151
|
Lee SJ, Hwang SO, Noh EJ, Kim DU, Nam M, Kim JH, Nam JH, Hoe KL. Transactivation of bad by vorinostat-induced acetylated p53 enhances doxorubicin-induced cytotoxicity in cervical cancer cells. Exp Mol Med 2014; 46:e76. [PMID: 24525822 PMCID: PMC3944441 DOI: 10.1038/emm.2013.149] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 10/24/2013] [Accepted: 10/25/2013] [Indexed: 01/22/2023] Open
Abstract
Vorinostat (VOR) has been reported to enhance the cytotoxic effects of doxorubicin (DOX) with fewer side effects because of the lower DOX dosage in breast cancer cells. In this study, we investigated the novel mechanism underlying the synergistic cytotoxic effects of VOR and DOX co-treatment in cervical cancer cells HeLa, CaSki and SiHa cells. Co-treatment with VOR and DOX at marginal doses led to the induction of apoptosis through caspase-3 activation, poly (ADP-ribose) polymerase cleavage and DNA micronuclei. Notably, the synergistic growth inhibition induced by the co-treatment was attributed to the upregulation of the pro-apoptotic protein Bad, as the silencing of Bad expression using small interfering RNA (siRNA) abolished the phenomenon. As siRNA against p53 did not result in an increase in acetylated p53 and the consequent upregulation of Bad, the observed Bad upregulation was mediated by acetylated p53. Moreover, a chromatin immunoprecipitation analysis showed that the co-treatment of HeLa cells with VOR and DOX increased the recruitment of acetylated p53 to the bad promoter, with consequent bad transactivation. Conversely, C33A cervical cancer cells containing mutant p53 co-treated with VOR and DOX did not exhibit Bad upregulation, acetylated p53 induction or consequent synergistic growth inhibition. Together, the synergistic growth inhibition of cervical cancer cell lines induced by co-treatment with VOR and DOX can be attributed to the upregulation of Bad, which is induced by acetylated p53. These results show for the first time that the acetylation of p53, rather than histones, is a mechanism for the synergistic growth inhibition induced by VOR and DOX co-treatments.
Collapse
Affiliation(s)
- Sook-Jeong Lee
- Department of New Drug Discovery and Development, Chungnam National University, Daejeon, Republic of Korea
| | - Sung-Ook Hwang
- Department of Obstetrics and Gynecology, Inha University Hospital, Incheon, Republic of Korea
| | - Eun Joo Noh
- Department of New Drug Discovery and Development, Chungnam National University, Daejeon, Republic of Korea
| | - Dong-Uk Kim
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Miyoung Nam
- Department of New Drug Discovery and Development, Chungnam National University, Daejeon, Republic of Korea
| | - Jong Hyeok Kim
- Department of Obstetrics and Gynecology, Asan Medical Center, Seoul, Republic of Korea
| | - Joo Hyun Nam
- Department of Obstetrics and Gynecology, Asan Medical Center, Seoul, Republic of Korea
| | - Kwang-Lae Hoe
- Department of New Drug Discovery and Development, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
152
|
Park MY, Jeong YJ, Kang GC, Kim MH, Kim SH, Chung HJ, Jung JY, Kim WJ. Nitric oxide-induced apoptosis of human dental pulp cells is mediated by the mitochondria-dependent pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 18:25-32. [PMID: 24634593 PMCID: PMC3951820 DOI: 10.4196/kjpp.2014.18.1.25] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 12/13/2013] [Accepted: 01/08/2014] [Indexed: 01/06/2023]
Abstract
Nitric oxide (NO) is recognized as a mediator and regulator of inflammatory responses. NO is produced by nitric oxide synthase (NOS), and NOS is abundantly expressed in the human dental pulp cells (HDPCs). NO produced by NOS can be cytotoxic at higher concentrations to HDPCs. However, the mechanism by which this cytotoxic pathway is activated in cells exposed to NO is not known. The purpose of this study was to elucidate the NO-induced cytotoxic mechanism in HDPCs. Sodium nitroprusside (SNP), a NO donor, reduced the viability of HDPCs in a dose- and time-dependent manner. We investigated the in vitro effects of nitric oxide on apoptosis of cultured HDPCs. Cells showed typical apoptotic morphology after exposure to SNP. Besides, the number of Annexin V positive cells was increased among the SNP-treated HDPCs. SNP enhanced the production of reactive oxygen species (ROS), and N-acetylcysteine (NAC) ameliorated the decrement of cell viability induced by SNP. However, a soluble guanylate cyclase inhibitor (ODQ) did not inhibited the decrement of cell viability induced by SNP. SNP increased cytochrome c release from the mitochondria to the cytosol and the ratio of Bax/Bcl-2 expression levels. Moreover, SNP-treated HDPCs elevated activities of caspase-3 and caspase-9. While pretreatment with inhibitors of caspase (z-VAD-fmk, z-DEVD-fmk) reversed the NO-induced apoptosis of HDPCs. From these results, it can be suggested that NO induces apoptosis of HDPCs through the mitochondria-dependent pathway mediated by ROS and Bcl-2 family, but not by the cyclic GMP pathway.
Collapse
Affiliation(s)
- Min Young Park
- Dental Science Research Institute and Medical Research Center for Biomineralization Disorders, Department of Oral Physiology, School of Dentistry, Chonnam National University, Gwangju 500-757, Korea
| | - Yeon Jin Jeong
- Dental Science Research Institute and Medical Research Center for Biomineralization Disorders, Department of Oral Physiology, School of Dentistry, Chonnam National University, Gwangju 500-757, Korea
| | - Gi Chang Kang
- Dental Science Research Institute and Medical Research Center for Biomineralization Disorders, Department of Oral Physiology, School of Dentistry, Chonnam National University, Gwangju 500-757, Korea
| | - Mi-Hwa Kim
- Dental Science Research Institute and Medical Research Center for Biomineralization Disorders, Department of Oral Physiology, School of Dentistry, Chonnam National University, Gwangju 500-757, Korea
| | - Sun Hun Kim
- Dental Science Research Institute and Medical Research Center for Biomineralization Disorders, Department of Oral Anatomy, School of Dentistry, Chonnam National University, Gwangju 500-757, Korea
| | - Hyun-Ju Chung
- Dental Science Research Institute and Medical Research Center for Biomineralization Disorders, Department of Periodontology, School of Dentistry, Chonnam National University, Gwangju 500-757, Korea
| | - Ji Yeon Jung
- Dental Science Research Institute and Medical Research Center for Biomineralization Disorders, Department of Oral Physiology, School of Dentistry, Chonnam National University, Gwangju 500-757, Korea
| | - Won Jae Kim
- Dental Science Research Institute and Medical Research Center for Biomineralization Disorders, Department of Oral Physiology, School of Dentistry, Chonnam National University, Gwangju 500-757, Korea
| |
Collapse
|
153
|
Aligo J, Walker M, Bugelski P, Weinstock D. Is murine gammaherpesvirus-68 (MHV-68) a suitable immunotoxicological model for examining immunomodulatory drug-associated viral recrudescence? J Immunotoxicol 2014; 12:1-15. [PMID: 24512328 DOI: 10.3109/1547691x.2014.882996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Immunosuppressive agents are used for treatment of a variety of autoimmune diseases including rheumatoid arthritis (RA), systemic lupus erythematosis (SLE), and psoriasis, as well as for prevention of tissue rejection after organ transplantation. Recrudescence of herpesvirus infections, and increased risk of carcinogenesis from herpesvirus-associated tumors are related with immunosuppressive therapy in humans. Post-transplant lymphoproliferative disorder (PTLD), a condition characterized by development of Epstein Barr Virus (EBV)-associated B-lymphocyte lymphoma, and Kaposi's Sarcoma (KS), a dermal tumor associated with Kaposi Sarcoma-associated virus (KSHV), may develop in solid organ transplant patients. KS also occurs in immunosuppressed Acquired Immunodeficiency (AIDS) patients. Kaposi Sarcoma-associated virus (KSHV) is a herpes virus genetically related to EBV. Murine gammaherpes-virus-68 (MHV-68) is proposed as a mouse model of gammaherpesvirus infection and recrudescence and may potentially have relevance for herpesvirus-associated neoplasia. The pathogenesis of MHV-68 infection in mice mimics EBV/KSHV infection in humans with acute lytic viral replication followed by dissemination and establishment of persistent latency. MHV-68-infected mice may develop lymphoproliferative disease that is accelerated by disruption of the immune system. This manuscript first presents an overview of gammaherpesvirus pathogenesis and immunology as well as factors involved in viral recrudescence. A description of different types of immunodeficiency then follows, with particular focus on viral association with lymphomagenesis after immunosuppression. Finally, this review discusses different gammaherpesvirus animal models and describes a proposed MHV-68 model to further examine the interplay of immunomodulatory agents and gammaherpesvirus-associated neoplasia.
Collapse
Affiliation(s)
- Jason Aligo
- Biologics Toxicology, Janssen Research and Development, LLC , Spring House, PA , USA
| | | | | | | |
Collapse
|
154
|
Trang KTT, Kim SL, Park SB, Seo SY, Choi CH, Park JK, Moon JC, Lee ST, Kim SW. Parthenolide Sensitizes Human Colorectal Cancer Cells to Tumor Necrosis Factor-related Apoptosis-inducing Ligand through Mitochondrial and Caspase Dependent Pathway. Intest Res 2014; 12:34-41. [PMID: 25349561 PMCID: PMC4204686 DOI: 10.5217/ir.2014.12.1.34] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 10/22/2013] [Accepted: 10/22/2013] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND/AIMS Combination therapy utilizing tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) in conjunction with other anticancer agents, is a promising strategy to overcome TRAIL resistance in malignant cells. Recently, parthenolide (PT) has proved to be a promising anticancer agent, and several studies have explored its use in combination therapy. Here, we investigated the molecular mechanisms by which PT sensitizes colorectal cancer (CRC) cells to TRAIL-induced apoptosis. METHODS HT-29 cells (TRAIL-resistant) were treated with PT and/or TRAIL for 24 hours. The inhibitory effect on proliferation was detected using the 3-(4, 5-dimethylthiazol-2yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Annexin V staining, cell cycle analysis, and Hoechst 33258 staining were used to assess apoptotic cell death. Activation of an apoptotic pathway was confirmed by Western blot. RESULTS Treatment with TRAIL alone inhibited the proliferation of HCT 116 cells in a dose-dependent manner, whereas proliferation was not affected in HT-29 cells. Combination PT and TRAIL treatment significantly inhibited cell growth and induced apoptosis of HT-29 cells. We observed that the synergistic effect was associated with misregulation of B-cell lymphoma 2 (Bcl-2) family members, release of cytochrome C to the cytosol, activation of caspases, and increased levels of p53. CONCLUSION Combination therapy using PT and TRAIL might offer an effetive strategy to overcome TRAIL resistance in certain CRC cells.
Collapse
Affiliation(s)
- Kieu Thi Thu Trang
- Department of Internal Medicine, Biomedical Research Institute, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea. ; Research Institute of Clinical Medicine, Biomedical Research Institute, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| | - Se-Lim Kim
- Department of Internal Medicine, Biomedical Research Institute, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea. ; Research Institute of Clinical Medicine, Biomedical Research Institute, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| | - Sang-Bae Park
- Department of Internal Medicine, Biomedical Research Institute, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| | - Seung-Young Seo
- Department of Internal Medicine, Biomedical Research Institute, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| | - Chung-Hwan Choi
- Department of Internal Medicine, Biomedical Research Institute, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| | - Jin-Kyoung Park
- Department of Internal Medicine, Biomedical Research Institute, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| | - Jin-Chang Moon
- Department of Internal Medicine, Biomedical Research Institute, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| | - Soo-Teik Lee
- Department of Internal Medicine, Biomedical Research Institute, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea. ; Research Institute of Clinical Medicine, Biomedical Research Institute, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| | - Sang-Wook Kim
- Department of Internal Medicine, Biomedical Research Institute, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea. ; Research Institute of Clinical Medicine, Biomedical Research Institute, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| |
Collapse
|
155
|
Structural proteins of Kaposi's sarcoma-associated herpesvirus antagonize p53-mediated apoptosis. Oncogene 2014; 34:639-49. [PMID: 24469037 DOI: 10.1038/onc.2013.595] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 11/15/2013] [Accepted: 12/13/2013] [Indexed: 01/10/2023]
Abstract
The tumor suppressor p53 is a central regulatory molecule of apoptosis and is commonly mutated in tumors. Kaposi's sarcoma-associated herpesvirus (KSHV)-related malignancies express wild-type p53. Accordingly, KSHV encodes proteins that counteract the cell death-inducing effects of p53. Here, the effects of all KSHV genes on the p53 signaling pathway were systematically analyzed using the reversely transfected cell microarray technology. With this approach we detected eight KSHV-encoded genes with potent p53 inhibiting activity in addition to the previously described inhibitory effects of KSHV genes ORF50, K10 and K10.5. Interestingly, the three most potent newly identified inhibitors were KSHV structural proteins, namely ORF22 (glycoprotein H), ORF25 (major capsid protein) and ORF64 (tegument protein). Validation of these results with a classical transfection approach showed that these proteins inhibited p53 signaling in a dose-dependent manner and that this effect could be reversed by small interfering RNA-mediated knockdown of the respective viral gene. All three genes inhibited p53-mediated apoptosis in response to Nutlin-3 treatment in non-infected and KSHV-infected cells. Addressing putative mechanisms, we could show that these proteins could also inhibit the transactivation of the promoters of apoptotic mediators of p53 such as BAX and PIG3. Altogether, we demonstrate for the first time that structural proteins of KSHV can counteract p53-induced apoptosis. These proteins are expressed in the late lytic phase of the viral life cycle and are incorporated into the KSHV virion. Accordingly, these genes may inhibit cell death in the productive and in the early entrance phase of KSHV infection.
Collapse
|
156
|
Newton HB. Molecular neuro-oncology and the development of targeted therapeutic strategies for brain tumors Part 4: p53 signaling pathway. Expert Rev Anticancer Ther 2014; 5:177-91. [PMID: 15757449 DOI: 10.1586/14737140.5.1.177] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Brain tumors are a diverse group of malignancies that remain refractory to conventional treatment approaches. Molecular neuro-oncology has now begun to clarify the transformed phenotype of brain tumors and identify oncogenic pathways that might be amenable to targeted therapy. Loss of the tumor suppressor gene p53 and its encoded protein are the most common genetic events in human cancer and are a frequent occurrence in brain tumors. p53 functions as a transcription factor and is responsible for the transactivation and repression of key genes involved in cell growth, apoptosis and the cell cycle. Mutation of the p53 gene or dysfunction of its signaling pathway are early events in the transformation process of astrocytic gliomas. The majority of mutations are missense and occur in the conserved regions of the gene, within exons 5 through 8. Molecular therapeutic strategies to normalize p53 signaling in cells with mutant p53 include pharmacologic rescue of mutant protein, gene therapy approaches, small-molecule agonists of downstream inhibitory genes, antisense approaches and oncolytic viruses. Other strategies include activation of normal p53 activity, inhibition of mdm2-mediated degradation of p53 and blockade of p53 nuclear export. Further development of targeted therapies designed to restore or enhance p53 function, and evaluation of these new agents in clinical trials, will be needed to improve survival and quality of life for patients with brain tumors.
Collapse
Affiliation(s)
- Herbert B Newton
- Dardinger Neuro-Oncology Center, Department of Neurology, Ohio State University Hospitals, 465 Means Hall, 1654 Upham Drive, Columbus, OH 43210, USA.
| |
Collapse
|
157
|
Alteration of Bax/Bcl-2 ratio contributes to Terminalia belerica-induced apoptosis in human lung and breast carcinoma. In Vitro Cell Dev Biol Anim 2014; 50:527-37. [DOI: 10.1007/s11626-013-9726-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 12/16/2013] [Indexed: 01/11/2023]
|
158
|
Kraemer BR, Yoon SO, Carter BD. The biological functions and signaling mechanisms of the p75 neurotrophin receptor. Handb Exp Pharmacol 2014; 220:121-164. [PMID: 24668472 DOI: 10.1007/978-3-642-45106-5_6] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The p75 neurotrophin receptor (p75(NTR)) regulates a wide range of cellular functions, including programmed cell death, axonal growth and degeneration, cell proliferation, myelination, and synaptic plasticity. The multiplicity of cellular functions governed by the receptor arises from the variety of ligands and co-receptors which associate with p75(NTR) and regulate its signaling. P75(NTR) promotes survival through interactions with Trk receptors, inhibits axonal regeneration via partnerships with Nogo receptor (Nogo-R) and Lingo-1, and promotes apoptosis through association with Sortilin. Signals downstream of these interactions are further modulated through regulated intramembrane proteolysis (RIP) of p75(NTR) and by interactions with numerous cytosolic partners. In this chapter, we discuss the intricate signaling mechanisms of p75(NTR), emphasizing how these signals are differentially regulated to mediate these diverse cellular functions.
Collapse
Affiliation(s)
- B R Kraemer
- Department of Biochemistry, Vanderbilt University School of Medicine, 625 Light Hall, Nashville, TN, 37232, USA
| | | | | |
Collapse
|
159
|
Wentilactone A as a novel potential antitumor agent induces apoptosis and G2/M arrest of human lung carcinoma cells, and is mediated by HRas-GTP accumulation to excessively activate the Ras/Raf/ERK/p53-p21 pathway. Cell Death Dis 2013; 4:e952. [PMID: 24309939 PMCID: PMC3877555 DOI: 10.1038/cddis.2013.484] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/30/2013] [Accepted: 11/04/2013] [Indexed: 02/06/2023]
Abstract
Chemotherapy remains the common therapeutic for patients with lung cancer. Novel, selective antitumor agents are pressingly needed. This study is the first to investigate a different, however, effective antitumor drug candidate Wentilactone A (WA) for its development as a novel agent. In NCI-H460 and NCI-H446 cell lines, WA triggered G2/M phase arrest and mitochondrial-related apoptosis, accompanying the accumulation of reactive oxygen species (ROS). It also induced activation of mitogen-activated protein kinase and p53 and increased expression of p21. When we pre-treated cells with ERK, JNK, p38, p53 inhibitor or NAC followed by WA treatment, only ERK and p53 inhibitors blocked WA-induced apoptosis and G2/M arrest. We further observed Ras (HRas, KRas and NRas) and Raf activation, and found that WA treatment increased HRas–Raf activation. Knockdown of HRas by using small interfering RNA (siRNA) abolished WA-induced apoptosis and G2/M arrest. HRas siRNA also halted Raf, ERK, p53 activation and p21 accumulation. Molecular docking analysis suggested that WA could bind to HRas-GTP, causing accumulation of Ras-GTP and excessive activation of Raf/ERK/p53-p21. The direct binding affinity was confirmed by surface plasmon resonance (SPR). In vivo, WA suppressed tumor growth without adverse toxicity and presented the same mechanism as that in vitro. Taken together, these findings suggest WA as a promising novel, potent and selective antitumor drug candidate for lung cancer.
Collapse
|
160
|
Wang WL, Tao YP, Han XL, Li X, Zi YM, Yang C, Li JD. Role of polymorphisms in BCL-2 and BAX genes in modulating the risk of developing non-Hodgkin lymphoma. Leuk Lymphoma 2013; 55:1602-8. [PMID: 24024471 DOI: 10.3109/10428194.2013.842992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The aim of this study was to investigate whether polymorphisms of - 938C/A and Thr43Ala in the BCL-2 gene and G - 248A in the BAX gene are associated with the risk of developing non-Hodgkin lymphoma (NHL). We genotyped polymorphisms of - 938C/A and Thr43Ala in the BCL-2 gene and G-248A in the BAX gene among 424 patients with NHL and 446 controls. We found that the - 938AA genotype of the BCL2 gene was significantly associated with the risk of developing NHL (p < 0.001) and this genotype was associated with advanced stage (p = 0.01). Meanwhile, individuals having - 248AG + AA genotypes were significantly associated with an increased risk of NHL (p = 0.01), and these genotypes were associated with larger tumor size (p = 0.02). The present study demonstrated that the - 938AA genotype of the BCL-2 gene and - 248AG + AA genotype of the BAX gene may be susceptible genotypes for NHL. There appeared to be an impact of the BCL2 - 938AA genotype on advanced stage and - 248AG + AA genotypes on tumor size in NHL.
Collapse
|
161
|
Ahmed W, Khan G. The labyrinth of interactions of Epstein-Barr virus-encoded small RNAs. Rev Med Virol 2013; 24:3-14. [PMID: 24105992 DOI: 10.1002/rmv.1763] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/15/2013] [Accepted: 08/16/2013] [Indexed: 12/25/2022]
Abstract
Epstein-Barr Virus (EBV) is an oncogenic herpesvirus implicated in the pathogenesis of a number of human malignancies. However, the mechanism by which EBV leads to malignant transformation is not clear. A number of viral latent gene products, including non-protein coding small RNAs, are believed to be involved. Epstein-Barr virus-encoded RNA 1 (EBER1) and EBER2 are two such RNA molecules that are abundantly expressed (up to 10(7) copies) in all EBV-infected cells, but their function remains poorly understood. These polymerase III transcripts have extensive secondary structure and exist as ribonucleoproteins. An accumulating body of evidence suggests that EBERs play an important role, directly or indirectly, in EBV-induced oncogenesis. Here, we summarize the current understanding of the complex interactions of EBERs with various cellular factors and the potential pathways by which these small RNAs are able to influence EBV-infected cells to proliferate and to induce tumorigenesis. The exosome pathway is probably involved in the cellular excretion of EBERs and facilitating some of their biological effects.
Collapse
Affiliation(s)
- Waqar Ahmed
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | | |
Collapse
|
162
|
Khatun S, Chaube SK, Bhattacharyya CN. p53 activation and mitochondria-mediated pathway are involved during hanging death-induced neuronal cell apoptosis in dentate gyrus region of the rat brain. SPRINGERPLUS 2013; 2:407. [PMID: 24555164 PMCID: PMC3923921 DOI: 10.1186/2193-1801-2-407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 08/26/2013] [Indexed: 01/08/2023]
Abstract
The goal of this study was to understand the molecular event in the brain caused by hanging death (HD). Animals were subjected to either cervical dislocation (CD) or HD. Brain was collected at various times (0, 1, 3, 6 and 12 h) after death. Brain expression of p53 and Bax, cytochrome c concentration, caspases activity and DNA fragmentation were analyzed. Compared to that of CD, HD increased p53 and Bax proteins expressions, cytochrome c concentration, caspases activity and DNA fragmentation during the early period (0-6 h) of HD, whereas CD induced necrosis 3 h post- CD and thereafter. These data support that HD induces neuronal cell apoptosis, in part, through mitochondria-mediated pathways. These data also suggest that neuronal apoptosis could be a potential marker and an aid to forensic science of HD.
Collapse
Affiliation(s)
- Sabana Khatun
- Cell Physiology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005 India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005 India
| | - Chandra N Bhattacharyya
- Cell Physiology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|
163
|
Abstract
SIGNIFICANCE The intrinsic apoptosis pathway is conserved from worms to humans and plays a critical role in the normal development and homeostatic control of adult tissues. As a result, numerous diseases from cancer to neurodegeneration are associated with either too little or too much apoptosis. RECENT ADVANCES B cell lymphoma-2 (BCL-2) family members regulate cell death, primarily via their effects on mitochondria. In stressed cells, proapoptotic BCL-2 family members promote mitochondrial outer membrane permeabilization (MOMP) and cytochrome c (cyt c) release into the cytoplasm, where it stimulates formation of the "apoptosome." This large, multimeric complex is composed of the adapter protein, apoptotic protease-activating factor-1, and the cysteine protease, caspase-9. Recent studies suggest that proteins involved in the processes leading up to (and including) formation of the apoptosome are subject to various forms of post-translational modification, including proteolysis, phosphorylation, and in some cases, direct oxidative modification. CRITICAL ISSUES Despite intense investigation of the intrinsic pathway, significant questions remain regarding how cyt c is released from mitochondria, how the apoptosome is formed and regulated, and how caspase-9 is activated within the complex. FUTURE DIRECTIONS Further studies on the biochemistry of MOMP and apoptosome formation are needed to understand the mechanisms that underpin these critical processes, and novel animal models will be necessary in the future to ascertain the importance of the many posttranslational modifications reported for BCL-2 family members and components of the apoptosome.
Collapse
Affiliation(s)
- Chu-Chiao Wu
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | | |
Collapse
|
164
|
Murase S. A new model for developmental neuronal death and excitatory/inhibitory balance in hippocampus. Mol Neurobiol 2013; 49:316-25. [PMID: 23943504 DOI: 10.1007/s12035-013-8521-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/22/2013] [Indexed: 11/24/2022]
Abstract
The nervous system develops through a program that produces neurons in excess and then eliminates approximately half during a period of naturally occurring death. Neuronal activity has been shown to promote the survival of neurons during this period by stimulating the production and release of neurotrophins. In the peripheral nervous system (PNS), neurons depends on neurotrophins that activate survival pathways, which explains how the size of target cells influences number of neurons that innervate them (neurotrophin hypothesis). However, in the central nervous system (CNS), the role of neurotrophins has not been clear. Contrary to the neurotrophin hypothesis, a recent study shows that, in neonatal hippocampus, neurotrophins cannot promote survival without spontaneous network activity: Neurotrophins recruit neurons into spontaneously active networks, and this activity determines which neurons survive. By placing neurotrophin upstream of activity in the survival signaling pathway, these new results change our understanding of how neurotrophins promote survival. Spontaneous, synchronized network activity begins to spread through both principle neurons and interneurons in the hippocampus as they enter the death period. At this stage, neurotransmission mediated by γ-aminobutyric acid (GABA) is excitatory and drives the spontaneous activity. An important recent observation is that neurotrophins preferentially recruit GABAergic neurons into spontaneously active networks; thus, neurotrophins select for survival only those neurons joined to active networks with strong GABAergic inputs, which would later become inhibitory. A proper excitatory/inhibitory (E/I) balance is critical for normal adult brain function. This balance may be especially important in the hippocampus where impairments in E/I balance are associated with pathologies including epilepsy. Here, I discuss the molecular mechanisms for survival in neonatal neurons, how these mechanisms change during development, and how they may be linked to degenerative diseases.
Collapse
Affiliation(s)
- Sachiko Murase
- Laboratory of Molecular Biology, National Institute of Neurological Disorder and Stroke, National Institutes of Health, 35 Lincoln Dr., Bethesda, MD, 20892, USA,
| |
Collapse
|
165
|
Ramaiah MJ, Pushpavalli SNCVL, Lavanya A, Bhadra K, Haritha V, Patel N, Tamboli JR, Kamal A, Bhadra U, Pal-Bhadra M. Novel anthranilamide-pyrazolo[1,5-a]pyrimidine conjugates modulate the expression of p53-MYCN associated micro RNAs in neuroblastoma cells and cause cell cycle arrest and apoptosis. Bioorg Med Chem Lett 2013; 23:5699-706. [PMID: 23992861 DOI: 10.1016/j.bmcl.2013.08.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/07/2013] [Accepted: 08/05/2013] [Indexed: 12/14/2022]
Abstract
It has previously been shown that anthranilamide-pyrazolo[1,5-a]pyrimidine conjugates activate p53 and cause apoptosis in cervical cancer cells such as HeLa and SiHa. Here we establish the role of these conjugates in activating p53 pathway by phosphorylation at Ser15, 20 and 46 residues and downregulate key oncogenic proteins such as MYCN and Mdm2 in IMR-32 neuroblastoma cells. Compounds decreased the proliferation rate of neuroblastoma cells such as IMR-32, Neuro-2a, SK-N-SH. Compound treatment resulted in G2/M cell cycle arrest. The expression of p53 dependent genes such as p21, Bax, caspases was increased with concomitant decrease of the survival proteins as well as anti-apoptotic proteins such as Akt1, E2F1 and Bcl2. In addition the expression of important microRNAs such as miR-34a, c, miR-200b, miR-107, miR-542-5p and miR-605 were significantly increased that eventually lead to the activation of apoptotic pathway. Our data revealed that conjugates of this nature cause cell cycle arrest and apoptosis in IMR-32 cells [MYCN (+) with intact wild-type p53] by activating p53 signalling and provides a lead for the development of anti-cancer therapeutics.
Collapse
Affiliation(s)
- M Janaki Ramaiah
- Department of Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500 007, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Abdullah JM, Ahmad F, Ahmad KAK, Ghazali MM, Jaafar H, Ideris A, Ali AM, Omar AR, Yusoff K, Lila MAM, Othman F. Molecular genetic analysis of BAX and cyclin D1 genes in patients with malignant glioma. Neurol Res 2013; 29:239-42. [PMID: 17509221 DOI: 10.1179/016164107x158965] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
INTRODUCTION AND OBJECTIVES Brain tumorigenesis is a complex process involving multiple genetic alterations. Cyclin D1 and BAX genes are two of the most important regulators in controlling the normal proliferation and apoptosis of cells, respectively. In this study, we analysed the possibilities of involvement of cyclin D1 and BAX genes in the gliomagenesis. METHODS AND RESULTS In determining gene alterations of exon 4 of cyclin D1 gene and exon 6 of BAX gene, all samples were amplified by polymerase chain reaction (PCR) and subsequently by direct sequencing. Our results showed a frameshift mutation (G base deletion) at nucleotide 82 of codon 28 in exon 4 of the cyclin D1 gene and another frameshift mutation with a deletion of C base at nucleotide 153 of exon 6 of the BAX gene in two separate cases of a glioblastoma multiform (WHO Grade IV) sample. CONCLUSION These findings suggest that both cyclin D1 and BAX genes alteration are rarely found in brain tumors. However, the alteration might cause a significant effect of the normal protein production and this might contribute to the development of brain tumorigenesis in Malaysian patients.
Collapse
Affiliation(s)
- Jafri Malin Abdullah
- Department of Neurosciences, Department of Pathology, and Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Russi S, Lauletta G, Serviddio G, Sansonno S, Conteduca V, Sansonno L, De Re V, Sansonno D. T cell receptor variable β gene repertoire in liver and peripheral blood lymphocytes of chronically hepatitis C virus-infected patients with and without mixed cryoglobulinaemia. Clin Exp Immunol 2013; 172:254-62. [PMID: 23574322 DOI: 10.1111/cei.12035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2012] [Indexed: 12/20/2022] Open
Abstract
To characterize the repertoire of T lymphocytes in chronically hepatitis C virus (HCV)-infected patients with and without mixed cryoglobulinaemia (MC). T cell receptor (TCR) variable (V) β clonalities in portal tracts isolated from liver biopsy sections with a laser capture microdissection technique in 30 HCV-positive MC patients were studied by size spectratyping. Complementarity-determining region 3 (CDR3) profiles of liver-infiltrating lymphocytes (LIL) were also compared with those circulating in the blood. The representative results of TCR Vβ by CDR3 were also obtained from liver tissues and peripheral blood lymphocytes (PBL) of 21 chronically HCV-infected patients without MC. LIL were highly restricted, with evidence of TCR Vβ clonotypic expansions in 23 of 30 (77%) and in 15 of 21 (71%) MC and non-MC patients, respectively. The blood compartment contained TCR Vβ expanded clones in 19 (63%) MC and 12 (57%) non-MC patients. The occurrence of LIL clonalities was detected irrespective of the degree of liver damage or circulating viral load, whereas it correlated positively with higher levels of intrahepatic HCV RNA. These results support the notion that TCR Vβ repertoire is clonally expanded in HCV-related MC with features comparable to those found in chronically HCV-infected patients without MC.
Collapse
Affiliation(s)
- S Russi
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
168
|
Reeves M, Sinclair J. Regulation of human cytomegalovirus transcription in latency: beyond the major immediate-early promoter. Viruses 2013; 5:1395-413. [PMID: 23736881 PMCID: PMC3717713 DOI: 10.3390/v5061395] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/24/2013] [Accepted: 05/27/2013] [Indexed: 01/04/2023] Open
Abstract
Lytic infection of differentiated cell types with human cytomegalovirus (HCMV) results in the temporal expression of between 170–200 open reading frames (ORFs). A number of studies have demonstrated the temporal regulation of these ORFs and that this is orchestrated by both viral and cellular mechanisms associated with the co-ordinated recruitment of transcription complexes and, more recently, higher order chromatin structure. Importantly, HCMV, like all herpes viruses, establishes a lifelong latent infection of the host—one major site of latency being the undifferentiated haematopoietic progenitor cells resident in the bone marrow. Crucially, the establishment of latency is concomitant with the recruitment of cellular enzymes that promote extensive methylation of histones bound to the major immediate early promoter. As such, the repressive chromatin structure formed at the major immediate early promoter (MIEP) elicits inhibition of IE gene expression and is a major factor involved in maintenance of HCMV latency. However, it is becoming increasingly clear that a distinct subset of viral genes is also expressed during latency. In this review, we will discuss the mechanisms that control the expression of these latency-associated transcripts and illustrate that regulation of these latency-associated promoters is also subject to chromatin mediated regulation and that the instructive observations previously reported regarding the negative regulation of the MIEP during latency are paralleled in the regulation of latent gene expression.
Collapse
Affiliation(s)
- Matthew Reeves
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK.
| | | |
Collapse
|
169
|
Viotti J, Duplan E, Caillava C, Condat J, Goiran T, Giordano C, Marie Y, Idbaih A, Delattre JY, Honnorat J, Checler F, Alves da Costa C. Glioma tumor grade correlates with parkin depletion in mutant p53-linked tumors and results from loss of function of p53 transcriptional activity. Oncogene 2013; 33:1764-75. [DOI: 10.1038/onc.2013.124] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 02/13/2013] [Accepted: 02/18/2013] [Indexed: 12/31/2022]
|
170
|
Taylor CA, Zheng Q, Liu Z, Thompson JE. Role of p38 and JNK MAPK signaling pathways and tumor suppressor p53 on induction of apoptosis in response to Ad-eIF5A1 in A549 lung cancer cells. Mol Cancer 2013; 12:35. [PMID: 23638878 PMCID: PMC3660295 DOI: 10.1186/1476-4598-12-35] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/17/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The eukaryotic translation initiation factor 5A1 (eIF5A1) is a highly conserved protein involved in many cellular processes including cell division, translation, apoptosis, and inflammation. Induction of apoptosis is the only function of eIF5A1 that is known to be independent of post-translational hypusine modification. In the present study, we investigated the involvement of mitogen- and stress-activated protein kinases during apoptosis of A549 lung cancer cells infected with adenovirus expressing eIF5A1 or a mutant of eIF5A1 that cannot be hypusinated (eIF5A1K50A). METHODS Using adenoviral-mediated transfection of human A549 lung cancer cells to over-express eIF5A1 and eIF5A1K50A, the mechanism by which unhypusinated eIF5A1 induces apoptosis was investigated by Western blotting, flow cytometry, and use of MAPK and p53 inhibitors. RESULTS Phosphorylation of ERK, p38 MAPK, and JNK was observed in response to adenovirus-mediated over-expression of eIF5A1 or eIF5A1K50A, along with phosphorylation and stabilization of the p53 tumor suppressor protein. Synthetic inhibitors of p38 and JNK kinase activity, but not inhibitors of ERK1/2 or p53 activity, significantly inhibited apoptosis induced by Ad-eIF5A1. Importantly, normal lung cells were more resistant to apoptosis induced by eIF5A1 and eIF5A1K50A than A549 lung cancer cells. CONCLUSIONS Collectively these data indicate that p38 and JNK MAP kinase signaling are important for eIF5A1-induced cell death and that induction of apoptosis was not dependent on p53 activity.
Collapse
Affiliation(s)
- Catherine A Taylor
- Department of Biology, University of Waterloo, 200 University Ave. W., Waterloo, ON N2L 3G1, Canada
| | - Qifa Zheng
- Department of Biology, University of Waterloo, 200 University Ave. W., Waterloo, ON N2L 3G1, Canada
| | - Zhongda Liu
- Department of Biology, University of Waterloo, 200 University Ave. W., Waterloo, ON N2L 3G1, Canada
| | - John E Thompson
- Department of Biology, University of Waterloo, 200 University Ave. W., Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
171
|
Kim SY, Cordeiro MH, Serna VA, Ebbert K, Butler LM, Sinha S, Mills AA, Woodruff TK, Kurita T. Rescue of platinum-damaged oocytes from programmed cell death through inactivation of the p53 family signaling network. Cell Death Differ 2013; 20:987-97. [PMID: 23598363 DOI: 10.1038/cdd.2013.31] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 02/12/2013] [Accepted: 03/20/2013] [Indexed: 12/24/2022] Open
Abstract
Non-proliferating oocytes within avascular regions of the ovary are exquisitely susceptible to chemotherapy. Early menopause and sterility are unintended consequences of chemotherapy, and efforts to understand the oocyte apoptotic pathway may provide new targets for mitigating this outcome. Recently, the c-Abl kinase inhibitor imatinib mesylate (imatinib) has become the focus of research as a fertoprotective drug against cisplatin. However, the mechanism by which imatinib protects oocytes is not fully understood, and reports of the drug's efficacy have been contradictory. Using in vitro culture and subrenal grafting of mouse ovaries, we demonstrated that imatinib inhibits the cisplatin-induced apoptosis of oocytes within primordial follicles. We found that, before apoptosis, cisplatin induces c-Abl and TAp73 expression in the oocyte. Oocytes undergoing apoptosis showed downregulation of TAp63 and upregulation of Bax. While imatinib was unable to block cisplatin-induced DNA damage and damage response, such as the upregulation of p53, imatinib inhibited the cisplatin-induced nuclear accumulation of c-Abl/TAp73 and the subsequent downregulation of TAp63 and upregulation of Bax, thereby abrogating oocyte cell death. Surprisingly, the conditional deletion of Trp63, but not ΔNp63, in oocytes inhibited apoptosis, as well as the accumulation of c-Abl and TAp73 caused by cisplatin. These data suggest that TAp63 is the master regulator of cisplatin-induced oocyte death. The expression kinetics of TAp63, c-Abl and TAp73 suggest that cisplatin activates TAp63-dependent expression of c-Abl and TAp73 and, in turn, the activation of TAp73 by c-Abl-induced BAX expression. Our findings indicate that imatinib protects oocytes from cisplatin-induced cell death by inhibiting c-Abl kinase, which would otherwise activate TAp73-BAX-mediated apoptosis. Thus, imatinib and other c-Abl kinase inhibitors provide an intriguing new way to halt cisplatin-induced oocyte death in early follicles and perhaps conserve the endocrine function of the ovary against chemotherapy.
Collapse
Affiliation(s)
- S-Y Kim
- Division of Reproductive Biology and Clinical Research, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Abstract
BACKGROUND The p53 gene is the most frequently mutated gene in cancer and accordingly has been the subject of intensive investigation for almost 30 years. Loss of p53 function due to mutations has been unequivocally demonstrated to promote cancer in both humans and in model systems. As a consequence, there exists an enormous body of information regarding the function of normal p53 in biology and the pathobiological consequences of p53 mutation. It has long been recognised that analysis of p53 has considerable potential as a tool for use in both diagnostic and, to a greater extent, prognostic settings and some significant progress has been made in both of these arenas. OBJECTIVE To provide an overview of the biology of p53, particularly in the context of uses of p53 as a diagnostic tool. METHODS A literature review focused upon the methods and uses of p53 analysis in the diagnosis of sporadic cancers, rare genetic disorders and in detection of residual disease. CONCLUSION p53 is currently an essential diagnostic for the rare inherited cancer prone syndrome (Li-Fraumeni) and is an important diagnostic in only a limited number of settings in sporadic disease. Research in specific cancers indicates that the uses of increasingly well informed p53 mutational analysis are likely to expand to other cancers.
Collapse
Affiliation(s)
- Mark T Boyd
- Reader in Molecular Oncology and Director of Laboratories University of Liverpool, p53/MDM2 Research Team, Division of Surgery and Oncology, School of Cancer Studies, 5th Floor, UCD Building, Daulby Street, Liverpool L69 3GA, UK +44 151 706 4185 ; +44 151 706 5826 ;
| | | |
Collapse
|
173
|
Abstract
VRK2 is a novel Ser-Thr kinase whose VRK2A isoform is located in the endoplasmic reticulum and mitochondrial membranes. We have studied the potential role that VRK2A has in the regulation of mitochondrial-mediated apoptosis. VRK2A can regulate the intrinsic apoptotic pathway in two different ways. The VRK2A protein directly interacts with Bcl-xL, but not with Bcl-2, Bax, Bad, PUMA or Binp-3L. VRK2A does not compete with Bax for interaction with Bcl-xL, and these proteins can form a complex that reduces apoptosis. Thus, high VRK2 levels confer protection against apoptosis. In addition, VRK2 knockdown results in an increased expression of BAX gene expression that is mediated by its proximal promoter, thus VRK2A behaves as a negative regulator of BAX. Low levels of VRK2A causes an increase in mitochondrial Bax protein level, leading to an increase in the release of cytochrome C and caspase activation, detected by PARP processing. VRK2A loss results in an increase in cell death that can be detected by an increase in annexinV+ cells. Low levels of VRK2A increase cell sensitivity to induction of apoptosis by chemotherapeutic drugs like camptothecin or doxorubicin. We conclude that VRK2A protein is a novel modulator of apoptosis.
Collapse
|
174
|
Lack of Bax expression is associated with irinotecan-based treatment activity in advanced colorectal cancer patients. Clin Transl Oncol 2012. [DOI: 10.1007/s12094-012-0971-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
175
|
Franco R, Nicoletti G, Lombardi A, Di Domenico M, Botti G, Zito Marino F, Caraglia M. Current treatment of cutaneous squamous cancer and molecular strategies for its sensitization to new target-based drugs. Expert Opin Biol Ther 2012; 13:51-66. [PMID: 22998482 DOI: 10.1517/14712598.2012.725720] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Cutaneous squamous cell carcinoma (cSCC) is considered one of the most common skin malignancy with a relatively high risk of metastasis occurrence. AREAS COVERED We discuss the pathogenetic mechanisms of cSCC and the main therapeutic strategies available for the treatment of cSCC. EXPERT OPINION Chemotherapy and biological therapy with Interferon α (IFN-α) and cis retinoic acid are active but give limited results. Recently, strategies based on the use of molecularly target-based agents (MTA) have been used with promising results. Based on the available findings, we hypothesize that SCC cells can develop survival and resistance mechanisms to MTAs. The detection of these mechanisms could be useful in designing strategies able to overcome the latter and to potentiate the anticancer activity of MTAs. We describe the example of the EGF-dependent survival pathway elicited by IFN-α and the different strategies to abrogate this survival pathway. Other strategies to potentiate the antitumor activity of cytotoxic agents such as docetaxel or cisplatin are also discussed. Illuminating examples are the inhibition of multichaperone activity or the inactivation of the proteasome. In conclusion, a new dawn based upon the rationale use of MTAs is rising up in the treatment of advanced cSCC.
Collapse
Affiliation(s)
- Renato Franco
- Second University of Naples, Department of Biochemistry and Biophysics, Naples Italy
| | | | | | | | | | | | | |
Collapse
|
176
|
Differentiated embryo-chondrocyte expressed gene 1 regulates p53-dependent cell survival versus cell death through macrophage inhibitory cytokine-1. Proc Natl Acad Sci U S A 2012; 109:11300-5. [PMID: 22723347 DOI: 10.1073/pnas.1203185109] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation of p53 upon DNA damage induces an array of target genes, leading to cell cycle arrest and/or apoptosis. However, the mechanism by which the cell fate is controlled by p53 remains to be clarified. Previously, we showed that DEC1, a basic helix-loop-helix transcription factor and a target of p53, is capable of inducing cell cycle arrest and mediating DNA damage-induced premature senescence. Here, we found that ectopic expression of DEC1 inhibits, whereas knockdown of DEC1 enhances, DNA damage-induced cell death. Surprisingly, we showed that the anti-cell-death activity of DEC1 is p53 dependent, but DEC1 does not directly modulate p53 expression. Instead, we showed that DEC1 inhibits the ability of p53 to induce macrophage inhibitory cytokine-1 (MIC-1), but not other prosurvival/proapoptotic targets, including p21 and Puma. Importantly, we showed that upon binding to their respective response elements on the MIC-1 promoter, DEC1 and p53 physically interact on the MIC-1 promoter via the basic helix-loop-helix domain in DEC1 and the tetramerization domain in p53, which likely weakens the DNA-binding activity of p53 to the MIC-1 promoter. Finally, we found that depletion of MIC-1 abrogates the ability of DEC1 to attenuate DNA damage-induced cell death. Together, we hypothesize that DEC1 controls the response of p53-dependent cell survival vs. cell death to a stress signal through MIC-1.
Collapse
|
177
|
Maillet A, Pervaiz S. Redox regulation of p53, redox effectors regulated by p53: a subtle balance. Antioxid Redox Signal 2012; 16:1285-94. [PMID: 22117613 DOI: 10.1089/ars.2011.4434] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE Reactive oxygen species (ROS), generated by cells as side products of biological reactions, function as secondary messengers by impacting a host of cellular networks involved in maintaining normal homeostatic growth as well as pathological disease states. Redox-sensitive proteins, such as the tumor suppressor protein p53, are susceptible to ROS-dependent modifications, which could impact their activities and/or biological functions. RECENT ADVANCES p53 is a transcription factor that controls a wide variety of target genes and regulates numerous cellular functions in response to stresses that lead to genomic instability. Thus, redox modifications of p53 could impact cell fate signaling and could have profound effects on pathways fundamental to maintaining cell and tissue integrity. CRITICAL ISSUES Recent studies present evidence that ROS function upstream of p53 in some model systems, while in others ROS production could be a downstream effect of p53 activation. FUTURE DIRECTIONS In this review, we describe how ROS production regulates p53 activity and how p53 can, in turn, influence cellular ROS production.
Collapse
Affiliation(s)
- Agnès Maillet
- ROS, Apoptosis and Cancer Biology Laboratory, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | |
Collapse
|
178
|
Vrazo AC, Chauchard M, Raab-Traub N, Longnecker R. Epstein-Barr virus LMP2A reduces hyperactivation induced by LMP1 to restore normal B cell phenotype in transgenic mice. PLoS Pathog 2012; 8:e1002662. [PMID: 22536156 PMCID: PMC3334893 DOI: 10.1371/journal.ppat.1002662] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 03/08/2012] [Indexed: 12/15/2022] Open
Abstract
Epstein-Barr virus (EBV) latently infects most of the human population and is strongly associated with lymphoproliferative disorders. EBV encodes several latency proteins affecting B cell proliferation and survival, including latent membrane protein 2A (LMP2A) and the EBV oncoprotein LMP1. LMP1 and LMP2A signaling mimics CD40 and BCR signaling, respectively, and has been proposed to alter B cell functions including the ability of latently-infected B cells to access and transit the germinal center. In addition, several studies suggested a role for LMP2A modulation of LMP1 signaling in cell lines by alteration of TRAFs, signaling molecules used by LMP1. In this study, we investigated whether LMP1 and LMP2A co-expression in a transgenic mouse model alters B cell maturation and the response to antigen, and whether LMP2A modulates LMP1 function. Naïve LMP1/2A mice had similar lymphocyte populations and antibody production by flow cytometry and ELISA compared to controls. In the response to antigen, LMP2A expression in LMP1/2A animals rescued the impairment in germinal center generation promoted by LMP1. LMP1/2A animals produced high-affinity, class-switched antibody and plasma cells at levels similar to controls. In vitro, LMP1 upregulated activation markers and promoted B cell hyperproliferation, and co-expression of LMP2A restored a wild-type phenotype. By RT-PCR and immunoblot, LMP1 B cells demonstrated TRAF2 levels four-fold higher than non-transgenic controls, and co-expression of LMP2A restored TRAF2 levels to wild-type levels. No difference in TRAF3 levels was detected. While modulation of other TRAF family members remains to be assessed, normalization of the LMP1-induced B cell phenotype through LMP2A modulation of TRAF2 may be a pathway by which LMP2A controls B cell function. These findings identify an advance in the understanding of how Epstein-Barr virus can access the germinal center in vivo, a site critical for both the genesis of immunological memory and of virus-associated tumors. As a ubiquitous human pathogen, Epstein-Barr virus (EBV) infection is associated with several human B cell diseases characterized by inappropriate B cell activation and function, including infectious mononucleosis and certain cancers. EBV latent membrane protein 1 (LMP1) and 2A (LMP2A) hijack cell signaling pathways to alter B cell activation and function, and are detected in EBV-associated diseases. Defining the effect on B cell function when LMP1 and LMP2A are expressed together in the same cell is critical to understanding how EBV subverts normal B cell behavior before disease develops. Using transgenic mice, we have demonstrated that LMP2A dampens cellular proliferation and activation induced by LMP1, which may be due to the LMP2A-associated decrease in the levels of TRAF2, a signaling protein used by LMP1. LMP2A also allows B cells carrying LMP1 to enter the germinal center during an immune response, a site that gives rise to EBV-associated tumors in humans. In sum, this study highlights the biological outcomes of LMP1 and LMP2A co-expression in B cells and contributes to the knowledge of how EBV subverts normal B cell behavior before disease develops.
Collapse
Affiliation(s)
- Alexandra C. Vrazo
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Maria Chauchard
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Center for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Nancy Raab-Traub
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Richard Longnecker
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
179
|
Relationship of cell bearing EBER and p24 antigens in biopsy-proven lymphocytic interstitial pneumonia in HIV-1 subtype E infected children. Appl Immunohistochem Mol Morphol 2012; 19:547-51. [PMID: 21623184 DOI: 10.1097/pai.0b013e31821bfc34] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Lymphocytic interstitial pneumonia (LIP) is an uncommon histopathologic entity characterized by infiltration of the interstitium and alveolar spaces of the lung by lymphocytes and other lymphoid elements. An increased incidence of LIP has been seen in the pediatric population, especially in children with acquired immune deficiency syndrome. Our previous study supports the notion that Langerhans cells (LCs) are reservoirs for Epstein-Barr virus (EBV) in lungs of human immunodeficiency virus (HIV) subtype E-infected pediatric LIP. To further understand the pathogenesis of LIP, we studied the relationship between EBV, the suggested causative agent of LIP and HIV-1 capsid protein p24, which play an important role in the interaction with host proteins during HIV-1 adsorption, membrane fusion, and entry in surgical lung biopsy-proven LIP from 9 vertically HIV subtype E-infected pediatric patients. The dominant microscopic feature of LIP demonstrated widespread widening of alveolar septum by mononuclear inflammatory cell infiltrate, mainly composed of mature lymphocytes and plasma cells surrounding airways and expanding to the lung interstitium. EBV-encoded RNA (EBER) in situ hybridization (ISH) and p24 immunohistochemistry, performed on formalin-fixed, paraffin-embedded tissue from open lung biopsy specimens, revealed positive intranuclear EBER signals and intracytoplasmic immunostains for p24 core protein in all 9 LIP cases. By combining ISH and immunohistochemistry, these results suggest that (i) EBV/p24-carrying cells are likely involved in the development of LIP, either directly or indirectly; (ii) LCs and related dendritic cells are the main reservoir of both EBV and HIV subtype E in pediatric LIP and possibly LCs may play an important role in the recruitment of inflammatory cell infiltrates, especially T cells into these tissues; (iii) coexpression of EBV/p24 in bronchioalveolar epithelium supports the hypothesis that these cells serve as a reactivation source for both viruses to achieve greater quantities in alveolar septum and interstitium around bronchioles. These results indicate a strong association between the presence of HIV core protein p24 and expression of EBV RNA transcripts (EBER). Interactions between LCs and related dendritic cells together with T cells are important for effective HIV and EBV replications. The coexpression of both viruses could be related to the evolution of pediatric LIP in HIV subtype E infection.
Collapse
|
180
|
Koo T, Choi IK, Kim M, Lee JS, Oh E, Kim J, Yun CO. Negative regulation-resistant p53 variant enhances oncolytic adenoviral gene therapy. Hum Gene Ther 2012; 23:609-22. [PMID: 22248367 DOI: 10.1089/hum.2011.114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intact p53 function is essential for responsiveness to cancer therapy. However, p53 activity is attenuated by the proto-oncoprotein Mdm2, the adenovirus protein E1B 55kD, and the p53 C-terminal domain. To confer resistance to Mdm2, E1B 55kD, and C-terminal negative regulation, we generated a p53 variant (p53VPΔ30) by deleting the N-terminal and C-terminal regions of wild-type p53 and inserting the transcriptional activation domain of herpes simplex virus VP16 protein. The oncolytic adenovirus vector Ad-mΔ19 expressing p53VPΔ30 (Ad-mΔ19/p53VPΔ30) showed greater cytotoxicity than Ad-mΔ19 expressing wild-type p53 or other p53 variants in human cancer cell lines. We found that Ad-mΔ19/p53VPΔ30 induced apoptosis through accumulation of p53VPΔ30, regardless of endogenous p53 and Mdm2 status. Moreover, Ad-mΔ19/p53VPΔ30 showed a greater antitumor effect and increased survival rates of mice with U343 brain cancer xenografts that expressed wild-type p53 and high Mdm2 levels. To our knowledge, this is the first study reporting a p53 variant modified at the N terminus and C terminus that shows resistance to degradation by Mdm2 and E1B 55kD, as well as negative regulation by the p53 C terminus, without decreased trans-activation activity. Taken together, these results indicate that Ad-mΔ19/p53VPΔ30 shows potential for improving p53-mediated cancer gene therapy.
Collapse
Affiliation(s)
- Taeyoung Koo
- Brain Korea 21 Project for Medical Science, Institute for Cancer Research, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 120-752, Korea
| | | | | | | | | | | | | |
Collapse
|
181
|
Abstract
Current knowledge is insufficient to explain why only a proportion of individuals exposed to environmental carcinogens or carrying a genetic predisposition to cancer develop disease. Clearly, other factors must be important, and one such element that has recently received attention is the human microbiome, the residential microbes including Bacteria, Archaea, Eukaryotes, and viruses that colonize humans. Here, we review principles and paradigms of microbiome-related malignancy, as illustrated by three specific microbial-host interactions. We review the effects of the microbiota on local and adjacent neoplasia, present the estrobolome model of distant effects, and discuss the complex interactions with a latent virus leading to malignancy. These are separate facets of a complex biology interfacing all the microbial species we harbor from birth onward toward early reproductive success and eventual senescence.
Collapse
Affiliation(s)
- Claudia S Plottel
- Department of Medicine, New York University Langone Medical Center, New York University, New York, NY 10016, USA.
| | | |
Collapse
|
182
|
Stegh AH. Targeting the p53 signaling pathway in cancer therapy - the promises, challenges and perils. Expert Opin Ther Targets 2012; 16:67-83. [PMID: 22239435 DOI: 10.1517/14728222.2011.643299] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Research over the past three decades has identified p53 as a multi-functional transcription factor. p53 influences myriad, highly diverse cellular processes, and represents one of the most important and extensively studied tumor suppressors. Activated by various stresses, p53 blocks cancer progression by provoking transient or permanent growth arrest, by enabling DNA repair, or by advancing cellular death programs. This anti-cancer activity profile, together with genomic and mutational analyses documenting inactivation of p53 in more than 50% of human cancers, motivated drug development efforts to (re-) activate p53 in established tumors. AREAS COVERED The complexities of p53 signaling in cancer are summarized, including current strategies and challenges to restore p53's tumor suppressive function in established tumors, to inactivate p53 inhibitors, and to restore wild type function of p53 mutant proteins. EXPERT OPINION p53 represents an attractive target for the development of anti-cancer therapies. Whether p53 is 'druggable', however, remains an area of active research and discussion, as p53 has pro-survival functions and chronic p53 activation accelerates aging, which may compromise the long-term homeostasis of an organism. The complex biology and dual functions of p53 in cancer prevention and age-related cellular responses pose significant challenges to the development of p53-targeting cancer therapies.
Collapse
Affiliation(s)
- Alexander H Stegh
- Feinberg School of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Davee Department of Neurology, Chicago, IL 60611, USA.
| |
Collapse
|
183
|
Abstract
Apoptosis is a process of programmed cell death that serves as a major mechanism for the precise regulation of cell numbers, and as a defense mechanism to remove unwanted and potentially dangerous cells. Studies in nematode, Drosophila and mammals have shown that, although regulation of the cell death machinery is somehow different from one species to another, it is controlled by homologous proteins and involves mitochondria. In mammals, activation of caspases (cysteine proteases that are the main executioners of apoptosis) is under the tight control of the Bcl-2 family proteins, named in reference to the first discovered mammalian cell death regulator. These proteins mainly act by regulating the release of caspases activators from mitochondria. Although for a long time the absence of mitochondrial changes was considered as a hallmark of apoptosis, mitochondria appear today as the central executioner of apoptosis. In this chapter, we present the current view on the mitochondrial pathway of apoptosis with a particular attention to new aspects of the regulation of the Bcl-2 proteins family control of mitochondrial membrane permeabilization: the mechanisms implicated in their mitochondrial targeting and activation during apoptosis, the function(s) of the oncosuppressive protein p53 at the mitochondria and the role of the processes of mitochondrial fusion and fission.
Collapse
|
184
|
Li X, Cheung KF, Ma X, Tian L, Zhao J, Go MYY, Shen B, Cheng ASL, Ying J, Tao Q, Sung JJY, Kung HF, Yu J. Epigenetic inactivation of paired box gene 5, a novel tumor suppressor gene, through direct upregulation of p53 is associated with prognosis in gastric cancer patients. Oncogene 2011; 31:3419-30. [PMID: 22105368 DOI: 10.1038/onc.2011.511] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Using genome-wide methylation screening, we identified that paired box gene 5 (PAX5) is involved in human cancer development. However, the function of PAX5 in gastric cancer (GC) development is largely unclear. We analyzed its epigenetic inactivation, biological functions and clinical application in GC. PAX5 was silenced in seven out of eight GC cell lines. A significant downregulation was also detected in paired gastric tumors compared with adjacent non-cancerous tissues. The downregulation of PAX5 was closely linked to the promoter hypermethylation status and could be restored with demethylation treatment. Ectopic expression of PAX5 in silenced GC cell lines (AGS and BGC823) inhibited colony formation and cell viability, arrested cell cycle, induced apoptosis, suppressed cell migration and invasion and repressed tumorigenicity in nude mice. Consistent with the induction of apoptosis by PAX5 in vitro, terminal deoxynucleotidyl transferase-mediated dUTP-digoxigenin nick end labeling (TUNEL) staining showed significantly enhanced apoptotic cells in PAX5-expressed tumors compared with the vector control tumors. On the other hand, knockdown of PAX5 by PAX5-short hairpin RNA increased the cell viability and proliferation. The anti-tumorigenic function of PAX5 was revealed to be mediated by upregulating downstream targets of tumor protein 53 (p53), p21, BCL2-associated X protein, metastasis suppressor 1 and tissue inhibitors of metalloproteinase 1, and downregulating BCL2, cyclin D1, mesenchymal-epithelial transition factor (MET) and matrix metalloproteinase 1. Immunoprecipitation assay demonstrated that PAX5 directly bound to the promoters of p53 and MET. Moreover, PAX5 hypermethylation was detected in 77% (144 of 187) of primary GCs compared with 10.5% (2/19) of normal gastric tissues (P<0.0001). GC patients with PAX5 methylation had a significant poor survival compared with the unmethylated cases as demonstrated by Cox regression model and log-rank test. In conclusion, PAX5 is a novel functional tumor suppressor in gastric carcinogenesis. Detection of methylated PAX5 can be utilized as an independent prognostic factor in GC.
Collapse
Affiliation(s)
- X Li
- Institute of Digestive Disease and Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Siebert AE, Sanchez AL, Dinda S, Moudgil VK. Effects of Estrogen Metabolite 2-Methoxyestradiol on Tumor Suppressor Protein p53 and Proliferation of Breast Cancer Cells. Syst Biol Reprod Med 2011; 57:279-87. [DOI: 10.3109/19396368.2011.633152] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
186
|
He ML, Luo MXM, Lin MC, Kung HF. MicroRNAs: potential diagnostic markers and therapeutic targets for EBV-associated nasopharyngeal carcinoma. Biochim Biophys Acta Rev Cancer 2011; 1825:1-10. [PMID: 21958739 DOI: 10.1016/j.bbcan.2011.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 09/10/2011] [Indexed: 12/12/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a highly malignant cancer with local invasion and early distant metastasis. NPC is highly prevalent in the Southern China and South-eastern Asia. The genetic susceptibility, endemic environment factors, and Epstein-Barr virus (EBV) infection are believed to be the major etiologic factors of NPC. Once metastasis occurs, the prognosis is very poor. It is urgently needed to develop biomarkers for early clinical diagnosis/prognosis, and novel effective therapies for nasopharyngeal carcinoma. In this paper, we systematically reviewed the current progress of miRNA studies in NPC. It has been shown that both host encoded miRNAs and EBV encoded miRNAs play key roles in almost all the steps of epithelia cell carcinogenesis, including epithelial-mesenchymal to stem-like transition, cell growth, migration, invasion, and tumorigenesis. More importantly, some miRNAs could be secreted out and play a role in the microenvironments. The level of sera miRNAs is correlated with the copy numbers of host miRNAs in tumor biopsies. Promising results of gene therapy have been also achieved by lentiviral delivered miRNAs. Taken together, cell free miRNAs would be potential biomarkers of early clinical diagnosis/prognosis; while some miRNAs could be further developed into therapeutic agents in the future.
Collapse
Affiliation(s)
- Ming-Liang He
- Stanley Ho Center for Emerging Infectious Diseases, School of Public Health and Primary Care, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | | | | | | |
Collapse
|
187
|
Ladelfa MF, Toledo MF, Laiseca JE, Monte M. Interaction of p53 with tumor suppressive and oncogenic signaling pathways to control cellular reactive oxygen species production. Antioxid Redox Signal 2011; 15:1749-61. [PMID: 20919943 DOI: 10.1089/ars.2010.3652] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
p53 is a crucial transcription factor with tumor suppressive properties that elicits its function through specific target genes. It constitutes a pivotal system that integrates information received by many signaling pathways and subsequently orchestrates cell fate decisions, namely, growth-arrest, senescence, or apoptosis. Reactive oxygen species (ROS) production in cells can play a key role in signal transduction, being able to trigger different processes as cell death or cell proliferation. Sustained oxidative stress can induce genomic instability and collaborates with cancer development, whereas acute enhancement of high ROS levels leads to toxic oxidative cell damage and cell death. Here, it has been considered p53 broad potential contribution through its ability to regulate selected key cancer signaling pathways, where ROS participate as inductors or effectors of the final biological outcome. Further, we have discussed how p53 could play a role in preventing potentially harmful oxidative state and cell proliferation by pro-oncogenic pathways such as PI3K/AKT/mTOR and WNT/β-catenin or under hypoxia state. In addition, we have considered potential mechanisms by which p53 could collaborate with signal transduction pathways such as transforming growth factor-β (TGF-β) and stress-activated protein kinases (SAPK) that produce ROS, to stop or eliminate uncontrolled proliferating cells.
Collapse
Affiliation(s)
- María Fátima Ladelfa
- Laboratorio de Biología Celular y Molecular, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Buenos Aires, Argentina
| | | | | | | |
Collapse
|
188
|
Tempera I, Klichinsky M, Lieberman PM. EBV latency types adopt alternative chromatin conformations. PLoS Pathog 2011; 7:e1002180. [PMID: 21829357 PMCID: PMC3145795 DOI: 10.1371/journal.ppat.1002180] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 06/09/2011] [Indexed: 12/18/2022] Open
Abstract
Epstein-Barr Virus (EBV) can establish latent infections with distinct gene expression patterns referred to as latency types. These different latency types are epigenetically stable and correspond to different promoter utilization. Here we explore the three-dimensional conformations of the EBV genome in different latency types. We employed Chromosome Conformation Capture (3C) assay to investigate chromatin loop formation between the OriP enhancer and the promoters that determine type I (Qp) or type III (Cp) gene expression. We show that OriP is in close physical proximity to Qp in type I latency, and to Cp in type III latency. The cellular chromatin insulator and boundary factor CTCF was implicated in EBV chromatin loop formation. Combining 3C and ChIP assays we found that CTCF is physically associated with OriP-Qp loop formation in type I and OriP-Cp loop formation in type III latency. Mutations in the CTCF binding site located at Qp disrupt loop formation between Qp and OriP, and lead to the activation of Cp transcription. Mutation of the CTCF binding site at Cp, as well as siRNA depletion of CTCF eliminates both OriP-associated loops, indicating that CTCF plays an integral role in loop formation. These data indicate that epigenetically stable EBV latency types adopt distinct chromatin architectures that depend on CTCF and mediate alternative promoter targeting by the OriP enhancer. Epstein-Barr Virus (EBV) latent infection is associated with several human malignancies. The viral genes expressed during latent infection can vary depending on host cell or tumor type. The different gene expression programs, referred to as latency types, are determined by alternative viral promoter usage. In this work, we investigate how differential DNA loop formation regulates viral promoter selection in different latency types. We use chromatin conformation capture methods to demonstrate that the transcriptional enhancer at OriP forms a stable loop with one of two different promoters, depending on the latency type. In type I latency, OriP forms a loop with the active Q promoter (Qp). In type III latency, OriP forms a loop with the active C promoter (Cp). Loop formation was mediated, in part, by CTCF binding sites located within the loops. Mutation in the CTCF binding site located at Qp caused a loss of OriP-Qp loop formation, a loss of Qp transcription, and a reactivation of Cp transcription from an alternative loop formed with OriP-Cp. These findings indicate that OriP loop formation is an integral component of promoter selection, and that chromatin conformation may determine EBV latency type.
Collapse
Affiliation(s)
- Italo Tempera
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Michael Klichinsky
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Paul M. Lieberman
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
189
|
Chen Y, Fujita T, Zhang D, Doan H, Pinkaew D, Liu Z, Wu J, Koide Y, Chiu A, Lin CCJ, Chang JY, Ruan KH, Fujise K. Physical and functional antagonism between tumor suppressor protein p53 and fortilin, an anti-apoptotic protein. J Biol Chem 2011; 286:32575-85. [PMID: 21795694 DOI: 10.1074/jbc.m110.217836] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tumor suppressor protein p53, our most critical defense against tumorigenesis, can be made powerless by mechanisms such as mutations and inhibitors. Fortilin, a 172-amino acid polypeptide with potent anti-apoptotic activity, is up-regulated in many human malignancies. However, the exact mechanism by which fortilin exerts its anti-apoptotic activity remains unknown. Here we present significant insight. Fortilin binds specifically to the sequence-specific DNA binding domain of p53. The interaction of fortilin with p53 blocks p53-induced transcriptional activation of Bax. In addition, fortilin, but not a double point mutant of fortilin lacking p53 binding, inhibits p53-dependent apoptosis. Furthermore, cells with wild-type p53 and fortilin, but not cells with wild-type p53 and the double point mutant of fortilin lacking p53 binding, fail to induce Bax gene and apoptosis, leading to the formation of large tumor in athymic mice. Our results suggest that fortilin is a novel p53-interacting molecule and p53 inhibitor and that it is a logical molecular target in cancer therapy.
Collapse
Affiliation(s)
- Yanjie Chen
- Division of Cardiology, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Da Costa Dias B, Jovanovic K, Gonsalves D, Weiss SFT. Structural and mechanistic commonalities of amyloid-β and the prion protein. Prion 2011; 5:126-37. [PMID: 21862871 DOI: 10.4161/pri.5.3.17025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Amyloid β (Aβ) is a major causative agent of Alzheime disease. This neurotoxic peptide is generated as a result of the cleavage of the Amyloid-Precursor-Protein (APP) by the action of beta secretase and gamma secretase. The neurotoxicity was previously thought to be the result of aggregation. However, recent studies suggest that the interaction of Aβ with numerous cell surface receptors such as N-methyl-D-aspartate (NMDA), receptor for advanced glycosylation end products (RAGE), P75 neurotrophin receptor (P75NTR) as well as cell surface proteins such as the cellular prion protein (PrP(c) ) and heparan sulfate proteoglycans (HSPG) strongly enhances Aβ induced apoptosis and thereby contributes to neurotoxicity. This review focuses on the molecular mechanism resulting in Aβ-shedding as well as Aβ-induced apoptotic processes, genetic risk factors for familial Alzheimer disease and interactions of Aβ with cell surface receptors and proteins, with particular emphasis on the cellular prion protein. Furthermore, comparisons are drawn between Alzheimer disease and prion disorders and the role of laminin, an extracellular matrix protein, glycosaminoglycans and the 37 kDa/67 kDa laminin receptor (LRP/LR) have been highlighted with regards to both neurodegenerative diseases.
Collapse
Affiliation(s)
- Bianca Da Costa Dias
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, Republic of South Africa (RSA)
| | | | | | | |
Collapse
|
191
|
Kim BC, Kim YS, Lee JW, Seo JH, Ji ES, Lee H, Park YI, Kim CJ. Protective Effect of Coriolus versicolor Cultivated in Citrus Extract Against Nitric Oxide-Induced Apoptosis in Human Neuroblastoma SK-N-MC Cells. Exp Neurobiol 2011; 20:100-9. [PMID: 22110367 PMCID: PMC3213704 DOI: 10.5607/en.2011.20.2.100] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 04/26/2011] [Indexed: 11/20/2022] Open
Abstract
Nitric oxide (NO) is a reactive free radical and a messenger molecule in many physiological functions. However, excessive NO is believed to be a mediator of neurotoxicity. The medicinal plant Coriolus versicolor is known to possess anti-tumor and immune-potentiating activities. In this study, we investigated whether Coriolus versicolor possesses a protective effect against NO donor sodium nitroprusside (SNP)-induced apoptosis in the human neuroblastoma cell line SK-N-MC. We utilized 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry, 4,6-diamidino-2-phenylindole (DAPI) staining, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay, DNA fragmentation assay, reverse transcription-polymerase chain reaction (RT-PCR), Western blot analysis, and caspase-3 enzyme activity assay in SK-N-MC cells. MTT assay showed that SNP treatment significantly reduces the viability of cells, and the viabilities of cells pre-treated with the aqueous extract of Coriolus versicolor cultivated in citrus extract (CVEcitrus) was increased. However, aqueous extract of Coriolus versicolor cultivated in synthetic medium (CVEsynthetic) showed no protective effect and aqueous citrus extract (CE) had a little protective effect. The cell treated with SNP exhibited several apoptotic features, while those pre-treated for 1 h with CVEcitrus prior to SNP expose showed reduced apoptotic features. The cells pre-treated for 1 h with CVEcitrus prior to SNP expose inhibited p53 and Bax expressions and caspase-3 enzyme activity up-regulated by SNP. We showed that CVEcitrus exerts a protective effect against SNP-induced apoptosis in SK-N-MC cells. Our study suggests that CVEcitrus has therapeutic value in the treatment of a variety of NO-induced brain diseases.
Collapse
Affiliation(s)
- Byung-Chul Kim
- Department of Anatomy-Pointology, College of Oriental Medicine, Kyungwon University, Seongnam, Korea
| | | | | | | | | | | | | | | |
Collapse
|
192
|
SPARC functions as an anti-stress factor by inactivating p53 through Akt-mediated MDM2 phosphorylation to promote melanoma cell survival. Oncogene 2011; 30:4887-900. [DOI: 10.1038/onc.2011.198] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
193
|
Fukumoto R, Kiang JG. Geldanamycin analog 17-DMAG limits apoptosis in human peripheral blood cells by inhibition of p53 activation and its interaction with heat-shock protein 90 kDa after exposure to ionizing radiation. Radiat Res 2011; 176:333-45. [PMID: 21663398 DOI: 10.1667/rr2534.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exposure to ionizing radiation induces p53, and its inhibition improves mouse survival. We tested the effect of 17-dimethylamino-ethylamino-17-demethoxygeldanamycin (17-DMAG) on p53 expression and function after radiation exposure. 17-DMAG, a heat-shock protein 90 (Hsp90) inhibitor, protects human T cells from ionizing radiation-induced apoptosis by inhibiting inducible nitric oxide synthase (iNOS) and subsequent caspase-3 activation. Using ex vivo human peripheral blood mononuclear cells, we found that ionizing radiation increased p53 accumulation, acute p53 phosphorylation, Bax expression and caspase-3/7 activation in a radiation dose- and time postirradiation-dependent manner. 17-DMAG inhibited these increases in a concentration-dependent manner (IC(50) = 0.93 ± 0.01 µM). Using in vitro models, we determined that inhibition of p53 by genetic knockout resulted in lower levels of caspase-3/7 activity 1 day after irradiation and enhanced survival at 10 days. Analysis of p53-Hsp90 interaction in ex vivo cell lysates indicated that the binding between the two molecules occurred after irradiation but 17-DMAG prevented the binding. Taken together, these results suggest the presence of p53 phosphorylation and Hsp90-dependent p53 stabilization after acute irradiation. Hsp90 inhibitors such as 17-DMAG may prove useful with radiation-based cancer therapy as well as for general radioprotection.
Collapse
Affiliation(s)
- Risaku Fukumoto
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889-5603, USA
| | | |
Collapse
|
194
|
Barth S, Meister G, Grässer FA. EBV-encoded miRNAs. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:631-40. [PMID: 21640213 DOI: 10.1016/j.bbagrm.2011.05.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 05/14/2011] [Accepted: 05/16/2011] [Indexed: 12/12/2022]
Abstract
The Epstein-Barr virus (EBV) is an oncogenic Herpes virus involved in the induction of a variety of human tumours. It was the first virus found to encode microRNAs (miRNAs). MiRNAs are short, non-coding RNAs that in most cases negatively regulate gene expression at the post-transcriptional level. EBV-transformed cells express at least 44 mature viral miRNAs that target viral and cellular genes. In addition, EBV-infection severely deregulates the miRNA profile of the host cell. The presently available information indicates that the virus uses its miRNAs to inhibit the apoptotic response of the infected cell as a means to establish a latent infection. Likewise, EBV-encoded miRNAs interfere in the expression of viral genes in order to mask the infected cell from the immune response. Cellular targets of viral miRNAs are involved in protein traffic within the cell and regulate innate immunity. MiRNA profiling of diffuse large B-cell lymphoma (DLBCL) and nasal NK/T-cell lymphoma (NKTL) showed that only 2% of the miRNAs are derived from the virus, while viral miRNAs comprise up to 20% of the total miRNA in nasopharyngeal carcinoma (NPC) and probably contribute to the formation or maintenance of NPC. The presence of viral miRNAs in exosomes raises the fascinating possibility that virus-infected cells regulate gene expression in the surrounding tissue to avert destruction by the immune system. This article is part of a Special Issue entitled: MicroRNAs in viral gene regulation.
Collapse
Affiliation(s)
- Stephanie Barth
- Universitätsklinikum des Saarlandes, Institut für Virologie, Homburg/Saar, Germany
| | | | | |
Collapse
|
195
|
Mukherjee JJ, Kumar S, Gocinski R, Williams J. Phenolic fraction of tobacco smoke inhibits BPDE-induced apoptosis response and potentiates cell transformation: role of attenuation of p53 response. Chem Res Toxicol 2011; 24:698-705. [PMID: 21480602 PMCID: PMC3095714 DOI: 10.1021/tx100440c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polynuclear aromatic hydrocarbons (PAHs) present in tobacco smoke are regarded as chemical carcinogens. Previously, we observed that a weakly acidic phenolic fraction of tobacco smoke condensate (TSCPhFr), which is devoid of PAHs, significantly potentiates (±)-anti-BP-7,8-diol-9,10-epoxide (BPDE)-induced anchorage-independent cell growth of promotion-sensitive JB6 cell, indicating its tumor-promoting potential. In the present article, we report that further fractionation of phenolic components from TSCPhFr did not show any significant potentiation of BPDE-induced cell transformation by any of the HPLC-purified phenolic fractions, indicating several phenolic components as a whole are needed for observed activity. Although the tumor-promoting activity of weakly acidic phenolic fraction of tobacco smoke had been indicated long before, no studies have been pursued to understand the mechanism(s) underlying the tumor-promoting activity of TSCPhFr. We observed that BPDE, an ultimate carcinogenic metabolite of tobacco smoke carcinogen benzo[a]pyrene, elicits apoptosis induction, which is significantly inhibited by TSCPhFr. Increased cell transformation and decreased apoptosis by TSCPhFr were associated with attenuation of BPDE-induced p53 accumulation. JB6 cells transfected with p53 siRNA showed significantly less apoptosis induction by BPDE as compared to control cells. In p53 impaired cells (which are observed to have a faster growth rate as compared to normal cells), TSCPhFr has a practically negligible effect on apoptosis induction in response to BPDE. Also, in p53 null HCT116 p53(-/-) cells, BPDE-induced apoptosis is unresponsive to TSCPhFr. Inhibition of BPDE-induced NF-κB activation was also observed by us previously. Interestingly, treatment of cells with NF-κB-specific inhibitor IKK-NBD peptide showed no effect on BPDE-induced apoptosis, whereas TSCPhFr showed moderate inhibition of apoptosis in NF-κB inhibited cells as compared to control cells. Our observations indicate that attenuation of BPDE-induced p53 response has a role in apoptosis inhibition and increased cell transformation by TSCPhFr. These findings have implication with regard to the underlying mechanism of tumor-promoting activity of TSCPhFr in PAH-induced carcinogenesis. Although p53-mediated NF-κB activation has a role in apoptosis induction, the role of NF-κB in TSCPhFr-mediated potentiation of PAH-induced cell transformation is not clear from our studies.
Collapse
Affiliation(s)
- Jagat J Mukherjee
- Environmental Toxicology and Chemistry Laboratory, Great Lakes Center, State University of New York College at Buffalo, United States.
| | | | | | | |
Collapse
|
196
|
Bartels C, Malisius R, Sayk F, Bechtel M, Leyh R, Feller A, Sievers HH. Accelerated smooth muscle cell apoptosis in occluded aorto-coronary saphenous vein grafts. Int J Angiol 2011. [DOI: 10.1007/bf01637040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
197
|
Megyola C, Ye J, Bhaduri-McIntosh S. Identification of a sub-population of B cells that proliferates after infection with Epstein-Barr virus. Virol J 2011; 8:84. [PMID: 21352549 PMCID: PMC3056814 DOI: 10.1186/1743-422x-8-84] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 02/25/2011] [Indexed: 01/12/2023] Open
Abstract
Background Epstein-Barr virus (EBV)-driven B cell proliferation is critical to its subsequent persistence in the host and is a key event in the development of EBV-associated B cell diseases. Thus, inquiry into early cellular events that precede EBV-driven proliferation of B cells is essential for understanding the processes that can lead to EBV-associated B cell diseases. Methods Infection with high titers of EBV of mixed, primary B cells in different stages of differentiation occurs during primary EBV infection and in the setting of T cell-immunocompromise that predisposes to development of EBV-lymphoproliferative diseases. Using an ex vivo system that recapitulates these conditions of infection, we correlated expression of selected B cell-surface markers and intracellular cytokines with expression of EBV latency genes and cell proliferation. Results We identified CD23, CD58, and IL6, as molecules expressed at early times after EBV-infection. EBV differentially infected B cells into two distinct sub-populations of latently infected CD23+ cells: one fraction, marked as CD23hiCD58+IL6- by day 3, subsequently proliferated; another fraction, marked as CD23loCD58+, expressed IL6, a B cell growth factor, but failed to proliferate. High levels of LMP1, a critical viral oncoprotein, were expressed in individual CD23hiCD58+ and CD23loCD58+ cells, demonstrating that reduced levels of LMP1 did not explain the lack of proliferation of CD23loCD58+ cells. Differentiation stage of B cells did not appear to govern this dichotomy in outcome either. Memory or naïve B cells did not exclusively give rise to either CD23hi or IL6-expressing cells; rather memory B cells gave rise to both sub-populations of cells. Conclusions B cells are differentially susceptible to EBV-mediated proliferation despite expression of viral gene products known to be critical for continuous B cell growth. Cellular events, in addition to viral gene expression, likely play a critical role in determining the outcome of EBV infection. By indentifying cells predicted to undergo EBV-mediated proliferation, our study provides new avenues of investigation into EBV pathogenesis.
Collapse
Affiliation(s)
- Cynthia Megyola
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | |
Collapse
|
198
|
Tyurina YY, Tyurin VA, Kapralova VI, Wasserloos K, Mosher M, Epperly MW, Greenberger JS, Pitt BR, Kagan VE. Oxidative lipidomics of γ-radiation-induced lung injury: mass spectrometric characterization of cardiolipin and phosphatidylserine peroxidation. Radiat Res 2011; 175:610-21. [PMID: 21338246 DOI: 10.1667/rr2297.1] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Oxidative damage plays a significant role in the pathogenesis of γ-radiation-induced lung injury. Endothelium is a preferred target for early radiation-induced damage and apoptosis. Given the newly discovered role of oxidized phospholipids in apoptotic signaling, we performed oxidative lipidomics analysis of phospholipids in irradiated mouse lungs and cultured mouse lung endothelial cells. C57BL/6NHsd female mice were subjected to total-body irradiation (10 Gy, 15 Gy) and euthanized 24 h thereafter. Mouse lung endothelial cells were analyzed 48 h after γ irradiation (15 Gy). We found that radiation-induced apoptosis in vivo and in vitro was accompanied by non-random oxidation of phospholipids. Cardiolipin and phosphatidylserine were the major oxidized phospholipids, while more abundant phospholipids (phosphatidylcholine, phosphatidylethanolamine) remained non-oxidized. Electrospray ionization mass spectrometry analysis revealed the formation of cardiolipin and phosphatidylserine oxygenated molecular species in the irradiated lung and cells. Analysis of fatty acids after hydrolysis of cardiolipin and phosphatidylserine by phospholipase A(2) revealed the presence of mono-hydroperoxy and/or mono-hydroxy/mono-epoxy, mono-hydroperoxy/mono-oxo molecular species of linoleic acid. We speculate that cyt c-driven oxidations of cardiolipin and phosphatidylserine associated with the execution of apoptosis in pulmonary endothelial cells are important contributors to endothelium dysfunction in γ-radiation-induced lung injury.
Collapse
Affiliation(s)
- Yulia Y Tyurina
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Bridgeside Point, 100 Technology Drive, Suite 350, Pittsburgh, PA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Graupner V, Alexander E, Overkamp T, Rothfuss O, De Laurenzi V, Gillissen BF, Daniel PT, Schulze-Osthoff K, Essmann F. Differential regulation of the proapoptotic multidomain protein Bak by p53 and p73 at the promoter level. Cell Death Differ 2011; 18:1130-9. [PMID: 21233848 DOI: 10.1038/cdd.2010.179] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
During apoptosis Bcl-2 proteins control permeabilization of the mitochondrial outer membrane leading to the release of cytochrome c. Essential gatekeepers for cytochrome c release are the proapoptotic multidomain proteins, Bax, and Bak. The expression of Bax is upregulated upon cellular stress by the tumor suppressor p53. Despite the high functional homology of Bax and Bak, little is known about how the bak gene is regulated. To investigate its transcriptional regulation in further detail, we have analyzed a region spanning 8200 bp upstream of the bak start codon (within exon 2) for transcription factor-binding sites, and identified three p53 consensus sites (BS1-3). Reporter gene assays in combination with site-directed mutagenesis revealed that only one putative p53-binding site (BS3) is necessary and sufficient for induction of reporter gene expression by p53. Consistently, p53 induces expression of endogenous Bak. At the mRNA level, induction of Bak expression is weaker than induction of Puma and p21. Interestingly, Bak expression can also be induced by p73 that binds however to each of the three p53-binding sites within the bak promoter region. Our data suggest that expression of Bak can be induced by both, p53 and p73 utilizing different binding sites within the bak promoter.
Collapse
Affiliation(s)
- V Graupner
- Interfaculty Institute for Biochemistry, Eberhard-Karls-University, Tübingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Abstract
The germ cell lineage is our lifelong reservoir of reproductive stem cells and our mechanism for transmitting genes to future generations. These highly specialised cells are specified early during development and then migrate to the embryonic gonads where sex differentiation occurs. Germ cell sex differentiation is directed by the somatic gonadal environment and is characterised by two distinct cell cycle states that are maintained until after birth. In the mouse, XY germ cells in a testis cease mitotic proliferation and enter G(1)/G(0) arrest from 12.5 dpc, while XX germ cells in an ovary enter prophase I of meiosis from 13.5 dpc. This chapter discusses the factors known to control proliferation and survival of germ cells during their journey of specification to sex differentiation during development.
Collapse
Affiliation(s)
- Cassy M Spiller
- Division of Molecular Genetics and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| | | |
Collapse
|