151
|
Fercher A, Borisov SM, Zhdanov AV, Klimant I, Papkovsky DB. Intracellular O2 sensing probe based on cell-penetrating phosphorescent nanoparticles. ACS NANO 2011; 5:5499-5508. [PMID: 21671589 DOI: 10.1021/nn200807g] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A new intracellular O(2) (icO(2)) sensing probe is presented, which comprises a nanoparticle (NP) formulation of a cationic polymer Eudragit RL-100 and a hydrophobic phosphorescent dye Pt(II)-tetrakis(pentafluorophenyl)porphyrin (PtPFPP). Using the time-resolved fluorescence (TR-F) plate reader set-up, cell loading was investigated in detail, particularly the effects of probe concentration, loading time, serum content in the medium, cell type, density, etc. The use of a fluorescent analogue of the probe in conjunction with confocal microscopy and flow cytometry analysis, revealed that cellular uptake of the NPs is driven by nonspecific energy-dependent endocytosis and that the probe localizes inside the cell close to the nucleus. Probe calibration in biological environment was performed, which allowed conversion of measured phosphorescence lifetime signals into icO(2) concentration (μM). Its analytical performance in icO(2) sensing experiments was demonstrated by monitoring metabolic responses of mouse embryonic fibroblast cells under ambient and hypoxic macroenvironment. The NP probe was seen to generate stable and reproducible signals in different types of mammalian cells and robust responses to their metabolic stimulation, thus allowing accurate quantitative analysis. High brightness and photostability allow its use in screening experiments with cell populations on a commercial TR-F reader, and for single cell analysis on a fluorescent microscope.
Collapse
Affiliation(s)
- Andreas Fercher
- Biochemistry Department, University College Cork, Cavanagh Building, College Road, Cork, Ireland
| | | | | | | | | |
Collapse
|
152
|
ur Rehman Z, Hoekstra D, Zuhorn IS. Protein kinase A inhibition modulates the intracellular routing of gene delivery vehicles in HeLa cells, leading to productive transfection. J Control Release 2011; 156:76-84. [PMID: 21787817 DOI: 10.1016/j.jconrel.2011.07.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 07/06/2011] [Accepted: 07/09/2011] [Indexed: 01/13/2023]
Abstract
Cellular entry of nanoparticles for drug- and gene delivery relies on various endocytic pathways, including clathrin- and caveolae-mediated endocytosis. To improve delivery, i.e., the therapeutic and/or cell biological impact, current efforts are aimed at avoiding processing of the carriers along the degradative clathrin-mediated pathway towards lysosomes, and promoting that along the caveolae-mediated pathway. Here, we demonstrate the effective internalization of branched polyethylenimine polymers (BPEI), complexed with nucleic acids, by HeLa cells along both pathways. However, transfection efficiency or nuclear ODN delivery primarily occurs via the caveolae-mediated pathway, along which delivery into lysosomes is avoided. Interestingly, inhibition of intracellular protein kinase A (PKA) activity modulates the intracellular trafficking of both poly- and lipoplexes along the clathrin-mediated pathway by impeding trafficking into the late endosomal/lysosomal compartments, thus avoiding degradation. In case of BPEI polyplexes this promotes their transfection efficiency by 2-3 fold. Evidence excludes early endosomes as a major site for BPEI-mediated release/delivery. Rather, we identify a novel compartment, tentatively characterized as a transferrin(-)/rab9(-)/LAMP1(-) compartment, to which cargo within the clathrin-mediated pathway of endocytosis is rerouted upon inhibition of PKA, and which may act as an alternative and effective site of cargo release in gene delivery. Our findings offer new opportunities for improving gene delivery by non-viral based nanoparticles.
Collapse
Affiliation(s)
- Zia ur Rehman
- University Medical Center Groningen, University of Groningen, Department of Cell Biology/Membrane Cell Biology, A. Deusinglaan 1, Groningen, The Netherlands
| | | | | |
Collapse
|
153
|
Olton DYE, Close JM, Sfeir CS, Kumta PN. Intracellular trafficking pathways involved in the gene transfer of nano-structured calcium phosphate-DNA particles. Biomaterials 2011; 32:7662-70. [PMID: 21774979 DOI: 10.1016/j.biomaterials.2011.01.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Accepted: 01/14/2011] [Indexed: 12/29/2022]
Abstract
Nano-structured calcium phosphate (NanoCaP) particles have been proven to be a powerful means of non-viral gene delivery. In order to better understand the mechanisms through which NanoCaPs-mediated mammalian cell transfection is achieved, we have sought to define the intracellular trafficking pathways involved in the cellular uptake and intracellular processing of these particles. Previous work has indicated that NanoCaP-DNA complexes are most likely internalized via endocytosis, however the subsequent pathways involved have not been determined. Through the use of specific inhibitors, we show that endocytosis of NanoCaP particles is both clathrin- and caveolae-dependent, and suggest that the caveolaer mechanism is the major contributor. We demonstrate colocalization of NanoCaP-pDNA complexes with known markers of both clathrin-coated and caveolar vesicles. Furthermore, through the use of quantitative flow cytometry, we present the first work in which the percent internalization of CaP-DNA complexes into cells is quantified. The overall goal of this research is to foster the continued improvement of NanoCaP-based gene delivery strategies.
Collapse
Affiliation(s)
- Dana Y E Olton
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
154
|
Ming X, Sato K, Juliano RL. Unconventional internalization mechanisms underlying functional delivery of antisense oligonucleotides via cationic lipoplexes and polyplexes. J Control Release 2011; 153:83-92. [PMID: 21571016 PMCID: PMC3133857 DOI: 10.1016/j.jconrel.2011.04.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 04/22/2011] [Accepted: 04/27/2011] [Indexed: 11/26/2022]
Abstract
There is mounting interest in developing antisense and siRNA oligonucleotides into therapeutic entities; however, this potential has been limited by poor access of oligonucleotides to their pharmacological targets within cells. Transfection reagents, such as cationic lipids and polymers, are commonly utilized to improve functional delivery of nucleic acids including oligonucleotides. Cellular entry of large plasmid DNA molecules with the assistance of these polycationic carriers is mediated by some form of endocytosis; however, the mechanism for delivery of small oligonucleotide molecules has not been well established. In this study, splice-shifting oligonucleotides have been formulated into cationic lipoplexes and polyplexes, and their internalization mechanisms have been examined by using pharmacological and genetic inhibitors of endocytosis. The results showed that intercellular distribution of the oligonucleotides to the nucleus governs their pharmacological response. A mechanistic study revealed that oligonucleotides delivered by lipoplexes enter the cells partially by membrane fusion and this mechanism accounts for the functional induction of the target gene. In contrast, polyplexes are internalized by unconventional endocytosis pathways that do not require dynamin or caveolin. These studies may help rationally design novel delivery systems with superior transfection efficiency but lower toxicity.
Collapse
Affiliation(s)
- Xin Ming
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Katsuya Sato
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Rudolph L. Juliano
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
155
|
Mechanistic studies on the uptake and intracellular trafficking of novel cyclodextrin transfection complexes by intestinal epithelial cells. Int J Pharm 2011; 413:174-83. [DOI: 10.1016/j.ijpharm.2011.04.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 04/06/2011] [Accepted: 04/08/2011] [Indexed: 11/18/2022]
|
156
|
Wu M, Yuan F. Membrane binding of plasmid DNA and endocytic pathways are involved in electrotransfection of mammalian cells. PLoS One 2011; 6:e20923. [PMID: 21695134 PMCID: PMC3113837 DOI: 10.1371/journal.pone.0020923] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 05/16/2011] [Indexed: 11/19/2022] Open
Abstract
Electric field mediated gene delivery or electrotransfection is a widely used method in various studies ranging from basic cell biology research to clinical gene therapy. Yet, mechanisms of electrotransfection are still controversial. To this end, we investigated the dependence of electrotransfection efficiency (eTE) on binding of plasmid DNA (pDNA) to plasma membrane and how treatment of cells with three endocytic inhibitors (chlorpromazine, genistein, dynasore) or silencing of dynamin expression with specific, small interfering RNA (siRNA) would affect the eTE. Our data demonstrated that the presence of divalent cations (Ca(2+) and Mg(2+)) in electrotransfection buffer enhanced pDNA adsorption to cell membrane and consequently, this enhanced adsorption led to an increase in eTE, up to a certain threshold concentration for each cation. Trypsin treatment of cells at 10 min post electrotransfection stripped off membrane-bound pDNA and resulted in a significant reduction in eTE, indicating that the time period for complete cellular uptake of pDNA (between 10 and 40 min) far exceeded the lifetime of electric field-induced transient pores (∼10 msec) in the cell membrane. Furthermore, treatment of cells with the siRNA and all three pharmacological inhibitors yielded substantial and statistically significant reductions in the eTE. These findings suggest that electrotransfection depends on two mechanisms: (i) binding of pDNA to cell membrane and (ii) endocytosis of membrane-bound pDNA.
Collapse
Affiliation(s)
- Mina Wu
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Fan Yuan
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
157
|
How to screen non-viral gene delivery systems in vitro? J Control Release 2011; 154:218-32. [PMID: 21600249 DOI: 10.1016/j.jconrel.2011.05.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 03/31/2011] [Accepted: 05/01/2011] [Indexed: 11/21/2022]
Abstract
Screening of new gene delivery candidates regarding transfection efficiency and toxicity is usually performed by reading out transgene expression levels relative to a reference formulation after in vitro transfection. However, over the years and among different laboratories, this screening has been performed in a variety of cell lines, using a variety of conditions and read-out systems, and by comparison to a variety of reference formulations. This makes a direct comparison of results difficult, if not impossible. Reaching a consensus would enable placing new results into context of previous findings and estimate the overall contribution to the improvement of non-viral gene delivery. In this paper we illustrate the sensitivity of transfection outcomes on testing conditions chosen, and propose a screening protocol with the aim of standardization within the field.
Collapse
|
158
|
Zhang XX, Allen PG, Grinstaff M. Macropinocytosis is the major pathway responsible for DNA transfection in CHO cells by a charge-reversal amphiphile. Mol Pharm 2011; 8:758-66. [PMID: 21449536 DOI: 10.1021/mp100366h] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The cellular uptake of a functional charge-reversal amphiphile:DNA lipoplex is described. First, pharmacological inhibitors were applied to block different endocytosis pathways. By examining the resulting transfection activities, it was found that endocytosis was the pathway leading to transfection in Chinese hamster ovary (CHO) cells. When the specific pathway of macropinocytosis was inhibited, β-galactosidase expression was significantly depleted (90%); meanwhile the inhibition of clathrin-mediated pathway only brought a 30% decrease in expression; and the inhibition of caveolae-mediated pathway did not affect expression. Furthermore, a transfection kinetics study revealed that the cellular uptake responsible for gene expression was a slower process compared to clathrin-mediated endocytosis, consistent with fluid-phase uptake compared to receptor-mediated uptake. Next, a fluorescence colocalization study was used to visualize the DNA lipoplex uptake pathways. The colocalization of the DNA lipoplex and Cascade Blue, a fluid-phase uptake marker, was observed. Meanwhile, the colocalization of the DNA lipoplex and transferrin, a clathrin-mediated endocytosis marker, was also seen. However, no colocalization was observed with the endosome/lysosome marker Lysotracker. Our results indicate that macropinocytosis, not the commonly seen clathrin-mediated endocytosis for cationic lipids, is the major pathway leading to gene transfection in CHO cells for this charge-reversal amphiphile.
Collapse
Affiliation(s)
- Xiao-Xiang Zhang
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
159
|
Guo S, Huang Y, Zhang W, Wang W, Wei T, Lin D, Xing J, Deng L, Du Q, Liang Z, Liang XJ, Dong A. Ternary complexes of amphiphilic polycaprolactone-graft-poly (N,N-dimethylaminoethyl methacrylate), DNA and polyglutamic acid-graft-poly(ethylene glycol) for gene delivery. Biomaterials 2011; 32:4283-92. [PMID: 21450341 DOI: 10.1016/j.biomaterials.2011.02.034] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 02/15/2011] [Indexed: 01/05/2023]
Abstract
Binary complexes of cationic polymers and DNA were used commonly for DNA delivery, whereas, the excess cationic charge of the binary complexes mainly leads to high toxicity and unstability in vivo. In this paper, ternary complexes by coating polyglutamic acid-graft-poly(ethylene glycol)(PGA-g-mPEG) onto binary complexes of polycaprolactone-graft-poly(N,N-dimethylaminoethyl methacrylate) (PCL-g-PDMAEMA) nanoparticles (NPs)/DNA were firstly developed for effective and targeted gene delivery. The coating of PGA-g-mPEG was able to decrease the zeta potential of the nano-sized DNA complexes nearly to electroneutrality without interferring with DNA condensation ability. As a result, the stability, the escape ability from endosomes and the transfection efficiency of the complexes were enhanced. The ternary complexes of PCL-g-PDMAEMA NPs/DNA/PGA-g-mPEG demonstrated lower cytotoxicity in CCK-8 measurements and higher gene transfection efficiency than the binary complexes in vitro. In addition, Lactate dehydrogenase (LDH) assay was performed to quantify the membrane-damaging effects of the complexes, which is consistent with the conclusion of CCK-8 measurement for cytotoxicity assay. The in vivo imaging measurement and histochemical analysis of tumor sessions confirmed that the intravenous administration of the ternary complexes with red fluorescent protein (RFP) as payload led to protein expression in tumor, which was further enhanced by the targeted coating of PGA-g-PEG-folate.
Collapse
Affiliation(s)
- Shutao Guo
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Chung YC, Cheng TY, Young TH. The role of adenosine receptor and caveolae-mediated endocytosis in oligonucleotide-mediated gene transfer. Biomaterials 2011; 32:4471-80. [PMID: 21440294 DOI: 10.1016/j.biomaterials.2011.02.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 02/28/2011] [Indexed: 11/17/2022]
Abstract
We previously reported the preparation and characterization of ternary nanoparticles with the negative surface charge, which comprises histidine-conjugated polyallylamine (PAA-HIS)/DNA core complex and a single-stranded oligonucleotide outer layer, to transfect various cell lines. As a continued effort, here the investigations on the endocytotic mechanisms involved in the uptake of the oligonucleotide-coated PAA-HIS/DNA complexes are reported. Interestingly, these complexes showed enhanced transfection efficiency only when deoxyadenosine-containing oligonucleotides were deposited on the PAA-HIS/DNA complex surface. The addition of uncomplexed oligonucleotide, free adenosine and adenosine receptor antagonist significantly inhibited the transfection efficiency of oligonucleotide-coated PAA-HIS/DNA complexes. These results indicated that the oligonucleotide-coated PAA-HIS/DNA complexes could specifically recognize adenosine receptors on the cell surface and were taken up by adenosine receptor-mediated process. Uptake and transfection experiments with various endocytic inhibitors suggested that, after receptor/ligand binding, oligonucleotide-coated PAA-HIS/DNA/complexes were mainly internalized via caveolae-mediated pathway to result in effective intracellular processing for gene expression. In conclusion, both adenosine receptor and caveolae-mediated endocytosis play important roles in oligonucleotide-mediated gene transfer.
Collapse
Affiliation(s)
- Yi-Chen Chung
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
161
|
Effective Gene Delivery to Mesenchymal Stem Cells Based on the Reverse Transfection and Three-Dimensional Cell Culture System. Pharm Res 2011; 28:1577-90. [DOI: 10.1007/s11095-011-0390-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 01/31/2011] [Indexed: 01/19/2023]
|
162
|
Yuan ZF, Li F, Ma M, Cheng SX, Zhuo RX. Synthesis and characterization of poly(ethylene glycol)-b-poly(ε-caprolactone)-b-poly(2-(2-aminoethyl amino)ethyl methacrylate) triblock copolymers as efficient gene delivery vectors. J Appl Polym Sci 2011. [DOI: 10.1002/app.33725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
163
|
Abstract
The impact that nanotechnology may have on life and medical sciences is immense and includes novel therapies as much as novel diagnostic and imaging tools, often offering the possibility to combine the two. It is, therefore, of the essence to understand and control the interactions that nanomaterials can have with cells, first at an individual level, focusing on, e.g., binding and internalization events, and then at a tissue level, where diffusion and long-range transport add further complications. Here, we present experimental methods based on selective labeling techniques and the use of effectors for a qualitative and quantitative evaluation of endocytic phenomena involving nanoparticles. The understanding of the cell-material interactions arising from these tests can then form the basis for a model-based evaluation of nanoparticles behavior in 3D tissues.
Collapse
|
164
|
van den Berg JH, Nuijen B, Schumacher TN, Haanen JBAG, Storm G, Beijnen JH, Hennink WE. Synthetic vehicles for DNA vaccination. J Drug Target 2010; 18:1-14. [PMID: 19814658 DOI: 10.3109/10611860903278023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
DNA vaccination is an attractive immunization method able to induce robust cellular immune responses in pre-clinical models. However, clinical DNA vaccination trials performed thus far have resulted in marginal responses. Consequently, strategies are currently under development to improve the efficacy of DNA vaccines. A promising strategy is the use of synthetic particle formulations as carrier systems for DNA vaccines. This review discusses commonly used synthetic carriers for DNA vaccination and provides an overview of in vivo studies that use this strategy. Future recommendations on particle characteristics, target cell types and evaluation models are suggested for the potential improvement of current and novel particle delivery systems. Finally, hurdles which need to be tackled for clinical evaluation of these systems are discussed.
Collapse
Affiliation(s)
- Joost H van den Berg
- Department of Pharmacy & Pharmacology, Slotervaart Hospital, Louwesweg 6, 1066 EC Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
165
|
Zaki NM, Tirelli N. Gateways for the intracellular access of nanocarriers: a review of receptor-mediated endocytosis mechanisms and of strategies in receptor targeting. Expert Opin Drug Deliv 2010; 7:895-913. [PMID: 20629604 DOI: 10.1517/17425247.2010.501792] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
IMPORTANCE OF THE FIELD The last 10 years have seen a dramatic growth in understanding and controlling how complex, drug-loaded (nano)structures, as well as pathogens, or biopharmaceuticals can gather access to the cytoplasm, which is a key step to increasing the effectiveness of their action. AREAS COVERED IN THIS REVIEW The review offers an updated overview of the current knowledge of endocytic processes; furthermore, the cell surface receptors most commonly used in drug delivery are here discussed on the basis of their reported internalization mechanisms, with examples of their use as nanocarrier targets taken from the most recent scientific literature. WHAT THE READER WILL GAIN Knowledge of molecular biology details is increasingly necessary for a rational design of drug delivery systems. Here, the aim is to provide the reader with an attempt to link a mechanistic knowledge of endocytic mechanisms with the identification of appropriate targets (internalization receptors) for nanocarriers. TAKE HOME MESSAGE Much advance is still needed to create a complete and coherent biological picture of endocytosis, but current knowledge already allows individuation of a good number of targetable groups for a predetermined intracellular fate of nanocarriers.
Collapse
Affiliation(s)
- Noha M Zaki
- Ain Shams University, Department of Pharmaceutics, Faculty of Pharmacy, Monazamet El Wehda El Afrikia St, El Abbassia, Cairo, Egypt
| | | |
Collapse
|
166
|
Braeckmans K, Buyens K, Bouquet W, Vervaet C, Joye P, De Vos F, Plawinski L, Doeuvre L, Angles-Cano E, Sanders NN, Demeester J, De Smedt SC. Sizing nanomatter in biological fluids by fluorescence single particle tracking. NANO LETTERS 2010; 10:4435-42. [PMID: 20923181 DOI: 10.1021/nl103264u] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Accurate sizing of nanoparticles in biological media is important for drug delivery and biomedical imaging applications since size directly influences the nanoparticle processing and nanotoxicity in vivo. Using fluorescence single particle tracking we have succeeded for the first time in following the aggregation of drug delivery nanoparticles in real time in undiluted whole blood. We demonstrate that, by using a suitable surface functionalization, nanoparticle aggregation in the blood circulation is prevented to a large extent.
Collapse
Affiliation(s)
- Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Harelbekestraat 72, 9000 Gent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
De Vry J, Martínez-Martínez P, Losen M, Temel Y, Steckler T, Steinbusch HWM, De Baets MH, Prickaerts J. In vivo electroporation of the central nervous system: a non-viral approach for targeted gene delivery. Prog Neurobiol 2010; 92:227-44. [PMID: 20937354 DOI: 10.1016/j.pneurobio.2010.10.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 09/24/2010] [Accepted: 10/01/2010] [Indexed: 01/11/2023]
Abstract
Electroporation is a widely used technique for enhancing the efficiency of DNA delivery into cells. Application of electric pulses after local injection of DNA temporarily opens cell membranes and facilitates DNA uptake. Delivery of plasmid DNA by electroporation to alter gene expression in tissue has also been explored in vivo. This approach may constitute an alternative to viral gene transfer, or to transgenic or knock-out animals. Among the most frequently electroporated target tissues are skin, muscle, eye, and tumors. Moreover, different regions in the central nervous system (CNS), including the developing neural tube and the spinal cord, as well as prenatal and postnatal brain have been successfully electroporated. Here, we present a comprehensive review of the literature describing electroporation of the CNS with a focus on the adult brain. In addition, the mechanism of electroporation, different ways of delivering the electric pulses, and the risk of damaging the target tissue are highlighted. Electroporation has been successfully used in humans to enhance gene transfer in vaccination or cancer therapy with several clinical trials currently ongoing. Improving the knowledge about in vivo electroporation will pave the way for electroporation-enhanced gene therapy to treat brain carcinomas, as well as CNS disorders such as Alzheimer's disease, Parkinson's disease, and depression.
Collapse
Affiliation(s)
- Jochen De Vry
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
168
|
Drake CR, Aissaoui A, Argyros O, Serginson JM, Monnery BD, Thanou M, Steinke JHG, Miller AD. Bioresponsive small molecule polyamines as noncytotoxic alternative to polyethylenimine. Mol Pharm 2010; 7:2040-55. [PMID: 20929266 DOI: 10.1021/mp9002249] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nonviral gene therapy continues to require novel synthetic vectors to deliver therapeutic nucleic acids effectively and safely. The majority of synthetic nonviral vectors employed in clinical trials to date have been cationic liposomes; however, cationic polymers are attracting increasing attention. One of the few cationic polymers to enter clinical trials has been polyethylenimine (PEI); however, doubts remain over its cytotoxicity, and in addition it displays lower levels of transfection than viral systems. Herein, we report on the development of a series of small molecule analogues of PEI that are bioresponsive to the presence of pDNA, forming poly(disulfide)s that are capable of efficacious transfection with no associated toxicity. The most effective small molecule developed, a cyclic disulfide based upon a spermine backbone, is shown to form very well-defined polyplexes (100-200 nm in diameter) that mediate murine lung transfection in vivo to within an order of magnitude of in vivo jetPEI, and at the same time display a much improved cytotoxicity profile.
Collapse
Affiliation(s)
- Christopher R Drake
- Department of Chemistry, Imperial College London, Imperial College Genetic Therapies Centre, Flowers Building, Armstrong Road, London SW7 2AZ, UK
| | | | | | | | | | | | | | | |
Collapse
|
169
|
Braeckmans K, Buyens K, Naeye B, Vercauteren D, Deschout H, Raemdonck K, Remaut K, Sanders NN, Demeester J, De Smedt SC. Advanced fluorescence microscopy methods illuminate the transfection pathway of nucleic acid nanoparticles. J Control Release 2010; 148:69-74. [PMID: 20833214 DOI: 10.1016/j.jconrel.2010.08.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 08/19/2010] [Accepted: 08/19/2010] [Indexed: 01/12/2023]
Abstract
A great deal of attention in biopharmacy and pharmaceutical technology is going to the development of nanoscopic particles to efficiently deliver nucleic acids to target cells. Despite the great potential of nucleic acids for treatment of various diseases, progress in the field is fairly slow. One of the causes is that development of suitable nanoscopic delivery vehicles is hampered by insufficient knowledge of their physicochemical and biophysical properties during the various phases of the transfection process. To address this issue, in the past decade we have developed and applied advanced fluorescence microscopy techniques that can provide a better insight in the transport and stability of nanoparticles in various biological media. This mini-review discusses the basic principles of fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS) and single particle tracking (SPT), and gives an overview of studies in which we have employed these techniques to characterize the transport and stability of nucleic acid containing nanoparticles in extracellular media and in living cells.
Collapse
Affiliation(s)
- Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Harelbekestraat 72, 9000 Gent, Belgium
| | - Kevin Buyens
- Laboratory of General Biochemistry and Physical Pharmacy, Harelbekestraat 72, 9000 Gent, Belgium
| | - Broes Naeye
- Laboratory of General Biochemistry and Physical Pharmacy, Harelbekestraat 72, 9000 Gent, Belgium
| | - Dries Vercauteren
- Laboratory of General Biochemistry and Physical Pharmacy, Harelbekestraat 72, 9000 Gent, Belgium
| | - Hendrik Deschout
- Laboratory of General Biochemistry and Physical Pharmacy, Harelbekestraat 72, 9000 Gent, Belgium
| | - Koen Raemdonck
- Laboratory of General Biochemistry and Physical Pharmacy, Harelbekestraat 72, 9000 Gent, Belgium
| | - Katrien Remaut
- Laboratory of General Biochemistry and Physical Pharmacy, Harelbekestraat 72, 9000 Gent, Belgium
| | - Niek N Sanders
- Laboratory of Gene Therapy, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium
| | - Jo Demeester
- Laboratory of General Biochemistry and Physical Pharmacy, Harelbekestraat 72, 9000 Gent, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Harelbekestraat 72, 9000 Gent, Belgium.
| |
Collapse
|
170
|
Millili PG, Selekman JA, Blocker KM, Johnson DA, Naik UP, Sullivan MO. Structural and functional consequences of poly(ethylene glycol) inclusion on DNA condensation for gene delivery. Microsc Res Tech 2010; 73:866-77. [PMID: 20232467 PMCID: PMC2930114 DOI: 10.1002/jemt.20839] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Polycationic polymers have been used to condense therapeutic DNA into submicron particles, offering protection from shear-induced or enzymatic degradation. However, the spontaneous nature of this self-assembly process gives rise to the formation of multimolecular aggregates, resulting in significant polyplex heterogeneity. Additionally, cytotoxicity issues and serum instability have limited the in vivo efficacy of such systems. One way these issues can be addressed is through the inclusion of poly(ethylene glycol) (PEG). PEG has known steric effects that inhibit polyplex self-aggregation. A variety of PEGylated gene delivery formulations have been previously pursued in an effort to take advantage of this material's benefits. Because of such interest, our aim was to further explore the consequences of PEG inclusion on the structure and activity of gene delivery vehicle formulations. We explored the complexation of plasmid DNA with varying ratios of a PEGylated trilysine peptide (PEG-K(3)) and 25-kDa polyethylenimine (PEI). Atomic force and scanning electron microscopy were utilized to assess the polyplex size and shape and revealed that a critical threshold of PEG was necessary to promote the formation of homogeneous polyplexes. Flow cytometry and fluorescence microscopy analyses suggested that the presence of PEG inhibited transfection efficiency as a consequence of changes in intracellular trafficking and promoted an increased reliance on energy-independent mechanisms of cellular uptake. These studies provide new information on the role of PEG in delivery vehicle design and lay the foundation for future work aimed at elucidating the details of the intracellular transport of PEGylated polyplexes.
Collapse
Affiliation(s)
- Peter G. Millili
- Department of Chemical Engineering, University of Delaware, Newark, DE 19716, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA
| | - Joshua A. Selekman
- Department of Chemical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Kory M. Blocker
- Department of Chemical Engineering, University of Delaware, Newark, DE 19716, USA
| | - David A. Johnson
- Department of Chemical Engineering, University of Delaware, Newark, DE 19716, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA
| | - Ulhas P. Naik
- Department of Chemical Engineering, University of Delaware, Newark, DE 19716, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA
| | - Millicent O. Sullivan
- Department of Chemical Engineering, University of Delaware, Newark, DE 19716, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
171
|
Chemical vectors for gene delivery: uptake and intracellular trafficking. Curr Opin Biotechnol 2010; 21:640-5. [PMID: 20674331 DOI: 10.1016/j.copbio.2010.07.003] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 07/06/2010] [Indexed: 01/07/2023]
Abstract
Chemical vectors for non-viral gene delivery are based on engineered DNA nanoparticles produced with various range of macromolecules suitable to mimic some viral functions required for gene transfer. Many efforts have been undertaken these past years to identify cellular barriers that have to be passed for this issue. Here, we summarize the current status of knowledge on the uptake mechanism of DNA nanoparticles made with polymers and liposomes, their endosomal escape, cytosolic diffusion, and nuclear import of pDNA. Studies reported these past years regarding pDNA nanoparticles endocytosis indicated that there is no clear evident relationship between the ways of entry and the transfection efficiency. By contrast, the sequestration of pDNA in intracellular vesicles and the low number of pDNA close to the nuclear envelop are identified as the major intracellular barriers. So, intensive investigations to increase the cytosolic delivery of pDNA and its migration toward nuclear pores make sense to bring the transfection efficiency closer to that of viruses.
Collapse
|
172
|
Prevette LE, Mullen DG, Banaszak Holl MM. Polycation-induced cell membrane permeability does not enhance cellular uptake or expression efficiency of delivered DNA. Mol Pharm 2010; 7:870-83. [PMID: 20349965 PMCID: PMC2882516 DOI: 10.1021/mp100027g] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Polycationic materials commonly used to delivery DNA to cells are known to induce cell membrane porosity in a charge-density dependent manner. It has been suggested that these pores may provide a mode of entry of the polymer-DNA complexes (polyplexes) into cells. To examine the correlation between membrane permeability and biological activity, we used two-color flow cytometry on two mammalian cell lines to simultaneously measure gene expression of a plasmid DNA delivered with four common nonviral vectors and cellular uptake of normally excluded fluorescent dye molecules of two different sizes, 668 Da and 2 MDa. We also followed gene expression in cells sorted based on the retention of endogenous fluorescein. We have found that cell membrane porosity caused by polycationic vectors does not enhance internalization or gene expression. Based on this single-cell study, membrane permeability is found to be an unwanted side effect that limits transfection efficiency, possibly through leakage of the delivered nucleic acid through the pores prior to transcription and translation and/or activation of cell defense mechanisms that restrict transgene expression.
Collapse
|
173
|
Tros de Ilarduya C, Sun Y, Düzgüneş N. Gene delivery by lipoplexes and polyplexes. Eur J Pharm Sci 2010; 40:159-70. [DOI: 10.1016/j.ejps.2010.03.019] [Citation(s) in RCA: 468] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 03/17/2010] [Accepted: 03/23/2010] [Indexed: 11/28/2022]
|
174
|
Lam JKW, Armes SP, Stolnik S. The involvement of microtubules and actin filaments in the intracellular transport of non-viral gene delivery system. J Drug Target 2010; 19:56-66. [DOI: 10.3109/10611861003733938] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
175
|
van Buul GM, Farrell E, Kops N, van Tiel ST, Bos PK, Weinans H, Krestin GP, van Osch GJVM, Bernsen MR. Ferumoxides-protamine sulfate is more effective than ferucarbotran for cell labeling: implications for clinically applicable cell tracking using MRI. CONTRAST MEDIA & MOLECULAR IMAGING 2010; 4:230-6. [PMID: 19839030 DOI: 10.1002/cmmi.289] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The use of superparamagnetic iron oxide (SPIO) for labeling cells holds great promise for clinically applicable cell tracking using magnetic resonance imaging. For clinical application, an effectively and specifically labeled cell preparation is highly desired (i.e. a large amount of intracellular iron and a negligible amount of extracellular iron). In this study we performed a direct comparison of two SPIO labeling strategies that have both been reported as efficient and clinically translatable approaches. These approaches are cell labeling using ferumoxides-protamine complexes or ferucarabotran particles. Cell labeling was performed on primary human bone marrow stromal cells (hBMSCs) and chondrocytes. For both cell types ferumoxides-protamine resulted in a higher percentage of labeled cells, a higher total iron load, a larger amount of intracellular iron and a lower amount of extracellular iron aggregates, compared with ferucarbotran. Consequently, hBMSC and chondrocyte labeling with ferumoxides-protamine is more effective and results in more specific cell labeling than ferucarbotran.
Collapse
Affiliation(s)
- G M van Buul
- Department of Radiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Rea JC, Gibly RF, Davis NE, Barron AE, Shea LD. Engineering surfaces for substrate-mediated gene delivery using recombinant proteins. Biomacromolecules 2010; 10:2779-86. [PMID: 19775146 DOI: 10.1021/bm900628e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Immobilized fibronectin and other natural proteins have been utilized to enhance substrate-mediated gene delivery, with apparent contributions from the intrinsic bioactivity and also physical properties of the immobilized proteins. In this report, we investigated the use of recombinant proteins, compared to the full-length fibronectin protein, as surface coatings for gene delivery to investigate the mechanisms by which fibronectin enhances gene transfer. The recombinant fibronectin fragment FNIII(7-10) (FNIII) contains the alpha(5)beta(1) binding domain of fibronectin and supports cell adhesion, whereas the recombinant protein polymer PP-12 is also negatively charged and has a molecular weight similar to FNIII, but lacks cell binding domains. Transfection was compared on surfaces modified with FNIII, full-length fibronectin, or PP-12. The full-length fibronectin provided the greatest extent of transgene expression relative to FNIII or PP-12, which was consistent with the amount of DNA that associated with cells. FNIII had 4.2-fold or 4.7-fold lower expression levels relative to fibronectin for polyplexes and lipoplexes, respectively. PP-12 produced expression levels that were 317-fold and 12.0-fold less than fibronectin for polyplexes and lipoplexes, respectively. Although expression was greater on FNIII relative to PP-12, the levels of DNA associated per cell with FNIII were similar to or less than those with PP-12, suggesting that the bioactive sequences may contribute to an enhanced intracellular trafficking. For lipoplexes delivered on FNIII, the efficiency of intracellular trafficking and levels of caveolar DNA were greater than that observed with either the full-length fibronectin or PP-12. For polyplexes, fibronectin fragment resulted in greater intracellular trafficking efficiency compared to PP-12 protein polymer. Recombinant proteins can be employed in place of full-length extracellular matrix proteins for substrate-mediated gene delivery, and bioactive sequences can influence one or more steps in the gene delivery process to maximize transfection.
Collapse
Affiliation(s)
- Jennifer C Rea
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | |
Collapse
|
177
|
Qi R, Mullen DG, Baker JR, Holl MMB. The mechanism of polyplex internalization into cells: testing the GM1/caveolin-1 lipid raft mediated endocytosis pathway. Mol Pharm 2010; 7:267-79. [PMID: 20025295 PMCID: PMC2826151 DOI: 10.1021/mp900241t] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The GM1/caveolin-1 lipid raft mediated endocytosis mechanism was explored for generation 5 and 7 poly(amidoamine) dendrimer polyplexes employing the Cos-7, 293A, C6, HeLa, KB, and HepG2 cell lines. Expression levels of GM1 and caveolin-1 were measured using dot blot and Western blot, respectively. The level of GM1 in the cell plasma membrane was adjusted by incubation with exogenous GM1 or ganglioside inhibitor PPMP, and the level of CAV-1 was adjusted by upregulation with the adenovirus vector expressed caveolin-1 (AdCav-1). Cholera toxin B subunit was employed as a positive control for uptake in all cases. No evidence was found for a GM1/caveolin-1 lipid raft mediated endocytosis mechanism for the generation 5 and 7 poly(amidoamine) dendrimer polyplexes.
Collapse
Affiliation(s)
- Rong Qi
- Peking University Institute of Cardiovascular Sciences, Peking University Health Science Center, Peking University, Beijing 100083, China
| | | | | | | |
Collapse
|
178
|
Wang YQ, Sun YX, Hong XL, Zhang XZ, Zhang GY. Poly(methyl methacrylate)-graft-oligoamines as low cytotoxic and efficient nonviral gene vectors. ACTA ACUST UNITED AC 2010; 6:256-63. [DOI: 10.1039/b915718b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
179
|
Schallon A, Jérôme V, Walther A, Synatschke CV, Müller AH, Freitag R. Performance of three PDMAEMA-based polycation architectures as gene delivery agents in comparison to linear and branched PEI. REACT FUNCT POLYM 2010. [DOI: 10.1016/j.reactfunctpolym.2009.09.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
180
|
Spectral bio-imaging and confocal imaging of the intracellular distribution of lipoplexes. Methods Mol Biol 2009. [PMID: 20013415 DOI: 10.1007/978-1-60761-447-0_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The intracellular distribution of nanoparticular drug delivery systems is very complex, but its investigation yields high potential for further development and optimization of these systems.In the following chapter, we introduce the application of fluorescent imaging techniques in order to highlight uptake and cellular processing of nanoparticular drug delivery systems (e.g., liposomal drug delivery systems). We selected a combination of different protocols for the staining of the most important endocytic compartments and organelles. The presented imaging systems are appropriate to detect liposomal drug delivery systems localized in these cellular structures.
Collapse
|
181
|
Reisinger H, Steinfellner W, Katinger H, Kunert R. Serum-free transfection of CHO cells with chemically defined transfection systems and investigation of their potential for transient and stable transfection. Cytotechnology 2009; 60:115-23. [PMID: 19760126 DOI: 10.1007/s10616-009-9224-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Accepted: 08/20/2009] [Indexed: 11/24/2022] Open
Abstract
The generation of transgenic cell lines is acquired by facilitating the uptake and integration of DNA. Unfortunately, most of the systems generating stable expression systems are cost and time-consuming and transient expression is optimized to generate milligram amounts of the recombinant protein. Therefore we improved and compared two transfection systems, one based on cationic liposomes consisting of DOTAP/DOPE and the second one on polyethylenimine (PEI). Both systems have been used as chemically defined transfection systems in combination with serum-free cultivated host cell line. At first we had determined the toxicity and ideal ratio of DNA to PEI followed by determination of the optimal transfection conditions in order to achieve maximum transfection efficiency. We then directly compared DOTAP/DOPE and PEI in transient transfection experiments using enhanced green fluorescence protein (EGFP) and a human monoclonal antibody, mAb 2F5, as a model protein. The results which were achieved in case of EGFP were more than 15% transfectants at a viability of 85%. Despite the fact that expression of the mAb was found negligible we used both techniques to generate stable mAb 2F5 expressing cell lines that underwent several cycles of screening and amplification with methotrexate, and resulted in cell lines with similar volumetric production titers. These experiments serve to demonstrate the potential of stable cell lines even in case where the transient systems did not show satisfying results.
Collapse
Affiliation(s)
- Hannes Reisinger
- Department of Biotechnology, University of Natural Resources and Applied Life Sciences Vienna, Muthgasse 18, Vienna, 1190, Austria,
| | | | | | | |
Collapse
|
182
|
Hufnagel H, Hakim P, Lima A, Hollfelder F. Fluid phase endocytosis contributes to transfection of DNA by PEI-25. Mol Ther 2009; 17:1411-7. [PMID: 19532143 PMCID: PMC2835228 DOI: 10.1038/mt.2009.121] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 05/04/2009] [Indexed: 12/21/2022] Open
Abstract
The understanding of internalization pathways of lipo- or polyplexes is crucial for engineering successful reagents for nonviral gene transfection. A known inhibitor of fluid phase endocytosis (FPE), rottlerin, was used to quantify the contribution of this pathway by flow cytometric and fluorescence assays. Rottlerin was shown to be a specific inhibitor of transfection by polyethylene imine (PEI-25)/DNA complexes, leading to a decrease in the amount of transfected HeLa and CHO-K1 cells and a decrease in the expression of enhanced green fluorescent protein (EGFP) reporter gene by up to 50%. Experiments using fluorescently labeled polyplexes result in a decrease of uptake by up to 40%. Additionally, rottlerin does not cross-inhibit clathrin- and caveolin-mediated endocytotic pathways of internalization, consistent with direct uptake inhibition by rottlerin. Nonspecific effects as a result of toxicity were ruled out by control experiments at concentrations where rottlerin inhibition was specific. These findings suggest that for CHO-K1 and HeLa cells, internalization of PEI-25/DNA complexes by FPE plays a decisive role in gene transfection. The establishment of an additional pathway that is independent of clathrin- and caveolin-mediated endocytotic uptake may have an impact on the design of future reagents of nonviral gene therapy and investigations of the uptake pathways and intracellular trafficking involved.
Collapse
|
183
|
Penacho N, Simões S, de Lima MCP. Polyethylenimine of various molecular weights as adjuvant for transfection mediated by cationic liposomes. Mol Membr Biol 2009; 26:249-63. [DOI: 10.1080/09687680902766716] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
184
|
Liu J, Kopecková P, Bühler P, Wolf P, Pan H, Bauer H, Elsässer-Beile U, Kopecek J. Biorecognition and subcellular trafficking of HPMA copolymer-anti-PSMA antibody conjugates by prostate cancer cells. Mol Pharm 2009; 6:959-70. [PMID: 19344119 PMCID: PMC2692824 DOI: 10.1021/mp8002682] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A new generation of antibodies against the prostate specific membrane antigen (PSMA) has been proven to bind specifically to PSMA molecules on the surface of living prostate cancer cells. To explore the potential of anti-PSMA antibodies as targeting moieties for macromolecular therapeutics for prostate cancer, fluorescently labeled HPMA (N-(2-hydroxypropyl)methacrylamide) copolymer-anti-PSMA antibody conjugates (P-anti-PSMA) were synthesized and the mechanisms of their endocytosis and subcellular trafficking in C4-2 prostate cancer cells were studied. Radioimmunoassays showed the dissociation constants of P-anti-PSMA for C4-2 prostate cancer cells in the low nanomolar range, close to values for free anti-PSMA. It indicated that conjugation of anti-PSMA to HPMA copolymers did not compromise their binding affinity. The rate of endocytosis of P-anti-PSMA was much faster than that of control HPMA copolymer conjugates containing nonspecific IgG. Selective pathway inhibitors of clathrin-mediated endocytosis and of macropinocytosis inhibited the internalization of P-anti-PSMA. Inhibition of clathrin-mediated endocytosis was further evidenced by down-regulation of clathrin heavy chain expression by siRNA. Using a dominant-negative mutant of dynamin (Dyn K44A) to abolish the clathrin-, caveolae-independent endocytic pathway, we found that some of P-anti-PSMA adopted this pathway to be endocytosed into C4-2 cells. Thus multiple receptor-mediated endocytic pathways, including clathrin-mediated endocytosis, macropinocytosis, and clathrin-, caveolae-independent endocytosis, were involved in the internalization of P-anti-PSMA. The extent of the participation of each pathway in P-anti-PSMA endocytosis was estimated. Membrane vesicles containing P-anti-PSMA rapidly colocalized with membrane vesicles overexpressing Rab7, a late endosome localized protein, demonstrating that a part of P-anti-PSMA was transported to late endosomes.
Collapse
Affiliation(s)
- Jihua Liu
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, USA
| | | | | | | | | | | | | | | |
Collapse
|
185
|
Layman JM, Ramirez SM, Green MD, Long TE. Influence of Polycation Molecular Weight on Poly(2-dimethylaminoethyl methacrylate)-Mediated DNA Delivery In Vitro. Biomacromolecules 2009; 10:1244-52. [DOI: 10.1021/bm9000124] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- John M. Layman
- Department of Chemistry, Macromolecules and Interfaces Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Sean M. Ramirez
- Department of Chemistry, Macromolecules and Interfaces Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Matthew D. Green
- Department of Chemistry, Macromolecules and Interfaces Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Timothy E. Long
- Department of Chemistry, Macromolecules and Interfaces Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| |
Collapse
|
186
|
Affiliation(s)
| | - Eric E. Simanek
- Department of Chemistry, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
187
|
Lühmann T, Rimann M, Bittermann AG, Hall H. Cellular Uptake and Intracellular Pathways of PLL-g-PEG-DNA Nanoparticles. Bioconjug Chem 2008; 19:1907-16. [DOI: 10.1021/bc800206r] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Tessa Lühmann
- Department of Materials, ETH Zurich, Zurich, Switzerland, and ZMB, Center for Microscopy and Image Analysis, University of Zurich, Switzerland
| | - Markus Rimann
- Department of Materials, ETH Zurich, Zurich, Switzerland, and ZMB, Center for Microscopy and Image Analysis, University of Zurich, Switzerland
| | - Anne Greet Bittermann
- Department of Materials, ETH Zurich, Zurich, Switzerland, and ZMB, Center for Microscopy and Image Analysis, University of Zurich, Switzerland
| | - Heike Hall
- Department of Materials, ETH Zurich, Zurich, Switzerland, and ZMB, Center for Microscopy and Image Analysis, University of Zurich, Switzerland
| |
Collapse
|
188
|
The effect of surface functionality on cellular trafficking of dendrimers. Biomaterials 2008; 29:3469-76. [DOI: 10.1016/j.biomaterials.2008.04.038] [Citation(s) in RCA: 294] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Accepted: 04/21/2008] [Indexed: 12/27/2022]
|
189
|
de Wolf HK, Johansson N, Thong AT, Snel CJ, Mastrobattista E, Hennink WE, Storm G. Plasmid CpG depletion improves degree and duration of tumor gene expression after intravenous administration of polyplexes. Pharm Res 2008; 25:1654-62. [PMID: 18317886 PMCID: PMC2440937 DOI: 10.1007/s11095-008-9558-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 02/11/2008] [Indexed: 11/11/2022]
Abstract
Purpose Tumor gene expression after the intravenous (i.v.) administration of current polymer-based gene delivery systems is generally low and short-lived. Immune stimulatory CpG dinucleotides, present within the plasmid DNA of the polyplexes are likely to contribute to this. The effect of CpG replacement on the levels of transgene expression was studied, after the i.v. administration of polyethylenimine (PEI) polyplexes. Methods Tumor transfection and immune stimulation of PEI polyplexes containing plasmid DNA encoding for luciferase and rich in CpG motifs was monitored and compared to polyplexes containing the same gene but devoid of CpG motifs. Lipoplexes based on 1,2-dioleyl-3-trimethylammonium-propane/dioleoylphosphatidylethanolamine liposomes were included as a control. Results The replacement of CpGrich DNA by CpGfree DNA did neither affect the physical properties of the DNA complexes nor did it affect their in vitro transfection activity or cytotoxicity. The immune stimulation (interleukin-12) after i.v. administration of the PEI DNA complexes was low and unaffected by the presence of CpG motifs. The absence of CpG motifs within the different DNA complexes improved the degree and the duration of organ and tumor gene expression. Conclusion The depletion of CpG dinucleotides within the plasmid DNA of polyplexes enhances the degree and duration of in vivo transgene expression.
Collapse
Affiliation(s)
- Holger K de Wolf
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
190
|
Germershaus O, Mao S, Sitterberg J, Bakowsky U, Kissel T. Gene delivery using chitosan, trimethyl chitosan or polyethylenglycol-graft-trimethyl chitosan block copolymers: Establishment of structure–activity relationships in vitro. J Control Release 2008; 125:145-54. [DOI: 10.1016/j.jconrel.2007.10.013] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2007] [Revised: 10/10/2007] [Accepted: 10/15/2007] [Indexed: 01/18/2023]
|
191
|
Pan H, Kopecek J. Multifunctional Water-Soluble Polymers for Drug Delivery. MULTIFUNCTIONAL PHARMACEUTICAL NANOCARRIERS 2008. [DOI: 10.1007/978-0-387-76554-9_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
192
|
Xia T, Kovochich M, Liong M, Zink JI, Nel AE. Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS NANO 2008; 2:85-96. [PMID: 19206551 DOI: 10.1021/nn700256c] [Citation(s) in RCA: 479] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The exponential increase in the number of new nanomaterials that are being produced increases the likelihood of adverse biological effects in humans and the environment. In this study we compared the effects of cationic nanoparticles in five different cell lines that represent portal-of-entry or systemic cellular targets for engineered nanoparticles. Although 60 nm NH(2)-labeled polystyrene (PS) nanospheres were highly toxic in macrophage (RAW 264.7) and epithelial (BEAS-2B) cells, human microvascular endothelial (HMEC), hepatoma (HEPA-1), and pheochromocytoma (PC-12) cells were relatively resistant to particle injury. While the death pathway in RAW 264.7 cells involves caspase activation, the cytotoxic response in BEAS-2B cells is more necrotic in nature. Using fluorescent-labeled NH(2)-PS, we followed the routes of particle uptake. Confocal microscopy showed that the cationic particles entered a LAMP-1 positive lysosomal compartment in RAW 264.7 cells from where the particles could escape by lysosomal rupture. A proton pump inhibitor interfered in this pathway. Subsequent deposition of the particles in the cytosol induced an increase in mitochondrial Ca(2+) uptake and cell death that could be suppressed by cyclosporin A (CsA). In contrast, NH(2)-PS toxicity in BEAS-2B cells did not involve the LAMP-1 endosomal compartment, stimulation of proton pump activity, or an increase in mitochondrial Ca(2+). Particles were taken up by caveolae, and their toxicity could be disrupted by cholesterol extraction from the surface membrane. Although the particles induced mitochondrial damage and ATP depletion, CsA did not affect cytotoxicity. Cationic particles were taken up into HEPA-1, HMEC, and PC-12 cells, but this did not lead to lysosomal permeabilization, increased Ca(2+) flux, or mitochondrial damage. Taken together, the results of this study demonstrate the importance of cell-specific uptake mechanisms and pathways that could lead to sensitivity or resistance to cationic particle toxicity.
Collapse
Affiliation(s)
- Tian Xia
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
193
|
Schenk-Braat EAM, Kaptein LCM, Hallemeesch MM, Bangma CH, Hoeben RC. Gene therapy in The Netherlands: highlights from the Low Countries. J Gene Med 2007; 9:895-903. [PMID: 17721875 PMCID: PMC7167156 DOI: 10.1002/jgm.1094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Gene therapy is an active research area in The Netherlands and Dutch scientists involved in fundamental and clinical gene therapy research significantly contribute to the progresses made in this field. This ranges from the establishment of the 293, 911 and PER.C6 cell lines, which are used worldwide for the production of replication‐defective adenoviral vectors, to the development of targeted viral vectors and T lymphocytes as well as of non‐viral vectors. Several milestones have been achieved in Dutch clinical gene therapy trials, including the first treatment worldwide of patients with adenosine deaminase deficiency with genetically corrected hematopoietic stem cells in collaboration with French and British scientists. Until now, about 230 patients with various diseases have been treated with viral and non‐viral gene therapy in this country. Ongoing and upcoming Dutch clinical trials focus on the translation of new developments in gene therapy research, including the restoration of genetic defects other than SCID, and the use of oncolytic adenoviruses and targeted T cells for the treatment of cancer. The growing commercial interest in Dutch clinical gene therapy is reflected by the involvement of two Dutch companies in ongoing trials as well as the participation of Dutch clinical centres in large phase III international multicenter immuno‐gene therapy trials on prostate cancer sponsored by an American company. Translational gene therapy research in The Netherlands is boosted at a governmental level by the Dutch Ministry of Health via a dedicated funding programme. This paper presents an overview on milestones in Dutch basic gene therapy research as well as on past, present and future clinical gene therapy trials in The Netherlands. Copyright © 2007 John Wiley & Sons, Ltd.
Collapse
|
194
|
Medina-Kauwe LK. "Alternative" endocytic mechanisms exploited by pathogens: new avenues for therapeutic delivery? Adv Drug Deliv Rev 2007; 59:798-809. [PMID: 17707545 PMCID: PMC2040389 DOI: 10.1016/j.addr.2007.06.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 06/12/2007] [Indexed: 11/22/2022]
Abstract
Some pathogens utilize unique routes to enter cells that may evade the intracellular barriers encountered by the typical clathrin-mediated endocytic pathway. Retrograde transport and caveolar uptake are among the better characterized pathways, as alternatives to clathrin-mediated endocytosis, that are known to facilitate entry of pathogens and potential delivery agents. Recent characterization of the trafficking mechanisms of prion proteins and certain bacteria may present new paradigms for strategizing improvements in therapeutic spread and retention of therapy. This review will provide an overview of such endocytic pathways, and discuss current and future possibilities in using these routes as a means to improve therapeutic delivery.
Collapse
|