedimento. Os grupos foram comparados em relação à idade, sexo, índice de massa corpórea (IMC), tempo de anestesia e de operação. RESULTADOS: Não houve diferenças significativamente estatísticas entre os grupos relacionadas à idade, sexo, IMC, tempo de anestesia e de operação. A comparação entre a colecistectomia laparotômica e laparoscópica demonstrou diferenças estatísticas nos níveis de IL-6 no tempo 12 horas após operação (218,64pg/ml laparotômica versus 67,71pg/ml laparoscópica, p=0,0003) e IL-10 no tempo de 24 horas após o procedimento (24,46pg/ml aberta versus 10,17pg/ml laparoscópica, p <0,001). CONCLUSÃO: Houve aumento das dosagens de interleucinas-6 e 10 após o trauma cirúrgico. Ocorreu aumento significativo dos níveis das interleucinas analisadas no grupo laparotômico em comparação com o grupo laparoscópico.
Collapse
|
192
|
Oh YS, Lee YJ, Park EY, Jun HS. Interleukin-6 treatment induces beta-cell apoptosis via STAT-3-mediated nitric oxide production. Diabetes Metab Res Rev 2011; 27:813-9. [PMID: 22069265 DOI: 10.1002/dmrr.1233] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Type 2 diabetes is characterized by progressive beta-cell failure and apoptosis is probably the main form of beta-cell death in this disease. It was reported that circulating levels of interleukin-6 are elevated in type 2 diabetic patients, but whether this is involved in the pathogenesis of type 2 diabetes is still debated. In this study, we examined whether interleukin-6 can induce beta-cell damage in vitro and elucidated its mechanisms. METHODS To examine the effect of interleukin-6 on beta cells, glucose-stimulated insulin secretion (GSIS) by enzyme immunoassay (EIA) method and cell apoptosis by propidium iodide and annexin-V staining were measured in a rat beta-cell line (INS-1 or INS-832/13) after treatment with interleukin-6. The expression of apoptosis-related molecules was measured using western blotting and nitric oxide (NO) production was measured using Griess assay. AG490 and N-monomethyl-L-arginine were used to inhibit Janus kinase-mediated signal transducers and activators of transcription signalling and NO production, respectively. RESULTS Exposure (48 h) of INS-1 cells to 20 ng/mL interleukin-6 significantly decreased GSIS as well as cell viability. We found that sub-G1/G0 population was increased as compared with untreated cells and expression of cleaved caspase-3, cleaved poly(ADP-ribose) polymerase, phosphorylated p38 mitogen-activated protein kinase and phosphorylated nuclear factor-κB was increased in interleukin-6-treated INS-1 cells. Interleukin-6 increased the amount of early apoptotic cells; this increase was blocked by AG490 or N-monomethyl-L-arginine treatment. Moreover, NO production, which is known to induce apoptosis, was increased by interleukin-6 treatment but abrogated in AG490-treated cells. CONCLUSION Our results show that exposure to interleukin-6 for 48 h can induce beta-cell death, in part via signal transducers and activators of transcription-3-mediated NO production.
Collapse
Affiliation(s)
- Yoon Sin Oh
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, South Korea
| | | | | | | |
Collapse
|
193
|
Khan AA, Chee SH, McLaughlin RJ, Harper JL, Kamena F, Timmer MSM, Stocker BL. Long-Chain Lipids Are Required for the Innate Immune Recognition of Trehalose Diesters by Macrophages. Chembiochem 2011; 12:2572-6. [DOI: 10.1002/cbic.201100451] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Indexed: 12/19/2022]
|
194
|
Berthold HK, Laudes M, Krone W, Gouni-Berthold I. Association between the interleukin-6 promoter polymorphism -174G/C and serum lipoprotein(a) concentrations in humans. PLoS One 2011; 6:e24719. [PMID: 21935443 PMCID: PMC3173458 DOI: 10.1371/journal.pone.0024719] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 08/17/2011] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Lipoprotein(a) [Lp(a)] is an independent risk factor for cardiovascular disease. The interleukin-6 (IL-6) receptor antagonist tocilizumab has been shown to lower serum Lp(a) concentrations. We investigated whether the IL-6 single nucleotide polymorphism -174G/C is associated with baseline serum Lp(a) concentrations. METHODOLOGY/PRINCIPAL FINDINGS We divided 2321 subjects from the Lipid Analytic Cologne (LIANCO) cohort into 2 groups, the ones with substantially elevated Lp(a), defined as concentrations ≥60 mg/dl (n = 510), and the ones with Lp(a) <60 mg/dl (n = 1811). The association with the genotypes GG (33.7%), GC (50.75%) and CC (15.55%) was investigated. The GC and the CC genotype were associated with a significantly increased odds ratio of having substantially elevated Lp(a) concentrations (OR = 1.3, 95% CI 1.04 to 1.63, P = 0.02 and OR = 1.44, 95% CI 1.06 to 1.93, P = 0.018). These associations remained significant after adjusting for age, sex, smoking behavior, body mass index, serum lipoproteins, hypertension and diabetes. Of these covariates, only LDL cholesterol was significantly and independently associated with elevated Lp(a) concentrations. CONCLUSIONS/SIGNIFICANCE The IL-6 single nucleotide polymorphism -174G/C is associated with increased odds of having elevated Lp(a). Whether this association plays a role in the Lp(a)-lowering effects of IL-6 receptor antagonists remains to be established.
Collapse
Affiliation(s)
- Heiner K Berthold
- Research Group on Geriatrics, Evangelical Geriatrics Center Berlin (EGZB), Charité University Medicine Berlin, Berlin, Germany.
| | | | | | | |
Collapse
|
195
|
Freitas M, Fernandes E. Zinc, cadmium and nickel increase the activation of NF-κB and the release of cytokines from THP-1 monocytic cells. Metallomics 2011; 3:1238-43. [PMID: 21842098 DOI: 10.1039/c1mt00050k] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The sustained activation of the transcription factor nuclear factor κB (NF-κB) by metal-activated signalling pathways can lead to chronic inflammatory processes and related diseases, including carcinogenesis. The aim of the present work was to clarify the effect of zinc, nickel and cadmium on NF-κB activation in the THP-1 human monocytic leukemia cell line. The production of the NF-κB downstream pro-inflammatory mediators tumor necrosis factor (TNF)-α and interleukin (IL)-1β, IL-6 and IL-8 was also evaluated due to their important roles in the pathogenesis of chronic inflammatory and autoimmune diseases and, ultimately, in the development of cancer. The results obtained demonstrated that zinc, nickel and cadmium significantly activate NF-κB, and the release of the chemokine IL-8. Cadmium also induced the release of TNF-α and IL-6 in THP-1 monocytic cells, which may indicate some potential to induce deleterious effects through this pathway.
Collapse
Affiliation(s)
- Marisa Freitas
- REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha, 164, 4099-030 Porto, Portugal.
| | | |
Collapse
|
196
|
Serrano-Marco L, Rodríguez-Calvo R, El Kochairi I, Palomer X, Michalik L, Wahli W, Vázquez-Carrera M. Activation of peroxisome proliferator-activated receptor-β/-δ (PPAR-β/-δ) ameliorates insulin signaling and reduces SOCS3 levels by inhibiting STAT3 in interleukin-6-stimulated adipocytes. Diabetes 2011; 60:1990-9. [PMID: 21617181 PMCID: PMC3121427 DOI: 10.2337/db10-0704] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE It has been suggested that interleukin (IL)-6 is one of the mediators linking obesity-derived chronic inflammation with insulin resistance through activation of STAT3, with subsequent upregulation of suppressor of cytokine signaling 3 (SOCS3). We evaluated whether peroxisome proliferator-activated receptor (PPAR)-β/-δ prevented activation of the IL-6-STAT3-SOCS3 pathway and insulin resistance in adipocytes. RESEARCH DESIGN AND METHODS Adipocytes and white adipose tissue from wild-type and PPAR-β/-δ-null mice were used to evaluate the effect of PPAR-β/-δ on the IL-6-STAT3-SOCS3 pathway. RESULTS First, we observed that the PPAR-β/-δ agonist GW501516 prevented both IL-6-dependent reduction in insulin-stimulated Akt phosphorylation and glucose uptake in adipocytes. In addition, this drug treatment abolished IL-6-induced SOCS3 expression in differentiated 3T3-L1 adipocytes. This effect was associated with the capacity of the drug to prevent IL-6-induced STAT3 phosphorylation on Tyr(705) and Ser(727) residues in vitro and in vivo. Moreover, GW501516 prevented IL-6-dependent induction of extracellular signal-related kinase (ERK)1/2, a serine-threonine-protein kinase involved in serine STAT3 phosphorylation. Furthermore, in white adipose tissue from PPAR-β/-δ-null mice, STAT3 phosphorylation (Tyr(705) and Ser(727)), STAT3 DNA-binding activity, and SOCS3 protein levels were higher than in wild-type mice. Several steps in STAT3 activation require its association with heat shock protein 90 (Hsp90), which was prevented by GW501516 as revealed in immunoprecipitation studies. Consistent with this finding, the STAT3-Hsp90 association was enhanced in white adipose tissue from PPAR-β/-δ-null mice compared with wild-type mice. CONCLUSIONS Collectively, our findings indicate that PPAR-β/-δ activation prevents IL-6-induced STAT3 activation by inhibiting ERK1/2 and preventing the STAT3-Hsp90 association, an effect that may contribute to the prevention of cytokine-induced insulin resistance in adipocytes.
Collapse
Affiliation(s)
- Lucía Serrano-Marco
- Pharmacology Unit, Department of Pharmacology and Therapeutic Chemistry, University of Barcelona, Institut de Biomedicina de la UB (IBUB), and CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Ricardo Rodríguez-Calvo
- Pharmacology Unit, Department of Pharmacology and Therapeutic Chemistry, University of Barcelona, Institut de Biomedicina de la UB (IBUB), and CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Ilhem El Kochairi
- Center for Integrative Genomics, National Research Center Frontiers in Genetics, University of Lausanne, Lausanne, Switzerland
| | - Xavier Palomer
- Pharmacology Unit, Department of Pharmacology and Therapeutic Chemistry, University of Barcelona, Institut de Biomedicina de la UB (IBUB), and CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Liliane Michalik
- Center for Integrative Genomics, National Research Center Frontiers in Genetics, University of Lausanne, Lausanne, Switzerland
| | - Walter Wahli
- Center for Integrative Genomics, National Research Center Frontiers in Genetics, University of Lausanne, Lausanne, Switzerland
| | - Manuel Vázquez-Carrera
- Pharmacology Unit, Department of Pharmacology and Therapeutic Chemistry, University of Barcelona, Institut de Biomedicina de la UB (IBUB), and CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain
- Corresponding author: Manuel Vázquez-Carrera,
| |
Collapse
|
197
|
Murakami M, Hirano T. A four-step model for the IL-6 amplifier, a regulator of chronic inflammations in tissue-specific MHC class II-associated autoimmune diseases. Front Immunol 2011; 2:22. [PMID: 22566812 PMCID: PMC3341963 DOI: 10.3389/fimmu.2011.00022] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 06/06/2011] [Indexed: 11/13/2022] Open
Abstract
It is commonly thought that autoimmune diseases are caused by the breakdown of self-tolerance, which suggests the recognition of specific antigens by autoreactive CD4+ T cells contribute to the specificity of autoimmune diseases (Marrack et al., 2001; Mathis and Benoist, 2004). In several cases, however, even for diseases associated with class II major histocompatibility complex (MHC) alleles, the causative tissue-specific antigens recognized by memory/activated CD4+ T cells have not been established (Mocci et al., 2000; Skapenko et al., 2005). Rheumatoid arthritis (RA) and arthritis in F759 knock-in mice (F759 mice) are such examples (Atsumi et al., 2002; Brennan et al., 2002; Falgarone et al., 2009). These include associations with class II MHC and CD4 molecules; increased numbers of memory/activated CD4+ T cells; and improved outcomes in response to suppressions and/or deficiencies in class II MHC molecules, CD4+ T cells, and the T cell survival cytokine IL-7. Regarding the development of arthritis in F759 mice, it is not only the immune system, but also non-immune tissue that are involved, indicating that the importance of their interactions (Sawa et al., 2006, 2009; Ogura et al., 2008; Hirano, 2010; Murakami et al., 2011). Furthermore, we have shown that local events such as microbleeding together with an accumulation of activated CD4+ T cells in a manner independent of tissue antigen-recognitions induces arthritis in the joints of F759 mice (Murakami et al., 2011). For example, local microbleeding-mediated CCL20 expression induce such an accumulation, causing arthritis development via chronic activation of an IL-17A-dependent IL-6 signaling amplification loop in type 1 collagen+ cells that is triggered by CD4+ T cell-derived cytokine(s) such as IL-17A, which leads to the synergistic activation of STAT3 and NFκB in non-hematopoietic cells in the joint (Murakami et al., 2011). We named this loop the IL-6-mediated inflammation amplifier, or IL-6 amplifier for short (Ogura et al., 2008; Hirano, 2010; Murakami et al., 2011). Thus, certain class II MHC-associated, tissue-specific autoimmune diseases, including some RA subtypes, may be induced by local events that cause an antigen-independent accumulation of effector CD4+ T cells followed by the induction of the IL-6 amplifier in the affected tissue. In other words, in certain cases, the target tissue itself may determine the specificity of the autoimmune disease via activation of the IL-6 amplifier. To explain this hypothesis, we have proposed a four-step model for MHC class II-associated autoimmune diseases (Murakami et al., 2011): (1) T cell activation regardless of antigen specificity; (2) local events inducing a tissue-specific accumulation of activated T cells; (3) transient activation of the IL-6 amplifier; and (4) enhanced sensitivity to cytokines in the target tissue. The interaction of these events results in chronic activation of the IL-6 amplifier and subsequent manifestation of autoimmune diseases. Thus, the IL-6 amplifier, which is chronically activated by these four events, is a critical regulator of chronic inflammations in tissue-specific MHC class II-associated autoimmune diseases.
Collapse
Affiliation(s)
- Masaaki Murakami
- Laboratory of Developmental Immunology, JST-CREST, Graduate School of Frontier Biosciences, Osaka University Osaka, Japan
| | | |
Collapse
|
198
|
Mesenchymal stem cell therapy modulates the inflammatory response in experimental traumatic brain injury. Neurol Res Int 2011; 2011:564089. [PMID: 21766025 PMCID: PMC3135112 DOI: 10.1155/2011/564089] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/20/2011] [Accepted: 03/31/2011] [Indexed: 12/14/2022] Open
Abstract
Therapy with mesenchymal stem cells (MSCs) has showed to be promising due to its immunomodulatory function. Traumatic brain injury (TBI) triggers immune response and release of inflammatory mediators, mainly cytokines, by glial cells creating a hostile microenvironment for endogenous neural stem cells (NSCs). We investigated the effects of factors secreted by MSCs on NSC in vitro and analyzed cytokines expression in vitro in a TBI model. Our in vitro results show that MSC-secreted factors increase NSC proliferation and induce higher expression of GFAP, indicating a tendency toward differentiation into astrocytes. In vivo experiments showed that MSC injection at an acute model of brain injury diminishes a broad profile of cytokines in the tissue, suggesting that MSC-secreted factors may modulate the inflammation at the injury site, which may be of interest to the development of a favorable microenvironment for endogenous NSC and consequently to repair the injured tissue.
Collapse
|
199
|
Promotion of liver and lung tumorigenesis in DEN-treated cytoglobin-deficient mice. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1050-60. [PMID: 21684245 DOI: 10.1016/j.ajpath.2011.05.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Revised: 04/26/2011] [Accepted: 05/02/2011] [Indexed: 02/06/2023]
Abstract
Cytoglobin (Cygb) is a recently discovered vertebrate globin with molecular characteristics that are similar to myoglobin. To study the biological function of Cygb in vivo, we generated Cygb knockout mice and investigated their susceptibility to N,N-diethylnitrosamine (DEN)-induced tumorigenesis. Four-week-old male mice were administered DEN in drinking water at a dose of 25 ppm for 25 weeks or 0.05 ppm for 36 weeks. Cygb deficiency promoted the DEN-induced development of liver and lung tumors. All Cygb(+/-) and Cygb(-/-) mice treated with 25-ppm DEN exhibited liver tumors, compared with 44.4% of their wild-type counterparts. Lung tumors were present only in Cygb-deficient mice. More than 40% of Cygb(-/-) mice developed liver and lung tumors at the nontoxic dose of DEN (0.05 ppm), which did not induce tumors in wild-type mice. Cygb loss was associated with increased cancer cell proliferation, elevated extracellular signal-regulated kinase and Akt activation, overexpression of IL-1β, IL-6, Tnfα, and Tgfβ3 mRNAs, and hepatic collagen accumulation. Cygb-deficient mice also exhibited increased nitrotyrosine formation and dysregulated expression of cancer-related genes (cyclin D2, p53, Pak1, Src, Cdkn2a, and Cebpa). These results suggest that Cygb deficiency induces susceptibility to cancer development in the liver and lungs of mice exposed to DEN. Thus, globins such as Cygb will shed new light on the biological features of organ carcinogenesis.
Collapse
|
200
|
Martín-Cordero L, García JJ, Hinchado MD, Ortega E. The interleukin-6 and noradrenaline mediated inflammation-stress feedback mechanism is dysregulated in metabolic syndrome: effect of exercise. Cardiovasc Diabetol 2011; 10:42. [PMID: 21599899 PMCID: PMC3118326 DOI: 10.1186/1475-2840-10-42] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 05/20/2011] [Indexed: 12/25/2022] Open
Abstract
Background Metabolic syndrome (MS) is a metabolic disorder associated with obesity, type-II diabetes, and "low grade inflammation", with the concomitant increased risk of cardiovascular events. Removal of the inflammatory mediator signals is a promising strategy to protect against insulin resistance, obesity, and other problems associated with MS such as cardiovascular disease. The aim of the present investigation was to determine the "inflammatory and stress status" in an experimental model of MS, and to evaluate the effect of a program of habitual exercise and the resulting training-induced adaptation to the effects of a single bout of acute exercise. Methods Obese Zucker rats (fa/fa) were used as the experimental model of MS, and lean Zucker rats (Fa/fa) were used for reference values. The habitual exercise (performed by the obese rats) consisted of treadmill running: 5 days/week for 14 weeks, at 35 cm/s for 35 min in the last month. The acute exercise consisted of a single session of 25-35 min at 35 cm/s. Circulating concentrations of IL-6 (a cytokine that regulates the inflammatory and metabolic responses), CRP (a systemic inflammatory marker), and corticosterone (CTC) (the main glucocorticoid in rats) were determined by ELISA, and that of noradrenaline (NA) was determined by HPLC. Glucose was determined by standard methods. Results The genetically obese animals showed higher circulating levels of glucose, IL-6, PCR, and NA compared with the control lean animals. The habitual exercise program increased the concentration of IL-6, PCR, NA, and glucose, but decreased that of CTC. Acute exercise increased IL-6, CRP, and NA in the sedentary obese animals, but not in the trained obese animals. CTC was increased after the acute exercise in the trained animals only. Conclusion Animals with MS present a dysregulation in the feedback mechanism between IL-6 and NA which can contribute to the systemic low-grade inflammation and/or hyperglycaemia of MS. An inappropriate exercise intensity can worsen this dysregulation, contributing to the metabolic, inflammatory, and stress disorders associated with MS. Habitual exercise (i.e., training) induces a positive adaptation in the response to acute exercise.
Collapse
|