151
|
Mohammad MK, Avila D, Zhang J, Barve S, Arteel G, McClain C, Joshi-Barve S. Acrolein cytotoxicity in hepatocytes involves endoplasmic reticulum stress, mitochondrial dysfunction and oxidative stress. Toxicol Appl Pharmacol 2012; 265:73-82. [PMID: 23026831 DOI: 10.1016/j.taap.2012.09.021] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 09/18/2012] [Accepted: 09/21/2012] [Indexed: 11/27/2022]
Abstract
Acrolein is a common environmental, food and water pollutant and a major component of cigarette smoke. Also, it is produced endogenously via lipid peroxidation and cellular metabolism of certain amino acids and drugs. Acrolein is cytotoxic to many cell types including hepatocytes; however the mechanisms are not fully understood. We examined the molecular mechanisms underlying acrolein hepatotoxicity in primary human hepatocytes and hepatoma cells. Acrolein, at pathophysiological concentrations, caused a dose-dependent loss of viability of hepatocytes. The death was apoptotic at moderate and necrotic at high concentrations of acrolein. Acrolein exposure rapidly and dramatically decreased intracellular glutathione and overall antioxidant capacity, and activated the stress-signaling MAP-kinases JNK, p42/44 and p38. Our data demonstrate for the first time in human hepatocytes, that acrolein triggered endoplasmic reticulum (ER) stress and activated eIF2α, ATF-3 and -4, and Gadd153/CHOP, resulting in cell death. Notably, the protective/adaptive component of ER stress was not activated, and acrolein failed to up-regulate the protective ER-chaperones, GRP78 and GRP94. Additionally, exposure to acrolein disrupted mitochondrial integrity/function, and led to the release of pro-apoptotic proteins and ATP depletion. Acrolein-induced cell death was attenuated by N-acetyl cysteine, phenyl-butyric acid, and caspase and JNK inhibitors. Our data demonstrate that exposure to acrolein induces a variety of stress responses in hepatocytes, including GSH depletion, oxidative stress, mitochondrial dysfunction and ER stress (without ER-protective responses) which together contribute to acrolein toxicity. Our study defines basic mechanisms underlying liver injury caused by reactive aldehyde pollutants such as acrolein.
Collapse
Affiliation(s)
- Mohammad K Mohammad
- Department of Medicine, University of Louisville, USA; Alcohol Research Center, University of Louisville, USA
| | | | | | | | | | | | | |
Collapse
|
152
|
Abstract
The Margin of Exposure to Formaldehyde in Alcoholic BeveragesFormaldehyde has been classified as carcinogenic to humans (WHO IARC group 1). It causes leukaemia and nasopharyngeal cancer, and was described to regularly occur in alcoholic beverages. However, its risk associated with consumption of alcohol has not been systematically studied, so this study will provide the first risk assessment of formaldehyde for consumers of alcoholic beverages.Human dietary intake of formaldehyde via alcoholic beverages in the European Union was estimated based on WHO alcohol consumption data and literature on formaldehyde contents of different beverage groups (beer, wine, spirits, and unrecorded alcohol). The risk assessment was conducted using the margin of exposure (MOE) approach with benchmark doses (BMD) for 10 % effect obtained from dose-response modelling of animal experiments.For tumours in male rats, a BMD of 30 mg kg-1 body weight per day and a "BMD lower confidence limit" (BMDL) of 23 mg kg-1 d-1 were calculated from available long-term animal experiments. The average human exposure to formaldehyde from alcoholic beverages was estimated at 8·10-5 mg kg-1 d-1. Comparing the human exposure with BMDL, the resulting MOE was above 200,000 for average scenarios. Even in the worst-case scenarios, the MOE was never below 10,000, which is considered to be the threshold for public health concerns.The risk assessment shows that the cancer risk from formaldehyde to the alcohol-consuming population is negligible and the priority for risk management (e.g. to reduce the contamination) is very low. The major risk in alcoholic beverages derives from ethanol and acetaldehyde.
Collapse
|
153
|
Kumar KN, Raja SB, Vidhya N, Devaraj SN. Ellagic acid modulates antioxidant status, ornithine decarboxylase expression, and aberrant crypt foci progression in 1,2-dimethylhydrazine-instigated colon preneoplastic lesions in rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:3665-3672. [PMID: 22439659 DOI: 10.1021/jf204128z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Chemoprevention offers a novel approach to control the incidence of colorectal cancer (CRC), which is a fatal cause of malignancies in both Western and Asia countries. Ornithine decarboxylase (ODC) functions as a cell transition factor by regulating the biosynthesis of polyamines, which, allied with aberrant crypt foci (ACF) proliferation, cause early lesions of CRC. This study exemplifies the chemopreventive efficacy of ellagic acid (EA) in 1,2-dimethylhydrazine (DMH) initiated CRC in rats. Subcutaneous injection of DMH (40 mg/kg body weight twice a week for 2 weeks) to the rats resulted in elevated expression of ODC, a genetic marker for CRC, and its transcription factor myelocytomatosis oncogene (c-myc). Furthermore, increased levels of lipid peroxidation and hydroperoxides with diminished levels of antioxidants including superoxide dismutase, catalase, and reduced glutathione were also observed in the tissues of DMH-intoxicated rats. Oral supplementation of EA significantly influences maintenance of antioxidant status and transcriptional inactivation of ODC expression, reducing ACF proliferation and/or progression, thus signifying the chemopreventive efficacy of EA against CRC.
Collapse
Affiliation(s)
- Kasinathan Nirmal Kumar
- Department of Biochemistry, School of Life Sciences, Maraimalai (Guindy) campus, University of Madras, Chennai, Tamilnadu, India.
| | | | | | | |
Collapse
|
154
|
Park H, Kang BS, Kim DY, Yoon JS, Jeong JH, Nam SY, Yun YW, Kim JS, Lee BJ. Suppressive effect of zinc on the formation of colonic preneoplastic lesions in the mouse fed high levels of dietary iron. Toxicol Res 2012; 28:39-49. [PMID: 24278588 PMCID: PMC3834396 DOI: 10.5487/tr.2012.28.1.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/18/2012] [Accepted: 03/28/2012] [Indexed: 11/20/2022] Open
Abstract
We investigated the effect of zinc on the formation of colonic aberrant crypt foci induced by azoxymethane (AOM) followed by dextran sodium sulfate (DSS) in mice with high iron diet (HFe; 450 ppm iron). Sixweek old ICR mice were fed on high iron diets with combination of three different levels of zinc in diets, low-zinc (LZn; 0.01 ppm), medium-zinc (MZn; 0.1 ppm), and high-zinc (HZn; 1 ppm) for 12 weeks. Animals were received weekly intraperitoneal injections of AOM (10 mg/kg B.W. in saline) for 3 weeks followed by 2% DSS (molecular weight 36,000~50,000) in the drinking water for a week. To confirm the iron storage in the body, the hepatic iron concentration has been determine chemically and compared with histological assessment visualized by Prussian blue reaction. Aberrant crypt (AC) and aberrant crypt foci (ACF) were analyzed in the colonic mucosa of mouse fed high dietary iron. Superoxide dismutase (SOD) activity and thiobarbituric acid-reactive substances (TBARS) level were also investigated. Apoptosis in the preneoplastic lesion was determined by terminal deoxynucleotidyl transferase-mediated dUTP nickend labeling (TUNEL). In addition, immunohistochemistry of β-catenin was also performed on the mucous membrane of colon. The number of large ACF (≥ 4 AC/ACF), which possess greater tumorigenic potential, was significantly lower in MZn and HZn groups compared with LZn group. Cytosolic SOD activity in the liver was significantly higher in HZn group compared with LZn group. Hepatic MDA level was decreased significantly in HZn group compared with MZn and LZn groups. Apoptotic index was significantly higher in HZn group. Taken together, these findings indicate that dietary zinc might exert a protective effect against colonic preneoplastic lesion induced by AOM/DSS in ICR mice with high iron status, and suggest that dietary supplement of zinc might play a role in suppressing colon carcinogenesis in mice.
Collapse
Affiliation(s)
- Hyunji Park
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University, Cheongju 361-763, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Abstract
Cancer prevention is based on the identification of specific etiologic factors. Acetaldehyde derived from the alcoholic beverage itself and formed from ethanol endogenously has recently been classified by the International Agency for Research on Cancer/World Health Organization as a group 1 carcinogen to humans. This is based on the uniform epidemiological and biochemical evidence derived from individuals carrying alcohol and aldehyde dehydrogenase gene mutations. After drinking alcohol, these mutations are associated with increased exposure of the upper digestive tract to acetaldehyde and as well with a remarkably increased risk for upper gastrointestinal (GI) tract cancers. Acetaldehyde is the key intermediate in alcoholic fermentation and ethanol oxidation. Therefore, it is widely present in our environment. Furthermore, it is the most abundant carcinogenic compound of tobacco smoke. Most of the known risk factors for upper digestive tract cancer appear to be associated with an enhanced exposure of GI mucosa to locally formed acetaldehyde. In these process microbes, salivary glands and even mucosal cells appear to play an essential role. Consequently, in the presence of ethanol mutagenic acetaldehyde concentrations are found in the saliva, achlorhydric stomach and colon. Equal acetaldehyde concentrations are seen in saliva also during active smoking. ALDH2-deficiency and high active ADH1C result in two- to threefold salivary acetaldehyde concentrations after a dose of alcohol and this prevails for as long as ethanol is present in the blood and saliva. Regarding cancer prevention, the good news is that acetaldehyde exposure can be markedly reduced. This can be achieved by giving high priority for regulatory measures and consumer guidance.
Collapse
Affiliation(s)
- Mikko Salaspuro
- Research Unit on Acetaldehyde and Cancer, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.
| | | |
Collapse
|
156
|
Prasse C, Wagner M, Schulz R, Ternes TA. Oxidation of the antiviral drug acyclovir and its biodegradation product carboxy-acyclovir with ozone: kinetics and identification of oxidation products. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:2169-2178. [PMID: 22300376 DOI: 10.1021/es203712z] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The oxidation of the antiviral drug acyclovir (ACV) and its main biotransformation product carboxy-acyclovir (carboxy-ACV) by ozone was investigated. Both compounds have recently been detected in surface water, and carboxy-ACV has also been detected in drinking water. The experiments revealed a strong pH dependence of the oxidation of ACV and carboxy-ACV with reaction rate constants increasing by 4 orders of magnitude between the protonated, positively charged form (k(ox,PH(+)), ∼2.5 × 10(2) M(-1) s(-1)) and the deprotonated, negatively charged form (k(ox,P(-)), 3.4 × 10(6) M(-1) s(-1)). At pH 8 a single oxidation product was formed which was identified via LC-LTQ-Orbitrap MS and NMR as N-(4-carbamoyl-2-imino-5-oxoimidazolidin)formamido-N-methoxyacetic acid (COFA). Using Vibrio fischeri , an acute bacterial toxicity was found for COFA while carboxy-ACV revealed no toxic effects. Ozonation experiments with guanine and guanosine at pH 8 led to the formation of the respective 2-imino-5-oxoimidazolidines, confirming that guanine derivatives such as carboxy-ACV are undergoing the same reactions during ozonation. Furthermore, COFA was detected in finished drinking water of a German waterworks after ozonation and subsequent activated carbon treatment.
Collapse
|
157
|
Furuta A, Suzuki Y, Hayashi N, Egawa S, Yoshimura N. Transient receptor potential A1 receptor-mediated neural cross-talk and afferent sensitization induced by oxidative stress: Implication for the pathogenesis of interstitial cystitis/bladder pain syndrome. Int J Urol 2012; 19:429-36. [DOI: 10.1111/j.1442-2042.2012.02966.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
158
|
Tian D, Lin Z, Yin D, Zhang Y, Kong D. Atomic charges of individual reactive chemicals in binary mixtures determine their joint effects: an example of cyanogenic toxicants and aldehydes. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2012; 31:270-278. [PMID: 22105991 DOI: 10.1002/etc.1701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 09/02/2011] [Accepted: 09/27/2011] [Indexed: 05/31/2023]
Abstract
Environmental contaminants are usually encountered as mixtures, and many of these mixtures yield synergistic or antagonistic effects attributable to an intracellular chemical reaction that pose a potential threat on ecological systems. However, how atomic charges of individual chemicals determine their intracellular chemical reactions, and then determine the joint effects for mixtures containing reactive toxicants, is not well understood. To address this issue, the joint effects between cyanogenic toxicants and aldehydes on Photobacterium phosphoreum were observed in the present study. Their toxicological joint effects differed from one another. This difference is inherently related to the two atomic charges of the individual chemicals: the oxygen charge of -CHO (O(aldehyde toxicant)) in aldehyde toxicants and the carbon-atom charge of a carbon chain in the cyanogenic toxicant (C(cyanogenic toxicant)). Based on these two atomic charges, the following QSAR (quantitative structure-activity relationship) model was proposed: When (O(aldehyde toxicant) -C(cyanogenic toxicant) )> -0.125, the joint effect of equitoxic binary mixtures at median inhibition (TU, the sum of toxic units) can be calculated as TU = 1.00 ± 0.20; when (O(aldehyde toxicant) -C(cyanogenic toxicant) ) ≤ -0.125, the joint effect can be calculated using TU = - 27.6 x O (aldehyde toxicant) - 5.22 x C (cyanogenic toxicant) - 6.97 (n = 40, r = 0.887, SE = 0.195, F = 140, p < 0.001, q(2) (Loo) = 0.748; SE is the standard error of the regression, F is the F test statistic). The result provides insight into the relationship between the atomic charges and the joint effects for mixtures containing cyanogenic toxicants and aldehydes. This demonstrates that the essence of the joint effects resulting from intracellular chemical reactions depends on the atomic charges of individual chemicals. The present study provides a possible approach for the development of a QSAR model for mixtures containing reactive toxicants based on the atomic charges.
Collapse
Affiliation(s)
- Dayong Tian
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | | | | | | | | |
Collapse
|
159
|
Hyldgaard M, Mygind T, Meyer RL. Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Front Microbiol 2012; 3:12. [PMID: 22291693 PMCID: PMC3265747 DOI: 10.3389/fmicb.2012.00012] [Citation(s) in RCA: 984] [Impact Index Per Article: 75.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 01/09/2012] [Indexed: 01/28/2023] Open
Abstract
Essential oils are aromatic and volatile liquids extracted from plants. The chemicals in essential oils are secondary metabolites, which play an important role in plant defense as they often possess antimicrobial properties. The interest in essential oils and their application in food preservation has been amplified in recent years by an increasingly negative consumer perception of synthetic preservatives. Furthermore, food-borne diseases are a growing public health problem worldwide, calling for more effective preservation strategies. The antibacterial properties of essential oils and their constituents have been documented extensively. Pioneering work has also elucidated the mode of action of a few essential oil constituents, but detailed knowledge about most of the compounds' mode of action is still lacking. This knowledge is particularly important to predict their effect on different microorganisms, how they interact with food matrix components, and how they work in combination with other antimicrobial compounds. The main obstacle for using essential oil constituents as food preservatives is that they are most often not potent enough as single components, and they cause negative organoleptic effects when added in sufficient amounts to provide an antimicrobial effect. Exploiting synergies between several compounds has been suggested as a solution to this problem. However, little is known about which interactions lead to synergistic, additive, or antagonistic effects. Such knowledge could contribute to design of new and more potent antimicrobial blends, and to understand the interplay between the constituents of crude essential oils. The purpose of this review is to provide an overview of current knowledge about the antibacterial properties and antibacterial mode of action of essential oils and their constituents, and to identify research avenues that can facilitate implementation of essential oils as natural preservatives in foods.
Collapse
Affiliation(s)
- Morten Hyldgaard
- Interdisciplinary Nanoscience Center, Aarhus UniversityAarhus C, Denmark
- Department of Bioscience, Aarhus UniversityAarhus C, Denmark
- Danisco A/S, BrabrandDenmark
| | | | - Rikke Louise Meyer
- Interdisciplinary Nanoscience Center, Aarhus UniversityAarhus C, Denmark
- Department of Bioscience, Aarhus UniversityAarhus C, Denmark
| |
Collapse
|
160
|
Rickert WS, Trivedi AH, Momin RA, Wagstaff WG, Lauterbach JH. Mutagenic, cytotoxic, and genotoxic properties of tobacco smoke produced by cigarillos available on the Canadian market. Regul Toxicol Pharmacol 2011; 61:199-209. [PMID: 21821091 DOI: 10.1016/j.yrtph.2011.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 07/14/2011] [Accepted: 07/21/2011] [Indexed: 11/22/2022]
Abstract
Cigarillos (aka little cigars) have been increasing in popularity unlike cigarettes; but relatively little is known about the toxicology of the mainstream smoke (MSS) from such products. Therefore, the objective of this work was to compare the toxicological properties of the MSS (Health Canada Intensive smoking conditions) from a range of cigarillo products with the toxicological properties of MSS of cigarettes. Three in vitro assays were used to evaluate the toxicities of the MSS total particulate matter (TPM): (1) mutagenicity using Ames assay with Salmonella strains TA98 and TA100 with S9 metabolic activation (+S9); (2) cytotoxicity using the Neutral Red Uptake (NRU) assay with CHO (Chinese Hamster Ovary) cells; and (3) genotoxicity using the micronucleus assay with CHO cells and short-term exposures (3-h ± S9). The Ames assay (TA100+S9) and the NRU assay were also applied to the gas/vapour phase of the MSS that passed through the Cambridge pad. On a per-milligram-nicotine basis, the preferred way of comparing toxicities of different types of tobacco products, the MSS from cigarillos was not less toxic, and in some cases more toxic (TPM fraction TA98+S9, NRU), than the MSS from cigarettes. Thus, our findings support our prior work on smoke mutagenicity that showed MSS from cigarillos was not less toxic than MSS from cigarettes.
Collapse
Affiliation(s)
- W S Rickert
- Labstat International ULC, 262 Manitou Drive, Kitchener, Ontario, Canada.
| | | | | | | | | |
Collapse
|
161
|
Wierckx N, Koopman F, Ruijssenaars HJ, de Winde JH. Microbial degradation of furanic compounds: biochemistry, genetics, and impact. Appl Microbiol Biotechnol 2011; 92:1095-105. [PMID: 22031465 PMCID: PMC3223595 DOI: 10.1007/s00253-011-3632-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 09/29/2011] [Accepted: 10/06/2011] [Indexed: 11/16/2022]
Abstract
Microbial metabolism of furanic compounds, especially furfural and 5-hydroxymethylfurfural (HMF), is rapidly gaining interest in the scientific community. This interest can largely be attributed to the occurrence of toxic furanic aldehydes in lignocellulosic hydrolysates. However, these compounds are also widespread in nature and in human processed foods, and are produced in industry. Although several microorganisms are known to degrade furanic compounds, the variety of species is limited mostly to Gram-negative aerobic bacteria, with a few notable exceptions. Furanic aldehydes are highly toxic to microorganisms, which have evolved a wide variety of defense mechanisms, such as the oxidation and/or reduction to the furanic alcohol and acid forms. These oxidation/reduction reactions constitute the initial steps of the biological pathways for furfural and HMF degradation. Furfural degradation proceeds via 2-furoic acid, which is metabolized to the primary intermediate 2-oxoglutarate. HMF is converted, via 2,5-furandicarboxylic acid, into 2-furoic acid. The enzymes in these HMF/furfural degradation pathways are encoded by eight hmf genes, organized in two distinct clusters in Cupriavidus basilensis HMF14. The organization of the five genes of the furfural degradation cluster is highly conserved among microorganisms capable of degrading furfural, while the three genes constituting the initial HMF degradation route are organized in a highly diverse manner. The genetic and biochemical characterization of the microbial metabolism of furanic compounds holds great promises for industrial applications such as the biodetoxifcation of lignocellulosic hydrolysates and the production of value-added compounds such as 2,5-furandicarboxylic acid.
Collapse
|
162
|
The potential of biodetoxification activity as a probiotic property of Lactobacillus reuteri. Int J Food Microbiol 2011; 152:206-10. [PMID: 22071286 DOI: 10.1016/j.ijfoodmicro.2011.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 10/10/2011] [Accepted: 10/13/2011] [Indexed: 11/23/2022]
Abstract
Previous work on the metabolism of Lactobacillus reuteri ATCC 55730 anticipated a variability in the use of organic electron acceptors as a means to relieve metabolic redox problems. Therefore, investigations focusing on this unique metabolism of L. reuteri may reveal a basis for new probiotic properties. For instance, L. reuteri may use reactive aldehydes and ketones as electron acceptors to balance their redox metabolism, which opens the possibility to exploit this bacterium for in vivo bioreduction of deleterious compounds in the gastrointestinal tract (GIT). Herein we demonstrate that L. reuteri ATCC 55730 cultures on glucose are able to use furfural (1g/L), and hydroxymethylfurfural (HMF) (0.5g/L), as electron acceptors. The former enhances the growth rate by about 25% and biomass yield by 15%, whereas the latter is inhibitory. Furfural is stoichiometrically reduced to furfuryl alcohol by the culture. The conversion of furfural had no effect on the flux distribution between the simultaneously operating phosphoketolase and Embden-Meyerhof pathways, but initiated a flux to acetate production. In addition to furfural and HMF, cellular extracts showed potential to reoxidize NADH and/or NADPH with acrolein, crotonaldehyde, and diacetyl, indicating that conversion reactions take place intracellularly, however, utilization mechanisms for the latter compounds may not be present in this strain. The strain did not reduce other GIT-related reactive compounds, including acrylamide, glyoxal, and furan.
Collapse
|
163
|
Nandakumar N, Jayaprakash R, Rengarajan T, Ramesh V, Balasubramanian MP. Hesperidin, a natural citrus flavonoglycoside, normalizes lipid peroxidation and membrane bound marker enzymes in 7, 12-Dimethylbenz (a) anthracene induced experimental breast cancer rats. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.bionut.2011.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
164
|
Ismahil MA, Hamid T, Haberzettl P, Gu Y, Chandrasekar B, Srivastava S, Bhatnagar A, Prabhu SD. Chronic oral exposure to the aldehyde pollutant acrolein induces dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 2011; 301:H2050-60. [PMID: 21908791 DOI: 10.1152/ajpheart.00120.2011] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Environmental triggers of dilated cardiomyopathy are poorly understood. Acute exposure to acrolein, a ubiquitous aldehyde pollutant, impairs cardiac function and cardioprotective responses in mice. Here, we tested the hypothesis that chronic oral exposure to acrolein induces inflammation and cardiomyopathy. C57BL/6 mice were gavage-fed acrolein (1 mg/kg) or water (vehicle) daily for 48 days. The dose was chosen based on estimates of human daily unsaturated aldehyde consumption. Compared with vehicle-fed mice, acrolein-fed mice exhibited significant (P < 0.05) left ventricular (LV) dilatation (LV end-diastolic volume 36 ± 8 vs. 17 ± 5 μl), contractile dysfunction (dP/dt(max) 4,697 ± 1,498 vs. 7,016 ± 1,757 mmHg/s), and impaired relaxation (tau 15.4 ± 4.3 vs. 10.4 ± 2.2 ms). Histological and biochemical evaluation revealed myocardial oxidative stress (membrane-localized protein-4-hydroxy-trans-2-nonenal adducts) and nitrative stress (increased protein-nitrotyrosine) and varying degrees of plasma and myocardial protein-acrolein adduct formation indicative of physical translocation of ingested acrolein to the heart. Acrolein also induced myocyte hypertrophy (~2.2-fold increased myocyte area, P < 0.05), increased apoptosis (~7.5-fold), and disrupted endothelial nitric oxide synthase in the heart. DNA binding studies, immunohistochemistry, and PCR revealed significant (P < 0.05) activation of nuclear factor-κB in acrolein-exposed hearts, along with upregulated gene expression of proinflammatory cytokines tumor necrosis factor-α and interleukin-1β. Long-term oral exposure to acrolein, at an amount within the range of human unsaturated aldehyde intake, induces a phenotype of dilated cardiomyopathy in the mouse. Human exposure to acrolein may have analogous effects and raise consideration of an environmental, aldehyde-mediated basis for heart failure.
Collapse
Affiliation(s)
- Mohamed Ameen Ismahil
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | | | | | | | |
Collapse
|
165
|
Abraham K, Andres S, Palavinskas R, Berg K, Appel KE, Lampen A. Toxicology and risk assessment of acrolein in food. Mol Nutr Food Res 2011; 55:1277-90. [DOI: 10.1002/mnfr.201100481] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
166
|
Gosetti F, Chiuminatto U, Mazzucco E, Robotti E, Calabrese G, Gennaro MC, Marengo E. Simultaneous determination of thirteen polycyclic aromatic hydrocarbons and twelve aldehydes in cooked food by an automated on-line solid phase extraction ultra high performance liquid chromatography tandem mass spectrometry. J Chromatogr A 2011; 1218:6308-18. [DOI: 10.1016/j.chroma.2011.06.085] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 06/15/2011] [Accepted: 06/22/2011] [Indexed: 11/26/2022]
|
167
|
Kubra IR, Bettadaiah BK, Murthy PS, Rao LJM. Structure-function activity of dehydrozingerone and its derivatives as antioxidant and antimicrobial compounds. Journal of Food Science and Technology 2011; 51:245-55. [PMID: 24493881 DOI: 10.1007/s13197-011-0488-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/18/2011] [Accepted: 08/02/2011] [Indexed: 01/23/2023]
Abstract
Dehydrozingerone, structural half analogue of curcumin, is a phenolic compound isolated from ginger (Zingiber officinale) rhizomes. Dehydrozingerone and several of its derivatives such as glucopyranosides and its tetra acetate derivative and 4-O-acetyl and methyl derivatives of dehydrozingerone were synthesized in the present study. Dehydrozingerone, synthesised with improved yield was used for the synthesis of Dehydrozingerone 4-O-β-D-glucopyranoside (first time report) by modified Koenigs-Knorr-Zemplén method. Structures of all the compounds have been established using spectroscopic methods. These compounds were tested for radical scavenging activity by DPPH and FRAP method as well as for antibacterial and antifungal activities. The parent molecule exhibited better scavenging activity as compared to its derivatives indicating the significance of free phenolic hydroxyl group. Also, Dehydrozingerone and its derivatives exhibited antibacterial as well as antifungal activity due to the conjugation system present, which includes α,β-unsaturated carbonyl (C = O) group. This study gave an insight into structural requirements for dehydrozingerone activity.
Collapse
Affiliation(s)
- Ismail Rahath Kubra
- Department Central Food Technological Research Institute, Plantation Products, Spices and Flavour Technology, Mysore, 570 020 India
| | - Bheemanakere Kempaiah Bettadaiah
- Department Central Food Technological Research Institute, Plantation Products, Spices and Flavour Technology, Mysore, 570 020 India
| | - Pushpa Srinivas Murthy
- Department Central Food Technological Research Institute, Plantation Products, Spices and Flavour Technology, Mysore, 570 020 India
| | - Lingamallu Jagan Mohan Rao
- Department Central Food Technological Research Institute, Plantation Products, Spices and Flavour Technology, Mysore, 570 020 India
| |
Collapse
|
168
|
Conklin DJ, Prough RA, Juvan P, Rezen T, Rozman D, Haberzettl P, Srivastava S, Bhatnagar A. Acrolein-induced dyslipidemia and acute-phase response are independent of HMG-CoA reductase. Mol Nutr Food Res 2011; 55:1411-22. [PMID: 21812109 DOI: 10.1002/mnfr.201100225] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 07/01/2011] [Accepted: 07/09/2011] [Indexed: 11/12/2022]
Abstract
SCOPE Aldehydes are ubiquitous natural constituents of foods, water and beverages. Dietary intake represents the greatest source of exposure to acrolein and related aldehydes. Oral acrolein induces dyslipidemia acutely and chronically increases atherosclerosis in mice, yet the mechanisms are unknown. Because lipid synthesis and trafficking are largely under hepatic control, we examined hepatic genes in murine models of acute and chronic oral acrolein exposure. METHODS AND RESULTS Changes in hepatic gene expression were examined using a Steroltalk microarray. Acute acrolein feeding modified plasma and hepatic proteins and increased plasma triglycerides within 15 min. By 6 h, acrolein altered hepatic gene expression including Insig1, Insig2 and Hmgcr genes and stimulated an acute-phase response (APR) with up-regulation of serum amyloid A genes (Saa) and systemic hypoalbuminemia. To test if decreased HMG-CoA reductase activity could modify acrolein-induced dyslipidemia or the APR, mice were pretreated with simvastatin. Statin treatment, however, did not alter acrolein-induced dyslipidemia or hypoalbuminemia associated with an APR. Few hepatic genes were dysregulated by chronic acrolein feeding in apoE-null mice. These studies confirmed that acute acrolein exposure altered expression of hepatic genes involved with lipid synthesis and trafficking and APR, and thus, indicated a hepatic locus of acrolein-induced dyslipidemia and APR that was independent of HMG CoA-reductase. CONCLUSION Dietary intake of acrolein could contribute to cardiovascular disease risk by disturbing hepatic function.
Collapse
Affiliation(s)
- Daniel J Conklin
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40292, USA.
| | | | | | | | | | | | | | | |
Collapse
|
169
|
Aldini G, Orioli M, Carini M. Protein modification by acrolein: relevance to pathological conditions and inhibition by aldehyde sequestering agents. Mol Nutr Food Res 2011; 55:1301-19. [PMID: 21805620 DOI: 10.1002/mnfr.201100182] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/12/2011] [Accepted: 06/15/2011] [Indexed: 01/08/2023]
Abstract
Acrolein (ACR) is a toxic and highly reactive α,β-unsaturated aldehyde widely distributed in the environment as a common pollutant and generated endogenously mainly by lipoxidation reactions. Its biological effects are due to its ability to react with the nucleophilic sites of proteins, to form covalently modified biomolecules which are thought to be involved as pathogenic factors in the onset and progression of many pathological conditions such as cardiovascular and neurodegenerative diseases. Functional impairment of structural proteins and enzymes by covalent modification (crosslinking) and triggering of key cell signalling systems are now well-recognized signs of cell and tissue damage induced by reactive carbonyl species (RCS). In this review, we mainly focus on the in vitro and in vivo evidence demonstrating the ability of ACR to covalently modify protein structures, in order to gain a deeper insight into the dysregulation of cellular and metabolic pathways caused by such modifications. In addition, by considering RCS and RCS-modified proteins as drug targets, this survey will provide an overview on the newly developed molecules specifically tested for direct or indirect ACR scavenging, and the more significant studies performed in the last years attesting the efficacy of compounds already recognized as promising aldehyde-sequestering agents.
Collapse
Affiliation(s)
- Giancarlo Aldini
- Department of Pharmaceutical Sciences Pietro Pratesi, Università degli Studi di Milano, Milan, Italy
| | | | | |
Collapse
|
170
|
Sibirny V, Demkiv O, Klepach H, Honchar T, Gonchar M. Alcohol oxidase- and formaldehyde dehydrogenase-based enzymatic methods for formaldehyde assay in fish food products. Food Chem 2011; 127:774-9. [DOI: 10.1016/j.foodchem.2010.12.146] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 10/21/2010] [Accepted: 12/31/2010] [Indexed: 11/16/2022]
|
171
|
Formaldehyde in alcoholic beverages: large chemical survey using purpald screening followed by chromotropic Acid spectrophotometry with multivariate curve resolution. Int J Anal Chem 2011; 2011:797604. [PMID: 21760790 PMCID: PMC3132522 DOI: 10.1155/2011/797604] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 03/08/2011] [Accepted: 03/30/2011] [Indexed: 12/03/2022] Open
Abstract
A strategy for analyzing formaldehyde in beer, wine, spirits, and unrecorded alcohol was developed, and 508 samples from worldwide origin were analyzed. In the first step, samples are qualitatively screened using a simple colorimetric test with the purpald reagent, which is extremely sensitive for formaldehyde (detection limit 0.1 mg/L). 210 samples (41%) gave a positive purpald reaction. In the second step, formaldehyde in positive samples is confirmed by quantitative spectrophotometry of the chromotropic acid-formaldehyde derivative combined with Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS). Calculation of UV-VIS and 13C NMR spectra confirmed the monocationic dibenzoxanthylium structure as the product of the reaction and disproved the widely cited para,para-quinoidal structure. Method validation for the spectrophotometric procedure showed a detection limit of 0.09 mg/L and a precision of 4.2–8.2% CV. In total, 132 samples (26%) contained formaldehyde with an average of 0.27 mg/L (range 0–14.4 mg/L). The highest incidence occurred in tequila (83%), Asian spirits (59%), grape marc (54%), and brandy (50%). Our survey showed that only 9 samples (1.8%) had formaldehyde levels above the WHO IPCS tolerable concentration of 2.6 mg/L.
Collapse
|
172
|
Uebelacker M, Lachenmeier DW. Quantitative determination of acetaldehyde in foods using automated digestion with simulated gastric fluid followed by headspace gas chromatography. JOURNAL OF AUTOMATED METHODS & MANAGEMENT IN CHEMISTRY 2011; 2011:907317. [PMID: 21747735 PMCID: PMC3124883 DOI: 10.1155/2011/907317] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Accepted: 03/31/2011] [Indexed: 05/05/2023]
Abstract
Acetaldehyde (ethanal) is a genotoxic carcinogen, which may occur naturally or as an added flavour in foods. We have developed an efficient method to analyze the compound in a wide variety of food matrices. The analysis is conducted using headspace (HS) gas chromatography (GC) with flame ionization detector. Using a robot autosampler, the samples are digested in full automation with simulated gastric fluid (1 h at 37°C) under shaking, which frees acetaldehyde loosely bound to matrix compounds. Afterwards, an aliquot of the HS is injected into the GC system. Standard addition was applied for quantification to compensate for matrix effects. The precision of the method was sufficient (<3% coefficient of variation). The limit of detection was 0.01 mg/L and the limit of quantification was 0.04 mg/L. 140 authentic samples were analyzed. The acetaldehyde content in apples was 0.97 ± 0.80 mg/kg, orange juice contained 3.86 ± 2.88 mg/kg. The highest concentration was determined in a yoghurt (17 mg/kg). A first-exposure estimation resulted in a daily acetaldehyde intake of less than 0.1 mg/kg bodyweight from food, which is considerably lower than the exposures from alcohol consumption or tobacco smoking.
Collapse
Affiliation(s)
- Michael Uebelacker
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Straße 3, 76187 Karlsruhe, Germany
| | - Dirk W. Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Straße 3, 76187 Karlsruhe, Germany
| |
Collapse
|
173
|
Abstract
Aldehyde dehydrogenase (ALDH2) and alcohol dehydrogenase (ADH) gene polymorphisms associating with enhanced acetaldehyde exposure and markedly increased cancer risk in alcohol drinkers provide undisputable evidence for acetaldehyde being a local carcinogen not only in esophageal but also in gastric cancer. Accordingly, acetaldehyde associated with alcoholic beverages has recently been classified as a Group 1 carcinogen to humans. Microbes are responsible for the bulk of acetaldehyde production from ethanol both in saliva and Helicobacter pylori-infected and achlorhydric stomach. Acetaldehyde is the most abundant carcinogen in tobacco smoke and it readily dissolves into saliva during smoking. Many foodstuffs and 'non-alcoholic' beverages are important but unrecognized sources of local acetaldehyde exposure. The cumulative cancer risk associated with increasing acetaldehyde exposure suggests the need for worldwide screening of the acetaldehyde levels of alcoholic beverages and as well of the ethanol and acetaldehyde of food produced by fermentation. The generally regarded as safe status of acetaldehyde should be re-evaluated. The as low as reasonably achievable principle should be applied to the acetaldehyde of alcoholic and non-alcoholic beverages and food. Risk groups with ADH-and ALDH2 gene polymorphisms, H. pylori infection or achlorhydric atrophic gastritis, or both, should be screened and educated in this health issue. L-cysteine formulations binding carcinogenic acetaldehyde locally in the stomach provide new means for intervention studies.
Collapse
Affiliation(s)
- Mikko Salaspuro
- Research Unit on Acetaldehyde and Cancer, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
174
|
Srivastava S, Sithu SD, Vladykovskaya E, Haberzettl P, Hoetker DJ, Siddiqui MA, Conklin DJ, D'Souza SE, Bhatnagar A. Oral exposure to acrolein exacerbates atherosclerosis in apoE-null mice. Atherosclerosis 2011; 215:301-8. [PMID: 21371710 DOI: 10.1016/j.atherosclerosis.2011.01.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 12/20/2010] [Accepted: 01/03/2011] [Indexed: 12/13/2022]
Abstract
BACKGROUND Acrolein is a dietary aldehyde that is present in high concentrations in alcoholic beverages and foods including cheese, donuts and coffee. It is also abundant in tobacco smoke, automobile exhaust and industrial waste and is generated in vivo during inflammation and oxidative stress. OBJECTIVES The goal of this study was to examine the effects of dietary acrolein on atherosclerosis. METHODS Eight-week-old male apoE-null mice were gavage-fed acrolein (2.5mg/kg/day) for 8 weeks. Atherosclerotic lesion formation and composition and plasma lipids and platelet factor 4 (PF4) levels were measured. Effects of acrolein and PF4 on endothelial cell function was measured in vitro. RESULTS Acrolein feeding increased the concentration of cholesterol in the plasma. NMR analysis of the lipoproteins showed that acrolein feeding increased the abundance of small and medium VLDL particles. Acrolein feeding also increased atherosclerotic lesion formation in the aortic valve and the aortic arch. Immunohistochemical analysis showed increased macrophage accumulation in the lesions of acrolein-fed mice. Plasma PF4 levels and accumulation of PF4 in atherosclerotic lesions was increased in the acrolein-fed mice. Incubation of endothelial cells with the plasma of acrolein-fed mice augmented transmigration of monocytic cells, which was abolished by anti-PF4 antibody treatment. CONCLUSIONS Dietary exposure to acrolein exacerbates atherosclerosis in apoE-null mice. Consumption of foods and beverages rich in unsaturated aldehydes such as acrolein may be a contributing factor to the progression of atherosclerotic lesions.
Collapse
Affiliation(s)
- Sanjay Srivastava
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Makia NL, Bojang P, Falkner KC, Conklin DJ, Prough RA. Murine hepatic aldehyde dehydrogenase 1a1 is a major contributor to oxidation of aldehydes formed by lipid peroxidation. Chem Biol Interact 2011; 191:278-87. [PMID: 21256123 DOI: 10.1016/j.cbi.2011.01.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 01/25/2023]
Abstract
Reactive lipid aldehydes are implicated in the pathogenesis of various oxidative stress-mediated diseases, including non-alcoholic steatohepatitis, atherosclerosis, Alzheimer's and cataract. In the present study, we sought to define which hepatic Aldh isoform plays a major role in detoxification of lipid-derived aldehydes, such as acrolein and HNE by enzyme kinetic and gene expression studies. The catalytic efficiencies for metabolism of acrolein by Aldh1a1 was comparable to that of Aldh3a1 (V(max)/K(m)=23). However, Aldh1a1 exhibits far higher affinity for acrolein (K(m)=23.2 μM) compared to Aldh3a1 (K(m)=464 μM). Aldh1a1 displays a 3-fold higher catalytic efficiency for HNE than Aldh3a1 (218 ml/min/mg vs 69 ml/min/mg). The endogenous Aldh1a1 gene was highly expressed in mouse liver and a liver-derived cell line (Hepa-1c1c7) compared to Aldh2, Aldh1b1 and Aldh3a1. Aldh1a1 mRNA levels was 34-fold and 73-fold higher than Aldh2 in mouse liver and Hepa-1c1c7 cells respectively. Aldh3a1 gene was absent in mouse liver, but moderately expressed in Hepa-1c1c7 cells compared to Aldh1a1. We demonstrated that knockdown of Aldh1a1 expression by siRNA caused Hepa-1c1c7 cells to be more sensitive to acrolein-induced cell death and resulted in increased accumulation of acrolein-protein adducts and caspase 3 activation. These results indicate that Aldh1a1 plays a major role in cellular defense against oxidative damage induced by reactive lipid aldehydes in mouse liver. We also noted that hepatic Aldh1a1 mRNA levels were significantly increased (≈3-fold) in acrolein-fed mice compared to control. In addition, hepatic cytosolic ALDH activity was induced by acrolein when 1mM NAD(+) was used as cofactor, suggesting an Aldh1a1-protective mechanism against acrolein toxicity in mice liver. Thus, mechanisms to induce Aldh1a1 gene expression may provide a useful rationale for therapeutic protection against oxidative stress-induced pathologies.
Collapse
Affiliation(s)
- Ngome L Makia
- Department of Biochemistry & Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40292, United States
| | | | | | | | | |
Collapse
|
176
|
Lachenmeier DW, Monakhova YB. Short-term salivary acetaldehyde increase due to direct exposure to alcoholic beverages as an additional cancer risk factor beyond ethanol metabolism. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2011; 30:3. [PMID: 21211027 PMCID: PMC3022748 DOI: 10.1186/1756-9966-30-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 01/06/2011] [Indexed: 01/13/2023]
Abstract
Background An increasing body of evidence now implicates acetaldehyde as a major underlying factor for the carcinogenicity of alcoholic beverages and especially for oesophageal and oral cancer. Acetaldehyde associated with alcohol consumption is regarded as 'carcinogenic to humans' (IARC Group 1), with sufficient evidence available for the oesophagus, head and neck as sites of carcinogenicity. At present, research into the mechanistic aspects of acetaldehyde-related oral cancer has been focused on salivary acetaldehyde that is formed either from ethanol metabolism in the epithelia or from microbial oxidation of ethanol by the oral microflora. This study was conducted to evaluate the role of the acetaldehyde that is found as a component of alcoholic beverages as an additional factor in the aetiology of oral cancer. Methods Salivary acetaldehyde levels were determined in the context of sensory analysis of different alcoholic beverages (beer, cider, wine, sherry, vodka, calvados, grape marc spirit, tequila, cherry spirit), without swallowing, to exclude systemic ethanol metabolism. Results The rinsing of the mouth for 30 seconds with an alcoholic beverage is able to increase salivary acetaldehyde above levels previously judged to be carcinogenic in vitro, with levels up to 1000 μM in cases of beverages with extreme acetaldehyde content. In general, the highest salivary acetaldehyde concentration was found in all cases in the saliva 30 sec after using the beverages (average 353 μM). The average concentration then decreased at the 2-min (156 μM), 5-min (76 μM) and 10-min (40 μM) sampling points. The salivary acetaldehyde concentration depends primarily on the direct ingestion of acetaldehyde contained in the beverages at the 30-sec sampling, while the influence of the metabolic formation from ethanol becomes the major factor at the 2-min sampling point. Conclusions This study offers a plausible mechanism to explain the increased risk for oral cancer associated with high acetaldehyde concentrations in certain beverages.
Collapse
Affiliation(s)
- Dirk W Lachenmeier
- Chemisches und Veterinäruntersuchungsamt Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany.
| | | |
Collapse
|
177
|
Flavouring Group Evaluation 01 Rev2 (FGE.01 Rev2): Branched-chain aliphatic saturated aldehydes, carboxylic acids and related esters of primary alcohols and branched-chain carboxylic acids from chemical groups 1 and 2. EFSA J 2010. [DOI: 10.2903/j.efsa.2010.1843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
178
|
Endo S, Matsunaga T, Kuragano T, Ohno S, Kitade Y, Tajima K, El-Kabbani O, Hara A. Properties and tissue distribution of a novel aldo-keto reductase encoding in a rat gene (Akr1b10). Arch Biochem Biophys 2010; 503:230-7. [PMID: 20709016 DOI: 10.1016/j.abb.2010.08.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/07/2010] [Accepted: 08/10/2010] [Indexed: 10/19/2022]
Abstract
A recent rat genomic sequencing predicts a gene Akr1b10 that encodes a protein with 83% sequence similarity to human aldo-keto reductase (AKR) 1B10. In this study, we isolated the cDNA for the rat AKR1B10 (R1B10) from rat brain, and examined the enzymatic properties of the recombinant protein. R1B10 utilized NADPH as the preferable coenzyme, and reduced various aldehydes (including cytotoxic 4-hydroxy-2-hexenal and 4-hydroxy- and 4-oxo-2-nonenals) and α-dicarbonyl compounds (such as methylglyoxal and 3-deoxyglucosone), showing low K(m) values of 0.8-6.1μM and 3.7-67μM, respectively. The enzyme also reduced glyceraldehyde and tetroses (K(m)=96-390μM), although hexoses and pentoses were inactive and poor substrates, respectively. Among the substrates, 4-oxo-2-nonenal was most efficiently reduced into 4-oxo-2-nonenol, and its cytotoxicity against bovine endothelial cells was decreased by the overexpression of R1B10. R1B10 showed low sensitivity to aldose reductase inhibitors, and was activated to approximately two folds by valproic acid, and alicyclic and aromatic carboxylic acids. The mRNA for R1B10 was expressed highly in rat brain and heart, and at low levels in other rat tissues and skin fibroblasts. The results suggest that R1B10 functions as a defense system against oxidative stress and glycation in rat tissues.
Collapse
|
179
|
Suzuki R, Iwasaki M, Inoue M, Sasazuki S, Sawada N, Yamaji T, Shimazu T, Tsugane S. Alcohol consumption-associated breast cancer incidence and potential effect modifiers: the Japan Public Health Center-based Prospective Study. Int J Cancer 2010; 127:685-695. [PMID: 19960437 DOI: 10.1002/ijc.25079] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Epidemiological studies have evaluated whether the impact of alcohol intake on breast cancer risk is modified by use of exogenous estrogens, folate intake, body weight and smoking status, but results have been inconsistent. Further, effect modification by intake of isoflavones and alcohol-induced facial flushing, which are prevalent in Asian populations, have not been investigated. We investigated the association between alcohol intake and breast cancer risk and whether the association is modified by these factors among 50,757 premenopausal and postmenopausal women (aged 40-69 years) in the population-based Japan Public Health Center-based Prospective Study. Alcohol consumption and other related factors were assessed using self-reported questionnaires. Through to the end of 2006, 572 patients were identified. Relative risks (RRs) and 95% confidence intervals (CIs) were estimated by hazard ratios derived from Cox proportional hazards regression models. Compared with never-drinkers, regular alcohol drinkers (>150 g of ethanol/week) had a higher risk of the development of breast cancer; the multivariable-adjusted RRs were 1.75 (95% CI = 1.16-2.65; p(trend) = 0.035) for overall, 1.78 (95% CI = 1.09-2.90) for premenopausal and 1.21 (95% CI = 0.53-2.75) for postmenopausal women. There was no statistical evidence for effect modification by menopausal status, use of exogenous estrogens, intakes of isoflavone and folate, body weight, alcohol-induced facial flushing or smoking (All p(interactions) > or = 0.15). Excessive alcohol intake was associated with an increase in the risk of breast cancer in this population. There was no statistical evidence for effect modification.
Collapse
Affiliation(s)
- Reiko Suzuki
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Chuo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
180
|
Srivastava S, Ramana KV, Bhatnagar A, Srivastava SK. Synthesis, quantification, characterization, and signaling properties of glutathionyl conjugates of enals. Methods Enzymol 2010; 474:297-313. [PMID: 20609918 DOI: 10.1016/s0076-6879(10)74018-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidation of lipids generates large quantities of highly reactive alpha,beta-unsaturated aldehydes (enals). Enals and their protein adducts accumulate in the tissues of several pathologies. In vitro, low concentrations of enals such as HNE (4-hydroxy trans-2-nonenal) affect cell signaling whereas high concentrations of enals are cytotoxic. Direct conjugation of the C2-C3 double bond of enals with the sulfhydryl group of GSH is a major route for the metabolism and detoxification of enals. Recently, we found that glutathionyl conjugate of HNE (GS-HNE) enhances the peritoneal leukocyte infiltration and stimulates the formation of proinflammatory lipid mediators. Moreover, the reduced form of the glutathione conjugate of HNE (GS-DHN) elicits strong mitogenic signaling in smooth muscle cells. In this chapter we discuss the methods to study the metabolism of enals and the redox signaling properties of glutathionyl conjugates of HNE.
Collapse
Affiliation(s)
- Sanjay Srivastava
- Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky, USA
| | | | | | | |
Collapse
|
181
|
Induction of heme oxygenase-1 by acrolein mediates a cytoprotective effect in HepG2 cells. Mol Cell Toxicol 2010. [DOI: 10.1007/s13273-010-0029-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
182
|
Ueng TH, Chang YL, Tsai YY, Su JL, Chan PK, Shih JY, Lee YC, Ma YC, Kuo ML. Potential roles of fibroblast growth factor-9 in the benzo(a)pyrene-induced invasion in vitro and the metastasis of human lung adenocarcinoma. Arch Toxicol 2010; 84:651-60. [DOI: 10.1007/s00204-010-0547-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 04/19/2010] [Indexed: 11/30/2022]
|
183
|
Liu XY, Yang ZH, Pan XJ, Zhu MX, Xie JP. Gene expression profile and cytotoxicity of human bronchial epithelial cells exposed to crotonaldehyde. Toxicol Lett 2010; 197:113-22. [PMID: 20471460 DOI: 10.1016/j.toxlet.2010.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 05/01/2010] [Accepted: 05/05/2010] [Indexed: 10/19/2022]
Abstract
Crotonaldehyde is an environment pollutant and lipid peroxidation product. Crotonaldehyde produces adverse effects to humans and serves as a risk factor for human pulmonary diseases. Like acrolein and 4-hydroxynonenal, crotonaldehyde seems likely to alter many cell signaling cascades, including inflammatory responses. The purpose of this study was to investigate the genome-wide transcriptional responses of normal human bronchial epithelial cells exposed to crotonaldehyde. Using microarrays technology, the global changes in transcriptional level were analyzed. Prior to RNA extraction, cells were exposed to crotonaldehyde at 40 or 80 microM for 3 or 6h. Real-time quantitative polymerase chain reaction (qPCR) was performed to validate microarray data and cell cycle arrest was determined. The commonly differentially regulated genes in many biological processes were dysregulated including inflammatory responses, exogenous metabolism, cell cycle, heat shock responses, and antioxidant responses. Results in the present study screen out the important roles of HMOX1 in regulating other signaling cascades and ALDH1A3 in detoxifying exogenous toxicants. Collectively, our study demonstrated that crotonaldehyde altered gene expression profile in the genome-wide transcriptional level in normal human bronchial epithelial cells. And many of them represented potential mechanisms of crotonaldehyde causing cytotoxicity and tissue injury in the human lung.
Collapse
Affiliation(s)
- Xing-Yu Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, PR China
| | | | | | | | | |
Collapse
|
184
|
Katragadda HR, Fullana A, Sidhu S, Carbonell-Barrachina ÁA. Emissions of volatile aldehydes from heated cooking oils. Food Chem 2010. [DOI: 10.1016/j.foodchem.2009.09.070] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
185
|
Liu XY, Zhu MX, Xie JP. Mutagenicity of acrolein and acrolein-induced DNA adducts. Toxicol Mech Methods 2010; 20:36-44. [PMID: 20158384 DOI: 10.3109/15376510903530845] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Acrolein mutagenicity relies on DNA adduct formation. Reaction of acrolein with deoxyguanosine generates alpha-hydroxy-1, N(2)-propano-2'-deoxyguanosine (alpha-HOPdG) and gamma-hydroxy-1, N(2)-propano-2'-deoxyguanosine (gamma-HOPdG) adducts. These two DNA adducts behave differently in mutagenicity. gamma-HOPdG is the major DNA adduct and it can lead to interstrand DNA-DNA and DNA-peptide/protein cross-links, which may induce strong mutagenicity; however, gamma-HOPdG can be repaired by some DNA polymerases complex and lessen its mutagenic effects. alpha-HOPdG is formed much less than gamma-HOPdG, but difficult to be repaired, which contributes to accumulation in vivo. Results of acrolein mutagenicity studies haven't been confirmed, which is mainly due to the conflicting mutagenicity data of the major acrolein adduct (gamma-HOPdG). The minor alpha-HOPdG is mutagenic in both in vitro and in vivo test systems. The role of alpha-HOPdG in acrolein mutagenicity needs further investigation. The inconsistent result of acrolein mutagenicity can be attributed, at least partially, to a variety of acrolein-DNA adducts formation and their repair in diverse detection systems. Recent results of detection of acrolein-DNA adduct in human lung tissues and analysis of P53 mutation spectra in acrolein-treated cells may shed some light on mechanisms of acrolein mutagenicity. These aspects are covered in this mini review.
Collapse
Affiliation(s)
- Xing-yu Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, PR China
| | | | | |
Collapse
|
186
|
Salaspuro M. Acetaldehyde as a common denominator and cumulative carcinogen in digestive tract cancers. Scand J Gastroenterol 2010; 44:912-25. [PMID: 19396661 DOI: 10.1080/00365520902912563] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The key issue in cancer prevention is the identification of specific aetiologic factors. Acetaldehyde, the first metabolite of ethanol oxidation, is carcinogenic in animals. ADH and ALDH2 gene mutations provide an exceptional human model to estimate the long-term effects of acetaldehyde exposure in man. These models provide strong evidence for the local carcinogenic potential of acetaldehyde also in humans. Ethanol is metabolized to acetaldehyde by both mucosal and microbial enzymes. Many microbes produce acetaldehyde from ethanol, but their capacity to eliminate acetaldehyde is low, which leads to the accumulation of acetaldehyde in saliva during an alcohol challenge. Acetaldehyde is the most abundant carcinogen in tobacco smoke, and it readily dissolves into saliva during smoking. Fermented food and many alcoholic beverages can also contain significant amounts of acetaldehyde. Thus acetaldehyde, derived from mucosal or microbial oxidation of ethanol, tobacco smoke, and/or diet, appears to act as a cumulative carcinogen in the upper digestive tract of humans. The evidence strongly suggests the importance of world-wide screening of acetaldehyde and ethanol levels in many beverages and foodstuffs, as well as an urgent need for regulatory measures and consumer guidance. Screening of the risk groups with enhanced acetaldehyde exposure, e.g. people with ADH and ALDH2 gene polymorphisms and hypochlorhydric atrophic gastritis, should also be seriously considered. Most importantly, the GRAS (generally regarded as safe) status of acetaldehyde, which allows it to be used as a food additive, should be re-evaluated, and the classification of acetaldehyde as a carcinogen should be upgraded.
Collapse
Affiliation(s)
- Mikko Salaspuro
- Research Unit on Acetaldehyde and Cancer, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
187
|
Sangrajrang S, Sato Y, Sakamoto H, Ohnami S, Khuhaprema T, Yoshida T. Genetic polymorphisms in folate and alcohol metabolism and breast cancer risk: a case–control study in Thai women. Breast Cancer Res Treat 2010; 123:885-93. [DOI: 10.1007/s10549-010-0804-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 02/10/2010] [Indexed: 10/19/2022]
|
188
|
Kartal A, Hietala J, Laakso I, Kaihovaara P, Salaspuro V, Säkkinen M, Salaspuro M, Marvola M. Formulation and in-vivo evaluation of l-cysteine chewing gums for binding carcinogenic acetaldehyde in the saliva during smoking. J Pharm Pharmacol 2010; 59:1353-8. [PMID: 17910809 DOI: 10.1211/jpp.59.10.0004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Cigarette smoke contains toxic amounts of acetaldehyde that dissolves in saliva, posing a significant risk of developing oral, laryngeal and pharyngeal carcinomas. l-Cysteine, a non-essential amino acid, can react covalently with carcinogenic acetaldehyde to form a stable, non-toxic 2-methylthiazolidine-4-carboxylic acid. The main aim of this study was to find out whether it is possible to develop a chewing gum formulation that would contain cysteine in amounts sufficient to bind all the acetaldehyde dissolved in saliva during the smoking of one cigarette. The main variables in the development process were: (1) chemical form of cysteine (l-cysteine or l-cysteine hydrochloride), (2) the amount of the active ingredient in a gum and (3) manufacturing procedure (traditional or novel compression method). Saliva samples were taken over 2.5 minutes before smoking and since smoking was started for 2.5 minutes periods for 10 minutes. During a five minutes smoking period with a placebo chewing gum, acetaldehyde levels increased from 0 to 150–185 μm. Once smoking was stopped, the acetaldehyde levels quickly fell to levels clearly below the in-vitro mutagenic level of 50 μm. All chewing gums containing cysteine could bind almost the whole of the acetaldehyde in the saliva during smoking. However, elimination of saliva acetaldehyde during smoking does not make smoking completely harmless. Cysteine as a free base would be somewhat better than cysteine hydrochloride due to its slower dissolution rate. Both traditional and direct compression methods to prepare chewing gums can be utilized and the dose of l-cysteine required is very low (5 mg).
Collapse
Affiliation(s)
- Alma Kartal
- Faculty of Pharmacy, Division of Biopharmaceutics and Pharmacokinetics, University of Helsinki, PO Box 56, Helsinki 00014, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
189
|
Pérez-Garrido A, Helguera AM, Rodríguez FG, Cordeiro MNDS. QSAR models to predict mutagenicity of acrylates, methacrylates and alpha,beta-unsaturated carbonyl compounds. Dent Mater 2010; 26:397-415. [PMID: 20122717 DOI: 10.1016/j.dental.2009.11.158] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Revised: 09/08/2009] [Accepted: 11/26/2009] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The purpose of this study is to develop a quantitative structure-activity relationship (QSAR) model that can distinguish mutagenic from non-mutagenic species with alpha,beta-unsaturated carbonyl moiety using two endpoints for this activity - Ames test and mammalian cell gene mutation test - and also to gather information about the molecular features that most contribute to eliminate the mutagenic effects of these chemicals. METHODS Two data sets were used for modeling the two mutagenicity endpoints: (1) Ames test and (2) mammalian cells mutagenesis. The first one comprised 220 molecules, while the second one 48 substances, ranging from acrylates, methacrylates to alpha,beta-unsaturated carbonyl compounds. The QSAR models were developed by applying linear discriminant analysis (LDA) along with different sets of descriptors computed using the DRAGON software. RESULTS For both endpoints, there was a concordance of 89% in the prediction and 97% confidentiality by combining the three models for the Ames test mutagenicity. We have also identified several structural alerts to assist the design of new monomers. SIGNIFICANCE These individual models and especially their combination are attractive from the point of view of molecular modeling and could be used for the prediction and design of new monomers that do not pose a human health risk.
Collapse
Affiliation(s)
- Alfonso Pérez-Garrido
- Enviromental Engineering and Toxicology Dpt., Catholic University of San Antonio, Guadalupe, Murcia, Spain.
| | | | | | | |
Collapse
|
190
|
Ajith TA. Ameliorating reactive oxygen species-induced in vitro lipid peroxidation in brain, liver, mitochondria and DNA damage by Zingiber officinale Roscoe. Indian J Clin Biochem 2010; 25:67-73. [PMID: 23105887 PMCID: PMC3453022 DOI: 10.1007/s12291-010-0014-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Iron is an essential nutrient for a number of cellular activities. However, excess cellular iron can be toxic by producing reactive oxygen species (ROS) such as superoxide anion (O(2) (-)) and hydroxyl radical (HO(·)) that damage proteins, lipids and DNA. Mutagenic and genotoxic end products of lipid peroxidation can induce the decline of mitochondrial respiration and are associated with various human ailments including aging, neurodegenerative disorders, cancer etc. Zingiber officinale Roscoe (ginger) is a widely used spice around the world. The protective effect of aqueous ethanol extract of Z. officinale against ROS-induced in vitro lipid peroxidation and DNA damage was evaluated in this study. The lipid peroxidation was induced by hydroxyl radical generated from Fenton's reaction in rat liver and brain homogenates and mitochondrial fraction (isolated from rat liver). The DNA protection was evaluated using H(2)O(2)-induced changes in pBR-322 plasmid and Fenton reaction-induced DNA fragmentation in rat liver. The results indicated that Z. officinale significantly (P<0.001) protected the lipid peroxidation in all the tissue homogenate/mitochondria. The extract at 2 and 0.5 mg/ml could protect 92 % of the lipid peroxidation in brain homogenate and liver mitochondria respectively. The percent inhibition of lipid peroxidation at 1mg/ml of Z. officinale in the liver homogenate was 94 %. However, the extract could partially alleviate the DNA damage. The protective mechanism can be correlated to the radical scavenging property of Z. officinale. The results of the study suggest the possible nutraceutical role of Z. officinale against the oxidative stress induced human ailments.
Collapse
Affiliation(s)
- T. A. Ajith
- Department of Biochemistry, Amala Institute of Medical Scineces, Amala Nagar, Thrissur, Kerala, 680 555 India
| |
Collapse
|
191
|
Songur A, Ozen OA, Sarsilmaz M. The toxic effects of formaldehyde on the nervous system. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2010; 203:105-118. [PMID: 19957118 DOI: 10.1007/978-1-4419-1352-4_3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Formaldehyde (FA) is found in the polluted atmosphere of cities, domestic air (e.g., paint, insulating materials, chipboard and plywood, fabrics, furniture, paper), and cigarette smoke, etc.; therefore, everyone and particularly susceptible children may be exposed to FA. FA is also widely used in industrial and medical settings and as a sterilizing agent, disinfectant, and preservative. Therefore, employees may be highly exposed to it in there settings. Of particular concern to the authors are anatomists and medical students, who can be highly exposed to formaldehyde vapor during dissection sessions. Formaldehyde is toxic over a range of doses; chances of exposure and subsequent harmful effects are increased as (room) temperature increases, because of FA's volatility. Many studies have been conducted to evaluate the effects of FA during systemic and respiratory exposures in rats. This review compiles that literature and emphasizes the neurotoxic effects of FA on neuronal morphology, behavior, and biochemical parameters. The review includes the results of some of the authors' work related to FA neurotoxicity, and such neurotoxic effects from FA exposure were experimentally demonstrated. Moreover, the effectiveness of some antioxidants such as melatonin, fish omega-3, and CAPE was observed in the treatment of the harmful effects of FA. Despite the harmful effects from FA exposure, it is commonly used in Turkey and elsewhere in dissection laboratories. Consequently, all anatomists must know and understand the effects of this toxic agent on organisms and the environment, and take precautions to avoid unnecessary exposure. The reviewed studies have indicated that FA has neurotoxic characteristics and systemic toxic effects. It is hypothesized that inhalation of FA, during the early postnatal period, is linked to some neurological diseases that occur in adults. Although complete prevention is impossible for laboratory workers and members of industries utilizing FA, certain precautions can be taken to decrease and/or prevent the toxic effects of FA.
Collapse
Affiliation(s)
- Ahmet Songur
- Department of Anatomy, School of Medicine, University of Kocatepe, Afyonkarahisar, Turkey.
| | | | | |
Collapse
|
192
|
Conklin DJ, Barski OA, Lesgards JF, Juvan P, Rezen T, Rozman D, Prough RA, Vladykovskaya E, Liu S, Srivastava S, Bhatnagar A. Acrolein consumption induces systemic dyslipidemia and lipoprotein modification. Toxicol Appl Pharmacol 2009; 243:1-12. [PMID: 20034506 DOI: 10.1016/j.taap.2009.12.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 12/07/2009] [Accepted: 12/08/2009] [Indexed: 12/18/2022]
Abstract
Aldehydes such as acrolein are ubiquitous pollutants present in automobile exhaust, cigarette, wood, and coal smoke. Such aldehydes are also constituents of several food substances and are present in drinking water, irrigation canals, and effluents from manufacturing plants. Oral intake represents the most significant source of exposure to acrolein and related aldehydes. To study the effects of short-term oral exposure to acrolein on lipoprotein levels and metabolism, adult mice were gavage-fed 0.1 to 5 mg acrolein/kg bwt and changes in plasma lipoproteins were assessed. Changes in hepatic gene expression related to lipid metabolism and cytokines were examined by qRT-PCR analysis. Acrolein feeding did not affect body weight, blood urea nitrogen, plasma creatinine, electrolytes, cytokines or liver enzymes, but increased plasma cholesterol and triglycerides. Similar results were obtained with apoE-null mice. Plasma lipoproteins from acrolein-fed mice showed altered electrophoretic mobility on agarose gels. Chromatographic analysis revealed elevated VLDL cholesterol, phospholipids, and triglycerides levels with little change in LDL or HDL. NMR analysis indicated shifts from small to large VLDL and from large to medium-small LDL with no change in the size of HDL particles. Increased plasma VLDL was associated with a significant decrease in post-heparin plasma hepatic lipase activity and a decrease in hepatic expression of hepatic lipase. These observations suggest that oral exposure to acrolein could induce or exacerbate systemic dyslipidemia and thereby contribute to cardiovascular disease risk.
Collapse
Affiliation(s)
- Daniel J Conklin
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Pérez-Garrido A, Helguera AM, López GC, Cordeiro MNDS, Escudero AG. A topological substructural molecular design approach for predicting mutagenesis end-points of alpha, beta-unsaturated carbonyl compounds. Toxicology 2009; 268:64-77. [PMID: 20004227 DOI: 10.1016/j.tox.2009.11.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 11/29/2009] [Accepted: 11/30/2009] [Indexed: 11/18/2022]
Abstract
Chemically reactive, alpha, beta-unsaturated carbonyl compounds are common environmental pollutants able to produce a wide range of adverse effects, including, e.g. mutagenicity. This toxic property can often be related to chemical structure, in particular to specific molecular substructures or fragments (alerts), which can then be used in specialized software or expert systems for predictive purposes. In the past, there have been many attempts to predict the mutagenicity of alpha, beta-unsaturated carbonyl compounds through quantitative structure activity relationships (QSAR) but considering only one exclusive endpoint: the Ames test. Besides, even though those studies give a comprehensive understanding of the phenomenon, they do not provide substructural information that could be useful forward improving expert systems based on structural alerts (SAs). This work reports an evaluation of classification models to probe the mutagenic activity of alpha, beta-unsaturated carbonyl compounds over two endpoints--the Ames and mammalian cell gene mutation tests--based on linear discriminant analysis along with the topological Substructure molecular design (TOPS-MODE) approach. The obtained results showed the better ability of the TOPS-MODE approach in flagging structural alerts for the mutagenicity of these compounds compared to the expert system TOXTREE. Thus, the application of the present QSAR models can aid toxicologists in risk assessment and in prioritizing testing, as well as in the improvement of expert systems, such as the TOXTREE software, where SAs are implemented.
Collapse
Affiliation(s)
- Alfonso Pérez-Garrido
- Enviromental Engineering and Toxicology Dpt., Catholic University of San Antonio, Guadalupe, Murcia, C.P. 30107, Spain.
| | | | | | | | | |
Collapse
|
194
|
Baba SP, Barski OA, Ahmed Y, O'Toole TE, Conklin DJ, Bhatnagar A, Srivastava S. Reductive metabolism of AGE precursors: a metabolic route for preventing AGE accumulation in cardiovascular tissue. Diabetes 2009; 58:2486-97. [PMID: 19651811 PMCID: PMC2768164 DOI: 10.2337/db09-0375] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To examine the role of aldo-keto reductases (AKRs) in the cardiovascular metabolism of the precursors of advanced glycation end products (AGEs). RESEARCH DESIGN AND METHODS Steady-state kinetic parameters of AKRs with AGE precursors were determined using recombinant proteins expressed in bacteria. Metabolism of methylglyoxal and AGE accumulation were studied in human umbilical vein endothelial cells (HUVECs) and C57 wild-type, akr1b3 (aldose reductase)-null, cardiospecific-akr1b4 (rat aldose reductase), and akr1b8 (FR-1)-transgenic mice. AGE accumulation and atherosclerotic lesions were studied 12 weeks after streptozotocin treatment of C57, akr1b3-null, and apoE- and akr1b3-apoE-null mice. RESULTS Higher levels of AGEs were generated in the cytosol than at the external surface of HUVECs cultured in high glucose, indicating that intracellular metabolism may be an important regulator of AGE accumulation and toxicity. In vitro, AKR 1A and 1B catalyzed the reduction of AGE precursors, whereas AKR1C, AKR6, and AKR7 were relatively ineffective. Highest catalytic efficiency was observed with AKR1B1. Acetol formation in methylglyoxal-treated HUVECs was prevented by the aldose reductase inhibitor sorbinil. Acetol was generated in hearts perfused with methylglyoxal, and its formation was increased in akr1b4- or akr1b8-transgenic mice. Reduction of AGE precursors was diminished in hearts from akr1b3-null mice. Diabetic akr1b3-null mice accumulated more AGEs in the plasma and the heart than wild-type mice, and deletion of akr1b3 increased AGE accumulation and atherosclerotic lesion formation in apoE-null mice. CONCLUSIONS Aldose reductase-catalyzed reduction is an important pathway in the endothelial and cardiac metabolism of AGE precursors, and it prevents AGE accumulation and atherosclerotic lesion formation.
Collapse
Affiliation(s)
- Shahid P. Baba
- From the Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
| | - Oleg A. Barski
- From the Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
| | - Yonis Ahmed
- From the Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
| | - Timothy E. O'Toole
- From the Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
| | - Daniel J. Conklin
- From the Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
| | - Aruni Bhatnagar
- From the Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
| | - Sanjay Srivastava
- From the Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
- Corresponding author: Sanjay Srivastava,
| |
Collapse
|
195
|
Hamann K, Shi R. Acrolein scavenging: a potential novel mechanism of attenuating oxidative stress following spinal cord injury. J Neurochem 2009; 111:1348-56. [PMID: 19780896 DOI: 10.1111/j.1471-4159.2009.06395.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It has long been established that oxidative stress plays a critical role in the pathophysiology of spinal cord injury, and represents an important target of therapeutic intervention following the initial trauma. However, free radical scavengers have been largely ineffective in clinical trials, and as such a novel target to attenuate oxidative stress is highly warranted. In addition to free radicals, peroxidation of lipid membranes following spinal cord injury (SCI) produces reactive aldehydes such as acrolein. Acrolein is capable of depleting endogenous antioxidants such as glutathione, generating free radicals, promoting oxidative stress, and damaging proteins and DNA. Acrolein has a significantly longer half-life than the transient free radicals, and thus may represent a potentially better target of therapeutic intervention to attenuate oxidative stress. There is growing evidence, from our lab and others, to suggest that reactive aldehydes such as acrolein play a critical role in oxidative stress and SCI. The focus of this review is to summarize the cellular and biochemical mechanisms of acrolein-induced membrane damage, mitochondrial injury, oxidative stress, cell death, and functional loss. Evidence will also be presented to suggest that acrolein scavenging may be a novel means of therapeutic intervention to attenuate oxidative stress and improve recovery following traumatic SCI.
Collapse
Affiliation(s)
- Kristin Hamann
- Department of Basic Medical Sciences, School of Veterinary Medicine, Center for Paralysis Research, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
196
|
Delrue I, Delputte PL, Nauwynck HJ. Assessing the functionality of viral entry-associated domains of porcine reproductive and respiratory syndrome virus during inactivation procedures, a potential tool to optimize inactivated vaccines. Vet Res 2009; 40:62. [PMID: 19674538 DOI: 10.1051/vetres/2009047] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 08/11/2009] [Indexed: 11/14/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes severe economic losses in the pig industry worldwide. Currently, vaccines based on inactivated PRRSV provide limited protection of pigs against infection, most likely because viral epitopes associated with the induction of neutralizing antibodies are not or poorly conserved during inactivation. To analyze the effect of inactivation procedures on the interaction of PRRSV with receptors involved in virus entry, a new assay was set up in this study. Viral entry-associated domains are most likely important for the induction of neutralizing antibodies, since neutralizing antibodies block interaction of PRRSV with cellular receptors. To investigate the interaction of PRRSV with the cellular receptors upon different inactivation procedures, attachment to and internalization of inactivated PRRSV into macrophages were monitored. AT-2 could not inactivate PRRSV completely and is therefore not useful for vaccine development. PRRSV inactivated with ultraviolet light, binary ethyleneimine and gamma irradiation, which all mainly have an effect at the genomic level, showed no difference compared to control live virus at all levels of virus entry, whereas PRRSV treated with formaldehyde, glutaraldehyde and pH changes, which all have a modifying effect on proteins, was not able to internalize into macrophages anymore. These results suggest that inactivation with methods with a main effect on the viral genome preserve PRRSV entry-associated domains and are useful for future development of an effective inactivated vaccine against PRRSV. Although PRRSV incubation at 37 degrees C can completely inactivate PRRSV with preservation of entry-associated domains, this method is not recommended for vaccine development, since the mechanism is yet unknown.
Collapse
Affiliation(s)
- Iris Delrue
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | | | | |
Collapse
|
197
|
Giebułtowicz J, Wolinowska R, Sztybor A, Pietrzak M, Wroczyński P, Wierzchowski J. Salivary aldehyde dehydrogenase: activity towards aromatic aldehydes and comparison with recombinant ALDH3A1. Molecules 2009; 14:2363-72. [PMID: 19633610 PMCID: PMC6254923 DOI: 10.3390/molecules14072363] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 06/15/2009] [Accepted: 06/18/2009] [Indexed: 11/16/2022] Open
Abstract
A series of aromatic aldehydes was examined as substrates for salivary aldehyde dehydrogenase (sALDH) and the recombinant ALDH3A1. Para-substituted benzaldehydes, cinnamic aldehyde and 2-naphthaldehydes were found to be excellent substrates, and kinetic parameters for both salivary and recombinant ALDH were nearly identical. It was demonstrated that for the fluorogenic naphthaldehydes the only produced reaction product after incubation in saliva is the carboxylate.
Collapse
Affiliation(s)
- Joanna Giebułtowicz
- Department of Drugs Analysis, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, PL-02-097, Warsaw, Poland; E-mail: (J.G.)
| | - Renata Wolinowska
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Warsaw, 3 Oczki Street, PL-02-007, Warsaw, Poland; E-mail: (R.W.)
| | - Anna Sztybor
- Department of Biophysics, University of Warmia and Mazury, 4 Oczapowskiego St., PL-10-719 Olsztyn, Poland
| | - Monika Pietrzak
- Department of Biophysics, University of Warmia and Mazury, 4 Oczapowskiego St., PL-10-719 Olsztyn, Poland
| | - Piotr Wroczyński
- Department of Drugs Analysis, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, PL-02-097, Warsaw, Poland; E-mail: (J.G.)
| | - Jacek Wierzchowski
- Department of Biophysics, University of Warmia and Mazury, 4 Oczapowskiego St., PL-10-719 Olsztyn, Poland
- Author to whom correspondence should be addressed; E-Mail: ; Tel. +48-89-523-3324; Fax: +48-89-523-3408
| |
Collapse
|
198
|
Besaratinia A. Acrolein: Excessive Cytotoxicity or Potent Mutagenicity? Chem Res Toxicol 2009; 22:751-3; author reply 753-4. [DOI: 10.1021/tx900098u] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ahmad Besaratinia
- Division of BiologyBeckman Research Institute of the City of Hope National Medical Center1450 East Duarte RoadDuarte, California 91010Tel: ext. 65918Fax: E-mail:
| |
Collapse
|
199
|
Lachenmeier DW, Kanteres F, Rehm J. Carcinogenicity of acetaldehyde in alcoholic beverages: risk assessment outside ethanol metabolism. Addiction 2009; 104:533-50. [PMID: 19335652 DOI: 10.1111/j.1360-0443.2009.02516.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS In addition to being produced in ethanol metabolism, acetaldehyde occurs naturally in alcoholic beverages. Limited epidemiological evidence points to acetaldehyde as an independent risk factor for cancer during alcohol consumption, in addition to the effects of ethanol. This study aims to estimate human exposure to acetaldehyde from alcoholic beverages and provide a quantitative risk assessment. METHODS The human dietary intake of acetaldehyde via alcoholic beverages was estimated based on World Health Organization (WHO) consumption data and literature on the acetaldehyde contents of different beverage groups (beer, wine, spirits and unrecorded alcohol). The risk assessment was conducted using the European Food Safety Authority's margin of exposure (MOE) approach with benchmark doses obtained from dose-response modelling of animal experiments. Life-time cancer risk was calculated using the T25 dose descriptor. RESULTS The average exposure to acetaldehyde from alcoholic beverages was estimated at 0.112 mg/kg body weight/day. The MOE was calculated to be 498, and the life-time cancer risk at 7.6 in 10,000. Higher risk may exist for people exposed to high acetaldehyde contaminations, as we have found in certain unrecorded alcohol beverages in Guatemala and Russia, for which we have demonstrated possible exposure scenarios, with risks in the range of 1 in 1000. CONCLUSIONS The life-time cancer risks for acetaldehyde from alcoholic beverages greatly exceed the usual limits for cancer risks from the environment set between 1 : 10,000 and 1 : 1,000,000. Alcohol consumption has thus been identified as a direct source of acetaldehyde exposure, which in conjunction with other sources (food flavourings, tobacco) results in a magnitude of risk requiring intervention. An initial public health measure could be to reduce the acetaldehyde content in alcoholic beverages as low as technologically possible, and to restrict its use as a food flavour additive.
Collapse
Affiliation(s)
- Dirk W Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Karlsruhe, Germany.
| | | | | |
Collapse
|
200
|
Faroon O, Roney N, Taylor J, Ashizawa A, Lumpkin MH, Plewak DJ. Acrolein environmental levels and potential for human exposure. Toxicol Ind Health 2009; 24:543-64. [PMID: 19039083 DOI: 10.1177/0748233708098124] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This article provides environmental information on acrolein including environmental fate, potential for human exposure, analytical methods, and a listing of regulations and advisories. Acrolein may be released to the environment in emissions and effluents from its manufacturing and use facilities, in emissions from combustion processes (including cigarette smoking and combustion of petrochemical fuels), from direct application to water and waste water as a slimicide and aquatic herbicide, as a photooxidation product of various hydrocarbon pollutants found in air (including propylene and 1,3-butadiene), and from land disposal of some organic waste materials. Acrolein is a reactive compound and is unstable in the environment. The general population may be exposed to acrolein through inhalation of contaminated air and through ingestion of certain foods. Important sources of acrolein exposure are via inhalation of tobacco smoke and environmental tobacco smoke and via the overheating of fats contained in all living matter. There is potential for exposure to acrolein in many occupational settings as the result of its varied uses and its formation during the combustion and pyrolysis of materials such as wood, petrochemical fuels, and plastics.
Collapse
Affiliation(s)
- O Faroon
- ATSDR, Division of Toxicology and Environmental Medicine, Atlanta, GA, USA.
| | | | | | | | | | | |
Collapse
|