151
|
Sandri M, Coletto L, Grumati P, Bonaldo P. Misregulation of autophagy and protein degradation systems in myopathies and muscular dystrophies. J Cell Sci 2014; 126:5325-33. [PMID: 24293330 DOI: 10.1242/jcs.114041] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A number of recent studies have highlighted the importance of autophagy and the ubiquitin-proteasome in the pathogenesis of muscle wasting in different types of inherited muscle disorders. Autophagy is crucial for the removal of dysfunctional organelles and protein aggregates, whereas the ubiquitin-proteasome is important for the quality control of proteins. Post-mitotic tissues, such as skeletal muscle, are particularly susceptible to aged or dysfunctional organelles and aggregation-prone proteins. Therefore, these degradation systems need to be carefully regulated in muscles. Indeed, excessive or defective activity of the autophagy lysosome or ubiquitin-proteasome leads to detrimental effects on muscle homeostasis. A growing number of studies link abnormalities in the regulation of these two pathways to myofiber degeneration and muscle weakness. Understanding the pathogenic role of these degradative systems in each inherited muscle disorder might provide novel therapeutic targets to counteract muscle wasting. In this Commentary, we will discuss the current view on the role of autophagy lysosome and ubiquitin-proteasome in the pathogenesis of myopathies and muscular dystrophies, and how alteration of these degradative systems contribute to muscle wasting in inherited muscle disorders. We will also discuss how modulating autophagy and proteasome might represent a promising strategy for counteracting muscle loss in different diseases.
Collapse
Affiliation(s)
- Marco Sandri
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | | | | | | |
Collapse
|
152
|
De Palma C, Perrotta C, Pellegrino P, Clementi E, Cervia D. Skeletal muscle homeostasis in duchenne muscular dystrophy: modulating autophagy as a promising therapeutic strategy. Front Aging Neurosci 2014; 6:188. [PMID: 25104934 PMCID: PMC4109521 DOI: 10.3389/fnagi.2014.00188] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/10/2014] [Indexed: 12/25/2022] Open
Abstract
Muscular dystrophies are a group of genetic and heterogeneous neuromuscular disorders characterized by the primary wasting of skeletal muscle. In Duchenne muscular dystrophy (DMD), the most severe form of these diseases, the mutations in the dystrophin gene lead to muscle weakness and wasting, exhaustion of muscular regenerative capacity, and chronic local inflammation leading to substitution of myofibers by connective and adipose tissue. DMD patients suffer from continuous and progressive skeletal muscle damage followed by complete paralysis and death, usually by respiratory and/or cardiac failure. No cure is yet available, but several therapeutic approaches aiming at reversing the ongoing degeneration have been investigated in preclinical and clinical settings. Autophagy is an important proteolytic system of the cell and has a crucial role in the removal of proteins, aggregates, and organelles. Autophagy is constantly active in skeletal muscle and its role in tissue homeostasis is complex: at high levels, it can be detrimental and contribute to muscle wasting; at low levels, it can cause weakness and muscle degeneration, due to the unchecked accumulation of damaged proteins and organelles. The causal relationship between DMD pathogenesis and dysfunctional autophagy has been recently investigated. At molecular level, the Akt axis is one of the key dysregulated pathways, although the molecular events are not completely understood. The aim of this review is to describe and discuss the clinical relevance of the recent advances dissecting autophagy and its signaling pathway in DMD. The picture might pave the way for the development of interventions that are able to boost muscle growth and/or prevent muscle wasting.
Collapse
Affiliation(s)
- Clara De Palma
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences "L. Sacco", National Research Council-Institute of Neuroscience, University Hospital "L. Sacco", University of Milan , Milan , Italy
| | - Cristiana Perrotta
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences "L. Sacco", National Research Council-Institute of Neuroscience, University Hospital "L. Sacco", University of Milan , Milan , Italy
| | - Paolo Pellegrino
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences "L. Sacco", National Research Council-Institute of Neuroscience, University Hospital "L. Sacco", University of Milan , Milan , Italy
| | - Emilio Clementi
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences "L. Sacco", National Research Council-Institute of Neuroscience, University Hospital "L. Sacco", University of Milan , Milan , Italy ; Scientific Institute IRCCS Eugenio Medea , Bosisio Parini , Italy
| | - Davide Cervia
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences "L. Sacco", National Research Council-Institute of Neuroscience, University Hospital "L. Sacco", University of Milan , Milan , Italy ; Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia , Viterbo , Italy
| |
Collapse
|
153
|
Camerino GM, Cannone M, Giustino A, Massari AM, Capogrosso RF, Cozzoli A, De Luca A. Gene expression in mdx mouse muscle in relation to age and exercise: aberrant mechanical-metabolic coupling and implications for pre-clinical studies in Duchenne muscular dystrophy. Hum Mol Genet 2014; 23:5720-32. [PMID: 24916377 DOI: 10.1093/hmg/ddu287] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Weakness and fatigability are typical features of Duchenne muscular dystrophy patients and are aggravated in dystrophic mdx mice by chronic treadmill exercise. Mechanical activity modulates gene expression and muscle plasticity. Here, we investigated the outcome of 4 (T4, 8 weeks of age) and 12 (T12, 16 weeks of age) weeks of either exercise or cage-based activity on a large set of genes in the gastrocnemius muscle of mdx and wild-type (WT) mice using quantitative real-time PCR. Basal expression of the exercise-sensitive genes peroxisome-proliferator receptor γ coactivator 1α (Pgc-1α) and Sirtuin1 (Sirt1) was higher in mdx versus WT mice at both ages. Exercise increased Pgc-1α expression in WT mice; Pgc-1α was downregulated by T12 exercise in mdx muscles, along with Sirt1, Pparγ and the autophagy marker Bnip3. Sixteen weeks old mdx mice showed a basal overexpression of the slow Mhc1 isoform and Serca2; T12 exercise fully contrasted this basal adaptation as well as the high expression of follistatin and myogenin. Conversely, T12 exercise was ineffective in WT mice. Damage-related genes such as gp91-phox (NADPH-oxidase2), Tgfβ, Tnfα and c-Src tyrosine kinase were overexpressed in mdx muscles and not affected by exercise. Likewise, the anti-inflammatory adiponectin was lower in T12-exercised mdx muscles. Chronic exercise with minor adaptive effects in WT muscles leads to maladaptation in mdx muscles with a disequilibrium between protective and damaging signals. Increased understanding of the pathways involved in the altered mechanical-metabolic coupling may help guide appropriate physical therapies while better addressing pharmacological interventions in translational research.
Collapse
Affiliation(s)
- Giulia Maria Camerino
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari 'A. Moro', Via Orabona 4, 70125 Bari, Italy and
| | - Maria Cannone
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari 'A. Moro', Via Orabona 4, 70125 Bari, Italy and
| | - Arcangela Giustino
- Department of Biomedical Sciences and Human Oncology, University of Bari 'A. Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Ada Maria Massari
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari 'A. Moro', Via Orabona 4, 70125 Bari, Italy and
| | - Roberta Francesca Capogrosso
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari 'A. Moro', Via Orabona 4, 70125 Bari, Italy and
| | - Anna Cozzoli
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari 'A. Moro', Via Orabona 4, 70125 Bari, Italy and
| | - Annamaria De Luca
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari 'A. Moro', Via Orabona 4, 70125 Bari, Italy and
| |
Collapse
|
154
|
Deng LH, Xia Q. Autophagy in pancreatic acinar cells and pathogenesis of acute pancreatitis. Shijie Huaren Xiaohua Zazhi 2014; 22:2252-2257. [DOI: 10.11569/wcjd.v22.i16.2252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acute pancreatitis is an inflammatory disorder of the pancreas, and its pathogenesis remains poorly understood. Autodigestion of the pancreas by its own prematurely activated digestive proteases is a critical event in the onset of acute pancreatitis. Mitochondrial permeability transition results in mitochondrial depolarization and loss of ATP production, which has been found to induce autophagy in several cell types, e.g. cardiomyocytes and hepatocytes and is of vital importance for the fate of cells. Elucidating the relationship between mitochondrial permeability transition and autophagy within pancreatic acinar cells may enlighten the pathogenesis of acute pancreatitis and help provide potential therapeutic targets for this disease.
Collapse
|
155
|
Merlini L, Nishino I. 201st ENMC International Workshop: Autophagy in muscular dystrophies – Translational approach, 1–3 November 2013, Bussum, The Netherlands. Neuromuscul Disord 2014; 24:546-61. [DOI: 10.1016/j.nmd.2014.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/03/2014] [Accepted: 03/13/2014] [Indexed: 12/12/2022]
|
156
|
Rudolf R, Khan MM, Labeit S, Deschenes MR. Degeneration of neuromuscular junction in age and dystrophy. Front Aging Neurosci 2014; 6:99. [PMID: 24904412 PMCID: PMC4033055 DOI: 10.3389/fnagi.2014.00099] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/08/2014] [Indexed: 12/27/2022] Open
Abstract
Functional denervation is a hallmark of aging sarcopenia as well as of muscular dystrophy. It is thought to be a major factor reducing skeletal muscle mass, particularly in the case of sarcopenia. Neuromuscular junctions (NMJs) serve as the interface between the nervous and skeletal muscular systems, and thus they may receive pathophysiological input of both pre- and post-synaptic origin. Consequently, NMJs are good indicators of motor health on a systemic level. Indeed, upon sarcopenia and dystrophy, NMJs morphologically deteriorate and exhibit altered characteristics of primary signaling molecules, such as nicotinic acetylcholine receptor and agrin. Since a remarkable reversibility of these changes can be observed by exercise, there is significant interest in understanding the molecular mechanisms underlying synaptic deterioration upon aging and dystrophy and how synapses are reset by the aforementioned treatments. Here, we review the literature that describes the phenomena observed at the NMJ in sarcopenic and dystrophic muscle as well as to how these alterations can be reversed and to what extent. In a second part, the current information about molecular machineries underlying these processes is reported.
Collapse
Affiliation(s)
- Rüdiger Rudolf
- Institute of Molecular and Cell Biology, University of Applied Sciences Mannheim , Mannheim , Germany ; Institute of Medical Technology, University of Heidelberg and University of Applied Sciences Mannheim , Mannheim , Germany ; Institute of Toxicology and Genetics, Karlsruhe Institute of Technology , Eggenstein-Leopoldshafen , Germany
| | - Muzamil Majid Khan
- Institute of Molecular and Cell Biology, University of Applied Sciences Mannheim , Mannheim , Germany ; Institute of Toxicology and Genetics, Karlsruhe Institute of Technology , Eggenstein-Leopoldshafen , Germany
| | - Siegfried Labeit
- Institute of Integrative Pathophysiology, University Medical Centre Mannheim , Mannheim , Germany
| | - Michael R Deschenes
- Department of Kinesiology and Health Sciences, The College of William and Mary , Williamsburg, VA , USA
| |
Collapse
|
157
|
Jiang T, Yu JT, Zhu XC, Zhang QQ, Tan MS, Cao L, Wang HF, Shi JQ, Gao L, Qin H, Zhang YD, Tan L. Ischemic preconditioning provides neuroprotection by induction of AMP-activated protein kinase-dependent autophagy in a rat model of ischemic stroke. Mol Neurobiol 2014; 51:220-9. [PMID: 24809692 DOI: 10.1007/s12035-014-8725-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 04/29/2014] [Indexed: 11/26/2022]
Abstract
Accumulating evidence suggests that ischemic preconditioning (IPC) increases cerebral tolerance to the subsequent ischemic exposure. However, the underlying mechanisms are still not fully understood. In the present study, we tested the hypothesis that AMP-activated protein kinase (AMPK)-dependent autophagy contributed to the neuroprotection of IPC in rats with permanent cerebral ischemia. Male Sprague-Dawley rats were pretreated with vehicle, compound C (an AMPK inhibitor), or 3-methyladenine (3-MA, an autophagy inhibitor) and then were subjected to IPC induced by a 10-min middle cerebral artery occlusion. Afterward, the brain AMPK activity and autophagy biomarkers were measured. At 24 h after IPC, permanent cerebral ischemia was induced in these rats, and infarct volume, neurological deficits as well as cell apoptosis were evaluated 24 h later. We demonstrated that IPC activated AMPK and induced autophagy in the brain, which was accompanied by a reduction of infract volume, neurological deficits, and cell apoptosis after cerebral ischemia. Meanwhile, the IPC-induced autophagy was inhibited by compound C while the neuroprotection of IPC was abolished by compound C or 3-MA. These findings suggest that AMPK-mediated autophagy contributes to the neuroprotection of IPC, highlighting AMPK as a therapeutic target for stroke prevention and treatment.
Collapse
Affiliation(s)
- Teng Jiang
- Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Ljubicic V, Burt M, Lunde JA, Jasmin BJ. Resveratrol induces expression of the slow, oxidative phenotype in mdx mouse muscle together with enhanced activity of the SIRT1-PGC-1α axis. Am J Physiol Cell Physiol 2014; 307:C66-82. [PMID: 24760981 DOI: 10.1152/ajpcell.00357.2013] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Slower, more oxidative muscle fibers are more resistant to the dystrophic pathology in Duchenne muscular dystrophy (DMD) patients as well as in the preclinical mdx mouse model of DMD. Therefore, one therapeutic strategy for DMD focuses on promoting expression of the slow, oxidative myogenic program. In the current study, we explored the therapeutic potential of stimulating the slow, oxidative phenotype in mdx mice by feeding 6-wk-old animals with the natural phenol resveratrol (RSV; ~100 mg·kg(-1)·day(-1)) for 6 wk. Sirtuin 1 (SIRT1) activity and protein levels increased significantly, as well as peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) activity, in the absence of alterations in AMPK signaling. These adaptations occurred concomitant with evidence of a fast, glycolytic, to slower, more oxidative fiber type conversion, including mitochondrial biogenesis and increased expression of slower myosin heavy chain isoforms. These positive findings raised the question of whether increased exposure to RSV would result in greater therapeutic benefits. We discovered that an elevated RSV dose of ~500 mg·kg(-1)·day(-1) across a duration of 12 wk was clearly less effective at muscle remodeling in mdx mice. This treatment protocol failed to influence SIRT1 or AMPK signaling and did not result in a shift towards a slower, more oxidative phenotype. Taken together, this study demonstrates that RSV can stimulate SIRT1 and PGC-1α activation, which in turn may promote expression of the slow, oxidative myogenic program in mdx mouse muscle. The data also highlight the importance of selecting an appropriate dosage regimen of RSV to maximize its potential therapeutic effectiveness for future application in DMD patients.
Collapse
Affiliation(s)
- Vladimir Ljubicic
- Department of Cellular and Molecular Medicine, Faculty of Medicine, and Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| | - Matthew Burt
- Department of Cellular and Molecular Medicine, Faculty of Medicine, and Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| | - John A Lunde
- Department of Cellular and Molecular Medicine, Faculty of Medicine, and Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, and Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
159
|
Berhanu TK, Holley-Cuthrell J, Roberts NW, Mull AJ, Heydemann A. Increased AMP-activated protein kinase in skeletal muscles of Murphy Roth Large mice and its potential role in altered metabolism. Physiol Rep 2014; 2:e00252. [PMID: 24760507 PMCID: PMC4002233 DOI: 10.1002/phy2.252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/21/2014] [Accepted: 01/26/2014] [Indexed: 12/19/2022] Open
Abstract
Abstract Wild-type Murphy Roth Large (MRL) mice have long been investigated for their superior healing ability when subjected to various wound and disease models. Despite this long history, the mechanisms causing their extraordinary healing ability remain undefined. As we have recently demonstrated that MRL mice with muscular dystrophy are resistant to the associated fibrosis and the Heber-Katz group has demonstrated MRL mitochondrial mutations, we decided to investigate the skeletal muscle metabolic characteristics of the MRL mouse strain compared to the commonly utilized C57BL/6J control mouse strain. We now have evidence demonstrating an altered metabolism in the MRL quadriceps, triceps brachii, and diaphragm of 8-week-old animals compared to tissues from control animals. The MRL skeletal muscles have increased activated phosphorylated AMP-activated protein kinase (pAMPK). The increased pAMPK signaling coincides with increased skeletal muscle mitochondrial content. These metabolic changes may compensate for insufficient oxidative phosphorylation which is demonstrated by altered quantities of proteins involved in oxidative phosphorylation and ex vivo metabolic investigations. We also demonstrate that the MRL muscle cells have increased metabolic physiologic reserve. These data further the investigations into this important and unique mouse strain. Why the MRL mice have increased pAMPK and how increased pAMPK and the resultant metabolic alterations affect the healing ability in the MRL mouse strain is discussed. Understanding the molecular mechanisms surrounding the super healing characteristics of these mice will lead to relevant clinical intervention points. In conclusion, we present novel data of increased mitochondrial content, pAMPK, and glycolytic indicators in MRL skeletal muscles.
Collapse
Affiliation(s)
- Tirsit K Berhanu
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, Illinois
| | | | | | | | | |
Collapse
|
160
|
Svensson K, Handschin C. Modulation of PGC-1α activity as a treatment for metabolic and muscle-related diseases. Drug Discov Today 2014; 19:1024-9. [PMID: 24631683 DOI: 10.1016/j.drudis.2014.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 02/27/2014] [Indexed: 01/03/2023]
Affiliation(s)
- Kristoffer Svensson
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Christoph Handschin
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.
| |
Collapse
|
161
|
Bibee KP, Cheng YJ, Ching JK, Marsh JN, Li AJ, Keeling RM, Connolly AM, Golumbek PT, Myerson JW, Hu G, Chen J, Shannon WD, Lanza GM, Weihl CC, Wickline SA. Rapamycin nanoparticles target defective autophagy in muscular dystrophy to enhance both strength and cardiac function. FASEB J 2014; 28:2047-61. [PMID: 24500923 DOI: 10.1096/fj.13-237388] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Duchenne muscular dystrophy in boys progresses rapidly to severe impairment of muscle function and death in the second or third decade of life. Current supportive therapy with corticosteroids results in a modest increase in strength as a consequence of a general reduction in inflammation, albeit with potential untoward long-term side effects and ultimate failure of the agent to maintain strength. Here, we demonstrate that alternative approaches that rescue defective autophagy in mdx mice, a model of Duchenne muscular dystrophy, with the use of rapamycin-loaded nanoparticles induce a reproducible increase in both skeletal muscle strength and cardiac contractile performance that is not achievable with conventional oral rapamycin, even in pharmacological doses. This increase in physical performance occurs in both young and adult mice, and, surprisingly, even in aged wild-type mice, which sets the stage for consideration of systemic therapies to facilitate improved cell function by autophagic disposal of toxic byproducts of cell death and regeneration.
Collapse
Affiliation(s)
- Kristin P Bibee
- 2Center for Translational Research in Advanced Imaging and Nanomedicine, Department of Medicine, Washington University School of Medicine, 660 South Euclid Ave., Saint Louis, MO 63110 USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Neel BA, Lin Y, Pessin JE. Skeletal muscle autophagy: a new metabolic regulator. Trends Endocrinol Metab 2013; 24:635-43. [PMID: 24182456 PMCID: PMC3849822 DOI: 10.1016/j.tem.2013.09.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/18/2013] [Accepted: 09/27/2013] [Indexed: 12/17/2022]
Abstract
Autophagy classically functions as a physiological process to degrade cytoplasmic components, protein aggregates, and/or organelles, as a mechanism for nutrient breakdown, and as a regulator of cellular architecture. Proper autophagic flux is vital for both functional skeletal muscle, which controls the support and movement of the skeleton, and muscle metabolism. The role of autophagy as a metabolic regulator in muscle has been previously studied; however, the underlying molecular mechanisms that control autophagy in skeletal muscle have only recently begun to emerge. We review recent literature on the molecular pathways controlling skeletal muscle autophagy and discuss how they connect autophagy to metabolic regulation. We also focus on the implications these studies hold for understanding metabolic and muscle-wasting diseases.
Collapse
Affiliation(s)
- Brian A Neel
- Albert Einstein College of Medicine, Price Center for Genetic and Translational Medicine, Department of Medicine and Molecular Pharmacology, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | |
Collapse
|
163
|
Spitali P, Grumati P, Hiller M, Chrisam M, Aartsma-Rus A, Bonaldo P. Autophagy is Impaired in the Tibialis Anterior of Dystrophin Null Mice. PLOS CURRENTS 2013; 5. [PMID: 24292657 PMCID: PMC3839594 DOI: 10.1371/currents.md.e1226cefa851a2f079bbc406c0a21e80] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Background Duchenne muscular dystrophy is a lethal, progressive, muscle-wasting disease caused by mutations in the DMD gene. Structural remodelling processes are responsible for muscle atrophy and replacement of myofibers by fibrotic and adipose tissues. Molecular interventions modulating catabolic pathways, such as the ubiquitin-proteasome and the autophagy-lysosome systems, are under development for Duchenne and other muscular dystrophies. The Akt signaling cascade is one of the main pathways involved in protein synthesis and autophagy repression and is known to be up-regulated in dystrophin null mdx mice. Results We report that autophagy is triggered by fasting in the tibialis anterior muscle of control mice but not in mdx mice. Mdx mice show persistent Akt activation upon fasting and failure to increase the expression of FoxO3 regulated autophagy and atrophy genes, such as Bnip3 and Atrogin1. We also provide evidence that autophagy is differentially regulated in mdx tibialis anterior and diaphragm muscles. Conclusions Our data support the concept that autophagy is impaired in the tibialis anterior muscle of mdx mice and that the regulation of autophagy is muscle type dependent. Differences between muscle groups should be considered during the pre-clinical development of therapeutic strategies addressing muscle metabolism.
Collapse
Affiliation(s)
- Pietro Spitali
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | | | | | | | | | | |
Collapse
|
164
|
Ljubicic V, Burt M, Jasmin BJ. The therapeutic potential of skeletal muscle plasticity in Duchenne muscular dystrophy: phenotypic modifiers as pharmacologic targets. FASEB J 2013; 28:548-68. [PMID: 24249639 DOI: 10.1096/fj.13-238071] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a life-limiting, neuromuscular disorder that causes progressive, severe muscle wasting in boys and young men. Although there is no cure, scientists and clinicians can leverage the fact that slower, more oxidative skeletal muscle fibers possess an enhanced degree of resistance to the dystrophic pathology relative to their faster, more glycolytic counterparts, and can thus use this knowledge when investigating novel therapeutic avenues. Several factors have been identified as powerful regulators of muscle plasticity. Some proteins, such as calcineurin, peroxisome proliferator-activated receptor (PPAR) γ coactivator 1α (PGC-1α), PPARβ/δ, and AMP-activated protein kinase (AMPK), when chronically stimulated in animal models, remodel skeletal muscle toward the slow, oxidative myogenic program, whereas others, such as receptor-interacting protein 140 (RIP140) and E2F transcription factor 1 (E2F1), repress this phenotype. Recent studies demonstrating that pharmacologic and physiological activation of targets that shift dystrophic muscle toward the slow, oxidative myogenic program provide appreciable molecular and functional benefits. This review surveys the rationale behind, and evidence for, the study of skeletal muscle plasticity in preclinical models of DMD and highlights the potential therapeutic opportunities in advancing a strategy focused on remodeling skeletal muscle in patients with DMD toward the slow, oxidative phenotype.
Collapse
Affiliation(s)
- Vladimir Ljubicic
- 1Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | | | | |
Collapse
|
165
|
Hindi SM, Sato S, Choi Y, Kumar A. Distinct roles of TRAF6 at early and late stages of muscle pathology in the mdx model of Duchenne muscular dystrophy. Hum Mol Genet 2013; 23:1492-505. [PMID: 24163132 DOI: 10.1093/hmg/ddt536] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal genetic disorder caused by loss of functional dystrophin protein. Accumulating evidence suggests that the deficiency of dystrophin leads to aberrant activation of many signaling pathways which contribute to disease progression. However, the proximal signaling events leading to the activation of various pathological cascades in dystrophic muscle remain less clear. TNF receptor-associated factor 6 (TRAF6) is an adaptor protein which acts as a signaling intermediate for several receptor-mediated signaling events leading to the context-dependent activation of a number of signaling pathways. TRAF6 is also an E3 ubiquitin ligase and an important regulator of autophagy. However, the role of TRAF6 in pathogenesis of DMD remains unknown. Here, we demonstrate that the levels and activity of TRAF6 are increased in skeletal muscle of mdx (a mouse model of DMD) mice. Targeted deletion of TRAF6 improves muscle strength and reduces fiber necrosis, infiltration of macrophages and the activation of proinflammatory transcription factor nuclear factor-kappa B (NF-κB) in 7-week-old mdx mice. Ablation of TRAF6 also increases satellite cells proliferation and myofiber regeneration in young mdx mice. Intriguingly, ablation of TRAF6 exacerbates muscle injury and increases fibrosis in 9-month-old mdx mice. TRAF6 inhibition reduces the markers of autophagy and Akt signaling in dystrophic muscle of mdx mice. Collectively, our study suggests that while the inhibition of TRAF6 improves muscle structure and function in young mdx mice, its continued inhibition causes more severe myopathy at later stages of disease progression potentially through repressing autophagy.
Collapse
Affiliation(s)
- Sajedah M Hindi
- Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA and
| | | | | | | |
Collapse
|
166
|
Kamga Pride C, Mo L, Quesnelle K, Dagda RK, Murillo D, Geary L, Corey C, Portella R, Zharikov S, St Croix C, Maniar S, Chu CT, Khoo NKH, Shiva S. Nitrite activates protein kinase A in normoxia to mediate mitochondrial fusion and tolerance to ischaemia/reperfusion. Cardiovasc Res 2013; 101:57-68. [PMID: 24081164 DOI: 10.1093/cvr/cvt224] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Nitrite (NO2(-)), a dietary constituent and nitric oxide (NO) oxidation product, mediates cardioprotection after ischaemia/reperfusion (I/R) in a number of animal models when administered during ischaemia or as a pre-conditioning agent hours to days prior to the ischaemic episode. When present during ischaemia, the reduction of nitrite to bioactive NO by deoxygenated haem proteins accounts for its protective effects. However, the mechanism of nitrite-induced pre-conditioning, a normoxic response which does not appear to require reduction of nitrite to NO, remains unexplored. METHODS AND RESULTS Using a model of hypoxia/reoxygenation (H/R) in cultured rat H9c2 cardiomyocytes, we demonstrate that a transient (30 min) normoxic nitrite treatment significantly attenuates cell death after a hypoxic episode initiated 1 h later. Mechanistically, this protection depends on the activation of protein kinase A, which phosphorylates and inhibits dynamin-related protein 1, the predominant regulator of mitochondrial fission. This results morphologically, in the promotion of mitochondrial fusion and functionally in the augmentation of mitochondrial membrane potential and superoxide production. We identify AMP kinase (AMPK) as a downstream target of the mitochondrial reactive oxygen species (ROS) generated and show that its oxidation and subsequent phosphorylation are essential for cytoprotection, as scavenging of ROS prevents AMPK activation and inhibits nitrite-mediated protection after H/R. The protein kinase A-dependent protection mediated by nitrite is reproduced in an intact isolated rat heart model of I/R. CONCLUSIONS These data are the first to demonstrate nitrite-dependent normoxic modulation of both mitochondrial morphology and function and reveal a novel signalling pathway responsible for nitrite-mediated cardioprotection.
Collapse
|
167
|
AMP-activated protein kinase α1 but not α2 catalytic subunit potentiates myogenin expression and myogenesis. Mol Cell Biol 2013; 33:4517-25. [PMID: 24043309 DOI: 10.1128/mcb.01078-13] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The link between AMP-activated protein kinase (AMPK) and myogenesis remains poorly defined. AMPK has two catalytic α subunits, α1 and α2. We postulated that AMPK promotes myogenesis in an isoform-specific manner. Primary myoblasts were prepared from AMPK knockout (KO) mice and AMPK conditional KO mice, and knockout of the α1 but not the α2 subunit resulted in downregulation of myogenin and reduced myogenesis. Myogenin expression and myogenesis were nearly abolished in the absence of both AMPKα1 and AMPKα2, while enhanced AMPK activity promoted myogenesis and myotube formation. The AMPKα1-specific effect on myogenesis was likely due to the dominant expression of α1 in myoblasts. These results were confirmed in C2C12 cells. To further evaluate the necessity of the AMPKα1 subunit for myogenesis in vivo, we prepared both DsRed AMPKα1 knockout myoblasts and enhanced green fluorescent protein (EGFP) wild-type myoblasts, which were cotransplanted into tibialis anterior muscle. A number of green fluorescent muscle fibers were observed, showing the fusion of engrafted wild-type myoblasts with muscle fibers; on the other hand, very few or no red muscle fibers were observed, indicating the absence of myogenic capacity of AMPKα1 knockout myoblasts. In summary, these results indicate that AMPK activity promotes myogenesis through a mechanism mediated by AMPKα1.
Collapse
|
168
|
Katsetos CD, Koutzaki S, Melvin JJ. Mitochondrial dysfunction in neuromuscular disorders. Semin Pediatr Neurol 2013; 20:202-15. [PMID: 24331362 DOI: 10.1016/j.spen.2013.10.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This review deciphers aspects of mitochondrial (mt) dysfunction among nosologically, pathologically, and genetically diverse diseases of the skeletal muscle, lower motor neuron, and peripheral nerve, which fall outside the traditional realm of mt cytopathies. Special emphasis is given to well-characterized mt abnormalities in collagen VI myopathies (Ullrich congenital muscular dystrophy and Bethlem myopathy), megaconial congenital muscular dystrophy, limb-girdle muscular dystrophy type 2 (calpainopathy), centronuclear myopathies, core myopathies, inflammatory myopathies, spinal muscular atrophy, Charcot-Marie-Tooth neuropathy type 2, and drug-induced peripheral neuropathies. Among inflammatory myopathies, mt abnormalities are more prominent in inclusion body myositis and a subset of polymyositis with mt pathology, both of which are refractory to corticosteroid treatment. Awareness is raised about instances of phenotypic mimicry between cases harboring primary mtDNA depletion, in the context of mtDNA depletion syndrome, and established neuromuscular disorders such as spinal muscular atrophy. A substantial body of experimental work, derived from animal models, attests to a major role of mitochondria (mt) in the early process of muscle degeneration. Common mechanisms of mt-related cell injury include dysregulation of the mt permeability transition pore opening and defective autophagy. The therapeutic use of mt permeability transition pore modifiers holds promise in various neuromuscular disorders, including muscular dystrophies.
Collapse
Affiliation(s)
- Christos D Katsetos
- Department of Pediatrics, Drexel University College of Medicine, St. Christopher's Hospital for Children, Philadelphia, PA; Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA; Department of Neurology, Drexel University College of Medicine, Philadelphia, PA.
| | - Sirma Koutzaki
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA
| | - Joseph J Melvin
- Department of Pediatrics, Drexel University College of Medicine, St. Christopher's Hospital for Children, Philadelphia, PA; Department of Neurology, Drexel University College of Medicine, Philadelphia, PA
| |
Collapse
|
169
|
Howell GM, Gomez H, Collage RD, Loughran P, Zhang X, Escobar DA, Billiar TR, Zuckerbraun BS, Rosengart MR. Augmenting autophagy to treat acute kidney injury during endotoxemia in mice. PLoS One 2013; 8:e69520. [PMID: 23936035 PMCID: PMC3728340 DOI: 10.1371/journal.pone.0069520] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/11/2013] [Indexed: 01/08/2023] Open
Abstract
Objective To determine that 1) an age-dependent loss of inducible autophagy underlies the failure to recover from AKI in older, adult animals during endotoxemia, and 2) pharmacologic induction of autophagy, even after established endotoxemia, is of therapeutic utility in facilitating renal recovery in aged mice. Design Murine model of endotoxemia and cecal ligation and puncture (CLP) induced acute kidney injury (AKI). Setting Academic research laboratory. Subjects C57Bl/6 mice of 8 (young) and 45 (adult) weeks of age. Intervention Lipopolysaccharide (1.5 mg/kg), Temsirolimus (5 mg/kg), AICAR (100 mg/kg). Measurements and Main Results: Herein we report that diminished autophagy underlies the failure to recover renal function in older adult mice utilizing a murine model of LPS-induced AKI. The administration of the mTOR inhibitor temsirolimus, even after established endotoxemia, induced autophagy and protected against the development of AKI. Conclusions These novel results demonstrate a role for autophagy in the context of LPS-induced AKI and support further investigation into like interventions that have potential to alter the natural history of disease.
Collapse
Affiliation(s)
- Gina M. Howell
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Hernando Gomez
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Richard D. Collage
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Patricia Loughran
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Xianghong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Daniel A. Escobar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Brian S. Zuckerbraun
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Matthew R. Rosengart
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
170
|
AMP-activated protein kinase at the nexus of therapeutic skeletal muscle plasticity in Duchenne muscular dystrophy. Trends Mol Med 2013; 19:614-24. [PMID: 23891277 DOI: 10.1016/j.molmed.2013.07.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/26/2013] [Accepted: 07/01/2013] [Indexed: 12/22/2022]
Abstract
Recent studies have highlighted the potential of adenosine monophosphate-activated protein kinase (AMPK) to act as a central therapeutic target in Duchenne muscular dystrophy (DMD). Here, we review the role of AMPK as an important integrator of cell signaling pathways that mediate phenotypic plasticity within the context of dystrophic skeletal muscle. Pharmacological AMPK activation remodels skeletal muscle towards a slower, more oxidative phenotype, which is more pathologically resistant to the lack of dystrophin. Moreover, recent studies suggest that AMPK-activated autophagy may be beneficial for myofiber structure and function in mice with muscular dystrophy. Thus, AMPK may represent an ideal target for intervention because clinically approved pharmacological agonists exist, and because benefits can be derived via two independent yet, complementary biological pathways. The availability of several AMPK activators could therefore lead to the rapid development and implementation of novel and highly effective therapeutics aimed at altering the relentless progression of DMD.
Collapse
|
171
|
Hulmi JJ, Oliveira BM, Silvennoinen M, Hoogaars WMH, Pasternack A, Kainulainen H, Ritvos O. Exercise restores decreased physical activity levels and increases markers of autophagy and oxidative capacity in myostatin/activin-blocked mdx mice. Am J Physiol Endocrinol Metab 2013; 305:E171-82. [PMID: 23695214 DOI: 10.1152/ajpendo.00065.2013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The importance of adequate levels of muscle size and function and physical activity is widely recognized. Myostatin/activin blocking increases skeletal muscle mass but may decrease muscle oxidative capacity and can thus be hypothesized to affect voluntary physical activity. Soluble activin receptor IIB (sActRIIB-Fc) was produced to block myostatin/activins. Modestly dystrophic mdx mice were injected with sActRIIB-Fc or PBS with or without voluntary wheel running exercise for 7 wk. Healthy mice served as controls. Running for 7 wk attenuated the sActRIIB-Fc-induced increase in body mass by decreasing fat mass. Running also enhanced/restored the markers of muscle oxidative capacity and autophagy in mdx mice to or above the levels of healthy mice. Voluntary running activity was decreased by sActRIIB-Fc during the first 3-4 wk correlating with increased body mass. Home cage physical activity of mice, quantified from the force plate signal, was decreased by sActRIIB-Fc the whole 7-wk treatment in sedentary mice. To understand what happens during the first weeks after sActRIIB-Fc administration, when mice are less active, healthy mice were injected with sActRIIB-Fc or PBS for 2 wk. During the sActRIIB-Fc-induced rapid 2-wk muscle growth period, oxidative capacity and autophagy were reduced, which may possibly explain the decreased running activity. These results show that increased muscle size and decreased markers of oxidative capacity and autophagy during the first weeks of myostatin/activin blocking are associated with decreased voluntary activity levels. Voluntary exercise in dystrophic mice enhances the markers of oxidative capacity and autophagy to or above the levels of healthy mice.
Collapse
Affiliation(s)
- Juha J Hulmi
- Department of Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä, Finland.
| | | | | | | | | | | | | |
Collapse
|
172
|
Hollinger K, Selsby JT. The physiological response of protease inhibition in dystrophic muscle. Acta Physiol (Oxf) 2013; 208:234-44. [PMID: 23648220 DOI: 10.1111/apha.12114] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 03/25/2013] [Accepted: 04/29/2013] [Indexed: 01/06/2023]
Abstract
Duchenne muscular dystrophy (DMD) is caused by the production of a non-functional dystrophin gene product and a failure to accumulate functional dystrophin protein in muscle cells. This leads to membrane instability, loss of Ca(2+) homoeostasis and widespread cellular injury. Associated with these changes are increased protease activities in a variety of proteolytic systems. As such, there have been numerous investigations directed towards determining the therapeutic potential of protease inhibition. In this review, evidence from genetic and/or pharmacological inhibition of proteases as a treatment strategy for DMD is systematically evaluated. Specifically, we review the potential roles of calpain, proteasome, caspase, matrix metalloproteinase and serine protease inhibition as therapeutic approaches for DMD. We conclude that despite early results to the contrary, inhibition of calpain proteases is unlikely to be successful. Conversely, evidence suggests that inhibition of proteasome, matrix metalloproteinases and serine proteases does appear to decrease disease severity. An important caveat to these conclusions, however, is that the fundamental cause of DMD, dystrophin deficiency, is not corrected by this strategy. Hence, this should not be viewed as a cure, but rather, protease inhibitors should be considered for inclusion in a therapeutic cocktail. Physiological Relevance. Selective modulation of protease activity has the potential to profoundly change intracellular physiology resulting in a possible treatment for DMD. However, alteration of protease activities could also lead to worsening of disease progression by promoting the accumulation of substrates in the cell. The balance of benefit and potential damage caused by protease inhibition in human DMD patients is largely unexplored.
Collapse
Affiliation(s)
- K. Hollinger
- Department of Animal Science; Iowa State University; Ames; IA; USA
| | - J. T. Selsby
- Department of Animal Science; Iowa State University; Ames; IA; USA
| |
Collapse
|
173
|
Matsakas A, Yadav V, Lorca S, Narkar V. Muscle ERRγ mitigates Duchenne muscular dystrophy via metabolic and angiogenic reprogramming. FASEB J 2013; 27:4004-16. [PMID: 23781095 DOI: 10.1096/fj.13-228296] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Treatment of Duchenne muscular dystrophy (DMD) by replacing mutant dystrophin or restoring dystrophin-associated glycoprotein complex (DAG) has been clinically challenging. Instead, identifying and targeting muscle pathways deregulated in DMD will provide new therapeutic avenues. We report that the expression of nuclear receptor estrogen-related receptor-γ (ERRγ), and its metabolic and angiogenic targets are down-regulated (50-85%) in skeletal muscles of mdx mice (DMD model) vs. wild-type mice. Corelatively, oxidative myofibers, muscle vasculature, and exercise tolerance (33%) are decreased in mdx vs. wild-type mice. Overexpressing ERRγ selectively in the dystrophic muscles of the mdx mice restored metabolic and angiogenic gene expression compared with control mdx mice. Further, ERRγ enhanced muscle oxidative myofibers, vasculature, and blood flow (by 33-66%) and improved exercise tolerance (by 75%) in the dystrophic mice. Restoring muscle ERRγ pathway ameliorated muscle damage and also prevented DMD hallmarks of postexercise muscle damage, hypoxia, and fatigue in mdx mice. Notably, ERRγ did not restore sarcolemmal DAG complex, which is thus dispensable for antidystrophic effects of ERRγ. In summary, ERRγ-dependent metabolic and angiogenic gene program is defective in DMD, and we demonstrate that its restoration is a potential strategy for treating muscular dystrophy.
Collapse
Affiliation(s)
- Antonios Matsakas
- 1Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, University of Texas Medical School at Houston, IMM/SRB 430F, 1825 Pressler St., Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
174
|
Shin J, Tajrishi MM, Ogura Y, Kumar A. Wasting mechanisms in muscular dystrophy. Int J Biochem Cell Biol 2013; 45:2266-79. [PMID: 23669245 DOI: 10.1016/j.biocel.2013.05.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/29/2013] [Accepted: 05/02/2013] [Indexed: 12/11/2022]
Abstract
Muscular dystrophy is a group of more than 30 different clinical genetic disorders that are characterized by progressive skeletal muscle wasting and degeneration. Primary deficiency of specific extracellular matrix, sarcoplasmic, cytoskeletal, or nuclear membrane protein results in several secondary changes such as sarcolemmal instability, calcium influx, fiber necrosis, oxidative stress, inflammatory response, breakdown of extracellular matrix, and eventually fibrosis which leads to loss of ambulance and cardiac and respiratory failure. A number of molecular processes have now been identified which hasten disease progression in human patients and animal models of muscular dystrophy. Accumulating evidence further suggests that aberrant activation of several signaling pathways aggravate pathological cascades in dystrophic muscle. Although replacement of defective gene with wild-type is paramount to cure, management of secondary pathological changes has enormous potential to improving the quality of life and extending lifespan of muscular dystrophy patients. In this article, we have reviewed major cellular and molecular mechanisms leading to muscle wasting in muscular dystrophy. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.
Collapse
Affiliation(s)
- Jonghyun Shin
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
175
|
Ketogenic essential amino acids replacement diet ameliorated hepatosteatosis with altering autophagy-associated molecules. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1605-12. [PMID: 23669346 DOI: 10.1016/j.bbadis.2013.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 02/06/2023]
Abstract
Ketogenic amino acid (KAA) replacement diet has been shown to cure hepatic steatosis, a serious liver disease associated with diverse metabolic defects. In this study, we investigated the effects of KAA replacement diet on nutrition sensing signaling pathway and analyzed whether induction of hepatic autophagy was involved. Mice are fed with high fat diet (HFD) or KAA replacement in high-fat diet (30% fat in food; HFD)-fed (HFD(KAAR)) and sacrificed at 8, 12, 16 weeks after initiation of experimental food. Hepatic autophagy was analyzed in protein expression of several autophagy-associated molecules and in light chain-3 green fluorescent protein (LC-3 GFP) transgenic mice. HFD(KAAR) showed increased AMP-activated protein kinase (AMPK) phosphorylation and enhanced liver kinase B1 (LKB1) expression compared to control HFD-fed mice. The KAA-HFD-induced activation of AMPK was associated with an increased protein expression of sirtuin 1 (Sirt1), decreased forkhead box protein O3a (Foxo3a) level, and suppression of mammalian target of rapamycin (mTOR) phosphorylation compared with the HFD-fed mice. The intervention study revealed that a KAA-replacement diet also ameliorated all the established metabolic and autophagy defects in the HFD-fed mice, suggesting that a KAA-replacement diet can be used therapeutically in established diseases. These results indicate that KAA replacement in food could be a novel strategy to combat hepatic steatosis and metabolic abnormalities likely involvement of an induction of autophagy.
Collapse
|
176
|
Zhu J, Wang KZQ, Chu CT. After the banquet: mitochondrial biogenesis, mitophagy, and cell survival. Autophagy 2013; 9:1663-76. [PMID: 23787782 DOI: 10.4161/auto.24135] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are highly dynamic organelles of crucial importance to the proper functioning of neuronal, cardiac and other cell types dependent upon aerobic efficiency. Mitochondrial dysfunction has been implicated in numerous human conditions, to include cancer, metabolic diseases, neurodegeneration, diabetes, and aging. In recent years, mitochondrial turnover by macroautophagy (mitophagy) has captured the limelight, due in part to discoveries that genes linked to Parkinson disease regulate this quality control process. A rapidly growing literature is clarifying effector mechanisms that underlie the process of mitophagy; however, factors that regulate positive or negative cellular outcomes have been less studied. Here, we review the literature on two major pathways that together may determine cellular adaptation vs. cell death in response to mitochondrial dysfunction. Mitochondrial biogenesis and mitophagy represent two opposing, but coordinated processes that determine mitochondrial content, structure, and function. Recent data indicate that the capacity to undergo mitochondrial biogenesis, which is dysregulated in disease states, may play a key role in determining cell survival following mitophagy-inducing injuries. The current literature on major pathways that regulate mitophagy and mitochondrial biogenesis is summarized, and mechanisms by which the interplay of these two processes may determine cell fate are discussed. We conclude that in primary neurons and other mitochondrially dependent cells, disruptions in any phase of the mitochondrial recycling process can contribute to cellular dysfunction and disease. Given the emerging importance of crosstalk among regulators of mitochondrial function, autophagy, and biogenesis, signaling pathways that coordinate these processes may contribute to therapeutic strategies that target or regulate mitochondrial turnover and regeneration.
Collapse
Affiliation(s)
- Jianhui Zhu
- Department of Pathology; Division of Neuropathology; University of Pittsburgh School of Medicine; Pittsburgh, PA USA
| | | | | |
Collapse
|
177
|
Pellegrini C, Zulian A, Gualandi F, Manzati E, Merlini L, Michelini ME, Benassi L, Marmiroli S, Ferlini A, Sabatelli P, Bernardi P, Maraldi NM. Melanocytes--a novel tool to study mitochondrial dysfunction in Duchenne muscular dystrophy. J Cell Physiol 2013; 228:1323-31. [PMID: 23169061 PMCID: PMC3601437 DOI: 10.1002/jcp.24290] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 11/09/2012] [Indexed: 12/19/2022]
Abstract
Dystrophin is a subsarcolemmal protein that, by linking the actin cytoskeleton to the extracellular matrix via dystroglycans, is critical for the integrity of muscle fibers. Here, we report that epidermal melanocytes, obtained from conventional skin biopsy, express dystrophin with a restricted localization to the plasma membrane facing the dermal–epidermal junction. In addition the full-length muscle isoform mDp427 was clearly detectable in melanocyte cultures as assessed by immunohistochemistry, RNA, and Western blot analysis. Melanocytes of Duchenne muscular dystrophy (DMD) patients did not express dystrophin, and the ultrastructural analysis revealed typical mitochondrial alterations similar to those occurring in myoblasts from the same patients. Mitochondria of melanocytes from DMD patients readily accumulated tetramethylrhodamine methyl ester, indicating that they are energized irrespective of the presence of dystrophin but, at variance from mitochondria of control donors, depolarized upon the addition of oligomycin, suggesting that they are affected by a latent dysfunction unmasked by inhibition of the ATP synthase. Pure melanocyte cultures can be readily obtained by conventional skin biopsies and may be a feasible and reliable tool alternative to muscle biopsy for functional studies in dystrophinopathies. The mitochondrial dysfunction occurring in DMD melanocytes could represent a promising cellular biomarker for monitoring dystrophinopathies also in response to pharmacological treatments. J. Cell. Physiol. 228: 1323–1331, 2013. © 2012 Wiley Periodicals, Inc.
Collapse
|
178
|
Hollinger K, Gardan-Salmon D, Santana C, Rice D, Snella E, Selsby JT. Rescue of dystrophic skeletal muscle by PGC-1α involves restored expression of dystrophin-associated protein complex components and satellite cell signaling. Am J Physiol Regul Integr Comp Physiol 2013; 305:R13-23. [PMID: 23594613 DOI: 10.1152/ajpregu.00221.2012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Duchenne muscular dystrophy is typically diagnosed in the preschool years because of locomotor defects, indicative of muscle damage. Thus, effective therapies must be able to rescue muscle from further decline. We have established that peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Pgc-1α) gene transfer will prevent many aspects of dystrophic pathology, likely through upregulation of utrophin and increased oxidative capacity; however, the extent to which it will rescue muscle with disease manifestations has not been determined. Our hypothesis is that gene transfer of Pgc-1α into declining muscle will reduce muscle injury compared with control muscle. To test our hypothesis, adeno-associated virus 6 (AAV6) driving expression of Pgc-1α was injected into single hind limbs of 3-wk-old mdx mice, while the contralateral limb was given a sham injection. At 6 wk of age, treated solei had 37% less muscle injury compared with sham-treated muscles (P < 0.05). Resistance to contraction-induced injury was improved 10% (P < 0.05), likely driven by the five-fold (P < 0.05) increase in utrophin protein expression and increase in dystrophin-associated complex members. Treated muscles were more resistant to fatigue, which was likely caused by the corresponding increase in oxidative markers. Pgc-1α overexpressing limbs also exhibited increased expression of genes related to muscle repair and autophagy. These data indicate that the Pgc-1α pathway remains a good therapeutic target, as it reduced muscle injury and improved function using a rescue paradigm. Further, these data also indicate that the beneficial effects of Pgc-1α gene transfer are more complex than increased utrophin expression and oxidative gene expression.
Collapse
Affiliation(s)
- Katrin Hollinger
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | |
Collapse
|
179
|
Moorwood C, Khurana TS. Duchenne muscular dystrophy drug discovery - the application of utrophin promoter activation screening. Expert Opin Drug Discov 2013; 8:569-81. [PMID: 23473647 DOI: 10.1517/17460441.2013.777040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is a devastating genetic muscle wasting disease caused by mutations in the DMD gene that in turn lead to an absence of dystrophin. Currently, there is no definitive therapy for DMD. Gene- and cell-based therapies designed to replace dystrophin have met some degree of success, as have strategies that seek to improve the dystrophic pathology independent of dystrophin. AREAS COVERED In this review the authors focus on utrophin promoter activation-based strategies and their implications on potential therapeutics for DMD. These strategies in common are designed to identify drugs/small molecules that can activate the utrophin promoter and would allow the functional substitution of dystrophin by upregulating utrophin expression in dystrophic muscle. The authors provide an overview of utrophin biology with a focus on regulation of the utrophin promoter and discuss current attempts in identifying utrophin promoter-activating molecules using high-throughput screening (HTS). EXPERT OPINION The characterisation of utrophin promoter regulatory mechanisms coupled with advances in HTS have allowed researchers to undertake screens and identify a number of promising lead compounds that may prove useful for DMD. In principle, these pharmacological compounds offer significant advantages from a translational viewpoint for developing DMD therapeutics.
Collapse
Affiliation(s)
- Catherine Moorwood
- University of Pennsylvania School of Dental Medicine, Department of Anatomy & Cell Biology, 438 Levy Research Building, 240 S. 40th Street, Philadelphia, PA 19104, USA
| | | |
Collapse
|
180
|
Abstract
A resolutive therapy for Duchene muscular dystrophy, a severe degenerative disease of the skeletal muscle, is still lacking. Because autophagy has been shown to be crucial in clearing dysfunctional organelles and in preventing tissue damage, we investigated its pathogenic role and its suitability as a target for new therapeutic interventions in Duchenne muscular dystrophy (DMD). Here we demonstrate that autophagy is severely impaired in muscles from patients affected by DMD and mdx mice, a model of the disease, with accumulation of damaged organelles. The defect in autophagy was accompanied by persistent activation via phosphorylation of Akt, mammalian target of rapamycin (mTOR) and of the autophagy-inhibiting pathways dependent on them, including the translation-initiation factor 4E-binding protein 1 and the ribosomal protein S6, and downregulation of the autophagy-inducing genes LC3, Atg12, Gabarapl1 and Bnip3. The defective autophagy was rescued in mdx mice by long-term exposure to a low-protein diet. The treatment led to normalisation of Akt and mTOR signalling; it also reduced significantly muscle inflammation, fibrosis and myofibre damage, leading to recovery of muscle function. This study highlights novel pathogenic aspects of DMD and suggests autophagy as a new effective therapeutic target. The treatment we propose can be safely applied and immediately tested for efficacy in humans.
Collapse
|