151
|
Schreiner D, Simicevic J, Ahrné E, Schmidt A, Scheiffele P. Quantitative isoform-profiling of highly diversified recognition molecules. eLife 2015; 4:e07794. [PMID: 25985086 PMCID: PMC4489214 DOI: 10.7554/elife.07794] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/14/2015] [Indexed: 12/28/2022] Open
Abstract
Complex biological systems rely on cell surface cues that govern cellular self-recognition and selective interactions with appropriate partners. Molecular diversification of cell surface recognition molecules through DNA recombination and complex alternative splicing has emerged as an important principle for encoding such interactions. However, the lack of tools to specifically detect and quantify receptor protein isoforms is a major impediment to functional studies. We here developed a workflow for targeted mass spectrometry by selected reaction monitoring that permits quantitative assessment of highly diversified protein families. We apply this workflow to dissecting the molecular diversity of the neuronal neurexin receptors and uncover an alternative splicing-dependent recognition code for synaptic ligands. DOI:http://dx.doi.org/10.7554/eLife.07794.001 To create a protein, a gene is first copied to form an RNA molecule that contains regions known as introns and exons. Splicing removes the introns and joins the exons together to form a molecule of ‘messenger RNA’, which is translated into a protein. Over the course of evolution, many groups—or families—of proteins have expanded and diversified their roles. One way in which this can occur is through a process known as alternative splicing, in which different exons can be included or excluded to generate the final messenger RNA. In this way, a single gene can produce a number of different proteins. These closely related proteins are known as isoforms. The brain contains billions of neurons that communicate with one another across connections known as synapses. A family of proteins called neurexins helps neurons to form these synapses. Humans have three neurexin genes, which undergo extensive alternative splicing to produce thousands of protein isoforms. However, it is not known whether all of these isoforms are produced in neurons, as existing experimental techniques were not sensitive enough to easily distinguish one isoform from another. A technique known as ‘selected reaction monitoring’ (or SRM for short) has recently emerged as a promising way to identify proteins. This allows proteins containing specific sequences to be separated out for analysis, in contrast to existing techniques that test randomly selected protein samples, which will result in most isoforms being missed. Schreiner, Simicevic et al. have now developed SRM further and show that this technique can detect the identity and amount of the neurexin isoforms present at synapses, including those that are only produced in very small quantities. Using SRM, Schreiner, Simicevic et al. demonstrate that neurexin isoforms differ in how they interact with synaptic receptors. Thus, alternative splicing of neurexins underlies a ‘recognition code’ at neuronal synapses. In the future, this newly developed SRM method could be used to investigate isoforms in other protein families and tissues, and so may prove valuable for understanding how a wide range of cellular recognition processes work. DOI:http://dx.doi.org/10.7554/eLife.07794.002
Collapse
Affiliation(s)
| | | | - Erik Ahrné
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | |
Collapse
|
152
|
Li T, Tian Y, Li Q, Chen H, Lv H, Xie W, Han J. The Neurexin/N-Ethylmaleimide-sensitive Factor (NSF) Interaction Regulates Short Term Synaptic Depression. J Biol Chem 2015; 290:17656-17667. [PMID: 25953899 DOI: 10.1074/jbc.m115.644583] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Indexed: 11/06/2022] Open
Abstract
Although Neurexins, which are cell adhesion molecules localized predominantly to the presynaptic terminals, are known to regulate synapse formation and synaptic transmission, their roles in the regulation of synaptic vesicle release during repetitive nerve stimulation are unknown. Here, we show that nrx mutant synapses exhibit rapid short term synaptic depression upon tetanic nerve stimulation. Moreover, we demonstrate that the intracellular region of NRX is essential for synaptic vesicle release upon tetanic nerve stimulation. Using a yeast two-hybrid screen, we find that the intracellular region of NRX interacts with N-ethylmaleimide-sensitive factor (NSF), an enzyme that mediates soluble NSF attachment protein receptor (SNARE) complex disassembly and plays an important role in synaptic vesicle release. We further map the binding sites of each molecule and demonstrate that the NRX/NSF interaction is critical for both the distribution of NSF at the presynaptic terminals and SNARE complex disassembly. Our results reveal a previously unknown role of NRX in the regulation of short term synaptic depression upon tetanic nerve stimulation and provide new mechanistic insights into the role of NRX in synaptic vesicle release.
Collapse
Affiliation(s)
- Tao Li
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096
| | - Yao Tian
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096
| | - Qian Li
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096
| | - Huiying Chen
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096
| | - Huihui Lv
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096
| | - Wei Xie
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS 226001, China
| | - Junhai Han
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS 226001, China.
| |
Collapse
|
153
|
The interplay between synaptic activity and neuroligin function in the CNS. BIOMED RESEARCH INTERNATIONAL 2015; 2015:498957. [PMID: 25839034 PMCID: PMC4369883 DOI: 10.1155/2015/498957] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/12/2015] [Accepted: 02/23/2015] [Indexed: 11/24/2022]
Abstract
Neuroligins (NLs) are postsynaptic transmembrane cell-adhesion proteins that play a key role in the regulation of excitatory and inhibitory synapses. Previous in vitro and in vivo studies have suggested that NLs contribute to synapse formation and synaptic transmission. Consistent with their localization, NL1 and NL3 selectively affect excitatory synapses, whereas NL2 specifically affects inhibitory synapses. Deletions or mutations in NL genes have been found in patients with autism spectrum disorders or mental retardations, and mice harboring the reported NL deletions or mutations exhibit autism-related behaviors and synapse dysfunction. Conversely, synaptic activity can regulate the phosphorylation, expression, and cleavage of NLs, which, in turn, can influence synaptic activity. Thus, in clinical research, identifying the relationship between NLs and synapse function is critical. In this review, we primarily discuss how NLs and synaptic activity influence each other.
Collapse
|
154
|
Belanger-Nelson E, Freyburger M, Pouliot P, Beaumont E, Lesage F, Mongrain V. Brain hemodynamic response to somatosensory stimulation in Neuroligin-1 knockout mice. Neuroscience 2015; 289:242-50. [DOI: 10.1016/j.neuroscience.2014.12.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 11/25/2014] [Accepted: 12/24/2014] [Indexed: 10/24/2022]
|
155
|
Calahorro F, Holden-Dye L, O'Connor V. Analysis of splice variants for the C. elegans orthologue of human neuroligin reveals a developmentally regulated transcript. Gene Expr Patterns 2015; 17:69-78. [PMID: 25726726 DOI: 10.1016/j.gep.2015.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/17/2015] [Accepted: 02/19/2015] [Indexed: 11/20/2022]
Abstract
Neuroligins are synaptic adhesion molecules and important determinants of synaptic function. They are expressed at postsynaptic sites and involved in synaptic organization through key extracellular and intracellular protein interactions. They undergo trans-synaptic interaction with presynaptic neurexins. Distinct neuroligins use differences in their intracellular domains to selectively recruit synaptic scaffolds and this plays an important role in how they encode specialization of synaptic function. Several levels of regulation including gene expression, splicing, protein translation and processing regulate the expression of neuroligin function. We have used in silico and cDNA analyses to investigate the mRNA splicing of the Caenorhabditis elegans orthologue nlg-1. Transcript analysis highlights the potential for gene regulation with respect to both temporal expression and splicing. We found nlg-1 splice variants with all the predicted exons are a minor species relative to major splice variants lacking exons 13 and 14, or 14 alone. These major alternatively spliced variants change the intracellular domain of the gene product NLG-1. Interestingly, exon 14 encodes a cassette with two distinct potential functional domains. One is a polyproline SH3 binding domain and the other has homology to a region encoding the binding site for the scaffolding protein gephyrin in mammalian neuroligins. This suggests differential splicing impacts on NLG-1 competence to recruit intracellular binding partners. This may have developmental relevance as nlg-1 exon 14 containing transcripts are selectively expressed in L2-L3 larvae. These results highlight a developmental regulation of C. elegans nlg-1 that could play a key role in the assembly of synaptic protein complexes during the early stages of nervous system development.
Collapse
Affiliation(s)
- Fernando Calahorro
- Centre for Biological Sciences, Life Sciences Building 85, University of Southampton, Southampton SO17 1BJ, UK.
| | - Lindy Holden-Dye
- Centre for Biological Sciences, Life Sciences Building 85, University of Southampton, Southampton SO17 1BJ, UK
| | - Vincent O'Connor
- Centre for Biological Sciences, Life Sciences Building 85, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
156
|
Born G, Grayton HM, Langhorst H, Dudanova I, Rohlmann A, Woodward BW, Collier DA, Fernandes C, Missler M. Genetic targeting of NRXN2 in mice unveils role in excitatory cortical synapse function and social behaviors. Front Synaptic Neurosci 2015; 7:3. [PMID: 25745399 PMCID: PMC4333794 DOI: 10.3389/fnsyn.2015.00003] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/03/2015] [Indexed: 01/23/2023] Open
Abstract
Human genetics has identified rare copy number variations and deleterious mutations for all neurexin genes (NRXN1-3) in patients with neurodevelopmental diseases, and electrophysiological recordings in animal brains have shown that Nrxns are important for synaptic transmission. While several mouse models for Nrxn1α inactivation have previously been studied for behavioral changes, very little information is available for other variants. Here, we validate that mice lacking Nrxn2α exhibit behavioral abnormalities, characterized by social interaction deficits and increased anxiety-like behavior, which partially overlap, partially differ from Nrxn1α mutant behaviors. Using patch-clamp recordings in Nrxn2α knockout brains, we observe reduced spontaneous transmitter release at excitatory synapses in the neocortex. We also analyse at this cellular level a novel NRXN2 mouse model that carries a combined deletion of Nrxn2α and Nrxn2β. Electrophysiological analysis of this Nrxn2-mutant mouse shows surprisingly similar defects of excitatory release to Nrxn2α, indicating that the β-variant of Nrxn2 has no strong function in basic transmission at these synapses. Inhibitory transmission as well as synapse densities and ultrastructure remain unchanged in the neocortex of both models. Furthermore, at Nrxn2α and Nrxn2-mutant excitatory synapses we find an altered facilitation and N-methyl-D-aspartate receptor (NMDAR) function because NMDAR-dependent decay time and NMDAR-mediated responses are reduced. As Nrxn can indirectly be linked to NMDAR via neuroligin and PSD-95, the trans-synaptic nature of this complex may help to explain occurrence of presynaptic and postsynaptic effects. Since excitatory/inhibitory imbalances and impairment of NMDAR function are alledged to have a role in autism and schizophrenia, our results support the idea of a related pathomechanism in these disorders.
Collapse
Affiliation(s)
- Gesche Born
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University Münster, Germany
| | - Hannah M Grayton
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London London, UK ; Discovery Neuroscience Research, Eli Lilly and Company Ltd. Surrey, UK
| | - Hanna Langhorst
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University Münster, Germany
| | - Irina Dudanova
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University Münster, Germany
| | - Astrid Rohlmann
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University Münster, Germany
| | - Benjamin W Woodward
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London London, UK
| | - David A Collier
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London London, UK ; Discovery Neuroscience Research, Eli Lilly and Company Ltd. Surrey, UK
| | - Cathy Fernandes
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London London, UK
| | - Markus Missler
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University Münster, Germany ; Cluster of Excellence EXC 1003, Cells in Motion Münster, Germany
| |
Collapse
|
157
|
Abstract
The neurexin family of cell adhesion proteins consists of three members in
vertebrates and has homologs in several invertebrate species. In mammals, each
neurexin gene encodes an α-neurexin in which the extracellular portion is long,
and a β-neurexin in which the extracellular portion is short. As a result of
alternative splicing, both major isoforms can be transcribed in many variants,
contributing to distinct structural domains and variability. Neurexins act
predominantly at the presynaptic terminal in neurons and play essential roles in
neurotransmission and differentiation of synapses. Some of these functions require
the formation of trans-synaptic complexes with postsynaptic proteins such as
neuroligins, LRRTM proteins or cerebellin. In addition, rare mutations and
copy-number variations of human neurexin genes have been linked to autism and
schizophrenia, indicating that impairments of synaptic function sustained by
neurexins and their binding partners may be relevant to the pathomechanism of these
debilitating diseases.
Collapse
|
158
|
Gill I, Droubi S, Giovedi S, Fedder KN, Bury LAD, Bosco F, Sceniak MP, Benfenati F, Sabo SL. Presynaptic NMDA receptors - dynamics and distribution in developing axons in vitro and in vivo. J Cell Sci 2014; 128:768-80. [PMID: 25526735 DOI: 10.1242/jcs.162362] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
During cortical development, N-methyl-D-aspartate (NMDA) receptors (NMDARs) facilitate presynaptic terminal formation, enhance neurotransmitter release and are required in presynaptic neurons for spike-timing-dependent long-term depression (tLTD). However, the extent to which NMDARs are found within cortical presynaptic terminals has remained controversial, and the sub-synaptic localization and dynamics of axonal NMDARs are unknown. Here, using live confocal imaging and biochemical purification of presynaptic membranes, we provide strong evidence that NMDARs localize to presynaptic terminals in vitro and in vivo in a developmentally regulated manner. The NR1 and NR2B subunits (also known as GRIN1 and GRIN2B, respectively) were found within the active zone membrane, where they could respond to synaptic glutamate release. Surprisingly, NR1 also appeared in glutamatergic and GABAergic synaptic vesicles. During synaptogenesis, NR1 was mobile throughout axons - including growth cones and filopodia, structures that are involved in synaptogenesis. Upon synaptogenic contact, NMDA receptors were quickly recruited to terminals by neuroligin-1 signaling. Unlike dendrites, the trafficking and distribution of axonal NR1 were insensitive to activity changes, including NMDA exposure, local glutamate uncaging or action potential blockade. These results support the idea that presynaptic NMDARs play an early role in presynaptic development.
Collapse
Affiliation(s)
- Ishwar Gill
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Sammy Droubi
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Silvia Giovedi
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
| | - Karlie N Fedder
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Luke A D Bury
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Federica Bosco
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
| | - Michael P Sceniak
- Department of Neuroscience, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Fabio Benfenati
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Shasta L Sabo
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA Department of Neuroscience, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| |
Collapse
|
159
|
Galic M, Tsai FC, Collins SR, Matis M, Bandara S, Meyer T. Dynamic recruitment of the curvature-sensitive protein ArhGAP44 to nanoscale membrane deformations limits exploratory filopodia initiation in neurons. eLife 2014; 3:e03116. [PMID: 25498153 PMCID: PMC4381785 DOI: 10.7554/elife.03116] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 11/13/2014] [Indexed: 12/14/2022] Open
Abstract
In the vertebrate central nervous system, exploratory filopodia transiently form on
dendritic branches to sample the neuronal environment and initiate new trans-neuronal
contacts. While much is known about the molecules that control filopodia extension
and subsequent maturation into functional synapses, the mechanisms that regulate
initiation of these dynamic, actin-rich structures have remained elusive. Here, we
find that filopodia initiation is suppressed by recruitment of ArhGAP44 to
actin-patches that seed filopodia. Recruitment is mediated by binding of a membrane
curvature-sensing ArhGAP44 N-BAR domain to plasma membrane sections that were
deformed inward by acto-myosin mediated contractile forces. A GAP domain in ArhGAP44
triggers local Rac-GTP hydrolysis, thus reducing actin polymerization required for
filopodia formation. Additionally, ArhGAP44 expression increases during neuronal
development, concurrent with a decrease in the rate of filopodia formation. Together,
our data reveals a local auto-regulatory mechanism that limits initiation of
filopodia via protein recruitment to nanoscale membrane deformations. DOI:http://dx.doi.org/10.7554/eLife.03116.001 Our brains contain a vast network of many billions of cells that communicate with,
and are connected to, each other. Each brain cell, or neuron, can form connections
with as many as 10,000 other neurons—and signals pass from one neuron to the
next at sites known as synapses. A neuron's surface has numerous finger-like protrusions known as filopodia that are
important for sensing the environment around the cells. Filopodia are highly
changeable and constantly extend and retract as the filaments that support
them—which are made up of a protein called actin—grow and shrink back.
Neurons use their filopodia to explore and seek out other neurons in the brain, and
when they make contact with the right neuron, it leads to the formation of a synapse.
However, how filopodial extensions begin to grow—and what stops a neuron from
forming too many filopodia—is not fully understood. Galic et al. now show that a protein called ArhGAP44 limits the formation of new
filopodia in neurons. The ArhGAP44 protein is recruited to patches of the surface
membrane that have a lot of actin and that curve inwards. ArhGAP44 then locally
inhibits other proteins that are normally required to extend the actin filaments and
drive the growth of filopodia out from the surface of the cell. Galic et al. also show that more ArhGAP44 is produced with age—levels are low
in embryos and high in adults—and this increase in the amount of protein
correlates with a decrease in the number of filopodia formed. When Galic et al.
engineered rat neurons to produce more of the ArhGAP44 protein, fewer filopodia
formed on the surface of the neurons. Decreasing the amount of this protein had the
opposite effect. Moreover, ArhGAP44 was shown to mainly stop new filopodia from
forming and had little effect on existing filopodia. Together, these findings suggest
that ArhGAP44 may help neurons transition from a dynamic exploratory mode to a
mature, more static, state; this is a characteristic of the development of the
nervous system. DOI:http://dx.doi.org/10.7554/eLife.03116.002
Collapse
Affiliation(s)
- Milos Galic
- Department of Chemical and Systems Biology, Stanford University, Stanford, United States
| | - Feng-Chiao Tsai
- Department of Chemical and Systems Biology, Stanford University, Stanford, United States
| | - Sean R Collins
- Department of Chemical and Systems Biology, Stanford University, Stanford, United States
| | - Maja Matis
- Department of Pathology, Stanford University, Stanford, United States
| | - Samuel Bandara
- Department of Chemical and Systems Biology, Stanford University, Stanford, United States
| | - Tobias Meyer
- Department of Chemical and Systems Biology, Stanford University, Stanford, United States
| |
Collapse
|
160
|
Bell ME, Bourne JN, Chirillo MA, Mendenhall JM, Kuwajima M, Harris KM. Dynamics of nascent and active zone ultrastructure as synapses enlarge during long-term potentiation in mature hippocampus. J Comp Neurol 2014; 522:3861-84. [PMID: 25043676 PMCID: PMC4167938 DOI: 10.1002/cne.23646] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/23/2014] [Accepted: 06/30/2014] [Indexed: 11/08/2022]
Abstract
Nascent zones and active zones are adjacent synaptic regions that share a postsynaptic density, but nascent zones lack the presynaptic vesicles found at active zones. Here dendritic spine synapses were reconstructed through serial section electron microscopy (3DEM) and EM tomography to investigate nascent zone dynamics during long-term potentiation (LTP) in mature rat hippocampus. LTP was induced with theta-burst stimulation, and comparisons were made with control stimulation in the same hippocampal slices at 5 minutes, 30 minutes, and 2 hours post-induction and to perfusion-fixed hippocampus in vivo. Nascent zones were present at the edges of ∼35% of synapses in perfusion-fixed hippocampus and as many as ∼50% of synapses in some hippocampal slice conditions. By 5 minutes, small dense-core vesicles known to transport active zone proteins moved into more presynaptic boutons. By 30 minutes, nascent zone area decreased, without significant change in synapse area, suggesting that presynaptic vesicles were recruited to preexisting nascent zones. By 2 hours, both nascent and active zones were enlarged. Immunogold labeling revealed glutamate receptors in nascent zones; however, average distances from nascent zones to docked presynaptic vesicles ranged from 170 ± 5 nm in perfusion-fixed hippocampus to 251 ± 4 nm at enlarged synapses by 2 hours during LTP. Prior stochastic modeling suggests that decrease in glutamate concentration reduces the probability of glutamate receptor activation from 0.4 at the center of release to 0.1 just 200 nm away. Thus, conversion of nascent zones to functional active zones likely requires the recruitment of presynaptic vesicles during LTP.
Collapse
Affiliation(s)
- Maria Elizabeth Bell
- Center for Learning and Memory, Department of Neuroscience, Institute for Neuroscience, University of Texas, Austin, TX 78712
| | - Jennifer N. Bourne
- Center for Learning and Memory, Department of Neuroscience, Institute for Neuroscience, University of Texas, Austin, TX 78712
| | - Michael A. Chirillo
- Center for Learning and Memory, Department of Neuroscience, Institute for Neuroscience, University of Texas, Austin, TX 78712
- The University of Texas Medical School, Houston, TX 77030
| | - John M. Mendenhall
- Center for Learning and Memory, Department of Neuroscience, Institute for Neuroscience, University of Texas, Austin, TX 78712
| | - Masaaki Kuwajima
- Center for Learning and Memory, Department of Neuroscience, Institute for Neuroscience, University of Texas, Austin, TX 78712
| | - Kristen M. Harris
- Center for Learning and Memory, Department of Neuroscience, Institute for Neuroscience, University of Texas, Austin, TX 78712
| |
Collapse
|
161
|
Fang M, Wei JL, Tang B, Liu J, Chen L, Tang ZH, Luo J, Chen GJ, Wang XF. Neuroligin-1 Knockdown Suppresses Seizure Activity by Regulating Neuronal Hyperexcitability. Mol Neurobiol 2014; 53:270-284. [PMID: 25428619 DOI: 10.1007/s12035-014-8999-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 11/12/2014] [Indexed: 01/06/2023]
Abstract
Abnormally synchronized synaptic transmission in the brain leads to epilepsy. Neuroligin-1 (NL1) is a synaptic cell adhesion molecule localized at excitatory synapses. NL1 modulates synaptic transmission and determines the properties of neuronal networks in the mammalian central nervous system. We showed that the expression of NL1 and its binding partner neurexin-1β was increased in temporal lobe epileptic foci in patients and lithium-pilocarpine-treated epileptic rats. We investigated electrophysiological and behavioral changes in epileptic rats after lentivirally mediated NL1 knockdown in the hippocampus to determine whether NL1 suppression prevented seizures and, if so, to explore the probable underlying mechanisms. Our behavioral studies revealed that NL1 knockdown in epileptic rats reduced seizure severity and increased seizure latency. Whole-cell patch-clamp recordings of CA1 pyramidal neurons in hippocampal slices from NL1 knockdown epileptic rats revealed a decrease in spontaneous action potential frequency and a decrease in miniature excitatory postsynaptic current (mEPSC) frequency but not amplitude. The amplitude of N-methyl-D-aspartate receptor (NMDAR)-dependent EPSCs was also selectively decreased. Notably, NL1 knockdown reduced total NMDAR1 expression and the surface/total ratio in the hippocampus of epileptic rats. Taken together, these data indicate that NL1 knockdown in epileptic rats may reduce the frequency and severity of seizures and suppress neuronal hyperexcitability via changes in postsynaptic NMDARs.
Collapse
Affiliation(s)
- Min Fang
- Department of Emergency and Intensive Care Unit, The First Affiliated Hospital of Chongqing Medical University, 1 You Yi Road, Chongqing, 400016, China
| | - Jin-Lai Wei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 You Yi Road, Chongqing, 400016, China
| | - Bo Tang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 You Yi Road, Chongqing, 400016, China
| | - Jing Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 You Yi Road, Chongqing, 400016, China
| | - Ling Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 You Yi Road, Chongqing, 400016, China
| | - Zhao-Hua Tang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 You Yi Road, Chongqing, 400016, China
| | - Jing Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 You Yi Road, Chongqing, 400016, China
| | - Guo-Jun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 You Yi Road, Chongqing, 400016, China
| | - Xue-Feng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 You Yi Road, Chongqing, 400016, China.
| |
Collapse
|
162
|
Tsetsenis T, Boucard AA, Araç D, Brunger AT, Südhof TC. Direct visualization of trans-synaptic neurexin-neuroligin interactions during synapse formation. J Neurosci 2014; 34:15083-96. [PMID: 25378172 PMCID: PMC4220035 DOI: 10.1523/jneurosci.0348-14.2014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 09/25/2014] [Accepted: 10/03/2014] [Indexed: 11/21/2022] Open
Abstract
Neurexins and neuroligins are synaptic cell-adhesion molecules that are essential for normal synapse specification and function and are thought to bind to each other trans-synaptically, but such interactions have not been demonstrated directly. Here, we generated neurexin-1β and neuroligin-1 and neuroligin-2 fusion proteins containing complementary "split" GFP fragments positioned such that binding of neurexin-1β to neuroligin-1 or neuroligin-2 allowed GFP reconstitution without dramatically changing their binding affinities. GFP fluorescence was only reconstituted from split-GFP-modified neurexin-1β and neuroligin-1 if and after neurexin-1β bound to its neuroligin partner; reassociation of the split-GFP components with each other did not mediate binding. Using trans-cellular reconstitution of GFP fluorescence from split-GFP-modified neurexin-1β and neuroligins as an assay, we demonstrate that trans-synaptic neurexin/neuroligin binding indeed occurred when mouse hippocampal neurons formed synapses onto non-neuronal COS-7 cells expressing neuroligins or when mouse hippocampal neurons formed synapses with each other. This visualization of synapses by neurexin/neuroligin binding prompted us to refer to this approach as "SynView." Our data demonstrate that neurexin-1β forms a trans-synaptic complex with neuroligin-1 and neuroligin-2 and that this interaction can be used to label synapses in a specific fashion in vivo.
Collapse
Affiliation(s)
| | | | - Demet Araç
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University, Stanford, California 94305
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University, Stanford, California 94305
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University, Stanford, California 94305
| |
Collapse
|
163
|
Fanciulli M, Pasini E, Malacrida S, Striano P, Striano S, Michelucci R, Ottman R, Nobile C. Copy number variations and susceptibility to lateral temporal epilepsy: A study of 21 pedigrees. Epilepsia 2014; 55:1651-8. [DOI: 10.1111/epi.12767] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2014] [Indexed: 11/28/2022]
Affiliation(s)
| | - Elena Pasini
- Unit of Neurology; Bellaria Hospital; IRCCS of Neurological Sciences; Bologna Italy
| | | | - Pasquale Striano
- Pediatric Neurology and Neuromuscular Disease Unit; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health; “G. Gaslini” Institute; University of Genoa; Genova Italy
| | - Salvatore Striano
- Department of Neurological Sciences; Federico II University; Napoli Italy
| | - Roberto Michelucci
- Unit of Neurology; Bellaria Hospital; IRCCS of Neurological Sciences; Bologna Italy
| | - Ruth Ottman
- Departments of Epidemiology and Neurology and the G.H. Sergievsky Center; Columbia University; New York New York U.S.A
- Division of Epidemiology; New York State Psychiatric Institute; New York New York U.S.A
| | - Carlo Nobile
- CNR-Neuroscience Institute; Section of Padua; Padova Italy
| |
Collapse
|
164
|
Xing G, Gan G, Chen D, Sun M, Yi J, Lv H, Han J, Xie W. Drosophila neuroligin3 regulates neuromuscular junction development and synaptic differentiation. J Biol Chem 2014; 289:31867-31877. [PMID: 25228693 DOI: 10.1074/jbc.m114.574897] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuroligins (Nlgs) are a family of cell adhesion molecules thought to be important for synapse maturation and function. Mammalian studies have shown that different Nlgs have different roles in synaptic maturation and function. In Drosophila melanogaster, the roles of Drosophila neuroligin1 (DNlg1), neuroligin2, and neuroligin4 have been examined. However, the roles of neuroligin3 (dnlg3) in synaptic development and function have not been determined. In this study, we used the Drosophila neuromuscular junctions (NMJs) as a model system to investigate the in vivo role of dnlg3. We showed that DNlg3 was expressed in both the CNS and NMJs where it was largely restricted to the postsynaptic site. We generated dnlg3 mutants and showed that these mutants exhibited an increased bouton number and reduced bouton size compared with the wild-type (WT) controls. Consistent with alterations in bouton properties, pre- and postsynaptic differentiations were affected in dnlg3 mutants. This included abnormal synaptic vesicle endocytosis, increased postsynaptic density length, and reduced GluRIIA recruitment. In addition to impaired synaptic development and differentiation, we found that synaptic transmission was reduced in dnlg3 mutants. Altogether, our data showed that DNlg3 was required for NMJ development, synaptic differentiation, and function.
Collapse
Affiliation(s)
- Guanglin Xing
- Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Guangming Gan
- Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Dandan Chen
- Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Mingkuan Sun
- Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Jukang Yi
- Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Huihui Lv
- Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Junhai Han
- Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Wei Xie
- Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China.
| |
Collapse
|
165
|
Developmental localization of adhesion and scaffolding proteins at the cone synapse. Gene Expr Patterns 2014; 16:36-50. [PMID: 25176525 DOI: 10.1016/j.gep.2014.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/30/2014] [Accepted: 07/07/2014] [Indexed: 11/22/2022]
Abstract
The cone synapse is a complex signaling hub composed of the cone photoreceptor terminal and the dendrites of bipolar and horizontal cells converging around multiple ribbon synapses. Factors that promote organization of this structure are largely unexplored. In this study we characterize the localization of adhesion and scaffolding proteins that are localized to the cone synapse, including alpha-n-catenin, beta-catenin, gamma-protocadherin, cadherin-8, MAGI2 and CASK. We describe the localization of these proteins during development of the mouse retina and in the adult macaque retina and find that these proteins are concentrated at the cone synapse. The localization of these proteins was then characterized at the cellular and subcellular levels. Alpha-n-catenin, gamma-protocadherin and cadherin-8 were concentrated in the dendrites of bipolar cells that project to the cone synapse but were not detected or stained very dimly in the dendrites of cells projecting to rod synapses. This study adds to our knowledge of cone synapse development by characterizing the developmental localization of these factors and identifies these factors as candidates for functional analysis of cone synapse formation.
Collapse
|
166
|
Reissner C, Stahn J, Breuer D, Klose M, Pohlentz G, Mormann M, Missler M. Dystroglycan binding to α-neurexin competes with neurexophilin-1 and neuroligin in the brain. J Biol Chem 2014; 289:27585-603. [PMID: 25157101 PMCID: PMC4183798 DOI: 10.1074/jbc.m114.595413] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
α-Neurexins (α-Nrxn) are mostly presynaptic cell surface molecules essential for neurotransmission that are linked to neuro-developmental disorders as autism or schizophrenia. Several interaction partners of α-Nrxn are identified that depend on alternative splicing, including neuroligins (Nlgn) and dystroglycan (αDAG). The trans-synaptic complex with Nlgn1 was extensively characterized and shown to partially mediate α-Nrxn function. However, the interactions of α-Nrxn with αDAG, neurexophilins (Nxph1) and Nlgn2, ligands that occur specifically at inhibitory synapses, are incompletely understood. Using site-directed mutagenesis, we demonstrate the exact binding epitopes of αDAG and Nxph1 on Nrxn1α and show that their binding is mutually exclusive. Identification of an unusual cysteine bridge pattern and complex type glycans in Nxph1 ensure binding to the second laminin/neurexin/sex hormone binding (LNS2) domain of Nrxn1α, but this association does not interfere with Nlgn binding at LNS6. αDAG, in contrast, interacts with both LNS2 and LNS6 domains without inserts in splice sites SS#2 or SS#4 mostly via LARGE (like-acetylglucosaminyltransferase)-dependent glycans attached to the mucin region. Unexpectedly, binding of αDAG at LNS2 prevents interaction of Nlgn at LNS6 with or without splice insert in SS#4, presumably by sterically hindering each other in the u-form conformation of α-Nrxn. Thus, expression of αDAG and Nxph1 together with alternative splicing in Nrxn1α may prevent or facilitate formation of distinct trans-synaptic Nrxn·Nlgn complexes, revealing an unanticipated way to contribute to the identity of synaptic subpopulations.
Collapse
Affiliation(s)
- Carsten Reissner
- From the Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Vesaliusweg 2-4, 48149 Münster, Germany
| | - Johanna Stahn
- From the Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Vesaliusweg 2-4, 48149 Münster, Germany
| | - Dorothee Breuer
- From the Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Vesaliusweg 2-4, 48149 Münster, Germany
| | - Martin Klose
- From the Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Vesaliusweg 2-4, 48149 Münster, Germany
| | - Gottfried Pohlentz
- Institute of Medical Physics and Biophysics, Westfälische Wilhelms-University, Robert-Koch Strasse 31, 48149 Münster, Germany, and
| | - Michael Mormann
- Institute of Medical Physics and Biophysics, Westfälische Wilhelms-University, Robert-Koch Strasse 31, 48149 Münster, Germany, and
| | - Markus Missler
- From the Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Vesaliusweg 2-4, 48149 Münster, Germany, Cluster of Excellence EXC 1003, Cells in Motion, 48149 Münster, Germany
| |
Collapse
|
167
|
Conserved and divergent processing of neuroligin and neurexin genes: from the nematode C. elegans to human. INVERTEBRATE NEUROSCIENCE 2014; 14:79-90. [PMID: 25148907 DOI: 10.1007/s10158-014-0173-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/11/2014] [Indexed: 01/17/2023]
Abstract
Neuroligins are cell-adhesion proteins that interact with neurexins at the synapse. This interaction may contribute to differentiation, plasticity and specificity of synapses. In humans, single mutations in neuroligin-encoding genes are implicated in autism spectrum disorder and/or mental retardation. Moreover, some copy number variations and point mutations in neurexin-encoding genes have been linked to neurodevelopmental disorders including autism. Neurexins are subject to extensive alternative splicing, highly regulated in mammals, with a great physiological importance. In addition, neuroligins and neurexins are subjected to proteolytic processes that regulate synaptic transmission modifying pre- and postsynaptic activities and may also regulate the remodelling of spines at specific synapses. Four neuroligin genes exist in mice and five in human, whilst in the nematode Caenorhabditis elegans, there is only one orthologous gene. In a similar manner, in mammals, there are three neurexin genes, each of them encoding two major isoforms named α and β, respectively. In contrast, there is one neurexin gene in C. elegans that also generates two isoforms like mammals. The complexity of the genetic organization of neurexins is due to extensive processing resulting in hundreds of isoforms. In this review, a wide comparison is made between the genes in the nematode and human with a view to better understanding the conservation of processing in these synaptic proteins in C. elegans, which may serve as a genetic model to decipher the synaptopathies underpinning neurodevelopmental disorders such as autism.
Collapse
|
168
|
de Wit J, Ghosh A. Control of neural circuit formation by leucine-rich repeat proteins. Trends Neurosci 2014; 37:539-50. [PMID: 25131359 DOI: 10.1016/j.tins.2014.07.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/02/2014] [Accepted: 07/24/2014] [Indexed: 01/19/2023]
Abstract
The function of neural circuits depends on the precise connectivity between populations of neurons. Increasing evidence indicates that disruptions in excitatory or inhibitory synapse formation or function lead to excitation/inhibition (E/I) imbalances and contribute to neurodevelopmental and psychiatric disorders. Leucine-rich repeat (LRR)-containing surface proteins have emerged as key organizers of excitatory and inhibitory synapses. Distinct LRR proteins are expressed in different cell types and interact with key pre- and postsynaptic proteins. These protein interaction networks allow LRR proteins to coordinate pre- and postsynaptic elements during synapse formation and differentiation, pathway-specific synapse development, and synaptic plasticity. LRR proteins, therefore, play a critical role in organizing synaptic connections into functional neural circuits, and their dysfunction may contribute to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Joris de Wit
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium; KU Leuven, Center for Human Genetics, 3000 Leuven, Belgium.
| | - Anirvan Ghosh
- Neuroscience Discovery, F. Hoffman-La Roche, 4070 Basel, Switzerland
| |
Collapse
|
169
|
Savas JN, De Wit J, Comoletti D, Zemla R, Ghosh A, Yates JR. Ecto-Fc MS identifies ligand-receptor interactions through extracellular domain Fc fusion protein baits and shotgun proteomic analysis. Nat Protoc 2014; 9:2061-74. [PMID: 25101821 DOI: 10.1038/nprot.2014.140] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ligand-receptor interactions represent essential biological triggers that regulate many diverse and important cellular processes. We have developed a discovery-based proteomic biochemical protocol that couples affinity purification with multidimensional liquid chromatographic tandem mass spectrometry (LCLC-MS/MS) and bioinformatic analysis. Compared with previous approaches, our analysis increases sensitivity, shortens analysis duration and boosts comprehensiveness. In this protocol, receptor extracellular domains are fused with the Fc region of IgG to generate fusion proteins that are purified from transfected HEK293T cells. These 'ecto-Fcs' are coupled to protein A beads and serve as baits for binding assays with prey proteins extracted from rodent brain. After capture, the affinity-purified proteins are digested into peptides and comprehensively analyzed by LCLC-MS/MS with ion-trap mass spectrometers. In 4 working days, this protocol can generate shortlists of candidate ligand-receptor protein-protein interactions. Our 'ecto-Fc MS' approach outperforms antibody-based approaches and provides a reproducible and robust framework for identifying extracellular ligand-receptor interactions.
Collapse
Affiliation(s)
- Jeffrey N Savas
- 1] Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA. [2]
| | - Joris De Wit
- 1] Vlaams Instituut voor Biotechnologie (VIB) Center for the Biology of Disease, Leuven, Belgium. [2] Center for Human Genetics, Katholieke Universiteit (KU) Leuven, Leuven, Belgium. [3] Neurobiology Section, Division of Biology, University of California San Diego, La Jolla, California, USA. [4]
| | - Davide Comoletti
- Child Health Institute of New Jersey and Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Roland Zemla
- New York University School of Medicine, New York, New York, USA
| | - Anirvan Ghosh
- 1] Neurobiology Section, Division of Biology, University of California San Diego, La Jolla, California, USA. [2] Neuroscience Discovery, F. Hoffman-La Roche, Basel, Switzerland
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
170
|
Bury LA, Sabo SL. Dynamic mechanisms of neuroligin-dependent presynaptic terminal assembly in living cortical neurons. Neural Dev 2014; 9:13. [PMID: 24885664 PMCID: PMC4049477 DOI: 10.1186/1749-8104-9-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/12/2014] [Indexed: 12/23/2022] Open
Abstract
Background Synapse formation occurs when synaptogenic signals trigger coordinated development of pre and postsynaptic structures. One of the best-characterized synaptogenic signals is trans-synaptic adhesion. However, it remains unclear how synaptic proteins are recruited to sites of adhesion. In particular, it is unknown whether synaptogenic signals attract synaptic vesicle (SV) and active zone (AZ) proteins to nascent synapses or instead predominantly function to create sites that are capable of forming synapses. It is also unclear how labile synaptic proteins are at developing synapses after their initial recruitment. To address these issues, we used long-term, live confocal imaging of presynaptic terminal formation in cultured cortical neurons after contact with the synaptogenic postsynaptic adhesion proteins neuroligin-1 or SynCAM-1. Results Surprisingly, we find that trans-synaptic adhesion does not attract SV or AZ proteins nor alter their transport. In addition, although neurexin (the presynaptic partner of neuroligin) typically accumulates over the entire region of contact between axons and neuroligin-1-expressing cells, SV proteins selectively assemble at spots of enhanced neurexin clustering. The arrival and maintenance of SV proteins at these sites is highly variable over the course of minutes to hours, and this variability correlates with neurexin levels at individual synapses. Conclusions Together, our data support a model of synaptogenesis where presynaptic proteins are trapped at specific axonal sites, where they are stabilized by trans-synaptic adhesion signaling.
Collapse
Affiliation(s)
| | - Shasta L Sabo
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
171
|
Yang X, Hou D, Jiang W, Zhang C. Intercellular protein-protein interactions at synapses. Protein Cell 2014; 5:420-44. [PMID: 24756565 PMCID: PMC4026422 DOI: 10.1007/s13238-014-0054-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 03/23/2014] [Indexed: 12/11/2022] Open
Abstract
Chemical synapses are asymmetric intercellular junctions through which neurons send nerve impulses to communicate with other neurons or excitable cells. The appropriate formation of synapses, both spatially and temporally, is essential for brain function and depends on the intercellular protein-protein interactions of cell adhesion molecules (CAMs) at synaptic clefts. The CAM proteins link pre- and post-synaptic sites, and play essential roles in promoting synapse formation and maturation, maintaining synapse number and type, accumulating neurotransmitter receptors and ion channels, controlling neuronal differentiation, and even regulating synaptic plasticity directly. Alteration of the interactions of CAMs leads to structural and functional impairments, which results in many neurological disorders, such as autism, Alzheimer's disease and schizophrenia. Therefore, it is crucial to understand the functions of CAMs during development and in the mature neural system, as well as in the pathogenesis of some neurological disorders. Here, we review the function of the major classes of CAMs, and how dysfunction of CAMs relates to several neurological disorders.
Collapse
Affiliation(s)
- Xiaofei Yang
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, 430074 China
| | - Dongmei Hou
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, 430074 China
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing, 100871 China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871 China
| | - Wei Jiang
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, 430074 China
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing, 100871 China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871 China
| | - Chen Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing, 100871 China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871 China
| |
Collapse
|
172
|
O'Connor EC, Bariselli S, Bellone C. Synaptic basis of social dysfunction: a focus on postsynaptic proteins linking group-I mGluRs with AMPARs and NMDARs. Eur J Neurosci 2014; 39:1114-29. [DOI: 10.1111/ejn.12510] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/06/2014] [Accepted: 01/10/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Eoin C. O'Connor
- Department of Basic Neurosciences; Medical Faculty; University of Geneva; 1 Rue Michel Servet CH-1211 Geneva Switzerland
| | - Sebastiano Bariselli
- Department of Basic Neurosciences; Medical Faculty; University of Geneva; 1 Rue Michel Servet CH-1211 Geneva Switzerland
| | - Camilla Bellone
- Department of Basic Neurosciences; Medical Faculty; University of Geneva; 1 Rue Michel Servet CH-1211 Geneva Switzerland
| |
Collapse
|
173
|
Chen B, Brinkmann K, Chen Z, Pak CW, Liao Y, Shi S, Henry L, Grishin NV, Bogdan S, Rosen MK. The WAVE regulatory complex links diverse receptors to the actin cytoskeleton. Cell 2014; 156:195-207. [PMID: 24439376 DOI: 10.1016/j.cell.2013.11.048] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 09/06/2013] [Accepted: 11/25/2013] [Indexed: 02/02/2023]
Abstract
The WAVE regulatory complex (WRC) controls actin cytoskeletal dynamics throughout the cell by stimulating the actin-nucleating activity of the Arp2/3 complex at distinct membrane sites. However, the factors that recruit the WRC to specific locations remain poorly understood. Here, we have identified a large family of potential WRC ligands, consisting of ∼120 diverse membrane proteins, including protocadherins, ROBOs, netrin receptors, neuroligins, GPCRs, and channels. Structural, biochemical, and cellular studies reveal that a sequence motif that defines these ligands binds to a highly conserved interaction surface of the WRC formed by the Sra and Abi subunits. Mutating this binding surface in flies resulted in defects in actin cytoskeletal organization and egg morphology during oogenesis, leading to female sterility. Our findings directly link diverse membrane proteins to the WRC and actin cytoskeleton and have broad physiological and pathological ramifications in metazoans.
Collapse
Affiliation(s)
- Baoyu Chen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Klaus Brinkmann
- Institut für Neurobiologie, Universität Münster, 48149 Münster, Germany
| | - Zhucheng Chen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Chi W Pak
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Yuxing Liao
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Shuoyong Shi
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Lisa Henry
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Nick V Grishin
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Sven Bogdan
- Institut für Neurobiologie, Universität Münster, 48149 Münster, Germany.
| | - Michael K Rosen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
174
|
Modulation of synaptic function through the α-neurexin-specific ligand neurexophilin-1. Proc Natl Acad Sci U S A 2014; 111:E1274-83. [PMID: 24639499 DOI: 10.1073/pnas.1312112111] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neurotransmission at different synapses is highly variable, and cell-adhesion molecules like α-neurexins (α-Nrxn) and their extracellular binding partners determine synapse function. Although α-Nrxn affect transmission at excitatory and inhibitory synapses, the contribution of neurexophilin-1 (Nxph1), an α-Nrxn ligand with restricted expression in subpopulations of inhibitory neurons, is unclear. To reveal its role, we investigated mice that either lack or overexpress Nxph1. We found that genetic deletion of Nxph1 impaired GABAB receptor (GABA(B)R)-dependent short-term depression of inhibitory synapses in the nucleus reticularis thalami, a region where Nxph1 is normally expressed at high levels. To test the conclusion that Nxph1 supports presynaptic GABA(B)R, we expressed Nxph1 ectopically at excitatory terminals in the neocortex, which normally do not contain this molecule but can be modulated by GABA(B)R. We generated Nxph1-GFP transgenic mice under control of the Thy1.2 promoter and observed a reduced short-term facilitation at these excitatory synapses, representing an inverse phenotype to the knockout. Consistently, the diminished facilitation could be reversed by pharmacologically blocking GABA(B)R with CGP-55845. Moreover, a complete rescue was achieved by additional blocking of postsynaptic GABA(A)R with intracellular picrotoxin or gabazine, suggesting that Nxph1 is able to recruit or stabilize both presynaptic GABA(B)R and postsynaptic GABA(A)R. In support, immunoelectron microscopy validated the localization of ectopic Nxph1 at the synaptic cleft of excitatory synapses in transgenic mice and revealed an enrichment of GABA(A)R and GABA(B)R subunits compared with wild-type animals. Thus, our data propose that Nxph1 plays an instructive role in synaptic short-term plasticity and the configuration with GABA receptors.
Collapse
|
175
|
Cartography of neurexin alternative splicing mapped by single-molecule long-read mRNA sequencing. Proc Natl Acad Sci U S A 2014; 111:E1291-9. [PMID: 24639501 DOI: 10.1073/pnas.1403244111] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurexins are evolutionarily conserved presynaptic cell-adhesion molecules that are essential for normal synapse formation and synaptic transmission. Indirect evidence has indicated that extensive alternative splicing of neurexin mRNAs may produce hundreds if not thousands of neurexin isoforms, but no direct evidence for such diversity has been available. Here we use unbiased long-read sequencing of full-length neurexin (Nrxn)1α, Nrxn1β, Nrxn2β, Nrxn3α, and Nrxn3β mRNAs to systematically assess how many sites of alternative splicing are used in neurexins with a significant frequency, and whether alternative splicing events at these sites are independent of each other. In sequencing more than 25,000 full-length mRNAs, we identified a novel, abundantly used alternatively spliced exon of Nrxn1α and Nrxn3α (referred to as alternatively spliced sequence 6) that encodes a 9-residue insertion in the flexible hinge region between the fifth LNS (laminin-α, neurexin, sex hormone-binding globulin) domain and the third EGF-like sequence. In addition, we observed several larger-scale events of alternative splicing that deleted multiple domains and were much less frequent than the canonical six sites of alternative splicing in neurexins. All of the six canonical events of alternative splicing appear to be independent of each other, suggesting that neurexins may exhibit an even larger isoform diversity than previously envisioned and comprise thousands of variants. Our data are consistent with the notion that α-neurexins represent extracellular protein-interaction scaffolds in which different LNS and EGF domains mediate distinct interactions that affect diverse functions and are independently regulated by independent events of alternative splicing.
Collapse
|
176
|
Xiang YY, Dong H, Yang BB, Macdonald JF, Lu WY. Interaction of acetylcholinesterase with neurexin-1β regulates glutamatergic synaptic stability in hippocampal neurons. Mol Brain 2014; 7:15. [PMID: 24594013 PMCID: PMC3973991 DOI: 10.1186/1756-6606-7-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 02/27/2014] [Indexed: 02/11/2023] Open
Abstract
Background Excess expression of acetylcholinesterase (AChE) in the cortex and hippocampus causes a decrease in the number of glutamatergic synapses and alters the expression of neurexin and neuroligin, trans-synaptic proteins that control synaptic stability. The molecular sequence and three-dimensional structure of AChE are homologous to the corresponding aspects of the ectodomain of neuroligin. This study investigated whether excess AChE interacts physically with neurexin to destabilize glutamatergic synapses. Results The results showed that AChE clusters colocalized with neurexin assemblies in the neurites of hippocampal neurons and that AChE co-immunoprecipitated with neurexin from the lysate of these neurons. Moreover, when expressed in human embryonic kidney 293 cells, N-glycosylated AChE co-immunoprecipitated with non-O–glycosylated neurexin-1β, with N-glycosylation of the AChE being required for this co-precipitation to occur. Increasing extracellular AChE decreased the association of neurexin with neuroligin and inhibited neuroligin-induced synaptogenesis. The number and activity of excitatory synapses in cultured hippocampal neurons were reduced by extracellular catalytically inactive AChE. Conclusions Excessive glycosylated AChE could competitively disrupt a subset of the neurexin–neuroligin junctions consequently impairing the integrity of glutamatergic synapses. This might serve a molecular mechanism of excessive AChE induced neurodegeneration.
Collapse
Affiliation(s)
| | | | | | | | - Wei-Yang Lu
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
177
|
Banerjee S, Riordan M, Bhat MA. Genetic aspects of autism spectrum disorders: insights from animal models. Front Cell Neurosci 2014; 8:58. [PMID: 24605088 PMCID: PMC3932417 DOI: 10.3389/fncel.2014.00058] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 02/07/2014] [Indexed: 01/26/2023] Open
Abstract
Autism spectrum disorders (ASDs) are a complex neurodevelopmental disorder that display a triad of core behavioral deficits including restricted interests, often accompanied by repetitive behavior, deficits in language and communication, and an inability to engage in reciprocal social interactions. ASD is among the most heritable disorders but is not a simple disorder with a singular pathology and has a rather complex etiology. It is interesting to note that perturbations in synaptic growth, development, and stability underlie a variety of neuropsychiatric disorders, including ASD, schizophrenia, epilepsy, and intellectual disability. Biological characterization of an increasing repertoire of synaptic mutants in various model organisms indicates synaptic dysfunction as causal in the pathophysiology of ASD. Our understanding of the genes and genetic pathways that contribute toward the formation, stabilization, and maintenance of functional synapses coupled with an in-depth phenotypic analysis of the cellular and behavioral characteristics is therefore essential to unraveling the pathogenesis of these disorders. In this review, we discuss the genetic aspects of ASD emphasizing on the well conserved set of genes and genetic pathways implicated in this disorder, many of which contribute to synapse assembly and maintenance across species. We also review how fundamental research using animal models is providing key insights into the various facets of human ASD.
Collapse
Affiliation(s)
- Swati Banerjee
- Department of Physiology, Center for Biomedical Neuroscience, School of Medicine, University of Texas Health Science Center San Antonio, TX, USA
| | - Maeveen Riordan
- Department of Physiology, Center for Biomedical Neuroscience, School of Medicine, University of Texas Health Science Center San Antonio, TX, USA
| | - Manzoor A Bhat
- Department of Physiology, Center for Biomedical Neuroscience, School of Medicine, University of Texas Health Science Center San Antonio, TX, USA
| |
Collapse
|
178
|
Jacobi A, Schmalz A, Bareyre FM. Abundant expression of guidance and synaptogenic molecules in the injured spinal cord. PLoS One 2014; 9:e88449. [PMID: 24523897 PMCID: PMC3921160 DOI: 10.1371/journal.pone.0088449] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 01/08/2014] [Indexed: 11/18/2022] Open
Abstract
Background Spinal interneurons have emerged as crucial targets of supraspinal input during post-injury axonal remodelling. For example, lesioned corticospinal projections use propriospinal neurons as relay stations to form intraspinal detour circuits that circumvent the lesion site and contribute to functional recovery. While a number of the molecules that determine the formation of neuronal circuits in the developing nervous system have been identified, it is much less understood which of these cues are also expressed in the injured spinal cord and can thus guide growing collaterals and initiate synaptogenesis during circuit remodelling. Methodology/Principal Findings To address this question we characterized the expression profile of a number of guidance and synaptogenic molecules in the cervical spinal cord of healthy and spinal cord-injured mice by in situ hybridization. To assign the expression of these molecules to distinct populations of interneurons we labeled short and long propriospinal neurons by retrograde tracing and glycinergic neurons using a transgenically expressed fluorescent protein. Interestingly, we found that most of the molecules studied including members of slit-, semaphorin-, synCAM-, neuroligin- and ephrin- families as well as their receptors are also present in the adult CNS. While many of these molecules were abundantly expressed in all interneurons examined, some molecules including slits, semaphorin 7a, synCAM4 and neuroligin 1 showed preferential expression in propriospinal interneurons. Overall the expression pattern of guidance and synaptogenic molecules in the cervical spinal cord appeared to be stable over time and was not substantially altered following a midthoracic spinal cord injury. Conclusions Taken together, our study indicates that many of the guidance and synaptogenic cues that regulate neuronal circuit formation in development are also present in the adult CNS and therefore likely contribute to the remodelling of axonal connections in the injured spinal cord.
Collapse
Affiliation(s)
- Anne Jacobi
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians University Munich, Munich, Germany
| | - Anja Schmalz
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians University Munich, Munich, Germany
| | - Florence M. Bareyre
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians University Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- * E-mail:
| |
Collapse
|
179
|
The neuroligins and their ligands: from structure to function at the synapse. J Mol Neurosci 2014; 53:387-96. [PMID: 24497299 DOI: 10.1007/s12031-014-0234-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 01/10/2014] [Indexed: 10/25/2022]
Abstract
The neuroligins are cell adhesion proteins whose extracellular domain belongs to the α/β-hydrolase fold family of proteins, mainly containing enzymes and exemplified by acetylcholinesterase. The ectodomain of postsynaptic neuroligins interacts through a calcium ion with the ectodomain of presynaptic neurexins to form flexible trans-synaptic associations characterized by selectivity for neuroligin or neurexin subtypes. This heterophilic interaction, essential for synaptic differentiation, maturation, and maintenance, is regulated by gene selection, alternative mRNA splicing, and posttranslational modifications. Mutations leading to deficiencies in the expression, folding, maturation, and binding properties of either partner are associated with autism spectrum disorders. The currently available structural and functional data illustrate how these two families of cell adhesion molecules bridge the synaptic cleft to participate in synapse plasticity and support its dynamic nature. Neuroligin partners distinct from the neurexins, and which may undergo either trans or cis interaction, have also been described, and tridimensional structures of some of them are available. Our study emphasizes the partnership versatility of the neuroligin ectodomain associated with molecular flexibility and alternative binding sites, proposes homology models of the structurally non-characterized neuroligin partners, and exemplifies the large structural variability at the surface of the α/β-hydrolase fold subunit. This study also provides new insights into possible surface binding sites associated with non-catalytic properties of the acetylcholinesterase subunit.
Collapse
|
180
|
Haron MH, Khan IA, Dasmahapatra AK. Developmental regulation of neuroligin genes in Japanese ricefish (Oryzias latipes) embryogenesis maintains the rhythm during ethanol-induced fetal alcohol spectrum disorder. Comp Biochem Physiol C Toxicol Pharmacol 2014; 159:62-8. [PMID: 24126235 DOI: 10.1016/j.cbpc.2013.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/03/2013] [Accepted: 10/05/2013] [Indexed: 11/30/2022]
Abstract
Although prenatal alcohol exposure is the potential cause of fetal alcohol spectrum disorder (FASD) in humans, the molecular mechanism(s) of FASD is yet unknown. We have used Japanese ricefish (Oryzias latipes) embryogenesis as an animal model of FASD and reported that this model has effectively generated several phenotypic features in the cardiovasculature and neurocranial cartilages by developmental ethanol exposure which is analogous to human FASD phenotypes. As FASD is a neurobehavioral disorder, we are searching for a molecular target of ethanol that alters neurological functions. In this communication, we have focused on neuroligin genes (nlgn) which are known to be active at the postsynaptic side of both excitatory and inhibitory synapses of the central nervous system. There are six human NLGN homologs of Japanese ricefish reported in public data bases. We have partially cloned these genes and analyzed their expression pattern during normal development and also after exposing the embryos to ethanol. Our data indicate that the expression of all six nlgn genes in Japanese ricefish embryos is developmentally regulated. Although ethanol is able to induce developmental abnormalities in Japanese ricefish embryogenesis comparable to the FASD phenotypes, quantitative real-time PCR (qPCR) analysis of nlgn mRNAs indicate unresponsiveness of these genes to ethanol. We conclude that the disruption of the developmental rhythm of Japanese ricefish embryogenesis by ethanol that leads to FASD may not affect the nlgn gene expression at the message level.
Collapse
Affiliation(s)
- Mona H Haron
- Department of Pharmacology, University of Mississippi, University, MS 38677, USA
| | | | | |
Collapse
|
181
|
Zaghlool A, Ameur A, Cavelier L, Feuk L. Splicing in the human brain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 116:95-125. [PMID: 25172473 DOI: 10.1016/b978-0-12-801105-8.00005-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It has become increasingly clear over the past decade that RNA has important functions in human cells beyond its role as an intermediate translator of DNA to protein. It is now known that RNA plays highly specific roles in pathways involved in regulatory, structural, and catalytic functions. The complexity of RNA production and regulation has become evident with the advent of high-throughput methods to study the transcriptome. Deep sequencing has revealed an enormous diversity of RNA types and transcript isoforms in human cells. The transcriptome of the human brain is particularly interesting as it contains more expressed genes than other tissues and also displays an extreme diversity of transcript isoforms, indicating that highly complex regulatory pathways are present in the brain. Several of these regulatory proteins are now identified, including RNA-binding proteins that are neuron specific. RNA-binding proteins also play important roles in regulating the splicing process and the temporal and spatial isoform production. While significant progress has been made in understanding the human transcriptome, many questions still remain regarding the basic mechanisms of splicing and subcellular localization of RNA. A long-standing question is to what extent the splicing of pre-mRNA is cotranscriptional and posttranscriptional, respectively. Recent data, including studies of the human brain, indicate that splicing is primarily cotranscriptional in human cells. This chapter describes the current understanding of splicing and splicing regulation in the human brain and discusses the recent global sequence-based analyses of transcription and splicing.
Collapse
Affiliation(s)
- Ammar Zaghlool
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Adam Ameur
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lucia Cavelier
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Uppsala University Hospital, Uppsala, Sweden
| | - Lars Feuk
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
182
|
Bemben MA, Shipman SL, Hirai T, Herring BE, Li Y, Badger JD, Nicoll RA, Diamond JS, Roche KW. CaMKII phosphorylation of neuroligin-1 regulates excitatory synapses. Nat Neurosci 2013; 17:56-64. [PMID: 24336150 DOI: 10.1038/nn.3601] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 11/14/2013] [Indexed: 12/11/2022]
Abstract
Neuroligins are postsynaptic cell adhesion molecules that are important for synaptic function through their trans-synaptic interaction with neurexins (NRXNs). The localization and synaptic effects of neuroligin-1 (NL-1, also called NLGN1) are specific to excitatory synapses with the capacity to enhance excitatory synapses dependent on synaptic activity or Ca(2+)/calmodulin kinase II (CaMKII). Here we report that CaMKII robustly phosphorylates the intracellular domain of NL-1. We show that T739 is the dominant CaMKII site on NL-1 and is phosphorylated in response to synaptic activity in cultured rodent neurons and sensory experience in vivo. Furthermore, a phosphodeficient mutant (NL-1 T739A) reduces the basal and activity-driven surface expression of NL-1, leading to a reduction in neuroligin-mediated excitatory synaptic potentiation. To the best of our knowledge, our results are the first to demonstrate a direct functional interaction between CaMKII and NL-1, two primary components of excitatory synapses.
Collapse
Affiliation(s)
- Michael A Bemben
- 1] Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA. [2] Receptor Biology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Seth L Shipman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, USA
| | - Takaaki Hirai
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Bruce E Herring
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, USA
| | - Yan Li
- Protein/Peptide Sequencing Facility, NINDS, NIH, Bethesda, Maryland, USA
| | - John D Badger
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Roger A Nicoll
- 1] Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, USA. [2] Department of Physiology, University of California, San Francisco, San Francisco, California, USA
| | | | - Katherine W Roche
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
183
|
See K, Yadav P, Giegerich M, Cheong PS, Graf M, Vyas H, Lee SGP, Mathavan S, Fischer U, Sendtner M, Winkler C. SMN deficiency alters Nrxn2 expression and splicing in zebrafish and mouse models of spinal muscular atrophy. Hum Mol Genet 2013; 23:1754-70. [PMID: 24218366 DOI: 10.1093/hmg/ddt567] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a progressive neurodegenerative disease affecting lower motor neurons. SMA is caused by mutations in the Survival Motor Neuron 1 (SMN1) gene, which result in reduced levels of functional SMN protein. Biochemical studies have linked the ubiquitously expressed SMN protein to the assembly of pre-mRNA processing U snRNPs, raising the possibility that aberrant splicing is a major defect in SMA. Accordingly, several transcripts affected upon SMN deficiency have been reported. A second function for SMN in axonal mRNA transport has also been proposed that may likewise contribute to the SMA phenotype. The underlying etiology of SMA, however, is still not fully understood. Here, we have used a combination of genomics and live Ca(2+) imaging to investigate the consequences of SMN deficiency in a zebrafish model of SMA. In a transcriptome analyses of SMN-deficient zebrafish, we identified neurexin2a (nrxn2a) as strongly down-regulated and displaying changes in alternative splicing patterns. Importantly, the knock-down of two distinct nrxn2a isoforms phenocopies SMN-deficient fish and results in a significant reduction of motor axon excitability. Interestingly, we observed altered expression and splicing of Nrxn2 also in motor neurons from the Smn(-/-);SMN2(+/+) mouse model of SMA, suggesting conservation of nrxn2 regulation by SMN in mammals. We propose that SMN deficiency affects splicing and abundance of nrxn2a. This may explain the pre-synaptic defects at neuromuscular endplates in SMA pathophysiology.
Collapse
Affiliation(s)
- Kelvin See
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Sindi IA, Tannenberg RK, Dodd PR. Role for the neurexin-neuroligin complex in Alzheimer's disease. Neurobiol Aging 2013; 35:746-56. [PMID: 24211009 DOI: 10.1016/j.neurobiolaging.2013.09.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 09/20/2013] [Accepted: 09/22/2013] [Indexed: 11/29/2022]
Abstract
Synaptic damage is a critical hallmark of Alzheimer's disease, and the best correlate with cognitive impairment ante mortem. Synapses, the loci of communication between neurons, are characterized by signature protein combinations arrayed at tightly apposed pre- and post-synaptic sites. The most widely studied trans-synaptic junctional complexes, which direct synaptogenesis and foster the maintenance and stability of the mature terminal, are conjunctions of presynaptic neurexins and postsynaptic neuroligins. Fluctuations in the levels of neuroligins and neurexins can sway the balance between excitatory and inhibitory neurotransmission in the brain, and could lead to damage of synapses and dendrites. This review summarizes current understanding of the roles of neurexins and neuroligins proteolytic processing in synaptic plasticity in the human brain, and outlines their possible roles in β-amyloid metabolism and function, which are central pathogenic events in Alzheimer's disease progression.
Collapse
Affiliation(s)
- Ikhlas A Sindi
- Centre for Psychiatry and Clinical Neuroscience, School of Medicine, The University of Queensland, Brisbane, Australia
| | - Rudolph K Tannenberg
- Centre for Psychiatry and Clinical Neuroscience, School of Medicine, The University of Queensland, Brisbane, Australia; School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Peter R Dodd
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
185
|
Delattre V, La Mendola D, Meystre J, Markram H, Markram K. Nlgn4 knockout induces network hypo-excitability in juvenile mouse somatosensory cortex in vitro. Sci Rep 2013; 3:2897. [PMID: 24104404 PMCID: PMC3793213 DOI: 10.1038/srep02897] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 09/04/2013] [Indexed: 11/09/2022] Open
Abstract
Neuroligins (Nlgns) are postsynaptic cell adhesion molecules that form transynaptic complexes with presynaptic neurexins and regulate synapse maturation and plasticity. We studied the impact of the loss of Nlgn4 on the excitatory and inhibitory circuits in somatosensory cortical slices of juvenile mice by electrically stimulating these circuits using a multi-electrode array and recording the synaptic input to single neurons using the patch-clamp technique. We detected a decreased network response to stimulation in both excitatory and inhibitory circuits of Nlgn4 knock-out animals as compared to wild-type controls, and a decreased excitation-inhibition ratio. These data indicate that Nlgn4 is involved in the regulation of excitatory and inhibitory circuits and contributes to a balanced circuit response to stimulation.
Collapse
Affiliation(s)
- V Delattre
- Laboratory of Neural Microcircuitry, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
186
|
Dysregulation of synaptic proteins, dendritic spine abnormalities and pathological plasticity of synapses as experience-dependent mediators of cognitive and psychiatric symptoms in Huntington’s disease. Neuroscience 2013; 251:66-74. [DOI: 10.1016/j.neuroscience.2012.05.043] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 05/11/2012] [Accepted: 05/16/2012] [Indexed: 11/23/2022]
|
187
|
Presynaptic neurexin-3 alternative splicing trans-synaptically controls postsynaptic AMPA receptor trafficking. Cell 2013; 154:75-88. [PMID: 23827676 DOI: 10.1016/j.cell.2013.05.060] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 04/26/2013] [Accepted: 05/29/2013] [Indexed: 12/28/2022]
Abstract
Neurexins are essential presynaptic cell adhesion molecules that are linked to schizophrenia and autism and are subject to extensive alternative splicing. Here, we used a genetic approach to test the physiological significance of neurexin alternative splicing. We generated knockin mice in which alternatively spliced sequence #4 (SS4) of neuexin-3 is constitutively included but can be selectively excised by cre-recombination. SS4 of neurexin-3 was chosen because it is highly regulated and controls neurexin binding to neuroligins, LRRTMs, and other ligands. Unexpectedly, constitutive inclusion of SS4 in presynaptic neurexin-3 decreased postsynaptic AMPA, but not NMDA receptor levels, and enhanced postsynaptic AMPA receptor endocytosis. Moreover, constitutive inclusion of SS4 in presynaptic neurexin-3 abrogated postsynaptic AMPA receptor recruitment during NMDA receptor-dependent LTP. These phenotypes were fully rescued by constitutive excision of SS4 in neurexin-3. Thus, alternative splicing of presynaptic neurexin-3 controls postsynaptic AMPA receptor trafficking, revealing an unanticipated alternative splicing mechanism for trans-synaptic regulation of synaptic strength and long-term plasticity.
Collapse
|
188
|
Gokce O, Südhof TC. Membrane-tethered monomeric neurexin LNS-domain triggers synapse formation. J Neurosci 2013; 33:14617-28. [PMID: 24005312 PMCID: PMC3761060 DOI: 10.1523/jneurosci.1232-13.2013] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 07/10/2013] [Accepted: 08/03/2013] [Indexed: 12/20/2022] Open
Abstract
Neurexins are presynaptic cell-adhesion molecules that bind to postsynaptic cell-adhesion molecules such as neuroligins and leucine-rich repeat transmembrane proteins (LRRTMs). When neuroligins or LRRTMs are expressed in a nonneuronal cell, cocultured neurons avidly form heterologous synapses onto that cell. Here we show that knockdown of all neurexins in cultured hippocampal mouse neurons did not impair synapse formation between neurons, but blocked heterologous synapse formation induced by neuroligin-1 or LRRTM2. Rescue experiments demonstrated that all neurexins tested restored heterologous synapse formation in neurexin-deficient neurons. Neurexin-deficient neurons exhibited a decrease in the levels of the PDZ-domain protein CASK (a calcium/calmodulin-activated serine/threonine kinase), which binds to neurexins, and mutation of the PDZ-domain binding sequence of neurexin-3β blocked its transport to the neuronal surface and impaired heterologous synapse formation. However, replacement of the C-terminal neurexin sequence with an unrelated PDZ-domain binding sequence that does not bind to CASK fully restored surface transport and heterologous synapse formation in neurexin-deficient neurons, suggesting that no particular PDZ-domain protein is essential for neurexin surface transport or heterologous synapse formation. Further mutagenesis revealed, moreover, that the entire neurexin cytoplasmic tail was dispensable for heterologous synapse formation in neurexin-deficient neurons, as long as the neurexin protein was transported to the neuronal cell surface. Furthermore, the single LNS-domain (for laminin/neurexin/sex hormone-binding globulin-domain) of neurexin-1β or neurexin-3β, when tethered to the presynaptic plasma membrane by a glycosylinositolphosphate anchor, was sufficient for rescuing heterologous synapse formation in neurexin-deficient neurons. Our data suggest that neurexins mediate heterologous synapse formation via an extracellular interaction with presynaptic and postsynaptic ligands without the need for signal transduction by the neurexin cytoplasmic tail.
Collapse
Affiliation(s)
- Ozgun Gokce
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University Medical School, Stanford, California 94305-5453
| | - Thomas C. Südhof
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University Medical School, Stanford, California 94305-5453
| |
Collapse
|
189
|
Runkel F, Rohlmann A, Reissner C, Brand SM, Missler M. Promoter-like sequences regulating transcriptional activity in neurexin and neuroligin genes. J Neurochem 2013; 127:36-47. [PMID: 23875667 PMCID: PMC3910144 DOI: 10.1111/jnc.12372] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/10/2013] [Accepted: 07/16/2013] [Indexed: 01/06/2023]
Abstract
Synapse function requires the cell-adhesion molecules neurexins (Nrxn) and neuroligins (Nlgn). Although these molecules are essential for neurotransmission and prefer distinct isoform combinations for interaction, little is known about their transcriptional regulation. Here, we started to explore this important aspect because expression of Nrxn1-3 and Nlgn1-3 genes is altered in mice lacking the transcriptional regulator methyl-CpG-binding protein2 (MeCP2). Since MeCP2 can bind to methylated CpG-dinucleotides and Nrxn/Nlgn contain CpG-islands, we tested genomic sequences for transcriptional activity in reporter gene assays. We found that their influence on transcription are differentially activating or inhibiting. As we observed an activity difference between heterologous and neuronal cell lines for distinct Nrxn1 and Nlgn2 sequences, we dissected their putative promoter regions. In both genes, we identify regions in exon1 that can induce transcription, in addition to the alternative transcriptional start points in exon2. While the 5′-regions of Nrxn1 and Nlgn2 contain two CpG-rich elements that show distinct methylation frequency and binding to MeCP2, other regions may act independently of this transcriptional regulator. These data provide first insights into regulatory sequences of Nrxn and Nlgn genes that may represent an important aspect of their function at synapses in health and disease.
Collapse
Affiliation(s)
- Fabian Runkel
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Münster, Germany
| | | | | | | | | |
Collapse
|
190
|
A new locus for familial temporal lobe epilepsy on chromosome 3q. Epilepsy Res 2013; 106:338-44. [PMID: 24021842 DOI: 10.1016/j.eplepsyres.2013.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 06/20/2013] [Accepted: 07/26/2013] [Indexed: 01/05/2023]
Abstract
BACKGROUND Temporal lobe epilepsy (TLE) is a common and heterogeneous focal epilepsy syndrome with a complex etiology, involving both environmental and genetic factors. Several familial forms of TLE have been described, including familial lateral TLE (FLTLE), familial mesial TLE (FMTLE) without hippocampal sclerosis, and FMTLE with hippocampal sclerosis. Mutations have been identified only in the leucine-rich, glioma-inactivated 1 (LGI1) gene on chromosome 10q22-q24 in FLTLE. Several loci have been mapped in families with FMTLE, but responsible genes have not been found. We report clinical evaluation in a large family with FMTLE and a new genetic locus. METHODS We conducted a genome-wide scan using 10cM-spaced microsatellite markers on a family with TLE. Seven individuals had TLE without antecedent FS; four other individuals had FS during childhood, but no subsequent epilepsy. Patients with TLE had infrequent simple partial, complex partial and secondarily generalized seizures that generally responded well to treatment. The proband had no hippocampal sclerosis. The mode of inheritance appeared to be autosomal dominant with incomplete penetrance. Linkage analysis was performed using the Genehunter software. Regions with LOD score>1 and those that were poorly informative in the first-pass scan were further genotyped. RESULTS Linkage was identified on chromosome 3q25-q26 in a 13cM region flanked by markers D3S1584 and D3S3520, with a peak LOD score of 3.23. This interval does not correspond to any previously known locus for familial epilepsy or FS. KCNAB1, encoding a voltage-gated, shaker-related potassium channel, and NLGN1, encoding a member of a family of neuronal cell surface protein were excluded as disease causing mutations. CONCLUSION We identified a novel locus for familial TLE with FS, providing additional evidence of the complexity and genetic heterogeneity of familial focal epilepsy.
Collapse
|
191
|
de Wit J, O'Sullivan ML, Savas JN, Condomitti G, Caccese MC, Vennekens KM, Yates JR, Ghosh A. Unbiased discovery of glypican as a receptor for LRRTM4 in regulating excitatory synapse development. Neuron 2013; 79:696-711. [PMID: 23911103 DOI: 10.1016/j.neuron.2013.06.049] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2013] [Indexed: 11/27/2022]
Abstract
Leucine-rich repeat (LRR) proteins have recently been identified as important regulators of synapse development and function, but for many LRR proteins the ligand-receptor interactions are not known. Here we identify the heparan sulfate (HS) proteoglycan glypican as a receptor for LRRTM4 using an unbiased proteomics-based approach. Glypican binds LRRTM4, but not LRRTM2, in an HS-dependent manner. Glypican 4 (GPC4) and LRRTM4 localize to the pre- and postsynaptic membranes of excitatory synapses, respectively. Consistent with a trans-synaptic interaction, LRRTM4 triggers GPC4 clustering in contacting axons and GPC4 induces clustering of LRRTM4 in contacting dendrites in an HS-dependent manner. LRRTM4 positively regulates excitatory synapse development in cultured neurons and in vivo, and the synaptogenic activity of LRRTM4 requires the presence of HS on the neuronal surface. Our results identify glypican as an LRRTM4 receptor and indicate that a trans-synaptic glypican-LRRTM4 interaction regulates excitatory synapse development.
Collapse
Affiliation(s)
- Joris de Wit
- Neurobiology Section, Division of Biology, University of California San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | | | | | | | |
Collapse
|
192
|
Dolique T, Favereaux A, Roca-Lapirot O, Roques V, Léger C, Landry M, Nagy F. Unexpected association of the "inhibitory" neuroligin 2 with excitatory PSD95 in neuropathic pain. Pain 2013; 154:2529-2546. [PMID: 23891900 DOI: 10.1016/j.pain.2013.07.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 07/02/2013] [Accepted: 07/22/2013] [Indexed: 11/15/2022]
Abstract
In the spinal nerve ligation (SNL) model of neuropathic pain, synaptic plasticity shifts the excitation/inhibition balance toward excitation in the spinal dorsal horn. We investigated the deregulation of the synaptogenic neuroligin (NL) molecules, whose NL1 and NL2 isoforms are primarily encountered at excitatory and inhibitory synapses, respectively. In the dorsal horn of SNL rats, NL2 was overexpressed whereas NL1 remained unchanged. In control animals, intrathecal injections of small interfering RNA (siRNA) targeting NL2 increased mechanical sensitivity, which confirmed the association of NL2 with inhibition. By contrast, siRNA application produced antinociceptive effects in SNL rats. Regarding NL partners, expression of the excitatory postsynaptic scaffolding protein PSD95 unexpectedly covaried with NL2 overexpression, and NL2/PSD95 protein interaction and colocalization increased. Expression of the inhibitory scaffolding protein gephyrin remained unchanged, indicating a partial change in NL2 postsynaptic partners in SNL rats. This phenomenon appears to be specific to the NL2(-) isoform. Our data showed unexpected upregulation and pronociceptive effects of the "inhibitory" NL2 in neuropathic pain, suggesting a functional shift of NL2 from inhibition to excitation that changed the synaptic ratio toward higher excitation.
Collapse
Affiliation(s)
- Tiphaine Dolique
- CNRS, UMR5297, IINS, F-33077 Bordeaux, France Université de Bordeaux, F-33077 Bordeaux, France Inserm, U862, Neurocentre Magendie, F-33077 Bordeaux, France Molecular Biology of Neural Development, Institut de Recherches Cliniques de Montréal (IRCM), QC H2W 1R7, Canada
| | | | | | | | | | | | | |
Collapse
|
193
|
Bhat HF, Adams ME, Khanday FA. Syntrophin proteins as Santa Claus: role(s) in cell signal transduction. Cell Mol Life Sci 2013; 70:2533-54. [PMID: 23263165 PMCID: PMC11113789 DOI: 10.1007/s00018-012-1233-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 11/21/2012] [Accepted: 12/03/2012] [Indexed: 11/30/2022]
Abstract
Syntrophins are a family of cytoplasmic membrane-associated adaptor proteins, characterized by the presence of a unique domain organization comprised of a C-terminal syntrophin unique (SU) domain and an N-terminal pleckstrin homology (PH) domain that is split by insertion of a PDZ domain. Syntrophins have been recognized as an important component of many signaling events, and they seem to function more like the cell's own personal 'Santa Claus' that serves to 'gift' various signaling complexes with precise proteins that they 'wish for', and at the same time care enough for the spatial, temporal control of these signaling events, maintaining overall smooth functioning and general happiness of the cell. Syntrophins not only associate various ion channels and signaling proteins to the dystrophin-associated protein complex (DAPC), via a direct interaction with dystrophin protein but also serve as a link between the extracellular matrix and the intracellular downstream targets and cell cytoskeleton by interacting with F-actin. They play an important role in regulating the postsynaptic signal transduction, sarcolemmal localization of nNOS, EphA4 signaling at the neuromuscular junction, and G-protein mediated signaling. In our previous work, we reported a differential expression pattern of alpha-1-syntrophin (SNTA1) protein in esophageal and breast carcinomas. Implicated in several other pathologies, like cardiac dys-functioning, muscular dystrophies, diabetes, etc., these proteins provide a lot of scope for further studies. The present review focuses on the role of syntrophins in membrane targeting and regulation of cellular proteins, while highlighting their relevance in possible development and/or progression of pathologies including cancer which we have recently demonstrated.
Collapse
Affiliation(s)
- Hina F Bhat
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India.
| | | | | |
Collapse
|
194
|
Grayton HM, Missler M, Collier DA, Fernandes C. Altered social behaviours in neurexin 1α knockout mice resemble core symptoms in neurodevelopmental disorders. PLoS One 2013; 8:e67114. [PMID: 23840597 PMCID: PMC3696036 DOI: 10.1371/journal.pone.0067114] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/16/2013] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Copy number variants have emerged as an important genomic cause of common, complex neurodevelopmental disorders. These usually change copy number of multiple genes, but deletions at 2p16.3, which have been associated with autism, schizophrenia and mental retardation, affect only the neurexin 1 gene, usually the alpha isoform. Previous analyses of neurexin 1α (Nrxn1α) knockout (KO) mouse as a model of these disorders have revealed impairments in synaptic transmission but failed to reveal defects in social behaviour, one of the core symptoms of autism. METHODS We performed a detailed investigation of the behavioural effects of Nrxn1α deletion in mice bred onto a pure genetic background (C57BL/6J) to gain a better understanding of its role in neurodevelopmental disorders. Wildtype, heterozygote and homozygote Nrxn1α KO male and female mice were tested in a battery of behavioural tests (n = 9-16 per genotype, per sex). RESULTS In homozygous Nrxn1α KO mice, we observed altered social approach, reduced social investigation, and reduced locomotor activity in novel environments. In addition, male Nrxn1α KO mice demonstrated an increase in aggressive behaviours. CONCLUSIONS These are the first experimental data that associate a deletion of Nrxn1α with alterations of social behaviour in mice. Since this represents one of the core symptom domains affected in autism spectrum disorders and schizophrenia in humans, our findings suggest that deletions within NRXN1 found in patients may be responsible for the impairments seen in social behaviours, and that the Nrxn1α KO mice are a useful model of human neurodevelopmental disorder.
Collapse
Affiliation(s)
- Hannah Mary Grayton
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, De Crespigny Park, London, United Kingdom
| | - Markus Missler
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Münster, Germany
| | - David Andrew Collier
- Discovery Neuroscience Research, Eli Lilly and Company Ltd, Erl Wood, Windlesham, Surrey, United Kingdom
| | - Cathy Fernandes
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, De Crespigny Park, London, United Kingdom
| |
Collapse
|
195
|
Persico AM, Napolioni V. Autism genetics. Behav Brain Res 2013; 251:95-112. [PMID: 23769996 DOI: 10.1016/j.bbr.2013.06.012] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 06/03/2013] [Accepted: 06/04/2013] [Indexed: 12/22/2022]
Abstract
Autism spectrum disorder (ASD) is a severe neuropsychiatric disease with strong genetic underpinnings. However, genetic contributions to autism are extremely heterogeneous, with many different loci underlying the disease to a different extent in different individuals. Moreover, the phenotypic expression (i.e., "penetrance") of these genetic components is also highly variable, ranging from fully penetrant point mutations to polygenic forms with multiple gene-gene and gene-environment interactions. Furthermore, many genes involved in ASD are also involved in intellectual disability, further underscoring their lack of specificity in phenotypic expression. We shall hereby review current knowledge on the genetic basis of ASD, spanning genetic/genomic syndromes associated with autism, monogenic forms due to copy number variants (CNVs) or rare point mutations, mitochondrial forms, and polygenic autisms. Finally, the recent contributions of genome-wide association and whole exome sequencing studies will be highlighted.
Collapse
Affiliation(s)
- Antonio M Persico
- Child and Adolescent Neuropsychiatry Unit, University Campus Bio-Medico, Rome, Italy.
| | | |
Collapse
|
196
|
Bringas M, Carvajal-Flores F, López-Ramírez T, Atzori M, Flores G. Rearrangement of the dendritic morphology in limbic regions and altered exploratory behavior in a rat model of autism spectrum disorder. Neuroscience 2013; 241:170-87. [DOI: 10.1016/j.neuroscience.2013.03.030] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/25/2013] [Accepted: 03/15/2013] [Indexed: 12/30/2022]
|
197
|
Calahorro F, Ruiz-Rubio M. Human alpha- and beta-NRXN1 isoforms rescue behavioral impairments of Caenorhabditis elegans neurexin-deficient mutants. GENES BRAIN AND BEHAVIOR 2013; 12:453-64. [PMID: 23638761 DOI: 10.1111/gbb.12046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 03/08/2013] [Accepted: 04/27/2013] [Indexed: 11/30/2022]
Abstract
Neurexins are cell adhesion proteins that interact with neuroligin and other ligands at the synapse. In humans, mutations in neurexin or neuroligin genes have been associated with autism and other mental disorders. The human neurexin and neuroligin genes are orthologous to the Caenorhabditis elegans genes nrx-1 and nlg-1, respectively. Here we show that nrx-1-deficient mutants are defective in exploratory capacity, sinusoidal postural movements and gentle touch response. Interestingly, the exploratory behavioral phenotype observed in nrx-1 mutants was markedly different to nlg-1-deficient mutants; thus, while the former had a 'hyper-reversal' phenotype increasing the number of changes of direction with respect to the wild-type strain, the nlg-1 mutants presented a 'hypo-reversal' phenotype. On the other hand, the nrx-1- and nlg-1-defective mutants showed similar abnormal sinusoidal postural movement phenotypes. The response of these mutant strains to aldicarb (acetylcholinesterase inhibitor), levamisole (ACh agonist) and pentylenetetrazole [gamma-aminobutyric (GABA) receptor antagonist], suggested that the varying behavioral phenotypes were caused by defects in ACh and/or GABA inputs. The defective behavioral phenotypes of nrx-1-deficient mutants were rescued in transgenic strains expressing either human alpha- or beta-NRXN-1 isoforms under the worm nrx-1 promoter. A previous report had shown that human and rat neuroligins were functional in C. elegans. Together, these results suggest that the functional mechanism underpinning both neuroligin and neurexin in the nematode are comparable to human. In this sense the nematode might constitute a simple in vivo model for understanding basic mechanisms involved in neurological diseases for which neuroligin and neurexin are implicated in having a role.
Collapse
Affiliation(s)
- F Calahorro
- Departameto de Genética, Universidad de Córdoba, Córdoba, Spain
| | | |
Collapse
|
198
|
Curran S, Ahn JW, Grayton H, Collier DA, Ogilvie CM. NRXN1 deletions identified by array comparative genome hybridisation in a clinical case series - further understanding of the relevance of NRXN1 to neurodevelopmental disorders. J Mol Psychiatry 2013; 1:4. [PMID: 25408897 PMCID: PMC4223877 DOI: 10.1186/2049-9256-1-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 11/29/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Microdeletions in the NRXN1 gene have been associated with a range of neurodevelopmental disorders, including autism spectrum disorders, schizophrenia, intellectual disability, speech and language delay, epilepsy and hypotonia. RESULTS In the present study we performed array CGH analysis on 10,397 individuals referred for diagnostic cytogenetic analysis, using a custom oligonucleotide array, which included 215 NRXN1 probes (median spacing 4.9 kb). We found 34 NRXN1 deletions (0.33% of referrals) ranging from 9 to 942 kb in size, of which 18 were exonic (0.17%). Three deletions affected exons also in the beta isoform of NRXN1. No duplications were found. Patients had a range of phenotypes including developmental delay, learning difficulties, attention deficit hyperactivity disorder (ADHD), autism, speech delay, social communication difficulties, epilepsy, behaviour problems and microcephaly. Five patients who had deletions in NRXN1 had a second CNV implicated in neurodevelopmental disorder: a CNTNAP2 and CSMD3 deletion in patients with exonic NRXN1 deletions, and a Williams-Beuren syndrome deletion and two 22q11.2 duplications in patients with intronic NRXN1 deletions. CONCLUSIONS Exonic deletions in the NRXN1 gene, predominantly affecting the alpha isoform, were found in patients with a range of neurodevelopmental disorders referred for diagnostic cytogenetic analysis. The targeting of dense oligonucleotide probes to the NRXN1 locus on array comparative hybridisation platforms provides detailed characterisation of deletions in this gene, and is likely to add to understanding of the importance of NRXN1 in neural development.
Collapse
Affiliation(s)
- Sarah Curran
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Kings College London, De Crespigny Park, Denmark Hill, London, SE5 8AF UK
| | - Joo Wook Ahn
- Cytogenetics Department, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Hannah Grayton
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, De Crespigny Park, Denmark Hill, London, SE5 8AF UK
| | - David A Collier
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, De Crespigny Park, Denmark Hill, London, SE5 8AF UK
| | | |
Collapse
|
199
|
Autism-associated neuroligin-3 mutations commonly disrupt tonic endocannabinoid signaling. Neuron 2013; 78:498-509. [PMID: 23583622 DOI: 10.1016/j.neuron.2013.02.036] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2013] [Indexed: 12/13/2022]
Abstract
Neuroligins are postsynaptic cell-adhesion molecules that interact with presynaptic neurexins. Rare mutations in neuroligins and neurexins predispose to autism, including a neuroligin-3 amino acid substitution (R451C) and a neuroligin-3 deletion. Previous analyses showed that neuroligin-3 R451C-knockin mice exhibit robust synaptic phenotypes but failed to uncover major changes in neuroligin-3 knockout mice, questioning the notion that a common synaptic mechanism mediates autism pathogenesis in patients with these mutations. Here, we used paired recordings in mice carrying these mutations to measure synaptic transmission at GABAergic synapses formed by hippocampal parvalbumin- and cholecystokinin-expressing basket cells onto pyramidal neurons. We demonstrate that in addition to unique gain-of-function effects produced by the neuroligin-3 R451C-knockin but not the neuroligin-3 knockout mutation, both mutations dramatically impaired tonic but not phasic endocannabinoid signaling. Our data thus suggest that neuroligin-3 is specifically required for tonic endocannabinoid signaling, raising the possibility that alterations in endocannabinoid signaling may contribute to autism pathophysiology.
Collapse
|
200
|
Yoshioka T, Hagiwara A, Hida Y, Ohtsuka T. Vangl2, the planar cell polarity protein, is complexed with postsynaptic density protein PSD-95 [corrected]. FEBS Lett 2013; 587:1453-9. [PMID: 23567299 DOI: 10.1016/j.febslet.2013.03.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/19/2013] [Accepted: 03/20/2013] [Indexed: 01/05/2023]
Abstract
Vangl is a component of the non-canonical Wnt/planar cell polarity pathway, which is implicated in various cell polarity functions. However, little is known about its synaptic localization in neurons. Here, we show that Vangl1 and Vangl2 are expressed in adult rat neurons, where they are tightly associated with the postsynaptic density (PSD) fraction. Vangl2 forms a complex with PSD-95 through direct binding. Furthermore, the C-terminal PDZ-binding motif of Vangl2 is required for localization to dendritic spines. These results suggest that Vangl2 is a new component of the PSD that forms a complex with PSD-95 in the adult brain.
Collapse
Affiliation(s)
- Toshinori Yoshioka
- Department of Biochemistry, Faculty of Medicine/Graduate School of Medicine, University of Yamanashi, Japan
| | | | | | | |
Collapse
|