151
|
|
152
|
Andersen EC, Lu X, Horvitz HR. C. elegans ISWI and NURF301 antagonize an Rb-like pathway in the determination of multiple cell fates. Development 2006; 133:2695-704. [PMID: 16774993 DOI: 10.1242/dev.02444] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The class A, B and C synthetic multivulva (synMuv) genes act redundantly to negatively regulate the expression of vulval cell fates in Caenorhabditis elegans. The class B and C synMuv proteins include homologs of proteins that modulate chromatin and influence transcription in other organisms similar to members of the Myb-MuvB/dREAM, NuRD and Tip60/NuA4 complexes. To determine how these chromatin-remodeling activities negatively regulate the vulval cell-fate decision, we isolated a suppressor of the synMuv phenotype and found that the suppressor gene encodes the C. elegans homolog of Drosophila melanogaster ISWI. The C. elegans ISW-1 protein likely acts as part of a Nucleosome Remodeling Factor (NURF) complex with NURF-1, a nematode ortholog of NURF301, to promote the synMuv phenotype. isw-1 and nurf-1 mutations suppress both the synMuv phenotype and the multivulva phenotype caused by overactivation of the Ras pathway. Our data suggest that a NURF-like complex promotes the expression of vulval cell fates by antagonizing the transcriptional and chromatin-remodeling activities of complexes similar to Myb-MuvB/dREAM, NuRD and Tip60/NuA4. Because the phenotypes caused by a null mutation in the tumor-suppressor and class B synMuv gene lin-35 Rb and a gain-of-function mutation in let-60 Ras are suppressed by reduction of isw-1 function, NURF complex proteins might be effective targets for cancer therapy.
Collapse
Affiliation(s)
- Erik C Andersen
- Howard Hughes Medical Institute, Department of Biology, Room 68-425, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
153
|
Lazzaro MA, Pépin D, Pescador N, Murphy BD, Vanderhyden BC, Picketts DJ. The imitation switch protein SNF2L regulates steroidogenic acute regulatory protein expression during terminal differentiation of ovarian granulosa cells. Mol Endocrinol 2006; 20:2406-17. [PMID: 16740656 DOI: 10.1210/me.2005-0213] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Luteinization is a complex process, stimulated by gonadotropins, that promotes ovulation and development of the corpus luteum through terminal differentiation of granulosa cells. The pronounced expression of the mammalian imitation switch (ISWI) genes, SNF2H and SNF2L, in adult ovaries prompted us to investigate the role of these chromatin remodeling proteins during follicular development and luteinization. SNF2H expression is highest during growth of preovulatory follicles and becomes less prevalent during luteinization. In contrast, both SNF2L transcript and SNF2L protein levels are rapidly increased in granulosa cells of the mouse ovary 8 h after human chorionic gonadotropin treatment, and continue to be expressed 36 h later within the functional corpus luteum. We demonstrate a physical interaction between SNF2L and the progesterone receptor A isoform, which regulates progesterone receptor-responsive genes required for ovulation. Moreover, chromatin immunoprecipitation demonstrated that, after gonadotropin stimulation, SNF2L is associated with the proximal promoter of the steroidogenic acute regulatory protein (StAR) gene, a classic marker of luteinization in granulosa cells. Interaction of SNF2L with the StAR promoter is required for StAR expression, because small interfering RNA knockdown of SNF2L prevents the activation of the StAR gene. Our results provide the first indication that ISWI chromatin remodeling proteins are responsive to the LH surge and that this response is required for the activation of the StAR gene and the overall development of a functional luteal cell.
Collapse
Affiliation(s)
- Maribeth A Lazzaro
- Molecular Medicine Program, Ottawa Health Research Institute, Ottawa, Ontario, Canada K1H 8L6
| | | | | | | | | | | |
Collapse
|
154
|
Wysocka J, Swigut T, Xiao H, Milne TA, Kwon SY, Landry J, Kauer M, Tackett AJ, Chait BT, Badenhorst P, Wu C, Allis CD. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 2006; 442:86-90. [PMID: 16728976 DOI: 10.1038/nature04815] [Citation(s) in RCA: 884] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 04/17/2006] [Indexed: 12/11/2022]
Abstract
Lysine methylation of histones is recognized as an important component of an epigenetic indexing system demarcating transcriptionally active and inactive chromatin domains. Trimethylation of histone H3 lysine 4 (H3K4me3) marks transcription start sites of virtually all active genes. Recently, we reported that the WD40-repeat protein WDR5 is important for global levels of H3K4me3 and control of HOX gene expression. Here we show that a plant homeodomain (PHD) finger of nucleosome remodelling factor (NURF), an ISWI-containing ATP-dependent chromatin-remodelling complex, mediates a direct preferential association with H3K4me3 tails. Depletion of H3K4me3 causes partial release of the NURF subunit, BPTF (bromodomain and PHD finger transcription factor), from chromatin and defective recruitment of the associated ATPase, SNF2L (also known as ISWI and SMARCA1), to the HOXC8 promoter. Loss of BPTF in Xenopus embryos mimics WDR5 loss-of-function phenotypes, and compromises spatial control of Hox gene expression. These results strongly suggest that WDR5 and NURF function in a common biological pathway in vivo, and that NURF-mediated ATP-dependent chromatin remodelling is directly coupled to H3K4 trimethylation to maintain Hox gene expression patterns during development. We also identify a previously unknown function for the PHD finger as a highly specialized methyl-lysine-binding domain.
Collapse
|
155
|
Li H, Ilin S, Wang W, Duncan EM, Wysocka J, Allis CD, Patel DJ. Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature 2006; 442:91-5. [PMID: 16728978 PMCID: PMC4690523 DOI: 10.1038/nature04802] [Citation(s) in RCA: 587] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 04/11/2006] [Indexed: 12/29/2022]
Abstract
Mono-, di- and trimethylated states of particular histone lysine residues are selectively found in different regions of chromatin, thereby implying specialized biological functions for these marks ranging from heterochromatin formation to X-chromosome inactivation and transcriptional regulation. A major challenge in chromatin biology has centred on efforts to define the connection between specific methylation states and distinct biological read-outs impacting on function. For example, histone H3 trimethylated at lysine 4 (H3K4me3) is associated with transcription start sites of active genes, but the molecular 'effectors' involved in specific recognition of H3K4me3 tails remain poorly understood. Here we demonstrate the molecular basis for specific recognition of H3(1-15)K4me3 (residues 1-15 of histone H3 trimethylated at K4) by a plant homeodomain (PHD) finger of human BPTF (bromodomain and PHD domain transcription factor), the largest subunit of the ATP-dependent chromatin-remodelling complex, NURF (nucleosome remodelling factor). We report on crystallographic and NMR structures of the bromodomain-proximal PHD finger of BPTF in free and H3(1-15)K4me3-bound states. H3(1-15)K4me3 interacts through anti-parallel beta-sheet formation on the surface of the PHD finger, with the long side chains of arginine 2 (R2) and K4me3 fitting snugly in adjacent pre-formed surface pockets, and bracketing an invariant tryptophan. The observed stapling role by non-adjacent R2 and K4me3 provides a molecular explanation for H3K4me3 site specificity. Binding studies establish that the BPTF PHD finger exhibits a modest preference for K4me3- over K4me2-containing H3 peptides, and discriminates against monomethylated and unmodified counterparts. Furthermore, we identified key specificity-determining residues from binding studies of H3(1-15)K4me3 with PHD finger point mutants. Our findings call attention to the PHD finger as a previously uncharacterized chromatin-binding module found in a large number of chromatin-associated proteins.
Collapse
Affiliation(s)
- Haitao Li
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
156
|
Abstract
The Human Immunodeficiency Virus type 1 (HIV-1), a member of the lentivirus subfamily, infects both dividing and nondividing cells and, following reverse transcription of the viral RNA genome, integrates into the host chromatin where it enters into a latent state. Many of the factors governing viral latency remain unresolved and current antiviral treatment regimens are largely ineffective at eliminating cellular reservoirs of latent virus. The recent identification of microRNA (miRNA) encoding sequences embedded in the HIV-1 genome, and the discovery of functional virus-derived miRNAs, suggests a role for RNA Interference (RNAi) in the regulation of HIV-1 gene expression. Recently, the mammalian RNAi machinery was shown to regulate gene expression epigenetically by transcriptional modulation, providing a direct link between RNAi and a mechanism for inducing latency. Interestingly, both HIV-1 Tat, and the host TAR RNA-binding protein (TRBP), bind to the transactivating response (TAR) RNA of HIV-1 and affect the function of RNAi in human cells. Specifically, TRBP, a cofactor in Tat-TAR interactions, is a vital component of Dicer-mediated dsRNA processing. These novel observations support a central role for HIV-1 and associated host factors in regulating cellular RNAi and viral gene expression through RNA directed processes. Thus, HIV-1 may have evolved mechanisms to exploit the RNAi pathway at both the transcriptional and posttranscriptional level to affect and/or maintain a latent infection.
Collapse
Affiliation(s)
- Marc S Weinberg
- Department of Molecular Medicine and Haematology, University of the Witwatersrand Medical School, Parktown, South Africa
| | | |
Collapse
|
157
|
Saha A, Wittmeyer J, Cairns BR. Mechanisms for nucleosome movement by ATP-dependent chromatin remodeling complexes. Results Probl Cell Differ 2006; 41:127-48. [PMID: 16909894 DOI: 10.1007/400_005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chromatin remodeling complexes (remodelers) are a set of diverse multi-protein machines that reposition and restructure nucleosomes. Remodelers are specialized, containing unique proteins that assist in targeting, interaction with modified nucleosomes, and performing specific chromatin tasks. However, all remodelers contain an ATPase domain that is highly similar to known DNA translocases/helicases, suggesting that DNA translocation is a property common to all remodelers. Here we examine the different reactions they perform in vitro, focusing on the SWI/SNF and the ISWI complexes, and explore how DNA translocation might be utilized to execute various remodeling processes.
Collapse
Affiliation(s)
- Anjanabha Saha
- Department of Oncological Sciences and Howard Hughes Medical Institute, Huntsman Cancer Institute, University of Utah School of Medicine, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
158
|
Neves-Costa A, Varga-Weisz P. The roles of chromatin remodelling factors in replication. Results Probl Cell Differ 2006; 41:91-107. [PMID: 16909892 DOI: 10.1007/400_007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Dynamic changes of chromatin structure control DNA-dependent events, including DNA replication. Along with DNA, chromatin organization must be replicated to maintain genetic and epigenetic information through cell generations. Chromatin remodelling is important for several steps in replication: determination and activation of origins of replication, replication machinery progression, chromatin assembly and DNA repair. Histone chaperones such as the FACT complex assist DNA replication within chromatin, probably by facilitating both nucleosome disassembly and reassembly. ATP-dependent nucleosome remodelling enzymes of the SWI/SNF family, in particular imitation switch (ISWI)-containing complexes, have been linked to DNA and chromatin replication. They are targeted to replication sites to facilitate DNA replication and subsequent chromatin assembly.
Collapse
|
159
|
Abstract
A requirement of nuclear processes that use DNA as a substrate is the manipulation of chromatin in which the DNA is packaged. Chromatin modifications cause alterations of histones and DNA, and result in a permissive chromatin environment for these nuclear processes. Recent advances in the fields of DNA repair and chromatin reveal that both histone modifications and chromatin-remodeling complexes are essential for the repair of DNA lesions, such as DNA double strand breaks (DSBs). In particular, chromatin-modifying complexes, such as the INO80, SWR1, RSC, and SWI/SNF ATP-dependent chromatin-remodeling complexes and the NuA4 and Tip60 histone acetyltransferase complexes are implicated in DNA repair. The activity of these chromatin-modifying complexes influences the efficiency of the DNA repair process, which ultimately affects genome integrity and carcinogenesis. Thus, the process of DNA repair requires the cooperative activities of evolutionarily conserved chromatin-modifying complexes that facilitate the dynamic chromatin alterations needed during repair of DNA damage.
Collapse
Affiliation(s)
- Ashby J Morrison
- University of Texas, M.D. Anderson Cancer Center, Department of Carcinogenesis, Science Park Research Division, Smithville, Texas 78957, USA
| | | |
Collapse
|
160
|
Fazzio TG, Gelbart ME, Tsukiyama T. Two distinct mechanisms of chromatin interaction by the Isw2 chromatin remodeling complex in vivo. Mol Cell Biol 2005; 25:9165-74. [PMID: 16227570 PMCID: PMC1265836 DOI: 10.1128/mcb.25.21.9165-9174.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We have previously shown that Saccharomyces cerevisiae Isw2 complex slides nucleosomes to remodel chromatin in vivo. Our data suggested a model in which Isw2 complex binds the histone octamer and DNA separately to generate the force necessary for nucleosome movement. Here we find that the histone H4 "basic patch" is the only portion of any amino-terminal histone tail required for both target-specific association of Isw2 complex with chromatin and chromatin remodeling in vivo, whereas it is dispensable for basal levels of chromatin binding. Similarly, we find that nonremodeled chromatin structure and integrity of Isw2 complex are required only for target-specific association of Isw2 with chromatin. These data demonstrate fundamental differences between the target-specific and basal modes of chromatin binding by Isw2 complex in vivo and suggest that only the former involves contributions from DNA, histone H4, and sequence-specific DNA binding proteins. We propose a model for target recognition and chromatin remodeling by Isw2 complex in vivo.
Collapse
Affiliation(s)
- Thomas G Fazzio
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Mail stop A1-162, P.O. Box 19024, 1100 Fairview Avenue North, Seattle, WA 98109-1024, USA
| | | | | |
Collapse
|
161
|
Switched-on chromatin. Nat Rev Mol Cell Biol 2005. [DOI: 10.1038/nrm1806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
162
|
Johnson CN, Adkins NL, Georgel P. Chromatin remodeling complexes: ATP-dependent machines in action. Biochem Cell Biol 2005; 83:405-17. [PMID: 16094444 DOI: 10.1139/o05-115] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Since the initial characterization of chromatin remodeling as an ATP-dependent process, many studies have given us insight into how nucleosome-remodeling complexes can affect various nuclear functions. However, the multistep DNA-histone remodeling process has not been completely elucidated. Although new studies are published on a nearly weekly basis, the nature and roles of interactions of the individual SWI/SNF- and ISWI-based remodeling complexes and DNA, core histones, and other chromatin-associated proteins are not fully understood. In addition, the potential changes associated with ATP recruitment and its subsequent hydrolysis have not been fully characterized. This review explores possible mechanisms by which chromatin-remodeling complexes are recruited to specific loci, use ATP hydrolysis to achieve actual remodeling through disruption of DNA-histone interactions, and are released from their chromatin template. We propose possible roles for ATP hydrolysis in a chromatin-release/target-scanning process that offer an alternative to or complement the often overlooked function of delivering the energy required for sliding or dislodging specific subsets of core histones.
Collapse
Affiliation(s)
- Cotteka N Johnson
- Division of Biological Sciences, Marshall University, Huntington, WV 25755, USA
| | | | | |
Collapse
|
163
|
Georgel PT. Chromatin potentiation of the hsp70 promoter is linked to GAGA-factor recruitment. Biochem Cell Biol 2005; 83:555-65. [PMID: 16094459 DOI: 10.1139/o05-060] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The events leading to transcription initiation of the Drosophila melanogaster heat-shock protein (hsp)70 gene have been demonstrated to be directly connected with nucleosome remodeling factor and GAGA-dependent chromatin remodeling on its promoter region. To investigate the relative importance of the multiple GAGA-factor binding sites in the process of chromatin remodeling and their effect on DNA conformation, the position of nucleosomes over the proximal region of the promoter was mapped. No real-positioned nucleosome was detected. By matching the relative position of the GAGA-factor binding sites with the distribution of nucleosomes over the hsp70 promoter, the GAGA site 2 appeared to be the most accessible, i.e., located close to a nucleosomal edge or within the linker DNA. This result, combined with previous observations, suggest a link between increased GAGA-factor accessibility and efficiency of transcription initiation. The effect of GAGA-binding-site mutations, both individually and in combination, on DNA structure and nucleosome remodeling was assessed using free DNA and fly embryo extract chromatin templates assembled in vitro. Results indicated that both the number of functional sites and their positions within the chromatin were important determinants for nucleosome-remodeling efficiency. Ultimately, the degree of accessibility of the GAGA factor to its cognate binding site(s) appears to be proportional to chromatin-remodeling competency of the hsp70 promoter.
Collapse
Affiliation(s)
- Philippe T Georgel
- Department of Biological Sciences, Marshall University, Huntington, WV 25755, USA.
| |
Collapse
|
164
|
Badenhorst P, Xiao H, Cherbas L, Kwon SY, Voas M, Rebay I, Cherbas P, Wu C. The Drosophila nucleosome remodeling factor NURF is required for Ecdysteroid signaling and metamorphosis. Genes Dev 2005; 19:2540-5. [PMID: 16264191 PMCID: PMC1276728 DOI: 10.1101/gad.1342605] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Accepted: 08/26/2005] [Indexed: 01/29/2023]
Abstract
Drosophila NURF is an ISWI-containing ATP-dependent chromatin remodeling complex that regulates transcription by catalyzing nucleosome sliding. To determine in vivo gene targets of NURF, we performed whole genome expression analysis on mutants lacking the NURF-specific subunit NURF301. Strikingly, a large set of ecdysone-responsive targets is included among several hundred NURF-regulated genes. Null Nurf301 mutants do not undergo larval to pupal metamorphosis, and also enhance dominant-negative mutations in ecdysone receptor. Moreover, purified NURF binds EcR in an ecdysone-dependent manner, suggesting it is a direct effector of nuclear receptor activity. The conservation of NURF in mammals has broad implications for steroid signaling.
Collapse
Affiliation(s)
- Paul Badenhorst
- Laboratory of Molecular Cell Biology, National Cancer Institute, NIH, Bethesda, Maryland 20814, USA.
| | | | | | | | | | | | | | | |
Collapse
|
165
|
Shur I, Benayahu D. Characterization and functional analysis of CReMM, a novel chromodomain helicase DNA-binding protein. J Mol Biol 2005; 352:646-55. [PMID: 16095617 DOI: 10.1016/j.jmb.2005.06.049] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 06/12/2005] [Accepted: 06/20/2005] [Indexed: 10/25/2022]
Abstract
The present study describes a newly identified protein named CReMM (chromatin-related mesenchymal modulator). The protein was studied by bioinformatic means and classified as a member of the third subfamily of chromodomain helicase DNA-binding proteins (CHD). In silico translation defined CReMM as a multiple domains protein including two chromodomains, SNF2/ATPase, helicase C domain and an A/T-DNA-binding domain (DBD). Predicted extensive post-translation phosphorylation on serine and tyrosine residues was demonstrated by Western blot in the presence and in the absence of phosphatase inhibitors using specific antibodies. Immunoprecipitated CReMM disclosed a DNA-dependent ATPase activity quantified by colorimetric assay. Electrophoresis mobility-shift assay (EMSA) validated that CReMM binds to A/T-rich DNA. CReMM is expressed in mesenchymal progenitors, as shown in vitro and in vivo. CReMM protein structural motifs and proven biochemical activities highlight its role in chromatin remodeling. Further delineation of the function of this protein will provide information about its dynamics in transcriptional regulation of mesenchymal cells.
Collapse
Affiliation(s)
- I Shur
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel-Aviv University, Israel
| | | |
Collapse
|
166
|
Becker PB. The chromatin accessibility complex: chromatin dynamics through nucleosome sliding. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2005; 69:281-7. [PMID: 16117660 DOI: 10.1101/sqb.2004.69.281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- P B Becker
- Adolf-Butenandt-Institut, Molekularbiologie, Ludwig-Maximilians-Universität, 80336 München, Germany
| |
Collapse
|
167
|
Abstract
In eukaryotes, chromatin is the natural form of DNA in the nucleus. For hundreds of millions of years, DNA-binding factors have evolved with chromatin. It is therefore more desirable to study the molecular mechanisms of DNA-directed processes with chromatin than with naked DNA templates. To this end, it is necessary to reconstitute DNA and histones into chromatin. Fortunately, there are a variety of methods by which a nonspecialist can prepare chromatin of high quality. Here, we describe strategies and techniques for the reconstitution of chromatin in vitro.
Collapse
Affiliation(s)
- Alexandra Lusser
- Section of Molecular Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0347, USA
| | | |
Collapse
|
168
|
Schweinsberg S, Hagstrom K, Gohl D, Schedl P, Kumar RP, Mishra R, Karch F. The enhancer-blocking activity of the Fab-7 boundary from the Drosophila bithorax complex requires GAGA-factor-binding sites. Genetics 2005; 168:1371-84. [PMID: 15579691 PMCID: PMC1448804 DOI: 10.1534/genetics.104.029561] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the work reported here we have analyzed the role of the GAGA factor [encoded by the Trithorax-like (Trl) gene] in the enhancer-blocking activity of Frontabdominal-7 (Fab-7), a domain boundary element from the Drosophila melanogaster bithorax complex (BX-C). One of the three nuclease hypersensitive sites in the Fab-7 boundary, HS1, contains multiple consensus-binding sequences for the GAGA factor, a protein known to be involved in the formation and/or maintenance of nucleosome-free regions of chromatin. GAGA protein has been shown to localize to the Fab-7 boundary in vivo, and we show that it recognizes sequences from HS1 in vitro. Using two different transgene assays we demonstrate that GAGA-factor-binding sites are necessary but not sufficient for full Fab-7 enhancer-blocking activity. We show that distinct GAGA sites are required for different enhancer-blocking activities at different stages of development. We also show that the enhancer-blocking activity of the endogenous Fab-7 boundary is sensitive to mutations in the gene encoding the GAGA factor Trithorax-like.
Collapse
Affiliation(s)
- Susan Schweinsberg
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08540, USA
| | | | | | | | | | | | | |
Collapse
|
169
|
Wang YV, Tang H, Gilmour DS. Identification in vivo of different rate-limiting steps associated with transcriptional activators in the presence and absence of a GAGA element. Mol Cell Biol 2005; 25:3543-52. [PMID: 15831460 PMCID: PMC1084279 DOI: 10.1128/mcb.25.9.3543-3552.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2005] [Accepted: 01/19/2005] [Indexed: 11/20/2022] Open
Abstract
We analyzed the impact of a GAGA element on a transgenic promoter in Drosophila melanogaster that was activated by proteins composed of the Tet(on) DNA binding domain and either the heat shock factor (HSF) activation domain or a potent subdomain of VP16. Permanganate footprinting was used to monitor polymerase II (Pol II) on the transgenic promoters in vivo. Activation by Tet(on)-HSF but not by Tet(on)-VP16(A2) required the GAGA element; this correlated with the ability of the GAGA element to establish a paused Pol II. Although the GAGA element was not required for activation by Tet(on)-VP16(A2), the GAGA element greatly accelerated the rate of activation. The permanganate data also provided evidence that Pol II encountered different rate-limiting steps, following initiation in the presence of Tet(on)-HSF and Tet(on)-VP16(A2). The rate-limiting step in the presence of Tet(on)-HSF was release of Pol II paused about 20 to 40 nucleotides downstream from the start site. The rate-limiting step in the presence of Tet(on)-VP16(A2) occurred much closer to the transcription start site. Several biochemical studies have provided evidence for a structural transition shortly after Pol II initiates transcription. The behavior of Pol II in the presence of Tet(on)-VP16(A2) provides the first evidence that this transition occurs in vivo.
Collapse
Affiliation(s)
- Yunyuan Vivian Wang
- Center for Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
170
|
|
171
|
Abstract
The yeast SWI/SNF ATP-dependent chromatin remodeling complex was first identified and characterized over 10 years ago (F. Winston and M. Carlson. 1992. Trends Genet. 8: 387-391.) Since then, the number of distinct ATP-dependent chromatin remodeling complexes and the variety of roles they play in nuclear processes have become dizzying (J.A. Martens and F. Winston. 2003. Curr. Opin. Genet. Dev. 13: 136-142; A. Vacquero et al. 2003. Sci. Aging Knowledge Environ. 2003: RE4)--and that does not even include the companion suite of histone modifying enzymes, which exhibit a comparable diversity in both number of complexes and variety of functions (M.J. Carrozza et al. 2003. Trends Genet. 19: 321-329; W. Fischle et al. 2003. Curr. Opin. Cell Biol. 15: 172-183; M. Iizuka and M.M. Smith. 2003. Curr. Opin. Genet. Dev. 13: 1529-1539). This vast complexity is hardly surprising, given that all nuclear processes that involve DNA--transcription, replication, repair, recombination, sister chromatid cohesion, etc.--must all occur in the context of chromatin. The SWI/SNF-related ATP-dependent remodelers are divided into a number of subfamilies, all related by the SWI2/SNF2 ATPase at their catalytic core. In nearly every species where researchers have looked for them, one or more members of each subfamily have been identified. Even the budding yeast, with its comparatively small genome, contains eight different chromatin remodelers in five different subfamilies. This review will focus on just one subfamily, the Imitation Switch (ISWI) family, which is proving to be one of the most diverse groups of chromatin remodelers in both form and function.
Collapse
Affiliation(s)
- Sara S Dirscherl
- Dept. of Biological Sciences, University of Alaska Anchorage, 99508, USA
| | | |
Collapse
|
172
|
Kumar RC, Thakur MK. Sex steroids reduce DNaseI accessibility of androgen receptor promoter in adult male mice brain. ACTA ACUST UNITED AC 2005; 131:1-7. [PMID: 15530646 DOI: 10.1016/j.molbrainres.2004.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2004] [Indexed: 11/30/2022]
Abstract
We have previously reported that androgen receptor (AR) expression is inversely correlated to its promoter methylation and is regulated by sex steroids. As chromatin structure plays an important role in transcriptional regulation, the effect of sex steroids on DNaseI accessibility of chromatin of AR promoter was examined in the brain cortex of adult and old mice of both sexes. Nuclei were digested with different concentrations of DNaseI and the extracted DNA was further cleaved by PstI and analyzed by Southern hybridization with DIG-labeled 695-bp AR promoter. With 50 U DNaseI, the intensity of PstI-specific 1.45-kb band was lower in intact female as compared to male groups, suggesting increased nuclease accessibility in female than male. Although gonadectomy increased DNaseI accessibility remarkably in male and female of both ages, testosterone decreased the accessibility in adult but increased in old male. Estradiol, on the other hand, decreased DNaseI accessibility in both adult male and old female but increased in old male and adult female. Thus, these findings suggest that the chromatin conformation of AR promoter varies with age and sex and its accessibility to DNaseI is reduced by testosterone and estradiol in the brain cortex of adult male mice.
Collapse
Affiliation(s)
- R C Kumar
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University Varanasi, Uttar Pradesh 221 005, India
| | | |
Collapse
|
173
|
Lusser A, Urwin DL, Kadonaga JT. Distinct activities of CHD1 and ACF in ATP-dependent chromatin assembly. Nat Struct Mol Biol 2005; 12:160-6. [PMID: 15643425 DOI: 10.1038/nsmb884] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Accepted: 11/22/2004] [Indexed: 11/09/2022]
Abstract
CHD1 is a chromodomain-containing protein in the SNF2-like family of ATPases. Here we show that CHD1 exists predominantly as a monomer and functions as an ATP-utilizing chromatin assembly factor. This reaction involves purified CHD1, NAP1 chaperone, core histones and relaxed DNA. CHD1 catalyzes the ATP-dependent transfer of histones from the NAP1 chaperone to the DNA by a processive mechanism that yields regularly spaced nucleosomes. The comparative analysis of CHD1 and ACF revealed that CHD1 assembles chromatin with a shorter nucleosome repeat length than ACF. In addition, ACF, but not CHD1, can assemble chromatin containing histone H1, which is involved in the formation of higher-order chromatin structure and transcriptional repression. These results suggest a role for CHD1 in the assembly of active chromatin and a function of ACF in the assembly of repressive chromatin.
Collapse
Affiliation(s)
- Alexandra Lusser
- Section of Molecular Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0347, USA
| | | | | |
Collapse
|
174
|
Pauli S, Rothnie HM, Chen G, He X, Hohn T. The cauliflower mosaic virus 35S promoter extends into the transcribed region. J Virol 2004; 78:12120-8. [PMID: 15507598 PMCID: PMC525061 DOI: 10.1128/jvi.78.22.12120-12128.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A 60-nucleotide region (S1) downstream of the transcription start site of the cauliflower mosaic virus 35S RNA can enhance gene expression. By using transient expression assays with plant protoplasts, this activity was shown to be at least partially due to the effect of transcriptional enhancers within this region. We identify sequence motifs with enhancer function, which are normally masked by the powerful upstream enhancers of the 35S promoter. A repeated CT-rich motif is involved both in enhancer function and in interaction with plant nuclear proteins. The S1 region can also enhance expression from heterologous promoters.
Collapse
Affiliation(s)
- Sandra Pauli
- Friedrich Miescher Institute, P.O. Box 2543, CH-4002 Basel, Switzerland
| | | | | | | | | |
Collapse
|
175
|
Barak O, Lazzaro MA, Cooch NS, Picketts DJ, Shiekhattar R. A Tissue-specific, Naturally Occurring Human SNF2L Variant Inactivates Chromatin Remodeling. J Biol Chem 2004; 279:45130-8. [PMID: 15310751 DOI: 10.1074/jbc.m406212200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mammalian genomes encode two imitation switch family chromatin remodeling proteins, SNF2H and SNF2L. In the mouse, SNF2H is expressed ubiquitously, whereas SNF2L expression is limited to the brain and gonadal tissue. This pattern of SNF2L expression suggests a critical role for SNF2L in neuronal physiology. Indeed, SNF2L was shown to promote neurite outgrowth as well as regulate the human engrailed homeotic genes, important regulators of brain development. Here we identify a novel splice variant of human SNF2L we call SNF2L+13, which contains a nonconserved in-frame exon within the conserved catalytic core domain of SNF2L. SNF2L+13 retains the ability to incorporate into multiprotein complexes; however, it is devoid of enzymatic activity. Most interestingly, unlike mouse SNF2L, human SNF2L is expressed ubiquitously, and regulation is mediated by isoform variation. The human SNF2L+13 null variant is predominant in non-neuronal tissue, whereas the human wild type active SNF2L isoform is expressed in neurons. Thus, like the mouse, active human SNF2L is limited to neurons and a few other tissues.
Collapse
Affiliation(s)
- Orr Barak
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
176
|
Kievit P, Maurer RA. The pituitary-specific transcription factor, Pit-1, can direct changes in the chromatin structure of the prolactin promoter. Mol Endocrinol 2004; 19:138-47. [PMID: 15375187 DOI: 10.1210/me.2004-0016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The chromatin structure of a promoter is an important determinant of its transcriptional activity. Many promoters are assembled into repressive polynucleosomal arrays that are subsequently remodeled to allow for the activation of gene expression. This study addresses the contribution of a single transcription factor, Pit-1, in orchestrating the chromatin structure of the prolactin gene. Utilizing an in vivo reconstitution system, we found that Pit-1 can bind to multiple sites in the chromatin-assembled 5'-flanking region of the prolactin gene and activate transcription from the chromatin-assembled template. Interestingly, Pit-1 was able to substantially alter micrococcal nuclease digestion of the prolactin 5'-flanking region, and the results are consistent with presence of a translationally positioned nucleosome on the prolactin promoter. Changes in micrococcal nuclease digestion were also observed with a truncated Pit-1 mutant containing only the DNA-binding domain. As the truncation mutant was unable to activate transcription from the chromatin-assembled template, the ability of Pit-1 to alter chromatin structure of the prolactin gene is not dependent on transcriptional activation. We propose that Pit-1 likely plays a role in altering chromatin to facilitate recruitment and subsequent transcriptional activation by additional factors.
Collapse
Affiliation(s)
- Paul Kievit
- Department of Cell and Developmental Biology, L215, Oregon Health & Science University, 3181 South West Sam Jackson Park Road, Portland, Oregon 97239, USA
| | | |
Collapse
|
177
|
Boeger H, Griesenbeck J, Strattan JS, Kornberg RD. Removal of promoter nucleosomes by disassembly rather than sliding in vivo. Mol Cell 2004; 14:667-73. [PMID: 15175161 DOI: 10.1016/j.molcel.2004.05.013] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Revised: 04/07/2004] [Accepted: 04/12/2004] [Indexed: 01/08/2023]
Abstract
Previous work demonstrated the removal of nucleosomes from the PHO5 promoter upon transcriptional activation in yeast. Removal could occur by nucleosome disassembly or by sliding of nucleosomes away from the promoter. We have now activated the PHO5 promoter on chromatin circles following excision from the chromosomal locus. Whereas sliding would conserve the number of nucleosomes on the circle, we found that the number was diminished, demonstrating chromatin remodeling by nucleosome disassembly.
Collapse
Affiliation(s)
- Hinrich Boeger
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
178
|
Angelov D, Lenouvel F, Hans F, Müller CW, Bouvet P, Bednar J, Moudrianakis EN, Cadet J, Dimitrov S. The histone octamer is invisible when NF-kappaB binds to the nucleosome. J Biol Chem 2004; 279:42374-82. [PMID: 15269206 DOI: 10.1074/jbc.m407235200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription factor NF-kappaB is involved in the transcriptional control of more than 150 genes, but the way it acts at the level of nucleosomal templates is not known. Here we report on a study examining the interaction of NF-kappaB p50 with its DNA recognition sequence in a positioned nucleosome. We demonstrate that NF-kappaB p50 was able to bind to the nucleosome with an apparent association constant close to that for free DNA. In agreement with this, the affinity of NF-kappaB p50 binding does not depend on the localization of its recognition sequence relative to the nucleosome dyad axis. In addition, the binding of NF-kappaB p50 does not induce eviction of histones and does not perturb the overall structure of the nucleosome. The NF-kappaB p50-nucleosome complex exhibits, however, local structural alterations within the NF-kappaB p50 recognition site. Importantly, these alterations were very similar to those found in the NF-kappaB p50-DNA complex. Our data suggest that NF-kappaB p50 can accommodate the distorted, bent DNA within the nucleosome. This peculiar property of NF-kappaB p50 might have evolved to meet the requirements for its function as a central switch for stress responses.
Collapse
Affiliation(s)
- Dimitar Angelov
- Laboratoire de Biologie Moléculaire et Cellulaire de la Différenciation, INSERM U309, Institut Albert Bonniot, Domaine de la Merci, 38706 La Tronche Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Schwanbeck R, Xiao H, Wu C. Spatial contacts and nucleosome step movements induced by the NURF chromatin remodeling complex. J Biol Chem 2004; 279:39933-41. [PMID: 15262970 DOI: 10.1074/jbc.m406060200] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nucleosome remodeling factor NURF is a four-subunit, ISWI-containing chromatin remodeling complex that catalyzes nucleosome sliding in an ATP-dependent fashion, thereby modulating the accessibility of the DNA. To elucidate the mechanism of nucleosome sliding, we have investigated by hydroxyl radical footprinting how NURF makes initial contact with a nucleosome positioned at one end of a DNA fragment. NURF binds to two separate locations on the nucleosome: a continuous stretch of linker DNA up to the nucleosome entry site and a region asymmetrically surrounding the nucleosome dyad within the minor grooves, close to residues of the histone H4 tail that have been implicated in the activation of ISWI activity. Kinetic analysis reveals that nucleosome sliding occurs in apparent increments or steps of 10 bp. Furthermore, single nucleoside gaps as well as nicks about two helical turns before the dyad interfere with sliding, indicating that structural stress at this region assists the relative movement of DNA. These findings support a sliding model in which the position-specific tethering of NURF forces a translocating ISWI ATPase to pump a DNA distortion over the histone octamer, thereby changing the translational position of the nucleosome.
Collapse
Affiliation(s)
- Ralf Schwanbeck
- Laboratory of Molecular Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892-4255, USA
| | | | | |
Collapse
|
180
|
Pinte S, Stankovic-Valentin N, Deltour S, Rood BR, Guérardel C, Leprince D. The tumor suppressor gene HIC1 (hypermethylated in cancer 1) is a sequence-specific transcriptional repressor: definition of its consensus binding sequence and analysis of its DNA binding and repressive properties. J Biol Chem 2004; 279:38313-24. [PMID: 15231840 DOI: 10.1074/jbc.m401610200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HIC1 (hypermethylated in cancer 1) is a tumor suppressor gene located at chromosome 17p13.3, a region frequently hypermethylated or deleted in human tumors and in a contiguous-gene syndrome, the Miller-Dieker syndrome. HIC1 is a transcriptional repressor containing five Krüppel-like C(2)H(2) zinc fingers and an N-terminal dimerization and autonomous repression domain called BTB/POZ. Although some of the HIC1 transcriptional repression mechanisms have been recently deciphered, target genes are still to be discovered. In this study, we determined the consensus binding sequence for HIC1 and investigated its DNA binding properties. Using a selection and amplification of binding sites technique, we identified the sequence 5'-(C)/(G)NG(C)/(G)GGGCA(C)/(A) CC-3' as an optimal binding site. In silico and functional analyses fully validated this consensus and highlighted a GGCA core motif bound by zinc fingers 3 and 4. The BTB/POZ domain inhibits the binding of HIC1 to a single site but mediates cooperative binding to a probe containing five concatemerized binding sites, a property shared by other BTB/POZ proteins. Finally, full-length HIC1 proteins transiently expressed in RK13 cells and more importantly, endogenous HIC1 proteins from the DAOY medulloblastoma cell line, repress the transcription of a reporter gene through their direct binding to these sites, as confirmed by chromatin immunoprecipitation experiments. The definition of the HIC1-specific DNA binding sequence as well as the requirement for multiple sites for optimal binding of the full-length protein are mandatory prerequisites for the identification and analyses of bona fide HIC1 target genes.
Collapse
Affiliation(s)
- Sébastien Pinte
- CNRS UMR 8526, Institut de Biologie de Lille, Institut Pasteur de Lille, 1 Rue Calmette, Lille Cedex 59017, France
| | | | | | | | | | | |
Collapse
|
181
|
Korber P, Hörz W. In vitro assembly of the characteristic chromatin organization at the yeast PHO5 promoter by a replication-independent extract system. J Biol Chem 2004; 279:35113-20. [PMID: 15192097 DOI: 10.1074/jbc.m405446200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An extensive set of analyses of the yeast PHO5 gene, mostly performed in vivo, has made this gene a model for the role of chromatin structure in gene regulation. In the repressed state, the PHO5 promoter shows a characteristic chromatin organization with four positioned nucleosomes and a short hypersensitive site. So far the basis for this nucleosome positioning has remained unresolved. We have therefore decided to complement the in vivo studies by an in vitro approach. As a first step, we have asked whether the characteristic PHO5 promoter chromatin structure depends on the cellular context including replication or higher order nuclear chromatin organization or whether it can be reconstituted in vitro in a cell-free system. To this end we have established an in vitro chromatin assembly system based on yeast extracts. It is capable of generating extensive regular nucleosomal arrays with physiological spacing. Assembly requires supplementation with exogenous histones and is dependent on energy leading to chromatin with dynamic properties due to ATP-dependent activities of the extract. Using the PHO5 promoter sequence as template in this replication independent system, we obtain a nucleosomal pattern over the PHO5 promoter region that is very similar to the in vivo pattern of the repressed state. This shows that the chromatin structure at the PHO5 promoter represents a self-organizing system in cell-free yeast extracts and provides a promising substrate for in vitro studies with a direct in vivo correlate.
Collapse
Affiliation(s)
- Philipp Korber
- Adolf-Butenandt-Institut, University of Munich, Schillerstrasse 44, 80336 Munich, Germany
| | | |
Collapse
|
182
|
Corona DFV, Tamkun JW. Multiple roles for ISWI in transcription, chromosome organization and DNA replication. ACTA ACUST UNITED AC 2004; 1677:113-9. [PMID: 15020052 DOI: 10.1016/j.bbaexp.2003.09.018] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Accepted: 09/26/2003] [Indexed: 01/26/2023]
Abstract
ISWI functions as the ATPase subunit of multiple chromatin-remodeling complexes. These complexes use the energy of ATP hydrolysis to slide nucleosomes and increase chromatin fluidity, thereby modulating the access of transcription factors and other regulatory proteins to DNA. Here we discuss recent progress toward understanding the biological functions of ISWI, with an emphasis on its roles in transcription, chromosome organization and DNA replication.
Collapse
Affiliation(s)
- Davide F V Corona
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, 350 Sinsheimer Labs, Santa Cruz, CA 95064, USA
| | | |
Collapse
|
183
|
Längst G, Becker PB. Nucleosome remodeling: one mechanism, many phenomena? ACTA ACUST UNITED AC 2004; 1677:58-63. [PMID: 15020046 DOI: 10.1016/j.bbaexp.2003.10.011] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2003] [Accepted: 10/14/2003] [Indexed: 11/18/2022]
Abstract
The term 'nucleosome remodeling' subsumes a large number of energy-dependent alterations of canonical nucleosome structure, catalyzed by dedicated ATPases in large multiprotein complexes. The importance of these factors for gene regulation and other processes with chromatin substrate have emerged from genetic studies. Mechanistic analyses of nucleosome remodeling by different enzymes provided a diverse, almost confusing phenomenology of ATP-dependent derangement of nucleosomes in vitro, suggesting that different remodeling machines follow different strategies to disrupt histone-DNA interactions. This review explores the alternative possibility that the rich phenomenology of nucleosome remodeling may be brought about by variations of one basic remodeling reaction.
Collapse
Affiliation(s)
- Gernot Längst
- Adolf-Butenandt-Institut, Molekularbiologie, Ludwig-Maximilians-University Munchen, Schillerstrasse 44, D-80336 Munich, Germany
| | | |
Collapse
|
184
|
Zhang Z, Reese JC. Ssn6-Tup1 requires the ISW2 complex to position nucleosomes in Saccharomyces cerevisiae. EMBO J 2004; 23:2246-57. [PMID: 15116071 PMCID: PMC419907 DOI: 10.1038/sj.emboj.7600227] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Accepted: 04/08/2004] [Indexed: 12/30/2022] Open
Abstract
The Imitation SWItch (ISWI) chromatin remodeling factors have been implicated in nucleosome positioning. In vitro, they can mobilize nucleosomes bi-directionally, making it difficult to envision how they can establish precise translational positioning of nucleosomes in vivo. It has been proposed that they require other cellular factors to do so, but none has been identified thus far. Here, we demonstrate that both ISW2 and TUP1 are required to position nucleosomes across the entire coding sequence of the DNA damage-inducible gene RNR3. The chromatin structure downstream of the URS is indistinguishable in Deltaisw2 and Deltatup1 mutants, and the crosslinking of Tup1 and Isw2 to RNR3 is independent of each other, indicating that both complexes are required to maintain repressive chromatin structure. Furthermore, Tup1 repressed RNR3 and blocked preinitiation complex formation in the Deltaisw2 mutant, even though nucleosome positioning was completely disrupted over the promoter and ORF. Our study has revealed a novel collaboration between two nucleosome-positioning activities in vivo, and suggests that disruption of nucleosome positioning is insufficient to cause a high level of transcription.
Collapse
Affiliation(s)
- Zhengjian Zhang
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Joseph C Reese
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, 203 Althouse Laboratory, University Park, Pennsylvania, PA 16802, USA. Tel.: +1 814 865 1976; Fax: +1 814 863 7024; E-mail:
| |
Collapse
|
185
|
Stein GS, Lian JB, Montecino M, Stein JL, van Wijnen AJ, Javed A, Pratap J, Choi J, Zaidi SK, Gutierrez S, Harrington K, Shen J, Young D, Pockwinse S. Nuclear microenvironments support physiological control of gene expression. Chromosome Res 2004; 11:527-36. [PMID: 12971727 DOI: 10.1023/a:1024943214431] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There is growing recognition that the organization of nucleic acids and regulatory proteins is functionally linked to the assembly, localization and activity of gene regulatory machinery. Cellular, molecular, biochemical and in-vivo genetic evidence support an obligatory relationship between nuclear microenvironments where regulatory complexes reside and fidelity of transcriptional control. Perturbations in mechanisms governing the intranuclear trafficking of transcription factors and the temporal/spatial organization of regulatory proteins within the nucleus occur with compromised gene expression that abrogates skeletal development and mediates leukemogenesis.
Collapse
Affiliation(s)
- Gary S Stein
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, 55 Lake Ave. North, Worcester, MA 01655, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Affiliation(s)
- Ali Hamiche
- Institut Andre Lwoff, 94800 Villejuif, France
| | | |
Collapse
|
187
|
Imbalzano AN, Xiao H. Functional properties of ATP-dependent chromatin remodeling enzymes. ADVANCES IN PROTEIN CHEMISTRY 2004; 67:157-79. [PMID: 14969727 DOI: 10.1016/s0065-3233(04)67006-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Anthony N Imbalzano
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA.
| | | |
Collapse
|
188
|
Tang J, Wu S, Liu H, Stratt R, Barak OG, Shiekhattar R, Picketts DJ, Yang X. A novel transcription regulatory complex containing death domain-associated protein and the ATR-X syndrome protein. J Biol Chem 2004; 279:20369-77. [PMID: 14990586 DOI: 10.1074/jbc.m401321200] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Death domain-associated protein (Daxx) is a multi-functional protein that modulates both apoptosis and transcription. Within the nucleus, Daxx is a component of the promyelocytic leukemia protein (PML) nuclear bodies (NBs) and interacts with a number of transcription factors, yet its precise role in transcription remains elusive. To further define the function of Daxx, we have isolated its interacting proteins in the nucleus using epitope-tagged affinity purification and identified X-linked mental retardation and alpha-thalassaemia syndrome protein (ATRX), a putative member of the SNF2 family of ATP-dependent chromatin remodeling proteins that is mutated in several X-linked mental retardation disorders. We show that substantial amounts of endogenous Daxx and ATRX exist in a nuclear complex. Daxx binds to ATRX through its paired amphipathic alpha helices domains. ATRX has ATPase activity that is stimulated by mononucleosomes, and patient mutations in the ATPase domain attenuate this activity. ATRX strongly represses transcription when tethered to a promoter. Daxx does not affect the ATPase activity of ATRX, however, it alleviates its transcription repression activity. In addition, ATRX is found in the PML-NBs, and this localization is mediated by Daxx. These results show that the ATRX.Daxx complex is a novel ATP-dependent chromatin-remodeling complex, with ATRX being the core ATPase subunit and Daxx being the targeting subunit. Moreover, the localization of ATRX to the PML-NBs supports the notion that these structures may play an important role in transcription regulation.
Collapse
Affiliation(s)
- Jun Tang
- Abramson Family Cancer Research Institute and Department of Cancer Biology, University of Pennsylvania School of Medicine, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
189
|
Palmer MB, Elgar S, Wade PA. Methods for preparation and assays for Xenopus ISWI complexes. Methods Enzymol 2004; 377:364-75. [PMID: 14979038 DOI: 10.1016/s0076-6879(03)77023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Affiliation(s)
- Matthew B Palmer
- Emory University School of Medicine, Department of Pathology and Laboratory Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
190
|
Lu J, Pazin MJ, Ravid K. Properties of ets-1 binding to chromatin and its effect on platelet factor 4 gene expression. Mol Cell Biol 2004; 24:428-41. [PMID: 14673175 PMCID: PMC303331 DOI: 10.1128/mcb.24.1.428-441.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ets-1 is important for transcriptional regulation in several hematopoietic lineages, including megakaryocytes. Some transcription factors bind to naked DNA and chromatin with different affinities, while others do not. In the present study we used the megakaryocyte-specific promoters platelet factor 4 (PF4), and glycoprotein IIb (GPIIb) as model systems to explore the properties of Ets-1 binding to chromatin. Chromatin immunoprecipitation assays indicated that Ets-1 binds to proximal regions in the PF4 and GPIIb promoters in vivo. In vitro and in vivo experiments showed that Ets-1 binding to chromatin on lineage-specific promoters does not require lineage-specific factors. Moreover, this binding shows the same order of affinity as the binding to naked DNA and does not require ATP-dependent or Sarkosyl-sensitive factors. The effect of Ets-1 binding on promoter activity was examined using the PF4 promoter as a model. We identified a novel Ets-1 site (at -50), and a novel Sarkosyl-sensitive DNase I-hypersensitive site generated by Ets-1 binding to chromatin, which significantly affect PF4 promoter activity. Taken together, our results suggest a model by which Ets-1 binds to chromatin without the need for lineage-specific accessory factors, and Ets-1 binding induces changes in chromatin and affects transactivation, which are essential for PF4 promoter activation.
Collapse
Affiliation(s)
- Jun Lu
- Department of Biochemistry, Cancer Center, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
191
|
Moosmang S, Schulla V, Welling A, Feil R, Feil S, Wegener JW, Hofmann F, Klugbauer N. Dominant role of smooth muscle L-type calcium channel Cav1.2 for blood pressure regulation. EMBO J 2004; 22:6027-34. [PMID: 14609949 PMCID: PMC275441 DOI: 10.1093/emboj/cdg583] [Citation(s) in RCA: 239] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Blood pressure is regulated by a number of key molecules involving G-protein-coupled receptors, ion channels and monomeric small G-proteins. The relative contribution of these different signaling pathways to blood pressure regulation remains to be determined. Tamoxifen-induced, smooth muscle-specific inactivation of the L-type Cav1.2 Ca2+ channel gene in mice (SMAKO) reduced mean arterial blood pressure (MAP) in awake, freely moving animals from 120 +/- 4.5 to 87 +/- 8 mmHg. Phenylephrine (PE)- and angiotensin 2 (AT2)-induced MAP increases were blunted in SMAKO mice, whereas the Rho-kinase inhibitor Y-27632 reduced MAP to the same extent in control and SMAKO mice. Depolarization-induced contraction was abolished in tibialis arteries of SMAKO mice, and development of myogenic tone in response to intravascular pressure (Bayliss effect) was absent. Hind limb perfusion experiments suggested that 50% of the PE-induced resistance is due to calcium influx through the Cav1.2 channel. These results show that Cav1.2 calcium channels are key players in the hormonal regulation of blood pressure and development of myogenic tone.
Collapse
Affiliation(s)
- Sven Moosmang
- Institut für Pharmakologie und Toxikologie, TU München, Biedersteiner Strasse 29, D-80802 München, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
192
|
Fan HY, Narlikar GJ, Kingston RE. Noncovalent modification of chromatin: different remodeled products with different ATPase domains. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2004; 69:183-92. [PMID: 16117648 DOI: 10.1101/sqb.2004.69.183] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- H-Y Fan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
193
|
Voellmy R. Transcriptional Regulation of the Metazoan Stress Protein Response. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2004; 78:143-85. [PMID: 15210330 DOI: 10.1016/s0079-6603(04)78004-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
This review provides an updated account of the regulation of the metazoan stress protein response. Where indicated, observations made with yeasts are also included. However, a discussion of the plant stress protein response is intentionally omitted (for a review, see 1). The stress protein response, as discussed hereafter, is understood to relate to the response by virtually all cells to heat and other stressors that results in the induced expression of so-called heat shock or stress genes. The protein products of these genes localize largely to the cytoplasm, nucleus, or organelles. An analogous response controls the expression of related genes, whose products reside in the endoplasmic reticulum. The response, termed ER stress response or unfolded protein response, is mediated by a separate regulation system that is not discussed in this review. Note, however, that recent work suggests the existence of commonalities between the regulatory systems controlling the stress protein and ER stress responses (2).
Collapse
Affiliation(s)
- Richard Voellmy
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
194
|
Flaus A, Owen-Hughes T. Dynamic properties of nucleosomes during thermal and ATP-driven mobilization. Mol Cell Biol 2003; 23:7767-79. [PMID: 14560021 PMCID: PMC207611 DOI: 10.1128/mcb.23.21.7767-7779.2003] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fundamental subunit of chromatin, the nucleosome, is not a static entity but can move along DNA via either thermal or enzyme-driven movements. Here we have monitored the movements of nucleosomes following deposition at well-defined locations on mouse mammary tumor virus promoter DNA. We found that the sites to which nucleosomes are deposited during chromatin assembly differ from those favored during thermal equilibration. Taking advantage of this, we were able to track the movement of nucleosomes over 156 bp and found that this proceeds via intermediate positions spaced between 46 and 62 bp. The remodeling enzyme ISWI was found to direct the movement of nucleosomes to sites related to those observed during thermal mobilization. In contrast, nucleosome mobilization driven by the SWI/SNF and RSC complexes were found to drive nucleosomes towards sites up to 51 bp beyond DNA ends, with little respect for the sites favored during thermal repositioning. The dynamic properties of nucleosomes we describe are likely to influence their role in gene regulation.
Collapse
Affiliation(s)
- Andrew Flaus
- Division of Gene Regulation and Expression, The Wellcome Trust Biocentre, University of Dundee, Dundee DD1 5EH, United Kingdom
| | | |
Collapse
|
195
|
Gromak N, Rideau A, Southby J, Scadden ADJ, Gooding C, Hüttelmaier S, Singer RH, Smith CWJ. The PTB interacting protein raver1 regulates alpha-tropomyosin alternative splicing. EMBO J 2003; 22:6356-64. [PMID: 14633994 PMCID: PMC291850 DOI: 10.1093/emboj/cdg609] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2003] [Revised: 09/19/2003] [Accepted: 10/13/2003] [Indexed: 01/09/2023] Open
Abstract
Regulated switching of the mutually exclusive exons 2 and 3 of alpha-tropomyosin (TM) involves repression of exon 3 in smooth muscle cells. Polypyrimidine tract-binding protein (PTB) is necessary but not sufficient for regulation of TM splicing. Raver1 was identified in two-hybrid screens by its interactions with the cytoskeletal proteins actinin and vinculin, and was also found to interact with PTB. Consistent with these interactions raver1 can be localized in either the nucleus or cytoplasm. Here we show that raver1 is able to promote the smooth muscle-specific alternative splicing of TM by enhancing PTB-mediated repression of exon 3. This activity of raver1 is dependent upon characterized PTB-binding regulatory elements and upon a region of raver1 necessary for interaction with PTB. Heterologous recruitment of raver1, or just its C-terminus, induced very high levels of exon 3 skipping, bypassing the usual need for PTB binding sites downstream of exon 3. This suggests a novel mechanism for PTB-mediated splicing repression involving recruitment of raver1 as a potent splicing co-repressor.
Collapse
Affiliation(s)
- Natalia Gromak
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | | | | | | | | | | | |
Collapse
|
196
|
Loyola A, Huang JY, LeRoy G, Hu S, Wang YH, Donnelly RJ, Lane WS, Lee SC, Reinberg D. Functional analysis of the subunits of the chromatin assembly factor RSF. Mol Cell Biol 2003; 23:6759-68. [PMID: 12972596 PMCID: PMC193931 DOI: 10.1128/mcb.23.19.6759-6768.2003] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The human ISWI-containing factor RSF (for remodeling and spacing factor) is composed of two subunits: the ATPase hSNF2H and p325 (Rsf-1), a protein encoded by a novel human gene. We previously showed that RSF mediates nucleosome deposition and generates regularly spaced nucleosome arrays. Here we report the characterization of the largest subunit of RSF, Rsf-1. We found that Rsf-1 is a highly acidic protein containing a plant homology domain. The present study includes the cloning of Rsf-1, the preparation of recombinant RSF, and the dissection of the role of each subunit in the chromatin assembly reaction. The sequence of the gene for Rsf-1 includes a recently characterized cDNA, HBXAP; postulated to be involved in the transcriptional regulation of the hepatitis B virus. HBXAP actually contains a 252-amino-acid truncation of the amino terminus of Rsf-1. Finally, comparison of HBXAP and Rsf-1 properties shows that they are functionally different.
Collapse
Affiliation(s)
- Alejandra Loyola
- Howard Hughes Medical Institute, University of Medicine and Dentistry of New JerseyRobert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Wang C, Yeung F, Liu PC, Attar RM, Geng J, Chung LWK, Gottardis M, Kao C. Identification of a novel transcription factor, GAGATA-binding protein, involved in androgen-mediated expression of prostate-specific antigen. J Biol Chem 2003; 278:32423-30. [PMID: 12782640 DOI: 10.1074/jbc.m207862200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prostate-specific antigen (PSA) is the most valuable marker for the evaluation of prostate cancer progression. The expression of PSA is controlled by androgen receptor (AR) through its binding to androgen-response elements (AREs). Several AREs have been identified within the 5.8-kb PSA promoter. The main activity of this 5.8-kb PSA promoter resides in a 455-bp enhancer core region located about 4 kb upstream of the TATA box. Our study suggests that in addition to the four AREs identified in the PSA enhancer core, another regulatory element (GAGATA), which is located at the region designated PSA3.1, also contributes to transcriptional regulation by androgens. Furthermore, electrophoretic mobility shift assay revealed that a putative transcriptional factor bound the GAGATA sequence in the PSA-producing prostate cancer cell. Further studies demonstrated that GAGATA factor preferentially bound the (G/C)(A/C/T)GATA sequence. The replacement of ATA with GGG in the GAGATA sequence completely eliminated the androgen-mediated transcriptional activity of the enhancer core. By using DNA-coupled magnetic beads and the Southwestern method, a 56-60-kDa protein was identified as the putative GAGATA binding factor. EMSA and Western blotting assay suggested that AR is not involved in androgen-mediated activation through PSA3.1. Therefore, we propose that binding of the GAGATA binding factor and AR to GAGATA and AREs, respectively, of the PSA enhancer core are required for the maximum transcriptional response to androgens.
Collapse
Affiliation(s)
- Chihuei Wang
- Orthopedic Research Center and Department of Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
198
|
Abstract
An EMBO workshop held June 19-22, 2003, at the European Molecular Biology Laboratory in Heidelberg, Germany, was dedicated to the memory of Alan Wolffe. It provided a venue to highlight new concepts in the establishment and maintenance of functional chromatin organization.
Collapse
Affiliation(s)
- Didier Trouche
- Laboratoire de Biologie Moléculaire Eucaryote, UMR 5099 CNRS, 118, route de Narbonne, 31062 Toulouse, France
| | | | | |
Collapse
|
199
|
Abstract
Chromatin assembly is required for the duplication of eukaryotic chromosomes and functions at the interface between cell-cycle progression and gene expression. The central machinery that mediates chromatin assembly consists of histone chaperones, which deliver histones to the DNA, and ATP-utilizing motor proteins, which are DNA-translocating factors that act in conjunction with the histone chaperones to mediate the deposition of histones into periodic nucleosome arrays. Here, we describe these factors and propose possible mechanisms by which DNA-translocating motors might catalyse chromatin assembly.
Collapse
Affiliation(s)
- Karl A Haushalter
- Section of Molecular Biology, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093-0347, USA
| | | |
Collapse
|
200
|
Puvion-Dutilleul F, Souquere-Besse S, Albagli-Curiel O. The relationship between BCL6 bodies and nuclear sites of normal and halogenated DNA and RNA synthesis. Microsc Res Tech 2003; 61:389-407. [PMID: 12811744 DOI: 10.1002/jemt.10363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BCL6 is a POZ/BTB and zinc finger transcription factor that self-interacts and accumulates into discrete nuclear "bodies" of unknown function. We recently reported that BCL6 bodies associate with bromodeoxyuridine (BrdU)-substituted DNA, suggesting their implication in replication. To examine this possibility, we examine here by electron and confocal microscopy the relation between BCL6 bodies and replication foci (RF) using incorporation of various halogenated nucleotides (BrdU, chlorodeoxyuridine, CldU, and iododeoxyuridine, IdU) or PCNA (proliferating cell nuclear antigen) staining. We show that BCL6 bodies are found associated with RF, as revealed by PCNA staining. However, such association is markedly prolonged upon BrdU or CldU incorporation, but less, or not at all, upon IdU incorporation. Pulse-chase and double-labeling experiments indicate that IdU-substituted DNA leaves BCL6 bodies after a few tenths of minutes while BrdU- or CldU-substituted DNA stalls in their vicinity for several hours, thereby giving the characteristic "crowns" of DNA entirely surrounding BCL6 bodies. In all cases, however, the halogenated DNA ends up undergoing a movement from BCL6 bodies toward nucleoplasm and nuclear periphery to reach euchromatin and heterochromatin, respectively. We propose that replicating DNA is prone to be bound by BCL6, while BrdU/CldU incorporation increases this propensity possibly because these two events have synergistic effects on the structure and chromatinisation of the newly synthesized DNA. Finally, despite the known proximity between nuclear sites of transcription and replication, we show via several approaches that BCL6 bodies do not appear to be involved either in RNA synthesis or storage.
Collapse
|