151
|
Karanth S, Zinkhan EK, Hill JT, Yost HJ, Schlegel A. FOXN3 Regulates Hepatic Glucose Utilization. Cell Rep 2016; 15:2745-55. [PMID: 27292639 DOI: 10.1016/j.celrep.2016.05.056] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/27/2016] [Accepted: 05/13/2016] [Indexed: 12/17/2022] Open
Abstract
A SNP (rs8004664) in the first intron of the FOXN3 gene is associated with human fasting blood glucose. We find that carriers of the risk allele have higher hepatic expression of the transcriptional repressor FOXN3. Rat Foxn3 protein and zebrafish foxn3 transcripts are downregulated during fasting, a process recapitulated in human HepG2 hepatoma cells. Transgenic overexpression of zebrafish foxn3 or human FOXN3 increases zebrafish hepatic gluconeogenic gene expression, whole-larval free glucose, and adult fasting blood glucose and also decreases expression of glycolytic genes. Hepatic FOXN3 overexpression suppresses expression of mycb, whose ortholog MYC is known to directly stimulate expression of glucose-utilization enzymes. Carriers of the rs8004664 risk allele have decreased MYC transcript abundance. Human FOXN3 binds DNA sequences in the human MYC and zebrafish mycb loci. We conclude that the rs8004664 risk allele drives excessive expression of FOXN3 during fasting and that FOXN3 regulates fasting blood glucose.
Collapse
Affiliation(s)
- Santhosh Karanth
- University of Utah Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Erin K Zinkhan
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Jonathon T Hill
- University of Utah Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - H Joseph Yost
- University of Utah Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84108, USA; Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Amnon Schlegel
- University of Utah Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
152
|
Cortical gene expression correlates of temporal lobe epileptogenicity. ACTA ACUST UNITED AC 2016; 23:181-90. [PMID: 27354343 DOI: 10.1016/j.pathophys.2016.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/19/2016] [Accepted: 05/27/2016] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Despite being one of the most common neurological diseases, it is unknown whether there may be a genetic basis to temporal lobe epilepsy (TLE). Whole genome analyses were performed to test the hypothesis that temporal cortical gene expression differs between TLE patients with high vs. low baseline seizure frequency. METHODS Baseline seizure frequency was used as a clinical measure of epileptogenicity. Twenty-four patients in high or low seizure frequency groups (median seizures/month) underwent anterior temporal lobectomy with amygdalohippocampectomy for intractable TLE. RNA was isolated from the lateral temporal cortex and submitted for expression analysis. Genes significantly associated with baseline seizure frequency on likelihood ratio test were identified based on >0.90 area under the ROC curve, P value of <0.05. RESULTS Expression levels of forty genes were significantly associated with baseline seizure frequency. Of the seven most significant, four have been linked to other neurologic diseases. Expression levels associated with high seizure frequency included low expression of Homeobox A10, Forkhead box A2, Lymphoblastic leukemia derived sequence 1, HGF activator, Kelch repeat and BTB (POZ) domain containing 11, Thanatos-associated protein domain containing 8 and Heparin sulfate (glucosamine) 3-O-sulfotransferase 3A1. CONCLUSIONS This study describes novel associations between forty known genes and a clinical marker of epileptogenicity, baseline seizure frequency. Four of the seven discussed have been previously related to other neurologic diseases. Future investigation of these genes could establish new biomarkers for predicting epileptogenicity, and could have significant implications for diagnosis and management of temporal lobe epilepsy, as well as epilepsy pathogenesis.
Collapse
|
153
|
Marongiu M, Deiana M, Marcia L, Sbardellati A, Asunis I, Meloni A, Angius A, Cusano R, Loi A, Crobu F, Fotia G, Cucca F, Schlessinger D, Crisponi L. Novel action of FOXL2 as mediator of Col1a2 gene autoregulation. Dev Biol 2016; 416:200-211. [PMID: 27212026 DOI: 10.1016/j.ydbio.2016.05.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/07/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
Abstract
FOXL2 belongs to the evolutionarily conserved forkhead box (FOX) superfamily and is a master transcription factor in a spectrum of developmental pathways, including ovarian and eyelid development and bone, cartilage and uterine maturation. To analyse its action, we searched for proteins that interact with FOXL2. We found that FOXL2 interacts with specific C-terminal propeptides of several fibrillary collagens. Because these propeptides can participate in feedback regulation of collagen biosynthesis, we inferred that FOXL2 could thereby affect the transcription of the cognate collagen genes. Focusing on COL1A2, we found that FOXL2 indeed affects collagen synthesis, by binding to a DNA response element located about 65Kb upstream of this gene. According to our hypothesis we found that in Foxl2(-/-) mouse ovaries, Col1a2 was elevated from birth to adulthood. The extracellular matrix (ECM) compartmentalizes the ovary during folliculogenesis, (with type I, type III and type IV collagens as primary components), and ECM composition changes during the reproductive lifespan. In Foxl2(-/-) mouse ovaries, in addition to up-regulation of Col1a2, Col3a1, Col4a1 and fibronectin were also upregulated, while laminin expression was reduced. Thus, by regulating levels of extracellular matrix components, FOXL2 may contribute to both ovarian histogenesis and the fibrosis attendant on depletion of the follicle reserve during reproductive aging and menopause.
Collapse
Affiliation(s)
- Mara Marongiu
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato 09042, Italy
| | - Manila Deiana
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato 09042, Italy
| | - Loredana Marcia
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato 09042, Italy; Università degli Studi di Sassari, Sassari 07100, Italy
| | - Andrea Sbardellati
- Centre for Advanced Studies, Research and Development in Sardinia (CRS4), Pula, Italy
| | - Isadora Asunis
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato 09042, Italy
| | - Alessandra Meloni
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato 09042, Italy
| | - Andrea Angius
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato 09042, Italy
| | - Roberto Cusano
- Centre for Advanced Studies, Research and Development in Sardinia (CRS4), Pula, Italy
| | - Angela Loi
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato 09042, Italy
| | - Francesca Crobu
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato 09042, Italy
| | - Giorgio Fotia
- Centre for Advanced Studies, Research and Development in Sardinia (CRS4), Pula, Italy
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato 09042, Italy; Università degli Studi di Sassari, Sassari 07100, Italy
| | - David Schlessinger
- Laboratory of Genetics, NIA-IRP, NIH, Baltimore, 21224-6825 MD, United States
| | - Laura Crisponi
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato 09042, Italy.
| |
Collapse
|
154
|
LI YANG, ZHANG YEFEI, YAO ZHENDONG, LI SISI, YIN ZHENHUA, XU MIN. Forkhead box Q1: A key player in the pathogenesis of tumors (Review). Int J Oncol 2016; 49:51-8. [DOI: 10.3892/ijo.2016.3517] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 03/30/2016] [Indexed: 11/06/2022] Open
|
155
|
Liu ZY, Yu Q, Yang CH, Meng M, Ren CJ, Mu ZM, Cui WZ, Liu QX. Transcription factor SGF1 is critical for the neurodevelopment in the silkworm, Bombyx mori. Gene 2016; 587:70-5. [PMID: 27106119 DOI: 10.1016/j.gene.2016.04.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 04/06/2016] [Accepted: 04/18/2016] [Indexed: 10/21/2022]
Abstract
FoxA transcription factors play vital roles in regulating the expression of organ-specific genes. BmSGF1, the sole FoxA family member in Bombyx mori, is required for development of the silk gland. However, the function of BmSGF1 in development of the nervous system in the silkworm remains unknown. Here, we show that the amino acids sequence of BmSGF1 is evolutionarily conserved in its middle region from Trichoplax adhaerens to human and diverged from the homologues in most other species in its N-terminal region. BmSGF1 expresses in the nervous system at the embryonic stage. Knockdown of Bmsgf1 by RNA interference (RNAi) results in abnormal development of axons. Therefore, our results demonstrate that BmSGF1 is an indispensable regulator for neurodevelopment.
Collapse
Affiliation(s)
- Zhao-Yang Liu
- Laboratory of Developmental Genetics, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Qi Yu
- Laboratory of Developmental Genetics, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Chun-Hong Yang
- Laboratory of Developmental Genetics, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Miao Meng
- Laboratory of Developmental Genetics, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Chun-Jiu Ren
- Laboratory of Developmental Genetics, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Zhi-Mei Mu
- Laboratory of Developmental Genetics, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Wei-Zheng Cui
- Laboratory of Developmental Genetics, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Qing-Xin Liu
- Laboratory of Developmental Genetics, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
156
|
Forkhead box transcription factor 1: role in the pathogenesis of diabetic cardiomyopathy. Cardiovasc Diabetol 2016; 15:44. [PMID: 26956801 PMCID: PMC4784400 DOI: 10.1186/s12933-016-0361-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/02/2016] [Indexed: 12/17/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a disorder of the heart muscle in people with diabetes that can occur independent of hypertension or vascular disease. The underlying mechanism of DCM is incompletely understood. Some transcription factors have been suggested to regulate the gene program intricate in the pathogenesis of diabetes prompted cardiac injury. Forkhead box transcription factor 1 is a pleiotropic transcription factor that plays a pivotal role in a variety of physiological processes. Altered FOXO1 expression and function have been associated with cardiovascular diseases, and the important role of FOXO1 in DCM has begun to attract attention. In this review, we focus on the FOXO1 pathway and its role in various processes that have been related to DCM, such as metabolism, oxidative stress, endothelial dysfunction, inflammation and apoptosis.
Collapse
|
157
|
Abstract
The majority of metastatic breast cancers cannot be cured and present a major public health problem worldwide. Approximately 70% of breast cancers express the estrogen receptor, and endocrine-based therapies have significantly improved patient outcomes. However, the development of endocrine resistance is extremely common. Understanding the molecular pathways that regulate the hormone sensitivity of breast cancer cells is important to improving the efficacy of endocrine therapy. It is becoming clearer that the PI3K-AKT-forkhead box O (FOXO) signaling axis is a key player in the hormone-independent growth of many breast cancers. Constitutive PI3K-AKT pathway activation, a driver of breast cancer growth, causes down-regulation of FOXO tumor suppressor functions. This review will summarize what is currently known about the role of FOXOs in endocrine-resistance mechanisms. It will also suggest potential therapeutic strategies for the restoration of normal FOXO transcriptional activity.
Collapse
Affiliation(s)
- M Bullock
- Hormones and Cancer GroupCancer Genetics Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, Pacific Highway Saint Leonards, Sydney, New South Wales 2065, Australia
| |
Collapse
|
158
|
Vidal NM, Grazziotin AL, Iyer LM, Aravind L, Venancio TM. Transcription factors, chromatin proteins and the diversification of Hemiptera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 69:1-13. [PMID: 26226651 PMCID: PMC4732926 DOI: 10.1016/j.ibmb.2015.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 06/29/2015] [Accepted: 07/03/2015] [Indexed: 06/04/2023]
Abstract
Availability of complete genomes provides a means to explore the evolution of enormous developmental, morphological, and behavioral diversity among insects. Hemipterans in particular show great diversity of both morphology and life history within a single order. To better understand the role of transcription regulators in the diversification of hemipterans, using sequence profile searches and hidden Markov models we computationally analyzed transcription factors (TFs) and chromatin proteins (CPs) in the recently available Rhodnius prolixus genome along with 13 other insect and 4 non-insect arthropod genomes. We generated a comprehensive collection of TFs and CPs across arthropods including 303 distinct types of domains in TFs and 139 in CPs. This, along with the availability of two hemipteran genomes, R. prolixus and Acyrthosiphon pisum, helped us identify possible determinants for their dramatic morphological and behavioral divergence. We identified five domain families (i.e. Pipsqueak, SAZ/MADF, THAP, FLYWCH and BED finger) as having undergone differential patterns of lineage-specific expansion in hemipterans or within hemipterans relative to other insects. These expansions appear to be at least in part driven by transposons, with the DNA-binding domains of transposases having provided the raw material for emergence of new TFs. Our analysis suggests that while R. prolixus probably retains a state closer to the ancestral hemipteran, A. pisum represents a highly derived state, with the emergence of asexual reproduction potentially favoring genome duplication and transposon expansion. Both hemipterans are predicted to possess active DNA methylation systems. However, in the course of their divergence, aphids seem to have expanded the ancestral hemipteran DNA methylation along with a distinctive linkage to the histone methylation system, as suggested by expansion of SET domain methylases, including those fused to methylated CpG recognition domains. Thus, differential use of DNA methylation and histone methylation might have played a role in emergence of polyphenism and cyclic parthenogenesis from the ancestral hemipteran.
Collapse
Affiliation(s)
- Newton M Vidal
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil.
| | - Ana Laura Grazziotin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil.
| | - Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | - Thiago M Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
159
|
FOXO3a Gene Polymorphism Associated with Asthma in Indian Population. Mol Biol Int 2015; 2015:638515. [PMID: 26783460 PMCID: PMC4689967 DOI: 10.1155/2015/638515] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 02/01/2023] Open
Abstract
Asthma is a chronic inflammatory disorder delineated by a heightened immunological response due to environmental or genetic factors. Single nucleotide polymorphism studies have shown that FOXO3a plays a pivotal role in maintaining immunoregulation. Polymorphism in FOXO3a has been linked to inflammatory diseases such as chronic obstructive pulmonary disease (COPD), Rheumatoid Arthritis, and Crohn's disease suggesting that FOXO3a may be associated with asthma. Airway inflammation in asthma is characterized by activation of T helper type 2 (Th2) T cells and Foxo family members are reported to play critical roles in the suppression of T cell activation. Thus this study was undertaken to investigate an association between single nucleotide polymorphism of the FOXO3a (rs13217795, C>T transition) gene and asthma in Indian population. To our knowledge we are the first ones reporting an association between FOXO3a and asthma.
Collapse
|
160
|
Janssen R, Jörgensen M, Lagebro L, Budd GE. Fate and nature of the onychophoran mouth-anus furrow and its contribution to the blastopore. Proc Biol Sci 2015; 282:rspb.2014.2628. [PMID: 25788603 DOI: 10.1098/rspb.2014.2628] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The ancestral states of bilaterian development, and which living groups have conserved them the most, has been a controversial topic in biology for well over a hundred years. In recent years, the idea that gastrulation primitively proceeded via the formation of a slit-like blastopore that then evolved into either protostomy or deuterostomy has gained renewed attention and some molecular developmental support. One of the key pieces of evidence for this 'amphistomy' theory comes from the onychophorans, which form a clear ventral groove during gastrulation. The interpretation of this structure has, however, proved problematic. Based on expression patterns of forkhead (fkh), caudal (cad), brachyury (bra) and wingless (wg/Wnt1), we show that this groove does not correspond to the blastopore, even though both the mouth and anus later develop from it. Rather, the posterior pit appears to be the blastopore; the posterior of the groove later fuses with it to form the definitive anus. Onychophoran development therefore represents a case of 'concealed' deuterostomy. The new data from the onychophorans thus remove one of the key pieces of evidence for the amphistomy theory. Rather, in line with other recent results, it suggests that ancestral bilaterian development was deuterostomic.
Collapse
Affiliation(s)
- Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236 Uppsala, Sweden
| | - Mette Jörgensen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236 Uppsala, Sweden
| | - Linda Lagebro
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236 Uppsala, Sweden
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236 Uppsala, Sweden
| |
Collapse
|
161
|
Expression of FOXO3a and Correlation With Histopathologic Features in Retinoblastoma. Appl Immunohistochem Mol Morphol 2015; 25:95-99. [PMID: 26574636 DOI: 10.1097/pai.0000000000000278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Forkhead box (FOX) transcription factors are a class of highly conserved proteins, which serve critical cellular functions including cell cycle regulation. The downstream mechanisms of cell cycle regulation involve preservation of retinoblastoma protein function. Its deactivation by phosphorylation and translocation from nucleus to cytoplasm leads to cell proliferation. FOXO3a has been found to be dysregulated in few cancers. However, no study has been reported on role of FOXO3a in retinoblastoma. We assessed the expression of FOXO3a in sections of archived tissue blocks of enucleated/exenterated specimens of retinoblastoma by immunohistochemistry. The histopathologic features were reviewed and correlated with its expression. Effect of FOXO3a expression on survival was assessed. FOXO3a expression was assessed in 100 sections. Six samples did not contain any viable tissue. Retrospective data of 94 patients revealed that median age at presentation was 36 months with male:female ratio of 1.9:1. Fifty-one percent of patients were International Retinoblastoma Staging System stage 1. Of the 94 sections, 68 (72%) showed cytoplasmic expression. Choroidal invasion was associated with cytoplasmic FOXO3a (P=0.04). A trend was also noted in optic nerve cut end involvement (P=0.07). No other histopathologic features were found to be associated with FOXO3a expression. The overall survival and progression-free survival were not found to be affected by FOXO3a expression. Cytoplasmic expression of FOXO3a is frequently found in retinoblastoma and may be involved in pathogenesis. Activation by relocation of FOXO3a to nucleus may activate nonmutated retinoblastoma and may be a potential target of treatment in retinoblastoma.
Collapse
|
162
|
Laissue P. Aetiological coding sequence variants in non-syndromic premature ovarian failure: From genetic linkage analysis to next generation sequencing. Mol Cell Endocrinol 2015; 411:243-57. [PMID: 25960166 DOI: 10.1016/j.mce.2015.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 04/14/2015] [Accepted: 05/04/2015] [Indexed: 01/19/2023]
Abstract
Premature ovarian failure (POF) is a frequent pathology affecting 1-1.5% of women under 40 years old. Despite advances in diagnosing and treating human infertility, POF is still classified as being idiopathic in 50-80% of cases, strongly suggesting a genetic origin for the disease. Different types of autosomal and X-linked genetic anomalies can originate the phenotype in syndromic and non-syndromic POF cases. Particular interest has been focused on research into non-syndromic POF causative coding variants during the past two decades. This has been based on the assumption that amino acid substitutions might modify the intrinsic physicochemical properties of functional proteins, thereby inducing pathological phenotypes. In this case, a restricted number of mutations might originate the disease. However, like other complex pathologies, POF might result from synergistic/compensatory effects caused by several low-to-mildly drastic mutations which have frequently been classified as non-functional SNPs. Indeed, reproductive phenotypes can be considered as quantitative traits resulting from the subtle interaction of many genes. Although numerous sequencing projects have involved candidate genes, only a few coding mutations explaining a low percentage of cases have been described. Such apparent failure to identify aetiological coding sequence variations might have been due to the inherent molecular complexity of mammalian reproduction and to the difficulty of simultaneously analysing large genomic regions by Sanger sequencing. The purpose of this review is to present the molecular and cellular effects caused by non-synonymous mutations which have been formally associated, by functional tests, with the aetiology of hypergonadotropic non-syndromic POF. Considerations have also been included regarding the polygenic nature of reproduction and POF, as well as future approaches for identifying novel aetiological genes based on next generation sequencing (NGS).
Collapse
Affiliation(s)
- Paul Laissue
- Unidad de Genética, Grupo GENIUROS, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
163
|
Han J, Zhao J, Jiang J, Ma X, Liu X, Wang C, Jiang S, Wan C. Zinc deficiency impairs the renewal of hippocampal neural stem cells in adult rats: involvement of FoxO3a activation and downstream p27(kip1) expression. J Neurochem 2015; 134:879-91. [PMID: 26086369 DOI: 10.1111/jnc.13199] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/25/2015] [Accepted: 05/29/2015] [Indexed: 12/30/2022]
Abstract
Zinc plays an important role in the development and maintenance of central neural system. Zinc deficiency has been known to alter normal brain function, whose molecular mechanism remains largely elusive. In the present study, we established a zinc deficiency-exposed rat model, and, using western blot and immunohistochemical analyses, found that the expression of FoxO3a and p27(kip1) was remarkably up-regulated in the rat brain hippocampus. Immunofluorescence assay showed that FOXO3a and p27(kip1) were significantly co-localized with nestin, the marker of neural stem cells (NSCs). Furthermore, we identified that the proportion of proliferating NSCs was markedly decreased in zinc-deficient rat hippocampaus. Using C17.2 neural stem cells, it was revealed that exposure to zinc chelator N,N,N',N'-tetrakis-(2-pyridylmethy) ethylenediamine induced the expression of FoxO3a and p27(kip1) , which coincided with reduced NSC proliferation. Furthermore, depletion of FoxO3a inhibited p27(kip1) expression and restored the growth of NSCs. On the basis of these data, we concluded that FoxO3a/p27(kip1) signaling might play a significant role in zinc deficiency-induced growth impairment of NSCs and consequent neurological disorders. We describe here that zinc deficiency induces the proliferative impairment of hippocampal neural stem cells partially through the activation of FOXO3a-p27 axis in rats. Neural progenitor cells exhibited significantly up-regulated expression of FOXO3a and p27 after zinc deficiency in vivo and in vitro. Depletion of FOXO3a ameliorates zinc deficiency-induced expression of p27 and growth impairment of neural stem cells. We provide novel insight into the mechanisms underlying zinc deficiency-induced neurological deficits.
Collapse
Affiliation(s)
- Jingling Han
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Occupational Medicine and Environmental Toxicity, School of Public Health, Nantong University, Nantong, Jiangsu Province, China
| | - Jianya Zhao
- Department of Nutrition and Food hygiene, School of Public Health, Nantong University, Nantong, Jiangsu Province, China
| | - Junkang Jiang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Occupational Medicine and Environmental Toxicity, School of Public Health, Nantong University, Nantong, Jiangsu Province, China
| | - Xia Ma
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Occupational Medicine and Environmental Toxicity, School of Public Health, Nantong University, Nantong, Jiangsu Province, China
| | - Xinhang Liu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Occupational Medicine and Environmental Toxicity, School of Public Health, Nantong University, Nantong, Jiangsu Province, China
| | - Cheng Wang
- Department of Nutrition and Food hygiene, School of Public Health, Nantong University, Nantong, Jiangsu Province, China
| | - Shengyang Jiang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Occupational Medicine and Environmental Toxicity, School of Public Health, Nantong University, Nantong, Jiangsu Province, China
| | - Chunhua Wan
- Department of Nutrition and Food hygiene, School of Public Health, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
164
|
Klotz LO, Sánchez-Ramos C, Prieto-Arroyo I, Urbánek P, Steinbrenner H, Monsalve M. Redox regulation of FoxO transcription factors. Redox Biol 2015; 6:51-72. [PMID: 26184557 PMCID: PMC4511623 DOI: 10.1016/j.redox.2015.06.019] [Citation(s) in RCA: 550] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 06/25/2015] [Accepted: 06/30/2015] [Indexed: 12/19/2022] Open
Abstract
Transcription factors of the forkhead box, class O (FoxO) family are important regulators of the cellular stress response and promote the cellular antioxidant defense. On one hand, FoxOs stimulate the transcription of genes coding for antioxidant proteins located in different subcellular compartments, such as in mitochondria (i.e. superoxide dismutase-2, peroxiredoxins 3 and 5) and peroxisomes (catalase), as well as for antioxidant proteins found extracellularly in plasma (e.g., selenoprotein P and ceruloplasmin). On the other hand, reactive oxygen species (ROS) as well as other stressful stimuli that elicit the formation of ROS, may modulate FoxO activity at multiple levels, including posttranslational modifications of FoxOs (such as phosphorylation and acetylation), interaction with coregulators, alterations in FoxO subcellular localization, protein synthesis and stability. Moreover, transcriptional and posttranscriptional control of the expression of genes coding for FoxOs is sensitive to ROS. Here, we review these aspects of FoxO biology focusing on redox regulation of FoxO signaling, and with emphasis on the interplay between ROS and FoxOs under various physiological and pathophysiological conditions. Of particular interest are the dual role played by FoxOs in cancer development and their key role in whole body nutrient homeostasis, modulating metabolic adaptations and/or disturbances in response to low vs. high nutrient intake. Examples discussed here include calorie restriction and starvation as well as adipogenesis, obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Lars-Oliver Klotz
- Institute of Nutrition, Department of Nutrigenomics, Friedrich-Schiller-Universität Jena, Dornburger Straße 29, 07743 Jena, Germany.
| | - Cristina Sánchez-Ramos
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier, 4, 28029 Madrid, Spain
| | - Ignacio Prieto-Arroyo
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier, 4, 28029 Madrid, Spain
| | - Pavel Urbánek
- Institute of Nutrition, Department of Nutrigenomics, Friedrich-Schiller-Universität Jena, Dornburger Straße 29, 07743 Jena, Germany
| | - Holger Steinbrenner
- Institute of Nutrition, Department of Nutrigenomics, Friedrich-Schiller-Universität Jena, Dornburger Straße 29, 07743 Jena, Germany
| | - Maria Monsalve
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier, 4, 28029 Madrid, Spain.
| |
Collapse
|
165
|
Maiese K. FoxO proteins in the nervous system. Anal Cell Pathol (Amst) 2015; 2015:569392. [PMID: 26171319 PMCID: PMC4478359 DOI: 10.1155/2015/569392] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 05/31/2015] [Indexed: 02/07/2023] Open
Abstract
Acute as well as chronic disorders of the nervous system lead to significant morbidity and mortality for millions of individuals globally. Given the ability to govern stem cell proliferation and differentiated cell survival, mammalian forkhead transcription factors of the forkhead box class O (FoxO) are increasingly being identified as potential targets for disorders of the nervous system, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and auditory neuronal disease. FoxO proteins are present throughout the body, but they are selectively expressed in the nervous system and have diverse biological functions. The forkhead O class transcription factors interface with an array of signal transduction pathways that include protein kinase B (Akt), serum- and glucocorticoid-inducible protein kinase (SgK), IκB kinase (IKK), silent mating type information regulation 2 homolog 1 (S. cerevisiae) (SIRT1), growth factors, and Wnt signaling that can determine the activity and integrity of FoxO proteins. Ultimately, there exists a complex interplay between FoxO proteins and their signal transduction pathways that can significantly impact programmed cell death pathways of apoptosis and autophagy as well as the development of clinical strategies for the treatment of neurodegenerative disorders.
Collapse
|
166
|
Abstract
FOXA1 (also known as hepatocyte nuclear factor 3α, or HNF-3α) is a protein of the FKHD family transcription factors. FOXA1 has been termed as a pioneer transcription factor due to its unique ability of chromatin remodeling in which the chromatin can be de-compacted to allow genomic access by nuclear hormone receptors, including androgen receptor (AR) and estrogen receptor (ER). In this review, we discuss our current understanding of FOXA1 regulation of prostatic and non-prostatic AR-chromatin targeting. We present an updated model wherein FOXA1:AR equilibrium in the nuclei defines prostatic AR binding profile, which is perturbed in prostate cancer with FOXA1 and/or AR de-regulation. Finally, we discuss recent efforts in exploring new horizons of AR-independent functions of FOXA1 in prostate cancer and interesting directions to pursue in future studies.
Collapse
Affiliation(s)
- Yeqing Angela Yang
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jindan Yu
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA ; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
167
|
Pytel D, Majsterek I, Diehl JA. Tumor progression and the different faces of the PERK kinase. Oncogene 2015; 35:1207-15. [PMID: 26028033 PMCID: PMC4666839 DOI: 10.1038/onc.2015.178] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/07/2015] [Accepted: 04/13/2015] [Indexed: 12/25/2022]
Abstract
The serine/threonine endoplasmic reticulum (ER) kinase, protein kinase R (PKR)-like ER kinase (PERK), is a pro-adaptive protein kinase whose activity is regulated indirectly by protein misfolding within the ER. As the oxidative folding environment in the ER is sensitive to a variety of cellular stresses, many of which occur during neoplastic transformation and in the tumor microenvironment, there has been considerable interest in defining whether PERK positively contributes to tumor progression and whether it represents a significant therapeutic target. Herein, we review the current knowledge of PERK-dependent signaling pathways, the contribution of downstream substrates including recently characterized new PERK substrates transcription factors Forkhead box O protein and diacyglycerol a lipid signaling second messenger, and efforts to develop small molecule PERK inhibitors.
Collapse
Affiliation(s)
- D Pytel
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - I Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Hallera 1, Lodz, Poland
| | - J A Diehl
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
168
|
|
169
|
van der Heide LP, Wijchers PJEC, von Oerthel L, Burbach JPH, Hoekman MFM, Smidt MP. FoxK2 is required for cellular proliferation and survival. J Cell Physiol 2015; 230:1013-23. [PMID: 25216324 DOI: 10.1002/jcp.24828] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 09/05/2014] [Indexed: 11/07/2022]
Abstract
FoxK2 is a forkhead transcription factor expressed ubiquitously in the developing murine central nervous system. Here we investigated the role of FoxK2 in vitro and focused on proliferation and cellular survival. Knockdown of FoxK2 results in a decrease in BrdU incorporation and H3 phosphorylation, suggesting attenuation of proliferation. In the absence of growth factors, FoxK2 knockdown results in a dramatic increase in caspase 3 activity and propidium iodide positive cells, indicative of cell death. Additionally, knockdown of FoxK2 results in an increase in the mRNA of Gadd45α, Gadd45γ, as well as an increase in the phosphorylation of the mTOR dependent kinase p70S6K. Rapamycin treatment completely blocked the increase in p70S6K and synergistically potentiated the decrease in H3 phosphorylation upon FoxK2 knockdown. To gain more insight into the proapoptotic effects upon FoxK2 knockdown we screened for changes in Bcl2 genes. Upon FoxK2 knockdown both Puma and Noxa were significantly upregulated. Both genes were not inhibited by rapamycin treatment, instead rapamycin increased Noxa mRNA. FoxK2 requirement in cellular survival is further emphasized by the fact that resistance to TGFβ-induced cell death was greatly diminished after FoxK2 knockdown. Overall our data suggest FoxK2 is required for proliferation and survival, that mTOR is part of a feedback loop partly compensating for FoxK2 loss, possibly by upregulating Gadd45s, whereas cell death upon FoxK2 loss is induced in a Bcl2 dependent manner via Puma and Noxa.
Collapse
Affiliation(s)
- Lars P van der Heide
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
170
|
Martín-Durán JM, Hejnol A. The study of Priapulus caudatus reveals conserved molecular patterning underlying different gut morphogenesis in the Ecdysozoa. BMC Biol 2015; 13:29. [PMID: 25895830 PMCID: PMC4434581 DOI: 10.1186/s12915-015-0139-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 04/13/2015] [Indexed: 12/14/2022] Open
Abstract
Background The digestive systems of animals can become highly specialized in response to their exploration and occupation of new ecological niches. Although studies on different animals have revealed commonalities in gut formation, the model systems Caenorhabditis elegans and Drosophila melanogaster, which belong to the invertebrate group Ecdysozoa, exhibit remarkable deviations in how their intestines develop. Their morphological and developmental idiosyncrasies have hindered reconstructions of ancestral gut characters for the Ecdysozoa, and limit comparisons with vertebrate models. In this respect, the phylogenetic position, and slow evolving morphological and molecular characters of marine priapulid worms advance them as a key group to decipher evolutionary events that occurred in the lineages leading to C. elegans and D. melanogaster. Results In the priapulid Priapulus caudatus, the gut consists of an ectodermal foregut and anus, and a mid region of at least partial endodermal origin. The inner gut develops into a 16-cell primordium devoid of visceral musculature, arranged in three mid tetrads and two posterior duplets. The mouth invaginates ventrally and shifts to a terminal anterior position as the ventral anterior ectoderm differentially proliferates. Contraction of the musculature occurs as the head region retracts into the trunk and resolves the definitive larval body plan. Despite obvious developmental differences with C. elegans and D. melanogaster, the expression in P. caudatus of the gut-related candidate genes NK2.1, foxQ2, FGF8/17/18, GATA456, HNF4, wnt1, and evx demonstrate three distinct evolutionarily conserved molecular profiles that correlate with morphologically identified sub-regions of the gut. Conclusions The comparative analysis of priapulid development suggests that a midgut formed by a single endodermal population of vegetal cells, a ventral mouth, and the blastoporal origin of the anus are ancestral features in the Ecdysozoa. Our molecular data on P. caudatus reveal a conserved ecdysozoan gut-patterning program and demonstrates that extreme morphological divergence has not been accompanied by major molecular innovations in transcriptional regulators during digestive system evolution in the Ecdysozoa. Our data help us understand the origins of the ecdysozoan body plan, including those of C. elegans and D. melanogaster, and this is critical for comparisons between these two prominent model systems and their vertebrate counterparts. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0139-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- José M Martín-Durán
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway.
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway.
| |
Collapse
|
171
|
Edlund RK, Birol O, Groves AK. The role of foxi family transcription factors in the development of the ear and jaw. Curr Top Dev Biol 2015; 111:461-95. [PMID: 25662269 DOI: 10.1016/bs.ctdb.2014.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The mammalian outer, middle, and inner ears have different embryonic origins and evolved at different times in the vertebrate lineage. The outer ear is derived from first and second branchial arch ectoderm and mesoderm, the middle ear ossicles are derived from neural crest mesenchymal cells that invade the first and second branchial arches, whereas the inner ear and its associated vestibule-acoustic (VIIIth) ganglion are derived from the otic placode. In this chapter, we discuss recent findings in the development of these structures and describe the contributions of members of a Forkhead transcription factor family, the Foxi family to their formation. Foxi transcription factors are critical for formation of the otic placode, survival of the branchial arch neural crest, and developmental remodeling of the branchial arch ectoderm.
Collapse
Affiliation(s)
- Renée K Edlund
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Onur Birol
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Andrew K Groves
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA; Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
172
|
Li X, Wang W, Wang J, Malovannaya A, Xi Y, Li W, Guerra R, Hawke DH, Qin J, Chen J. Proteomic analyses reveal distinct chromatin-associated and soluble transcription factor complexes. Mol Syst Biol 2015; 11:775. [PMID: 25609649 PMCID: PMC4332150 DOI: 10.15252/msb.20145504] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The current knowledge on how transcription factors (TFs), the ultimate targets and executors of cellular signalling pathways, are regulated by protein–protein interactions remains limited. Here, we performed proteomics analyses of soluble and chromatin-associated complexes of 56 TFs, including the targets of many signalling pathways involved in development and cancer, and 37 members of the Forkhead box (FOX) TF family. Using tandem affinity purification followed by mass spectrometry (TAP/MS), we performed 214 purifications and identified 2,156 high-confident protein–protein interactions. We found that most TFs form very distinct protein complexes on and off chromatin. Using this data set, we categorized the transcription-related or unrelated regulators for general or specific TFs. Our study offers a valuable resource of protein–protein interaction networks for a large number of TFs and underscores the general principle that TFs form distinct location-specific protein complexes that are associated with the different regulation and diverse functions of these TFs.
Collapse
Affiliation(s)
- Xu Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wenqi Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiadong Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anna Malovannaya
- Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Yuanxin Xi
- Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Wei Li
- Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Rudy Guerra
- Department of Statistics, Rice University, Houston, TX, USA
| | - David H Hawke
- Proteomics Facility, Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jun Qin
- Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
173
|
Zhao XM, Liu C, Jiang LJ, Li QY, Zhou MT, Cheng TC, Mita K, Xia QY. A juvenile hormone transcription factor Bmdimm-fibroin H chain pathway is involved in the synthesis of silk protein in silkworm, Bombyx mori. J Biol Chem 2015; 290:972-86. [PMID: 25371208 PMCID: PMC4294524 DOI: 10.1074/jbc.m114.606921] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/03/2014] [Indexed: 01/16/2023] Open
Abstract
The genes responsible for silk biosynthesis are switched on and off at particular times in the silk glands of Bombyx mori. This switch appears to be under the control of endogenous and exogenous hormones. However, the molecular mechanisms by which silk protein synthesis is regulated by the juvenile hormone (JH) are largely unknown. Here, we report a basic helix-loop-helix transcription factor, Bmdimm, its silk gland-specific expression, and its direct involvement in the regulation of fibroin H-chain (fib-H) by binding to an E-box (CAAATG) element of the fib-H gene promoter. Far-Western blots, enzyme-linked immunosorbent assays, and co-immunoprecipitation assays revealed that Bmdimm protein interacted with another basic helix-loop-helix transcription factor, Bmsage. Immunostaining revealed that Bmdimm and Bmsage proteins are co-localized in nuclei. Bmdimm expression was induced in larval silk glands in vivo, in silk glands cultured in vitro, and in B. mori cell lines after treatment with a JH analog. The JH effect on Bmdimm was mediated by the JH-Met-Kr-h1 signaling pathway, and Bmdimm expression did not respond to JH by RNA interference with double-stranded BmKr-h1 RNA. These data suggest that the JH regulatory pathway, the transcription factor Bmdimm, and the targeted fib-H gene contribute to the synthesis of fibroin H-chain protein in B. mori.
Collapse
Affiliation(s)
- Xiao-Ming Zhao
- From the State Key Laboratory of Silkworm Genome Biology and Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing 400716 and the Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Chun Liu
- From the State Key Laboratory of Silkworm Genome Biology and Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing 400716 and
| | - Li-Jun Jiang
- From the State Key Laboratory of Silkworm Genome Biology and Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing 400716 and
| | - Qiong-Yan Li
- From the State Key Laboratory of Silkworm Genome Biology and Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing 400716 and
| | - Meng-Ting Zhou
- From the State Key Laboratory of Silkworm Genome Biology and Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing 400716 and
| | - Ting-Cai Cheng
- From the State Key Laboratory of Silkworm Genome Biology and Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing 400716 and
| | - Kazuei Mita
- From the State Key Laboratory of Silkworm Genome Biology and
| | - Qing-You Xia
- From the State Key Laboratory of Silkworm Genome Biology and Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing 400716 and
| |
Collapse
|
174
|
Genin EC, Caron N, Vandenbosch R, Nguyen L, Malgrange B. Concise review: forkhead pathway in the control of adult neurogenesis. Stem Cells 2015; 32:1398-407. [PMID: 24510844 DOI: 10.1002/stem.1673] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 12/23/2022]
Abstract
New cells are continuously generated from immature proliferating cells in the adult brain in two neurogenic niches known as the subgranular zone (SGZ) of the dentate gyrus (DG) of the hippocampus and the sub-ventricular zone (SVZ) of the lateral ventricles. However, the molecular mechanisms regulating their proliferation, differentiation, migration and functional integration of newborn neurons in pre-existing neural network remain largely unknown. Forkhead box (Fox) proteins belong to a large family of transcription factors implicated in a wide variety of biological processes. Recently, there has been accumulating evidence that several members of this family of proteins play important roles in adult neurogenesis. Here, we describe recent advances in our understanding of regulation provided by Fox factors in adult neurogenesis, and evaluate the potential role of Fox proteins as targets for therapeutic intervention in neurodegenerative diseases.
Collapse
Affiliation(s)
- Emmanuelle C Genin
- GIGA-Neurosciences, Developmental Neurobiology Unit, University of Liège, Liège, Belgium
| | | | | | | | | |
Collapse
|
175
|
Lin L, Liang H, Wang Y, Yin X, Hu Y, Huang J, Ren T, Xu H, Zheng L, Chen X. microRNA-141 inhibits cell proliferation and invasion and promotes apoptosis by targeting hepatocyte nuclear factor-3β in hepatocellular carcinoma cells. BMC Cancer 2014; 14:879. [PMID: 25425543 PMCID: PMC4289273 DOI: 10.1186/1471-2407-14-879] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 11/18/2014] [Indexed: 12/23/2022] Open
Abstract
Background Hepatocyte nuclear factor-3β (HNF-3β) plays a critical role in hepatocyte differentiation and controls liver-specific gene expression during the development of hepatocellular carcinoma (HCC), but the molecular basis of this process has not been fully elucidated. microRNAs (miRNAs) are powerful, post-transcriptional regulators of gene expression. Whether miRNAs can impact the effects of HNF-3β in HCC is still unknown. Methods HNF-3β and miR-141 expression levels were detected in HepG2 cells, using real-time quantitative RT-PCR (qRT-PCR). Luciferase reporter assays and Western blots were used to validate HNF-3β as a direct target gene of miR-141. Cell proliferation, invasion, and apoptosis were also examined to confirm whether miR-141 could impact on HNF-3β in HCC. Results In this study, we found that HNF-3β protein levels were consistently upregulated in HCC clinical tissues compared with matched normal adjacent tissues. However, the mRNA levels of HNF-3β varied in random tissues, suggesting that a post-transcriptional mechanism was involved in its regulation. We used bioinformatic analyses to search for miRNAs that could potentially target HNF-3β, and identified specific targeting sites for miR-141 in the 3′-untranslated region (3′-UTR) of the HNF-3β gene. By overexpressing miR-141 in HepG2 cells, we experimentally validated that miR-141 directly regulated HNF-3β expression. Furthermore, the biological consequences of targeting HNF-3β by miR-141 were examined using cell proliferation, invasion and apoptosis assays in vitro. We demonstrated that the repression of HNF-3β by miR-141 suppressed the proliferation and invasion and promoted the apoptosis of HepG2 cells. Conclusions miR-141 functions as a tumor suppressor in HCC cells through the inhibition of HNF-3β translation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, North of Guangzhou avenue No,1838, Baiyun District, Guangzhou 510515, P,R, China.
| | | |
Collapse
|
176
|
FoxA4 favours notochord formation by inhibiting contiguous mesodermal fates and restricts anterior neural development in Xenopus embryos. PLoS One 2014; 9:e110559. [PMID: 25343614 PMCID: PMC4208771 DOI: 10.1371/journal.pone.0110559] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 09/24/2014] [Indexed: 11/19/2022] Open
Abstract
In vertebrates, the embryonic dorsal midline is a crucial signalling centre that patterns the surrounding tissues during development. Members of the FoxA subfamily of transcription factors are expressed in the structures that compose this centre. Foxa2 is essential for dorsal midline development in mammals, since knock-out mouse embryos lack a definitive node, notochord and floor plate. The related gene foxA4 is only present in amphibians. Expression begins in the blastula -chordin and -noggin expressing centre (BCNE) and is later restricted to the dorsal midline derivatives of the Spemann's organiser. It was suggested that the early functions of mammalian foxa2 are carried out by foxA4 in frogs, but functional experiments were needed to test this hypothesis. Here, we show that some important dorsal midline functions of mammalian foxa2 are exerted by foxA4 in Xenopus. We provide new evidence that the latter prevents the respecification of dorsal midline precursors towards contiguous fates, inhibiting prechordal and paraxial mesoderm development in favour of the notochord. In addition, we show that foxA4 is required for the correct regionalisation and maintenance of the central nervous system. FoxA4 participates in constraining the prospective rostral forebrain territory during neural specification and is necessary for the correct segregation of the most anterior ectodermal derivatives, such as the cement gland and the pituitary anlagen. Moreover, the early expression of foxA4 in the BCNE (which contains precursors of the whole forebrain and most of the midbrain and hindbrain) is directly required to restrict anterior neural development.
Collapse
|
177
|
Varma D, Bülow MH, Pesch YY, Loch G, Hoch M. Forkhead, a new cross regulator of metabolism and innate immunity downstream of TOR in Drosophila. JOURNAL OF INSECT PHYSIOLOGY 2014; 69:80-88. [PMID: 24842780 DOI: 10.1016/j.jinsphys.2014.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 04/08/2014] [Accepted: 04/14/2014] [Indexed: 06/03/2023]
Abstract
Antimicrobial peptides (AMPs) are conserved cationic peptides which act both as defense molecules of the host immune system and as regulators of the commensal microbiome. Expression of AMPs is induced in response to infection by the Toll and Imd pathway. Under non-infected conditions, the transcription factor dFOXO directly regulates a set of AMP expression at low levels when nutrients are limited. Here we have analyzed whether target of rapamycin (TOR), another major regulator of growth and metabolism, also modulates AMP responses in Drosophila. We found that downregulation of TOR by feeding the drug rapamycin or by overexpressing the negative TOR regulators TSC1/TSC2, resulted in a specific induction of the AMPs Diptericin (Dpt) and Metchnikowin (Mtk). In contrast, overexpression of Rheb, which positively regulates TOR led to a repression of the two AMPs. Genetic and pharmacological experiments indicate that Dpt and Mtk activation is controlled by the transcription factor Forkhead (FKH), the founding member of the FoxO family. Shuttling of FKH from the cytoplasm to the nucleus is induced in the fat body and in the posterior midgut in response to TOR downregulation. The FKH-dependent induction of Dpt and Mtk can be triggered in dFOXO null mutants and in immune-compromised Toll and IMD pathway mutants indicating that FKH acts in parallel to these regulators. Together, we have discovered that FKH is the second conserved member of the FoxO family cross-regulating metabolism and innate immunity. dFOXO and FKH, which are activated upon downregulation of insulin or TOR activities, respectively, act in parallel to induce different sets of AMPs, thereby modulating the immune status of metabolic tissues such as the fat body or the gut in response to the oscillating energy status of the organism.
Collapse
Affiliation(s)
- Disha Varma
- Developmental Genetics and Molecular Physiology, LIMES Institute, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Margret H Bülow
- Developmental Genetics and Molecular Physiology, LIMES Institute, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Yanina-Yasmin Pesch
- Developmental Genetics and Molecular Physiology, LIMES Institute, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Gerrit Loch
- Developmental Genetics and Molecular Physiology, LIMES Institute, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Michael Hoch
- Developmental Genetics and Molecular Physiology, LIMES Institute, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany.
| |
Collapse
|
178
|
Manning AJ, Rogers SL. The Fog signaling pathway: insights into signaling in morphogenesis. Dev Biol 2014; 394:6-14. [PMID: 25127992 PMCID: PMC4182926 DOI: 10.1016/j.ydbio.2014.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/28/2014] [Accepted: 08/04/2014] [Indexed: 12/28/2022]
Abstract
Epithelia form the building blocks of many tissue and organ types. Epithelial cells often form a contiguous 2-dimensional sheet that is held together by strong adhesions. The mechanical properties conferred by these adhesions allow the cells to undergo dramatic three-dimensional morphogenetic movements while maintaining cell–cell contacts during embryogenesis and post-embryonic development. The Drosophila Folded gastrulation pathway triggers epithelial cell shape changes that drive gastrulation and tissue folding and is one of the most extensively studied examples of epithelial morphogenesis. This pathway has yielded key insights into the signaling mechanisms and cellular machinery involved in epithelial remodeling. In this review, we discuss principles of morphogenesis and signaling that have been discovered through genetic and cell biological examination of this pathway. We also consider various regulatory mechanisms and the system's relevance to mammalian development. We propose future directions that will continue to broaden our knowledge of morphogenesis across taxa.
Collapse
Affiliation(s)
- Alyssa J Manning
- Department of Biochemistry, Box 357350, The University of Washington, Seattle, WA 98195-7350, USA
| | - Stephen L Rogers
- Department of Biology, The University of North Carolina at Chapel Hill, CB ♯3280, Fordham Hall, South Road, Chapel Hill, NC 27599-3280, USA; Lineberger Comprehensive Cancer Center, USA; Carolina Center for Genome Sciences, USA.
| |
Collapse
|
179
|
Yuan J, Tao W, Cheng Y, Huang B, Wang D. Genome-wide identification, phylogeny, and gonadal expression of fox genes in Nile tilapia, Oreochromis niloticus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1239-1252. [PMID: 24526262 DOI: 10.1007/s10695-014-9919-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 02/05/2014] [Indexed: 06/03/2023]
Abstract
The fox genes play important roles in various biological processes, including sexual development. In the present study, we isolated 65 fox genes, belonging to 18 subfamilies named A-R, from Nile tilapia through genome-wide screening. Twenty-four of them have two or three (foxm1) copies. Furthermore, 16, 25, 68, and 45 fox members were isolated from nematodes, protochordates, teleosts, and tetrapods, respectively. Phylogenetic analyses indicated fox gene family had undergone three expansions parallel to the three rounds of genome duplication during evolution. We also analyzed the clustered fox genes and found that apparent linkage duplication existed in teleosts, which further supported fish-specific genome duplication hypothesis. In addition, species- and lineage-specific duplication is another reason for fox gene family expansion. Based on the four pairs of XX and XY gonadal transcriptome data from four critical developmental stages, we analyzed the expression profile of all fox genes and identified sexually dimorphic fox genes at each stage. All fox genes were detected in gonads, with 15 of them at the background expression level (total read per kb per million reads, RPKM < 10), 29 at moderate expression level (10 < total RPKM < 100), and 21 at high expression level (total RPKM > 100). There are 27, 24, 28, and 9 sexually dimorphic fox genes at 5, 30, 90, and 180 days after hatching (dah), respectively. foxq1a, foxf1, foxr1, and foxr1 were identified as the most differentially expressed genes at each stage. foxl2 was characterized as XX-dominant gene, while foxd5, foxi3, foxn3, foxj1a, foxj3b, and foxo6b were characterized as XY-dominant genes. qPCR and in situ hybridization of foxh1 and foxj1a were performed to confirm the expression profiles and to validate the transcriptome data. Our results suggest that fox genes might play important roles in sex determination and gonadal development in teleosts.
Collapse
Affiliation(s)
- Jing Yuan
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, 400715, People's Republic of China
| | | | | | | | | |
Collapse
|
180
|
Nagel S, Meyer C, Kaufmann M, Drexler HG, MacLeod RAF. Deregulated FOX genes in Hodgkin lymphoma. Genes Chromosomes Cancer 2014; 53:917-33. [PMID: 25043849 DOI: 10.1002/gcc.22204] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/18/2014] [Accepted: 06/29/2014] [Indexed: 12/27/2022] Open
Abstract
FOX genes encode transcription factors which regulate basic developmental processes during embryogenesis and in the adult. Several FOX genes show deregulated expression in particular malignancies, representing oncogenes or tumor suppressors. Here, we screened six Hodgkin lymphoma (HL) cell lines for FOX gene activity by comparative microarray profiling, revealing overexpression of FOXC1 and FOXD1, and reduced transcription of FOXN3, FOXO1, and FOXP1. In silico expression analyses of these FOX gene candidates in HL patient samples supported the cell line data. Chromosomal analyses demonstrated an amplification of the FOXC1 locus at 6p25 and a gain of the FOXR2 locus at Xp11, indicting genomic aberrations for their upregulation. Comparative expression profiling and ensuing stimulation experiments revealed implementation of the TGFβ- and WNT-signaling pathways in deregulation of FOXD1 and FOXN3. Functional analysis of FOXP1 implicated miR9 and miR34a as upstream regulators and PAX5, TCF3, and RAG2 as downstream targets. A similar exercise for FOXC1 revealed repression of MSX1 and activation of IPO7, both mediating inhibition of the B-cell specific homeobox gene ZHX2. Taken together, our data show that aberrantly expressed FOX genes and their downstream targets are involved in the pathogenesis of HL via deregulation of B-cell differentiation and may represent useful diagnostic markers and/or therapeutic targets.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | | | | | | | | |
Collapse
|
181
|
Zhao Y, Tindall DJ, Huang H. Modulation of androgen receptor by FOXA1 and FOXO1 factors in prostate cancer. Int J Biol Sci 2014; 10:614-9. [PMID: 24948874 PMCID: PMC4062954 DOI: 10.7150/ijbs.8389] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 01/22/2014] [Indexed: 12/18/2022] Open
Abstract
Androgens and the androgen receptor (AR) are essential for growth and differentiation of the normal prostate gland as well as proliferation and survival of prostate cancer (PCa). Increasing evidence suggests that reactivation of the AR plays a pivotal role in disease progression to castration-resistant PCa (CRPC). Forkhead box (FOX) factors exert two distinct effects on AR function in PCa. The A-class of FOX proteins, especially FOXA1, functions as a pioneer factor to facilitate AR transactivation and PCa growth. In contrast, the O-class of FOX proteins such as FOXO1 and FOXO3, which are downstream effectors of the PTEN tumor suppressor, inhibit the transcriptional activity of either full-length AR or constitutively active splice variants of AR in a direct or indirect manner in PCa. FOXO1 also contributes to taxane-mediated inhibition of the AR and CRPC growth. Therefore, FOX family members not only have a tight relationship with AR, but also represent a pivotal group of proteins to be targeted for PCa therapy. The present review focuses primarily on recent advances in the epigenetic, mechanistic and clinical relevant aspects of regulation of the AR by FOXA1 and FOXO1 factors in PCa.
Collapse
Affiliation(s)
- Yu Zhao
- 1. Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Donald J Tindall
- 1. Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; ; 2. Department of Urology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; ; 3. Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Haojie Huang
- 1. Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; ; 2. Department of Urology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; ; 3. Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
182
|
Park J, Kong S, Kim S, Kang S, Lee YH. Roles of Forkhead-box Transcription Factors in Controlling Development, Pathogenicity, and Stress Response in Magnaporthe oryzae. THE PLANT PATHOLOGY JOURNAL 2014; 30:136-50. [PMID: 25288996 PMCID: PMC4174854 DOI: 10.5423/ppj.oa.02.2014.0018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 03/21/2014] [Accepted: 04/02/2014] [Indexed: 05/24/2023]
Abstract
Although multiple transcription factors (TFs) have been characterized via mutagenesis to understand their roles in controlling pathogenicity and infection-related development in Magnaporthe oryzae, the causal agent of rice blast, if and how forkhead-box (FOX) TFs contribute to these processes remain to be characterized. Four putative FOX TF genes were identified in the genome of M. oryzae, and phylogenetic analysis suggested that two of them (MoFKH1 and MoHCM1) correspond to Ascomycota-specific members of the FOX TF family while the others (MoFOX1 and MoFOX2) are Pezizomycotina-specific members. Deletion of MoFKH1 (ΔMofkh1) resulted in reduced mycelial growth and conidial germination, abnormal septation and stress response, and reduced virulence. Similarly, ΔMohcm1 exhibited reduced mycelial growth and conidial germination. Conidia of ΔMofkh1 and ΔMohcm1 were more sensitive to one or both of the cell cycle inhibitors hydroxyurea and benomyl, suggesting their role in cell cycle control. On the other hand, loss of MoFOX1 (ΔMofox1) did not show any noticeable changes in development, pathogenicity, and stress response. Deletion of MoFOX2 was not successful even after repeated attempts. Taken together, these results suggested that MoFKH1 and Mo-HCM1 are important in fungal development and that MoFKH1 is further implicated in pathogenicity and stress response in M. oryzae.
Collapse
Affiliation(s)
- Jaejin Park
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, Center for Fungal Pathogenesis, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Sunghyung Kong
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, Center for Fungal Pathogenesis, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Seryun Kim
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, Center for Fungal Pathogenesis, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Seogchan Kang
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, Center for Fungal Pathogenesis, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| |
Collapse
|
183
|
van Gent R, Di Sanza C, van den Broek NJF, Fleskens V, Veenstra A, Stout GJ, Brenkman AB. SIRT1 mediates FOXA2 breakdown by deacetylation in a nutrient-dependent manner. PLoS One 2014; 9:e98438. [PMID: 24875183 PMCID: PMC4038515 DOI: 10.1371/journal.pone.0098438] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 05/02/2014] [Indexed: 12/23/2022] Open
Abstract
The Forkhead transcription factor FOXA2 plays a fundamental role in controlling metabolic homeostasis in the liver during fasting. The precise molecular regulation of FOXA2 in response to nutrients is not fully understood. Here, we studied whether FOXA2 could be controlled at a post-translational level by acetylation. By means of LC-MS/MS analyses, we identified five acetylated residues in FOXA2. Sirtuin family member SIRT1 was found to interact with and deacetylate FOXA2, the latter process being dependent on the NAD+-binding catalytic site of SIRT1. Deacetylation by SIRT1 reduced protein stability of FOXA2 by targeting it towards proteasomal degradation, and inhibited transcription from the FOXA2-driven G6pase and CPT1a promoters. While mutation of the five identified acetylated residues weakly affected protein acetylation and stability, mutation of at least seven additional lysine residues was required to abolish acetylation and reduce protein levels of FOXA2. The importance of acetylation of FOXA2 became apparent upon changes in nutrient levels. The interaction of FOXA2 and SIRT1 was strongly reduced upon nutrient withdrawal in cell culture, while enhanced Foxa2 acetylation levels were observed in murine liver in vivo after starvation for 36 hours. Collectively, this study demonstrates that SIRT1 controls the acetylation level of FOXA2 in a nutrient-dependent manner and in times of nutrient shortage the interaction between SIRT1 and FOXA2 is reduced. As a result, FOXA2 is protected from degradation by enhanced acetylation, hence enabling the FOXA2 transcriptional program to be executed to maintain metabolic homeostasis.
Collapse
Affiliation(s)
- Rogier van Gent
- Center for Molecular Medicine, Department of Molecular Cancer Research, Section Metabolic Diseases, University Medical Center Utrecht, Utrecht, The Netherlands, and Netherlands Metabolomics Centre, Leiden, The Netherlands
- Erasmus Medical Center Rotterdam, Department of Gastroenterology and Hepatology, Rotterdam, The Netherlands
| | - Claudio Di Sanza
- Center for Molecular Medicine, Department of Molecular Cancer Research, Section Metabolic Diseases, University Medical Center Utrecht, Utrecht, The Netherlands, and Netherlands Metabolomics Centre, Leiden, The Netherlands
| | - Niels J. F. van den Broek
- Center for Molecular Medicine, Department of Molecular Cancer Research, Section Metabolic Diseases, University Medical Center Utrecht, Utrecht, The Netherlands, and Netherlands Metabolomics Centre, Leiden, The Netherlands
| | - Veerle Fleskens
- University Medical Center Utrecht, Department of Cell Biology, Utrecht, The Netherlands
| | - Aukje Veenstra
- Center for Molecular Medicine, Department of Molecular Cancer Research, Section Metabolic Diseases, University Medical Center Utrecht, Utrecht, The Netherlands, and Netherlands Metabolomics Centre, Leiden, The Netherlands
| | - Gerdine J. Stout
- Center for Molecular Medicine, Department of Molecular Cancer Research, Section Metabolic Diseases, University Medical Center Utrecht, Utrecht, The Netherlands, and Netherlands Metabolomics Centre, Leiden, The Netherlands
| | - Arjan B. Brenkman
- Center for Molecular Medicine, Department of Molecular Cancer Research, Section Metabolic Diseases, University Medical Center Utrecht, Utrecht, The Netherlands, and Netherlands Metabolomics Centre, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
184
|
Chung S, Hanlon CD, Andrew DJ. Building and specializing epithelial tubular organs: the Drosophila salivary gland as a model system for revealing how epithelial organs are specified, form and specialize. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 3:281-300. [PMID: 25208491 DOI: 10.1002/wdev.140] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/02/2014] [Accepted: 04/15/2014] [Indexed: 12/28/2022]
Abstract
The past two decades have witnessed incredible progress toward understanding the genetic and cellular mechanisms of organogenesis. Among the organs that have provided key insight into how patterning information is integrated to specify and build functional body parts is the Drosophila salivary gland, a relatively simple epithelial organ specialized for the synthesis and secretion of high levels of protein. Here, we discuss what the past couple of decades of research have revealed about organ specification, development, specialization, and death, and what general principles emerge from these studies.
Collapse
Affiliation(s)
- SeYeon Chung
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Caitlin D Hanlon
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Deborah J Andrew
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
185
|
Rosario R, Cohen PA, Shelling AN. The role of FOXL2 in the pathogenesis of adult ovarian granulosa cell tumours. Gynecol Oncol 2014; 133:382-7. [DOI: 10.1016/j.ygyno.2013.12.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/05/2013] [Accepted: 12/09/2013] [Indexed: 12/12/2022]
|
186
|
Zhao L, Wei P, Guo H, Wang S, Tang B. Suppressing the expression of a forkhead transcription factor disrupts the chitin biosynthesis pathway in Spodoptera exigua. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2014; 86:4-18. [PMID: 24464395 DOI: 10.1002/arch.21145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Forkhead (Fox) transcription factors display functional diversity and are involved in various metabolic and developmental processes. The Spodoptera exigua Fox (SeFox) encodes a protein of 353 amino acids with a theoretical molecular mass of approximately 38.99 kDa and an isoelectric point of 8.86. qPCR results revealed that SeFox was expressed mainly in the brain, fat body, epidermis, midgut, Malpighian tubules, and testis. SeFox was expressed, with some changes, throughout development in the fat body and whole body. Injection of dsSeFox (SeFox dsRNA) into larvae resulted in incidences of albino plus molting deformity (4.8%), molting deformity (26.2%), and albino phenotypes (69.1%). dsSeFox injection resulted in approximately 50% knockdown of transcript levels at 36 h. Compared with control groups, hexokinase (HK) expression was reduced to approximately 40% at 48 h postinjection. Chitin synthase A (CHSA) expression was reduced to two-thirds at 24 h, but increased at 72 h. Compared with untreated control and green fluorescent protein-treated groups, Chitin synthase B (CHSB) expression decreased to 33% following dsSeFox injection by 36 h. We infer from our results that forkhead transcription factors act in chitin synthesis in S. exigua.
Collapse
Affiliation(s)
- Lina Zhao
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | | | | | | | | |
Collapse
|
187
|
Zhao XM, Liu C, Li QY, Hu WB, Zhou MT, Nie HY, Zhang YX, Peng ZC, Zhao P, Xia QY. Basic helix-loop-helix transcription factor Bmsage is involved in regulation of fibroin H-chain gene via interaction with SGF1 in Bombyx mori. PLoS One 2014; 9:e94091. [PMID: 24740008 PMCID: PMC3989216 DOI: 10.1371/journal.pone.0094091] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/11/2014] [Indexed: 11/25/2022] Open
Abstract
Silk glands are specialized in the synthesis of several secretory proteins. Expression of genes encoding the silk proteins in Bombyx mori silk glands with strict territorial and developmental specificities is regulated by many transcription factors. In this study, we have characterized B. mori sage, which is closely related to sage in the fruitfly Drosophila melanogaster. It is termed Bmsage; it encodes transcription factor Bmsage, which belongs to the Mesp subfamily, containing a basic helix-loop-helix motif. Bmsage transcripts were detected specifically in the silk glands of B. mori larvae through RT-PCR analysis. Immunoblotting analysis confirmed the Bmsage protein existed exclusively in B. mori middle and posterior silk gland cells. Bmsage has a low level of expression in the 4th instar molting stages, which increases gradually in the 5th instar feeding stages and then declines from the wandering to the pupation stages. Quantitative PCR analysis suggested the expression level of Bmsage in a high silk strain was higher compared to a lower silk strain on day 3 of the larval 5th instar. Furthermore, far western blotting and co-immunoprecipitation assays showed the Bmsage protein interacted with the fork head transcription factor silk gland factor 1 (SGF1). An electrophoretic mobility shift assay showed the complex of Bmsage and SGF1 proteins bound to the A and B elements in the promoter of fibroin H-chain gene(fib-H), respectively. Luciferase reporter gene assays confirmed the complex of Bmsage and SGF1 proteins increased the expression of fib-H. Together, these results suggest Bmsage is involved in the regulation of the expression of fib-H by being together with SGF1 in B. mori PSG cells.
Collapse
Affiliation(s)
- Xiao-Ming Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing, China
| | - Chun Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing, China
| | - Qiong-Yan Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing, China
| | - Wen-Bo Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing, China
| | - Meng-Ting Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing, China
| | - Hong-Yi Nie
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing, China
| | - Yin-Xia Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing, China
| | - Zhang-Chuan Peng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing, China
| | - Qing-You Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing, China
| |
Collapse
|
188
|
Choksi SP, Lauter G, Swoboda P, Roy S. Switching on cilia: transcriptional networks regulating ciliogenesis. Development 2014; 141:1427-41. [DOI: 10.1242/dev.074666] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cilia play many essential roles in fluid transport and cellular locomotion, and as sensory hubs for a variety of signal transduction pathways. Despite having a conserved basic morphology, cilia vary extensively in their shapes and sizes, ultrastructural details, numbers per cell, motility patterns and sensory capabilities. Emerging evidence indicates that this diversity, which is intimately linked to the different functions that cilia perform, is in large part programmed at the transcriptional level. Here, we review our understanding of the transcriptional control of ciliary biogenesis, highlighting the activities of FOXJ1 and the RFX family of transcriptional regulators. In addition, we examine how a number of signaling pathways, and lineage and cell fate determinants can induce and modulate ciliogenic programs to bring about the differentiation of distinct cilia types.
Collapse
Affiliation(s)
- Semil P. Choksi
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673 Singapore
| | - Gilbert Lauter
- Karolinska Institute, Department of Biosciences and Nutrition, S-141 83 Huddinge, Sweden
| | - Peter Swoboda
- Karolinska Institute, Department of Biosciences and Nutrition, S-141 83 Huddinge, Sweden
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673 Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543 Singapore
| |
Collapse
|
189
|
Thackray VG. Fox tales: regulation of gonadotropin gene expression by forkhead transcription factors. Mol Cell Endocrinol 2014; 385:62-70. [PMID: 24099863 PMCID: PMC3947687 DOI: 10.1016/j.mce.2013.09.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 12/16/2022]
Abstract
Luteinizing hormone (LH) and follicle-stimulating hormone (FSH) are produced by pituitary gonadotrope cells and are required for steroidogenesis, the maturation of ovarian follicles, ovulation, and spermatogenesis. Synthesis of LH and FSH is tightly regulated by a complex network of signaling pathways activated by hormones including gonadotropin-releasing hormone, activin and sex steroids. Members of the forkhead box (FOX) transcription factor family have been shown to act as important regulators of development, homeostasis and reproduction. In this review, we focus on the role of four specific FOX factors (FOXD1, FOXL2, FOXO1 and FOXP3) in gonadotropin hormone production and discuss our current understanding of the molecular function of these factors derived from studies in mouse genetic and cell culture models.
Collapse
Affiliation(s)
- Varykina G Thackray
- Department of Reproductive Medicine and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
190
|
Governini L, Carrarelli P, Rocha ALL, Leo VD, Luddi A, Arcuri F, Piomboni P, Chapron C, Bilezikjian LM, Petraglia F. FOXL2 in human endometrium: hyperexpressed in endometriosis. Reprod Sci 2014; 21:1249-55. [PMID: 24520083 DOI: 10.1177/1933719114522549] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The present study investigated expression and protein localization of FOXL2 messenger RNA (mRNA) in endometrium of healthy women and in patients with endometriosis during endometrial cycle. In endometriotic lesions, FOXL2 mRNA and protein were evaluated and a possible correlation with activin A mRNA expression changes was also studied. Endometrium was collected from healthy women (n = 52) and from women with endometriosis (n = 31) by hysteroscopy; endometriotic tissues were collected by laparoscopy (n = 38). FOXL2 gene expression analysis in endometrium of healthy women showed a significant expression and no significant changes in mRNA levels between proliferative and secretory phases; a similar pattern was observed in endometrium of patients with endometriosis. Immunohistochemical evaluation showed that FOXL2 protein localized in stromal and glandular cells and colocalized with SUMO-1. FOXL2 mRNA expression was 3-fold higher in endometriosis than in healthy endometrium (P < .01) and a positive correlation between FOXL2 and activin A mRNA was found (P < .05) in endometriosis. In conclusion, FOXL2 mRNA expression and its protein localization do not change during endometrial cycle in eutopic endometrium from healthy individuals or patients with endometriosis; the hyperexpression of FOXL2 in endometriotic lesions suggests an involvement of this transcriptional regulator, probably associated with activin A expression and related to the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Laura Governini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Patrizia Carrarelli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Ana Luiza Lunardi Rocha
- Department of Obstetrics and Gynaecology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vincenzo De Leo
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Alice Luddi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Felice Arcuri
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Paola Piomboni
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Charles Chapron
- Department of Gynecology Obstetrics II and Reproductive Medicine, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, AP-HP, CHU Cochin, Paris, France
| | - Louise M Bilezikjian
- The Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Felice Petraglia
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
191
|
Scimone ML, Lapan SW, Reddien PW. A forkhead transcription factor is wound-induced at the planarian midline and required for anterior pole regeneration. PLoS Genet 2014; 10:e1003999. [PMID: 24415944 PMCID: PMC3886891 DOI: 10.1371/journal.pgen.1003999] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 10/19/2013] [Indexed: 11/30/2022] Open
Abstract
Planarian regeneration requires positional information to specify the identity of tissues to be replaced as well as pluripotent neoblasts capable of differentiating into new cell types. We found that wounding elicits rapid expression of a gene encoding a Forkhead-family transcription factor, FoxD. Wound-induced FoxD expression is specific to the ventral midline, is regulated by Hedgehog signaling, and is neoblast-independent. FoxD is subsequently expressed within a medial subpopulation of neoblasts at wounds involving head regeneration. Ultimately, FoxD is co-expressed with multiple anterior markers at the anterior pole. Inhibition of FoxD with RNA interference (RNAi) results in the failure to specify neoblasts expressing anterior markers (notum and prep) and in anterior pole formation defects. FoxD(RNAi) animals fail to regenerate a new midline and to properly pattern the anterior blastema, consistent with a role for the anterior pole in organizing pattern of the regenerating head. Our results suggest that wound signaling activates a forkhead transcription factor at the midline and, if the head is absent, FoxD promotes specification of neoblasts at the prior midline for anterior pole regeneration. Regeneration is widespread in the animal kingdom. Planarians are able to regenerate entire bodies from almost any fragment type. This ability requires a cell population called neoblasts, which include pluripotent stem cells, for the production of all missing tissues, as well as the information to form and pattern correct new tissue types. Two discrete regions of the body, called poles, are found at the anterior and posterior ends of the animal. Here we investigate the role of a gene encoding a Forkhead-family transcription factor, FoxD, in formation of the anterior pole. FoxD is expressed at the anterior pole and following injury, FoxD expression is induced in a restricted midline region of the animal. Next, FoxD is expressed in a subset of neoblasts at the midline. Inhibition of FoxD with RNA interference results in defective anterior pole regeneration, and subsequent failure to regenerate an organized head pattern around a new midline. FoxD is specifically required for anterior regeneration. These results suggest that there is a regenerative connection between the midline and the anterior pole.
Collapse
Affiliation(s)
- M Lucila Scimone
- Howard Hughes Medical Institute, MIT Biology and Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Sylvain W Lapan
- Howard Hughes Medical Institute, MIT Biology and Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Peter W Reddien
- Howard Hughes Medical Institute, MIT Biology and Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| |
Collapse
|
192
|
Shi M, Xie D, Gaod Y, Xie K. Targeting miRNAs for pancreatic cancer therapy. Curr Pharm Des 2014; 20:5279-5286. [PMID: 24479803 PMCID: PMC4113604 DOI: 10.2174/1381612820666140128210443] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/28/2014] [Indexed: 12/21/2022]
Abstract
Pancreatic cancer (PC) is the fourth leading cause of cancer-related deaths in the United States and has a median 5-year survival rate less than 5%. Although surgery offers the best chance for a cure for pancreatic cancer, less than 20% of patients are eligible for potentially curative resection, because in most cases, the cancer has already spread locally or to distant organs at diagnosis, precluding resection. MicroRNAs (miRNAs) are small noncoding, endogenous, single-stranded RNAs that are pivotal regulators of posttranscriptional gene expression. Extensive studies of miRNAs over the past several years have revealed that the expression of miRNAs is frequently deregulated in pancreatic cancer patients and that this deregulation contributes to the pathogenesis and aggressiveness of the disease. Currently, investigators are studying the use of miRNAs as diagnostic and/or prognostic biomarkers and therapeutic tools for pancreatic cancer. Rapid discovery of many miRNA targets and their relevant pathways has contributed to the development of miRNA-based therapeutics. In particular, the transcription factor Forkhead box M1 (FOXM1) is overexpressed in the majority of cancer patients, including those with pancreatic cancer. This overexpression is implicated to have a role in tumorigenesis, progression, and metastasis. This important role of FOXM1 affirms its usefulness in therapeutic interventions for pancreatic cancer. In this review, we summarize the current knowledge and concepts concerning the involvement of miRNAs and FOXM1 in pancreatic cancer development and describe the roles of the miRNA-FOXM1 signaling pathway in pancreatic cancer initiation and progression. Additionally, we describe some of the technical challenges in the use of the miRNA-FOXM1 signaling pathway in pancreatic cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Keping Xie
- Department of Gastroenterology, Hepatology & Nutrition, Unit 1466, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
193
|
Dumitrascu GR, Bucur O. Critical physiological and pathological functions of Forkhead Box O tumor suppressors. Discoveries (Craiova) 2013; 1:e5. [PMID: 32309538 PMCID: PMC6941590 DOI: 10.15190/d.2013.5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Forkhead box, subclass O (FOXO) proteins are critical transcription factors, ubiquitously expressed in the human body. These proteins are characterized by a remarkable functional diversity, being involved in cell cycle arrest, apoptosis, oxidative detoxification, DNA damage repair, stem cell maintenance, cell differentiation, cell metabolism, angiogenesis, cardiac development, aging and others. In addition, FOXO have critical implications in both normal and cancer stem cell biology. New strategies to modulate FOXO expression and activity may now be developed since the discovery of novel FOXO regulators and non-coding RNAs (such as microRNAs) targeting FOXO transcription factors. This review focuses on physiological and pathological functions of FOXO proteins and on their action as fine regulators of cell fate and context-dependent cell decisions. A better understanding of the structure and critical functions of FOXO transcription factors and tumor suppressors may contribute to the development of novel therapies for cancer and other diseases.
Collapse
Affiliation(s)
- Georgiana R Dumitrascu
- "Victor Babes" National Institute of Pathology and Biomedical Sciences, Bucharest, Romania
| | - Octavian Bucur
- Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
194
|
Sánchez-Herrero E. Hox targets and cellular functions. SCIENTIFICA 2013; 2013:738257. [PMID: 24490109 PMCID: PMC3892749 DOI: 10.1155/2013/738257] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/20/2013] [Indexed: 06/03/2023]
Abstract
Hox genes are a group of genes that specify structures along the anteroposterior axis in bilaterians. Although in many cases they do so by modifying a homologous structure with a different (or no) Hox input, there are also examples of Hox genes constructing new organs with no homology in other regions of the body. Hox genes determine structures though the regulation of targets implementing cellular functions and by coordinating cell behavior. The genetic organization to construct or modify a certain organ involves both a genetic cascade through intermediate transcription factors and a direct regulation of targets carrying out cellular functions. In this review I discuss new data from genome-wide techniques, as well as previous genetic and developmental information, to describe some examples of Hox regulation of different cell functions. I also discuss the organization of genetic cascades leading to the development of new organs, mainly using Drosophila melanogaster as the model to analyze Hox function.
Collapse
Affiliation(s)
- Ernesto Sánchez-Herrero
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
195
|
Forkhead box proteins: the tuning forks in cancer development and treatment. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
196
|
Conte FP. Origin and differentiation of ionocytes in gill epithelium of teleost fish. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 299:1-25. [PMID: 22959300 DOI: 10.1016/b978-0-12-394310-1.00001-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This paper focuses on the environmental cues that transform the gills of euryhaline teleost fish from an oxygen exchange structure into a bifunctional organ that can control both gaseous movement and water/ion transport. The cellular development that allows this structure to accomplish these tasks begins shortly after fertilization of the egg. It involves alterations of structure and function of embryonic cells [ionoblasts (IB)] that are shed from the pharyngeal anlage area of the embryo. These IB contain unique protein-receptor domains in the plasma membrane. These receptors respond specifically to the environmental cues effecting a calcium-binding protein receptor [calcium-sensing receptor (CaSR)]. The CaSR containing IB act as stem cells and are acted upon by isotocin, a heteroprotein regulator which induces them to form progenitor ionocytes (pIC). The pIC form two types of cells. The first type becomes an aquaphilic ionocyte which regulates uptake of ions and through aquaporin molecules transports water out of the cell and controls body fluids of the fish. This mechanism is essential for freshwater living. The second type becomes a halophilic ionocyte and transports ions out of the cell and controls cell shrinkage by uptake of water via aquaporin molecules. This mechanism is essential for seawater living. These differentiating events in the pIC are controlled by the cross talking of genomic mechanisms found in the precursor IB. To unravel the cross talking events it is necessary to uncover how these genetic pathways are regulated by transcriptional and translational events coming from complementary DNA. Various gene families are involved such as those found in apoptosis mechanisms, regulatory volume regulators and ionic transport systems (cystic fibrosis transmembrane conductance regulator).
Collapse
Affiliation(s)
- Frank P Conte
- Department of Zoology, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
197
|
Foxn4: a multi-faceted transcriptional regulator of cell fates in vertebrate development. SCIENCE CHINA-LIFE SCIENCES 2013; 56:985-93. [PMID: 24008385 DOI: 10.1007/s11427-013-4543-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 08/12/2013] [Indexed: 12/12/2022]
Abstract
Vertebrate development culminates in the generation of proper proportions of a large variety of different cell types and subtypes essential for tissue, organ and system functions in the right place at the right time. Foxn4, a member of the forkhead box/winged-helix transcription factor superfamily, is expressed in mitotic progenitors and/or postmitotic precursors in both neural (e.g., retina and spinal cord) and non-neural tissues (e.g., atrioventricular canal and proximal airway). During development of the central nervous system, Foxn4 is required to specify the amacrine and horizontal cell fates from multipotent retinal progenitors while suppressing the alternative photoreceptor cell fates through activating Dll4-Notch signaling. Moreover, it activates Dll4-Notch signaling to drive commitment of p2 progenitors to the V2b and V2c interneuron fates during spinal cord neurogenesis. In development of non-neural tissues, Foxn4 plays an essential role in the specification of the atrioventricular canal and is indirectly required for patterning the distal airway during lung development. In this review, we highlight current understanding of the structure, expression and developmental functions of Foxn4 with an emphasis on its cell-autonomous and non-cell-autonomous roles in different tissues and animal model systems.
Collapse
|
198
|
Shi M, Cui J, Xie K. Signaling of miRNAs-FOXM1 in cancer and potential targeted therapy. Curr Drug Targets 2013; 14:1192-1202. [PMID: 23834153 PMCID: PMC4081534 DOI: 10.2174/13894501113149990192] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 07/01/2013] [Indexed: 12/21/2022]
Abstract
The transcription factor Forkhead box protein M1 (FOXM1) is overexpressed in the majority of cancer patients. This overexpression is implicated to play a role in the pathogenesis, progression, and metastasis of cancer. This important role of FOXM1 demonstrates its significance to cancer therapy. MicroRNAs (miRNAs) are small noncoding, endogenous, single-stranded RNAs that are pivotal posttranscriptional gene expression regulators. MiRNAs aberrantly expressed in cancer cells have important roles in tumorigenesis and progression. Currently, miRNAs are being studied as diagnostic and prognostic biomarkers and therapeutic tools for cancer. The rapid discovery of many target miRNAs and their relevant pathways has contributed to the development of miRNA-based therapeutics for cancer. In this review, we summarize the latest and most significant findings on FOXM1 and miRNA involvement in cancer development and describe the role/roles of miRNA/FOXM1 signaling pathways in cancer initiation and progression. Targeting FOXM1 via regulation of miRNA expression may have a role in cancer treatment, although the miRNA delivery method remains the key challenge to the establishment of this novel therapy.
Collapse
Affiliation(s)
- Min Shi
- Department of Surgery, Shanghai Jiaotong University Affiliated Ruijin Hospital, Shanghai, People's Republic of China
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiujie Cui
- Department of Oncology, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai, People's Republic of China
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keping Xie
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
199
|
Abstract
Forkhead box (FOX) proteins are multifaceted transcription factors that are responsible for fine-tuning the spatial and temporal expression of a broad range of genes both during development and in adult tissues. This function is engrained in their ability to integrate a multitude of cellular and environmental signals and to act with remarkable fidelity. Several key members of the FOXA, FOXC, FOXM, FOXO and FOXP subfamilies are strongly implicated in cancer, driving initiation, maintenance, progression and drug resistance. The functional complexities of FOX proteins are coming to light and have established these transcription factors as possible therapeutic targets and putative biomarkers for specific cancers.
Collapse
Affiliation(s)
- Eric W-F Lam
- Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| | | | | | | |
Collapse
|
200
|
Regulation of autophagy by Forkhead box (FOX) O transcription factors. Adv Biol Regul 2013; 52:122-36. [PMID: 22115564 DOI: 10.1016/j.advenzreg.2011.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 10/19/2011] [Indexed: 12/22/2022]
|