151
|
Fujimoto K, Hasebe T, Kajita M, Ishizuya-Oka A. Expression of hyaluronan synthases upregulated by thyroid hormone is involved in intestinal stem cell development during Xenopus laevis metamorphosis. Dev Genes Evol 2018; 228:267-273. [PMID: 30430240 DOI: 10.1007/s00427-018-0623-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/07/2018] [Indexed: 01/08/2023]
Abstract
During amphibian intestinal remodeling, thyroid hormone (TH) induces adult stem cells, which newly generate the absorptive epithelium analogous to the mammalian one. We have previously shown that hyaluronan (HA) is newly synthesized and plays an essential role in the development of the stem cells via its major receptor CD44 in the Xenopus laevis intestine. We here focused on HA synthase (HAS) and examined how the expression of HAS family genes is regulated during natural and TH-induced metamorphosis. Our quantitative RT-PCR analysis indicated that the mRNA expression of HAS2 and HAS3, but not that of HAS1 and HAS-rs, a unique Xenopus HAS-related sequence, is upregulated concomitantly with the development of adult epithelial primordia consisting of the stem/progenitor cells during the metamorphic climax. In addition, our in situ hybridization analysis indicated that the HAS3 mRNA is specifically expressed in the adult epithelial primordia, whereas HAS2 mRNA is expressed in both the adult epithelial primordia and nearby connective tissue cells during this period. Furthermore, by treating X. laevis tadpoles with 4-methylumbelliferone, a HA synthesis inhibitor, we have experimentally shown that inhibition of HA synthesis leads to suppression of TH-upregulated expression of leucine-rich repeat-containing G protein-coupled 5 (LGR5), an intestinal stem cell marker, CD44, HAS2, HAS3, and gelatinase A in vivo. These findings suggest that HA newly synthesized by HAS2 and/or HAS3 is required for intestinal stem cell development through a positive feedback loop and is involved in the formation of the stem cell niche during metamorphosis.
Collapse
Affiliation(s)
- Kenta Fujimoto
- Department of Biology, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo, 180-0023, Japan
| | - Takashi Hasebe
- Department of Biology, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo, 180-0023, Japan
| | - Mitsuko Kajita
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-396 Kosugi-cho, Nakahara-ku, Kawasaki, Kanagawa, 211-8533, Japan
| | - Atsuko Ishizuya-Oka
- Department of Biology, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo, 180-0023, Japan.
| |
Collapse
|
152
|
Sikes KJ, Renner K, Li J, Grande-Allen KJ, Connell JP, Cali V, Midura RJ, Sandy JD, Plaas A, Wang VM. Knockout of hyaluronan synthase 1, but not 3, impairs formation of the retrocalcaneal bursa. J Orthop Res 2018; 36:2622-2632. [PMID: 29672913 PMCID: PMC6203660 DOI: 10.1002/jor.24027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 04/17/2018] [Indexed: 02/04/2023]
Abstract
Hyaluronan (HA), a high molecular weight non-sulfated glycosaminoglycan, is an integral component of the extracellular matrix of developing and mature connective tissues including tendon. There are few published reports quantifying HA content during tendon growth and maturation, or detailing its effects on the mechanical properties of the tendon extracellular matrix. Therefore, the goal of the current study was to examine the role of HA synthesis during post-natal skeletal growth and maturation, and its influence on tendon structure and biomechanical function. For this purpose, the morphological, biochemical, and mechanical properties of Achilles tendons from wild type (WT) and hyaluronan synthase 1 and 3 deficient mouse strains (Has1-/- (Has1KO), Has3-/- (Has3KO), and Has1-/- 3-/- (Has1/3KO)) were determined at 4, 8, and 12 weeks of age. Overall, HAS-deficient mice did not show any marked differences from WT mice in Achilles tendon morphology or in the HA and chondroitin/dermatan sulfate (CS/DS) contents. However, HAS1-deficiency (in the single or Has1/3 double KO) impeded post-natal formation of the retrocalcaneal bursa, implicating HAS1 in regulating HA metabolism by cells lining the bursal cavity. Together, these data suggest that HA metabolism via HAS1 and HAS3 does not markedly influence the extracellular matrix structure or function of the tendon body, but plays a role in the formation/maintenance of peritendinous bursa. Additional studies are warranted to elucidate the relationship of HA and CS/DS metabolism to tendon healing and repair in vivo. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2622-2632, 2018.
Collapse
Affiliation(s)
- Katie J. Sikes
- Department of Orthopedic Surgery, Rush University Medical Center, 1611 W. Harrison Street, Chicago, IL 60612
- Department of Bioengineering, University of Illinois at Chicago, 851 S. Morgan Street, Chicago, IL 60607
| | - Kristen Renner
- Department of Biomedical Engineering and Mechanics, Virginia Tech, 339 Kelly Hall, 325 Stanger Street MC 0298, Blacksburg, VA, 24061
| | - Jun Li
- Department of Internal Medicine (Rheumatology), Rush University Medical Center, 1611 W. Harrison Street, Chicago, IL 60612
| | - K. Jane Grande-Allen
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005
| | - Jennifer P. Connell
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005
| | - Valbona Cali
- Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue Cleveland, OH 44195
| | - Ronald J. Midura
- Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue Cleveland, OH 44195
| | - John D. Sandy
- Department of Orthopedic Surgery, Rush University Medical Center, 1611 W. Harrison Street, Chicago, IL 60612
| | - Anna Plaas
- Department of Orthopedic Surgery, Rush University Medical Center, 1611 W. Harrison Street, Chicago, IL 60612
- Department of Internal Medicine (Rheumatology), Rush University Medical Center, 1611 W. Harrison Street, Chicago, IL 60612
| | - Vincent M. Wang
- Department of Bioengineering, University of Illinois at Chicago, 851 S. Morgan Street, Chicago, IL 60607
- Department of Biomedical Engineering and Mechanics, Virginia Tech, 339 Kelly Hall, 325 Stanger Street MC 0298, Blacksburg, VA, 24061
| |
Collapse
|
153
|
Hauser-Kawaguchi A, Tolg C, Peart T, Milne M, Turley EA, Luyt LG. A truncated RHAMM protein for discovering novel therapeutic peptides. Bioorg Med Chem 2018; 26:5194-5203. [PMID: 30249497 DOI: 10.1016/j.bmc.2018.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 12/11/2022]
Abstract
The receptor for hyaluronan mediated motility (RHAMM, gene name HMMR) belongs to a group of proteins that bind to hyaluronan (HA), a high-molecular weight anionic polysaccharide that has pro-angiogenic and inflammatory properties when fragmented. We propose to use a chemically synthesized, truncated version of the protein (706-767), 7 kDa RHAMM, as a target receptor in the screening of novel peptide-based therapeutic agents. Chemical synthesis by Fmoc-based solid-phase peptide synthesis, and optimization using pseudoprolines, results in RHAMM protein of higher purity and yield than synthesis by recombinant protein production. 7 kDa RHAMM was evaluated for its secondary structure, ability to bind the native ligand, HA, and its bioactivity. This 62-amino acid polypeptide replicates the HA binding properties of both native and recombinant RHAMM protein. Furthermore, tubulin-derived HA peptide analogues that bind to recombinant RHAMM and were previously reported to compete with HA for interactions with RHAMM, bind with a similar affinity and specificity to the 7 kDa RHAMM. Therefore, in terms of its key binding properties, the 7 kDa RHAMM mini-protein is a suitable replacement for the full-length recombinant protein.
Collapse
Affiliation(s)
| | - Cornelia Tolg
- Cancer Research Laboratory Program, Lawson Health Research Institute and London Regional Cancer Program, London Health Sciences Center, London, Ontario, Canada
| | - Teresa Peart
- Cancer Research Laboratory Program, Lawson Health Research Institute and London Regional Cancer Program, London Health Sciences Center, London, Ontario, Canada
| | - Mark Milne
- Cancer Research Laboratory Program, Lawson Health Research Institute and London Regional Cancer Program, London Health Sciences Center, London, Ontario, Canada
| | - Eva A Turley
- Cancer Research Laboratory Program, Lawson Health Research Institute and London Regional Cancer Program, London Health Sciences Center, London, Ontario, Canada; Department of Biochemistry, Western University, London, Ontario, Canada; Department of Oncology, Western University, London, Ontario, Canada
| | - Leonard G Luyt
- Department of Chemistry, Western University, London, Ontario, Canada; Cancer Research Laboratory Program, Lawson Health Research Institute and London Regional Cancer Program, London Health Sciences Center, London, Ontario, Canada; Department of Oncology, Western University, London, Ontario, Canada; Department of Medical Imaging, Western University, London, Ontario, Canada.
| |
Collapse
|
154
|
Rodríguez MM, Fiore E, Bayo J, Atorrasagasti C, García M, Onorato A, Domínguez L, Malvicini M, Mazzolini G. 4Mu Decreases CD47 Expression on Hepatic Cancer Stem Cells and Primes a Potent Antitumor T Cell Response Induced by Interleukin-12. Mol Ther 2018; 26:2738-2750. [PMID: 30301668 DOI: 10.1016/j.ymthe.2018.09.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment (TME) represents a complex interplay between different cellular components, including tumor cells and cancer stem cells (CSCs), with the associated stroma; such interaction promotes tumor immune escape and sustains tumor growth. Several experimental approaches for cancer therapy are focused on TME remodeling, resulting in increased antitumor effects. We previously demonstrated that the hyaluronan synthesis inhibitor 4-methylumbelliferone (4Mu) decreases liver fibrosis and induces antitumor activity in hepatocellular carcinoma (HCC). In this work, 4Mu, in combination with an adenovirus encoding interleukin-12 genes (AdIL-12), elicited a potent antitumor effect and significantly prolonged animal survival (p < 0.05) in an orthotopic HCC model established in fibrotic livers. In assessing the presence of CSCs, we found reduced mRNA levels of CD133+, CD90+, EpCAM+, CD44+, and CD13+ CSC markers within HCC tumors (p < 0.01). Additionally, 4Mu downregulated the expression of the CSC marker CD47+ on HCC cells, promoted phagocytosis by antigen-presenting cells, and, combined with Ad-IL12, elicited a potent cytotoxic-specific T cell response. Finally, animal survival was increased when CD133low HCC cells, generated upon 4Mu treatment, were injected in a metastatic HCC model. In conclusion, the combined strategy ameliorates HCC aggressiveness by targeting CSCs and as a result of the induction of anticancer immunity.
Collapse
Affiliation(s)
- Marcelo M Rodríguez
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, CONICET-Universidad Austral, Buenos Aires, Argentina
| | - Esteban Fiore
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, CONICET-Universidad Austral, Buenos Aires, Argentina
| | - Juan Bayo
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, CONICET-Universidad Austral, Buenos Aires, Argentina
| | - Catalina Atorrasagasti
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, CONICET-Universidad Austral, Buenos Aires, Argentina
| | - Mariana García
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, CONICET-Universidad Austral, Buenos Aires, Argentina
| | - Agostina Onorato
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, CONICET-Universidad Austral, Buenos Aires, Argentina
| | - Luciana Domínguez
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, CONICET-Universidad Austral, Buenos Aires, Argentina
| | - Mariana Malvicini
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, CONICET-Universidad Austral, Buenos Aires, Argentina
| | - Guillermo Mazzolini
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, CONICET-Universidad Austral, Buenos Aires, Argentina.
| |
Collapse
|
155
|
Muterspaugh R, Price D, Esckilsen D, McEachern S, Guthrie J, Heyl D, Evans HG. Interaction of Insulin-Like Growth Factor-Binding Protein 3 With Hyaluronan and Its Regulation by Humanin and CD44. Biochemistry 2018; 57:5726-5737. [PMID: 30184438 DOI: 10.1021/acs.biochem.8b00635] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Insulin-like growth factor-binding protein-3 (IGFBP-3) belongs to a family of IGF-binding proteins. Humanin is a peptide known to bind residues 215-232 of mature IGFBP-3 in the C-terminal region of the protein. This region of IGFBP-3 was shown earlier to bind certain glycosaminoglycans including hyaluronan (HA). Here, we characterized the binding affinities of the IGFBP-3 protein and peptide (215-KKGFYKKKQCRPSKGRKR-232) to HA and to humanin and found that HA binds with a weaker affinity to this region than does humanin. Either HA or humanin could bind to this IGFBP-3 segment, but not simultaneously. The HA receptor, CD44, blocked HA binding to IGFBP-3 but had no effect on binding of humanin to either IGFBP-3 or its peptide. Upon incubation of HA with CD44 and either IGFBP-3 protein or peptide, humanin was effective at binding and sequestering IGFBP-3 or peptide, thereby enabling access of CD44 to HA. We show that IGFBP-3 and humanin in the medium of A549 lung cancer cells can immunoprecipitate in a complex. However, the fraction of IGFBP-3 in the medium that is able to bind HA was not complexed with humanin suggesting that HA binding to the 215-232 segment renders it inaccessible for binding to humanin. Moreover, while the cytotoxic effects of IGFBP-3 on cell viability were reversed by humanin, blocking HA-CD44 interaction with an anti-CD44 antibody in combination with IGFBP-3 did not have an additive negative effect on cell viability suggesting that IGFBP-3 exerts its cytotoxic effects on cell survival through a mechanism that depends on HA-CD44 interactions.
Collapse
Affiliation(s)
- Robert Muterspaugh
- Chemistry Department , Eastern Michigan University , Ypsilanti , Michigan 48197 , United States
| | - Deanna Price
- Chemistry Department , Eastern Michigan University , Ypsilanti , Michigan 48197 , United States
| | - Daniel Esckilsen
- Chemistry Department , Eastern Michigan University , Ypsilanti , Michigan 48197 , United States
| | - Sydney McEachern
- Chemistry Department , Eastern Michigan University , Ypsilanti , Michigan 48197 , United States
| | - Jeffrey Guthrie
- Chemistry Department , Eastern Michigan University , Ypsilanti , Michigan 48197 , United States
| | - Deborah Heyl
- Chemistry Department , Eastern Michigan University , Ypsilanti , Michigan 48197 , United States
| | - Hedeel Guy Evans
- Chemistry Department , Eastern Michigan University , Ypsilanti , Michigan 48197 , United States
| |
Collapse
|
156
|
Karamanos NK, Piperigkou Z, Theocharis AD, Watanabe H, Franchi M, Baud S, Brézillon S, Götte M, Passi A, Vigetti D, Ricard-Blum S, Sanderson RD, Neill T, Iozzo RV. Proteoglycan Chemical Diversity Drives Multifunctional Cell Regulation and Therapeutics. Chem Rev 2018; 118:9152-9232. [PMID: 30204432 DOI: 10.1021/acs.chemrev.8b00354] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras 26110, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras 26110, Greece
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Aichi 480-1195, Japan
| | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Rimini 47100, Italy
| | - Stéphanie Baud
- Université de Reims Champagne-Ardenne, Laboratoire SiRMa, CNRS UMR MEDyC 7369, Faculté de Médecine, 51 rue Cognacq Jay, Reims 51100, France
| | - Stéphane Brézillon
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, CNRS UMR MEDyC 7369, Faculté de Médecine, 51 rue Cognacq Jay, Reims 51100, France
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster 48149, Germany
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy
| | - Sylvie Ricard-Blum
- University Claude Bernard Lyon 1, CNRS, UMR 5246, Institute of Molecular and Supramolecular Chemistry and Biochemistry, Villeurbanne 69622, France
| | - Ralph D. Sanderson
- Department of Pathology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 10107, United States
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 10107, United States
| |
Collapse
|
157
|
Kašparová J, Korecká L, Pepeliaev S, Bílková Z, Smirnou D, Velebný V, Česlová L. Magnetic macroporous bead cellulose functionalised with recombinant hyaluronan lyase for controllable hyaluronan fragmentation. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
158
|
Fei CM, Guo J, Zhao YS, Zhao SD, Zhen QQ, Shi L, Li X, Chang CK. Clinical significance of hyaluronan levels and its pro-osteogenic effect on mesenchymal stromal cells in myelodysplastic syndromes. J Transl Med 2018; 16:234. [PMID: 30143008 PMCID: PMC6109310 DOI: 10.1186/s12967-018-1614-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/21/2018] [Indexed: 12/12/2022] Open
Abstract
Background Hyaluronan (HA), a major component of the extracellular matrix, has been proven to play a crucial role in tumor progression. However, it remains unknown whether HA exerts any effects in myelodysplastic syndromes (MDS). Methods A total of 82 patients with MDS and 28 healthy donors were investigated in this study. We firstly examined the bone marrow (BM) serum levels of HA in MDS by radioimmunoassay. Then we determined HA production and hyaluronan synthase (HAS) gene expression in BM mesenchymal stromal cells (MSC) and mononuclear cells derived from MDS patients. Finally, we investigated the effects of HA on osteogenic differentiation of MSC. Results The BM serum levels of HA was increased in higher-risk MDS patients compared to normal controls. Meanwhile, patients with high BM serum HA levels had significantly shorter median survival than those with low HA levels. Moreover, the HA levels secreted by MSC was elevated in MDS, especially in higher-risk MDS. In addition, HAS-2 mRNA expression was also up-regulated in higher-risk MDS-MSC. Furthermore, we found that MSC derived from MDS patients with high BM serum HA levels had better osteogenic differentiation potential. Moreover, MSC cultured in HA-coated surface presented enhanced osteogenic differentiation ability. Conclusions Our results show that elevated levels of BM serum HA are related to adverse clinical outcome in MDS. Better osteogenic differentiation of MSC induced by HA may be implicated in the pathogenesis of MDS.
Collapse
Affiliation(s)
- Cheng-Ming Fei
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi Shan Road, Shanghai, 200233, China
| | - Juan Guo
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi Shan Road, Shanghai, 200233, China
| | - You-Shan Zhao
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi Shan Road, Shanghai, 200233, China
| | - Si-Da Zhao
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi Shan Road, Shanghai, 200233, China
| | - Qing-Qing Zhen
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi Shan Road, Shanghai, 200233, China
| | - Lei Shi
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi Shan Road, Shanghai, 200233, China
| | - Xiao Li
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi Shan Road, Shanghai, 200233, China
| | - Chun-Kang Chang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi Shan Road, Shanghai, 200233, China.
| |
Collapse
|
159
|
Gatti V, Fierro C, Compagnone M, Giangrazi F, Markert EK, Bongiorno-Borbone L, Melino G, Peschiaroli A. ΔNp63 regulates the expression of hyaluronic acid-related genes in breast cancer cells. Oncogenesis 2018; 7:65. [PMID: 30139970 PMCID: PMC6107578 DOI: 10.1038/s41389-018-0073-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/20/2018] [Accepted: 07/10/2018] [Indexed: 12/16/2022] Open
Abstract
Triple negative breast cancers (TNBC) represent the most aggressive and clinically relevant breast carcinomas. On the basis of specific molecular signature, the majority of TNBC can be classified as basal-like breast carcinoma. Here, we report data showing that in basal-like breast carcinoma cells ΔNp63 is capable of sustaining the production of the hyaluronic acid (HA), one of the major component of the extracellular matrix (ECM). At molecular level, we found that ΔNp63 regulates the expression of HA-related genes, such as the HA synthase HAS3, the hyaluronidase HYAL-1 and CD44, the major HA cell membrane receptor. By controlling this pathway, ∆Np63 contributes to maintain the self-renewal of breast cancer stem cells. Importantly, high HAS3 expression is a negative prognostic factor of TNBC patients. Our data suggest that in basal-type breast carcinoma ∆Np63 might favor a HA-rich microenviroment, which can sustain tumor proliferation and stemness.
Collapse
Affiliation(s)
- Veronica Gatti
- National Research Council of Italy, (CNR), Institute of Cell Biology and Neurobiology (IBCN), CNR, Monterotondo, Rome, Italy
| | - Claudia Fierro
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Mirco Compagnone
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
- Paediatric Haematology/Oncology Department, Bambino Gesù Children's Hospital IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Federica Giangrazi
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, The University of Dublin, Dublin 2, Ireland
| | - Elke Katrin Markert
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Lucilla Bongiorno-Borbone
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.
- Medical Research Council, Toxicology Unit, Hodgkin Building, Leicester University, Lancaster Road, P.O. Box 138, Leicester, LE1 9HN, UK.
| | - Angelo Peschiaroli
- National Research Council of Italy, (CNR), Institute of Translational Pharmacology (IFT), Via Fosso del Cavaliere 100, Rome, 00133, Italy.
| |
Collapse
|
160
|
Fallacara A, Baldini E, Manfredini S, Vertuani S. Hyaluronic Acid in the Third Millennium. Polymers (Basel) 2018; 10:E701. [PMID: 30960626 PMCID: PMC6403654 DOI: 10.3390/polym10070701] [Citation(s) in RCA: 445] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 02/07/2023] Open
Abstract
Since its first isolation in 1934, hyaluronic acid (HA) has been studied across a variety of research areas. This unbranched glycosaminoglycan consisting of repeating disaccharide units of N-acetyl-d-glucosamine and d-glucuronic acid is almost ubiquitous in humans and in other vertebrates. HA is involved in many key processes, including cell signaling, wound reparation, tissue regeneration, morphogenesis, matrix organization and pathobiology, and has unique physico-chemical properties, such as biocompatibility, biodegradability, mucoadhesivity, hygroscopicity and viscoelasticity. For these reasons, exogenous HA has been investigated as a drug delivery system and treatment in cancer, ophthalmology, arthrology, pneumology, rhinology, urology, aesthetic medicine and cosmetics. To improve and customize its properties and applications, HA can be subjected to chemical modifications: conjugation and crosslinking. The present review gives an overview regarding HA, describing its history, physico-chemical, structural and hydrodynamic properties and biology (occurrence, biosynthesis (by hyaluronan synthases), degradation (by hyaluronidases and oxidative stress), roles, mechanisms of action and receptors). Furthermore, both conventional and recently emerging methods developed for the industrial production of HA and its chemical derivatization are presented. Finally, the medical, pharmaceutical and cosmetic applications of HA and its derivatives are reviewed, reporting examples of HA-based products that currently are on the market or are undergoing further investigations.
Collapse
Affiliation(s)
- Arianna Fallacara
- Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technology (COSMAST), University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
| | - Erika Baldini
- Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technology (COSMAST), University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technology (COSMAST), University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
| | - Silvia Vertuani
- Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technology (COSMAST), University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
| |
Collapse
|
161
|
Bartheldyová E, Effenberg R, Mašek J, Procházka L, Knötigová PT, Kulich P, Hubatka F, Velínská K, Zelníčková J, Zouharová D, Fojtíková M, Hrebík D, Plevka P, Mikulík R, Miller AD, Macaulay S, Zyka D, Drož L, Raška M, Ledvina M, Turánek J. Hyaluronic Acid Surface Modified Liposomes Prepared via Orthogonal Aminoxy Coupling: Synthesis of Nontoxic Aminoxylipids Based on Symmetrically α-Branched Fatty Acids, Preparation of Liposomes by Microfluidic Mixing, and Targeting to Cancer Cells Expressing CD44. Bioconjug Chem 2018; 29:2343-2356. [PMID: 29898364 DOI: 10.1021/acs.bioconjchem.8b00311] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
New synthetic aminoxy lipids are designed and synthesized as building blocks for the formulation of functionalized nanoliposomes by microfluidization using a NanoAssemblr. Orthogonal binding of hyaluronic acid onto the outer surface of functionalized nanoliposomes via aminoxy coupling ( N-oxy ligation) is achieved at hemiacetal function of hyaluronic acid and the structure of hyaluronic acid-liposomes is visualized by transmission electron microscopy and cryotransmission electron microscopy. Observed structures are in a good correlation with data obtained by dynamic light scattering (size and ζ-potential). In vitro experiments on cell lines expressing CD44 receptors demonstrate selective internalization of fluorochrome-labeled hyaluronic acid-liposomes, while cells with down regulated CD44 receptor levels exhibit very low internalization of hyaluronic acid-liposomes. A method based on microfluidization mixing was developed for preparation of monodispersive unilamellar liposomes containing aminoxy lipids and orthogonal binding of hyaluronic acid onto the liposomal surface was demonstrated. These hyaluronic acid-liposomes represent a potentially new drug delivery platform for CD44-targeted anticancer drugs as well as for immunotherapeutics and vaccines.
Collapse
Affiliation(s)
- Eliška Bartheldyová
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| | - Roman Effenberg
- Department of Chemistry of Natural Compounds , University of Chemistry and Technology , Technická 5 , 166 28 Prague 6, Czech Republic
| | - Josef Mašek
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| | - Lubomír Procházka
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| | - Pavlína Turánek Knötigová
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| | - Pavel Kulich
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| | - František Hubatka
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| | - Kamila Velínská
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| | - Jaroslava Zelníčková
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| | - Darina Zouharová
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| | - Martina Fojtíková
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| | - Dominik Hrebík
- Central European Institute of Technology CEITEC, Structural Virology , Masaryk University , Kamenice 753/5 , 62500 Brno , Czech Republic
| | - Pavel Plevka
- Central European Institute of Technology CEITEC, Structural Virology , Masaryk University , Kamenice 753/5 , 62500 Brno , Czech Republic
| | - Robert Mikulík
- The International Clinical Research Center of St. Anne's University Hospital Brno , 656 91 Brno , Czech Republic
| | - Andrew D Miller
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| | - Stuart Macaulay
- Malvern Instruments , Great Malvern WR14 1XZ , United Kingdom
| | - Daniel Zyka
- APIGENEX s.r.o. , Poděbradská 173/5 , Prague 9 , 190 00 , Czech Republic
| | - Ladislav Drož
- APIGENEX s.r.o. , Poděbradská 173/5 , Prague 9 , 190 00 , Czech Republic
| | - Milan Raška
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic.,Department of Immunology and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry , Palacky University Olomouc , Hněvotínská 3 , 775 15 Olomouc , Czech Republic
| | - Miroslav Ledvina
- Department of Chemistry of Natural Compounds , University of Chemistry and Technology , Technická 5 , 166 28 Prague 6, Czech Republic
| | - Jaroslav Turánek
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| |
Collapse
|
162
|
Bell TJ, Brand OJ, Morgan DJ, Salek-Ardakani S, Jagger C, Fujimori T, Cholewa L, Tilakaratna V, Östling J, Thomas M, Day AJ, Snelgrove RJ, Hussell T. Defective lung function following influenza virus is due to prolonged, reversible hyaluronan synthesis. Matrix Biol 2018; 80:14-28. [PMID: 29933044 PMCID: PMC6548309 DOI: 10.1016/j.matbio.2018.06.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/15/2018] [Accepted: 06/15/2018] [Indexed: 11/16/2022]
Abstract
Little is known about the impact of viral infections on lung matrix despite its important contribution to mechanical stability and structural support. The composition of matrix also indirectly controls inflammation by influencing cell adhesion, migration, survival, proliferation and differentiation. Hyaluronan is a significant component of the lung extracellular matrix and production and degradation must be carefully balanced. We have discovered an imbalance in hyaluronan production following resolution of a severe lung influenza virus infection, driven by hyaluronan synthase 2 from epithelial cells, endothelial cells and fibroblasts. Furthermore hyaluronan is complexed with inter-α-inhibitor heavy chains due to elevated TNF-stimulated gene 6 expression and sequesters CD44-expressing macrophages. We show that intranasal administration of exogenous hyaluronidase is sufficient to release inter-α-inhibitor heavy chains, reduce lung hyaluronan content and restore lung function. Hyaluronidase is already used to facilitate dispersion of co-injected materials in the clinic. It is therefore feasible that fibrotic changes following severe lung infection and inflammation could be overcome by targeting abnormal matrix production. Influenza causes prolonged changes in hyaluronan due to increased synthase activity Influenza induces persistent hyaluronan cross-linking by inter-alpha-inhibitor heavy chains Pockets of persistent hyaluronan are associated with CD44-expressing macrophages Digestion of hyaluronan with intranasal hyaluronidase restores lung function but upon cessation of treatment post-viral complications return
Collapse
Affiliation(s)
- Thomas J Bell
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK; Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, UK
| | - Oliver J Brand
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK
| | - David J Morgan
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK
| | - Samira Salek-Ardakani
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK
| | - Christopher Jagger
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK
| | - Toshifumi Fujimori
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK
| | - Lauren Cholewa
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK
| | - Viranga Tilakaratna
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Jörgen Östling
- Respiratory, Inflammation & Autoimmunity IMED, AstraZeneca, Gothenburg, Sweden
| | - Matt Thomas
- Respiratory, Inflammation & Autoimmunity IMED, AstraZeneca, Gothenburg, Sweden
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Robert J Snelgrove
- Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, UK
| | - Tracy Hussell
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK.
| |
Collapse
|
163
|
The CD44-HA axis and inflammation in atherosclerosis: A temporal perspective. Matrix Biol 2018; 78-79:201-218. [PMID: 29792915 DOI: 10.1016/j.matbio.2018.05.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/17/2018] [Accepted: 05/19/2018] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease (CVD) due to atherosclerosis is a disease of chronic inflammation at both the systemic and the tissue level. CD44 has previously been implicated in atherosclerosis in both humans and mice. This multi-faceted receptor plays a critical part in the inflammatory response during the onset of CVD, though little is known of CD44's role during the latter stages of the disease. This review focuses on the role of CD44-dependent HA-dependent effects on inflammatory cells in several key processes, from disease initiation throughout the progression of atherosclerosis. Understanding how CD44 and HA regulate inflammation in atherogenesis is key in determining the utility of the CD44-HA axis as a therapeutic target to halt disease and potentially promote disease regression.
Collapse
|
164
|
Rnjak‐Kovacina J, Tang F, Whitelock JM, Lord MS. Glycosaminoglycan and Proteoglycan-Based Biomaterials: Current Trends and Future Perspectives. Adv Healthc Mater 2018; 7:e1701042. [PMID: 29210510 DOI: 10.1002/adhm.201701042] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/18/2017] [Indexed: 12/18/2022]
Abstract
Proteoglycans and their glycosaminoglycans (GAG) are essential for life as they are responsible for orchestrating many essential functions in development and tissue homeostasis, including biophysical properties and roles in cell signaling and extracellular matrix assembly. In an attempt to capture these biological functions, a range of biomaterials are designed to incorporate off-the-shelf GAGs, typically isolated from animal sources, for tissue engineering, drug delivery, and regenerative medicine applications. All GAGs, with the exception of hyaluronan, are present in the body covalently coupled to the protein core of proteoglycans, yet the incorporation of proteoglycans into biomaterials remains relatively unexplored. Proteoglycan-based biomaterials are more likely to recapitulate the unique, tissue-specific GAG profiles and native GAG presentation in human tissues. The protein core offers additional biological functionality, including cell, growth factor, and extracellular matrix binding domains, as well as sites for protein immobilization chemistries. Finally, proteoglycans can be recombinantly expressed in mammalian cells and thus offer genetic manipulation and metabolic engineering opportunities for control over the protein and GAG structures and functions. This Progress Report summarizes current developments in GAG-based biomaterials and presents emerging research and future opportunities for the development of biomaterials that incorporate GAGs presented in their native proteoglycan form.
Collapse
Affiliation(s)
| | - Fengying Tang
- Graduate School of Biomedical Engineering UNSW Sydney Sydney NSW 2052 Australia
| | - John M. Whitelock
- Graduate School of Biomedical Engineering UNSW Sydney Sydney NSW 2052 Australia
| | - Megan S. Lord
- Graduate School of Biomedical Engineering UNSW Sydney Sydney NSW 2052 Australia
| |
Collapse
|
165
|
Moore AL, Marshall CD, Barnes LA, Murphy MP, Ransom RC, Longaker MT. Scarless wound healing: Transitioning from fetal research to regenerative healing. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2018; 7:10.1002/wdev.309. [PMID: 29316315 PMCID: PMC6485243 DOI: 10.1002/wdev.309] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 09/07/2017] [Accepted: 10/27/2017] [Indexed: 01/08/2023]
Abstract
Since the discovery of scarless fetal skin wound healing, research in the field has expanded significantly with the hopes of advancing the finding to adult human patients. There are several differences between fetal and adult skin that have been exploited to facilitate scarless healing in adults including growth factors, cytokines, and extracellular matrix substitutes. However, no one therapy, pathway, or cell subtype is sufficient to support scarless wound healing in adult skin. More recently, products that contain or mimic fetal and adult uninjured dermis were introduced to the wound healing market with promising clinical outcomes. Through our review of the major experimental targets of fetal wound healing, we hope to encourage research in areas that may have a significant clinical impact. Additionally, we will investigate therapies currently in clinical use and evaluate whether they represent a legitimate advance in regenerative medicine or a vulnerary agent. WIREs Dev Biol 2018, 7:e309. doi: 10.1002/wdev.309 This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Plant Development > Cell Growth and Differentiation Adult Stem Cells, Tissue Renewal, and Regeneration > Environmental Control of Stem Cells.
Collapse
Affiliation(s)
- Alessandra L. Moore
- Department of Surgery, Brigham and Women’s Hospital, Boston, Massachusetts
- Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Clement D. Marshall
- Department of Surgery, Brigham and Women’s Hospital, Boston, Massachusetts
- Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Leandra A. Barnes
- Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Matthew P. Murphy
- Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Ryan C. Ransom
- Department of Surgery, Stanford University School of Medicine, Stanford, California
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
| | - Michael T. Longaker
- Department of Surgery, Stanford University School of Medicine, Stanford, California
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
| |
Collapse
|
166
|
Hyaluronan chemistries for three-dimensional matrix applications. Matrix Biol 2018; 78-79:337-345. [PMID: 29438729 DOI: 10.1016/j.matbio.2018.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/08/2018] [Accepted: 02/10/2018] [Indexed: 01/02/2023]
Abstract
Hyaluronan is a ubiquitous constituent of mammalian extracellular matrices and, because of its excellent intrinsic biocompatibility and chemical modification versatility, has been widely employed in a multitude of biomedical applications. In this article, we will survey the approaches used to tailor hyaluronan to specific needs of tissue engineering, regenerative and reconstructive medicine and overall biomedical research. We will also describe recent examples of applications in these broader areas, such as 3D cell culture, bioprinting, organoid biofabrication, and precision medicine that are facilitated by the use of hyaluronan as a biomaterial.
Collapse
|
167
|
Filpa V, Bistoletti M, Caon I, Moro E, Grimaldi A, Moretto P, Baj A, Giron MC, Karousou E, Viola M, Crema F, Frigo G, Passi A, Giaroni C, Vigetti D. Changes in hyaluronan deposition in the rat myenteric plexus after experimentally-induced colitis. Sci Rep 2017; 7:17644. [PMID: 29247178 PMCID: PMC5732300 DOI: 10.1038/s41598-017-18020-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 12/05/2017] [Indexed: 12/27/2022] Open
Abstract
Myenteric plexus alterations hamper gastrointestinal motor function during intestinal inflammation. Hyaluronan (HA), an extracellular matrix glycosaminoglycan involved in inflammatory responses, may play a role in this process. In the colon of control rats, HA-binding protein (HABP), was detected in myenteric neuron soma, perineuronal space and ganglia surfaces. Prominent hyaluronan synthase 2 (HAS2) staining was found in myenteric neuron cytoplasm, suggesting that myenteric neurons produce HA. In the myenteric plexus of rats with 2, 4-dinitrobenzene sulfonic (DNBS)-induced colitis HABP staining was altered in the perineuronal space, while both HABP staining and HA levels increased in the muscularis propria. HAS2 immunopositive myenteric neurons and HAS2 mRNA and protein levels also increased. Overall, these observations suggest that inflammation alters HA distribution and levels in the gut neuromuscular compartment. Such changes may contribute to alterations in the myenteric plexus.
Collapse
Affiliation(s)
- Viviana Filpa
- Department of Medicine and Surgery, University of Insubria, via H. Dunant 5, Varese, Italy
| | - Michela Bistoletti
- Department of Medicine and Surgery, University of Insubria, via H. Dunant 5, Varese, Italy
| | - Ilaria Caon
- Department of Medicine and Surgery, University of Insubria, via H. Dunant 5, Varese, Italy
| | - Elisabetta Moro
- Department of Internal Medicine and Therapeutics, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Paola Moretto
- Department of Medicine and Surgery, University of Insubria, via H. Dunant 5, Varese, Italy
| | - Andreina Baj
- Department of Medicine and Surgery, University of Insubria, via H. Dunant 5, Varese, Italy
| | - Maria Cecilia Giron
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Evgenia Karousou
- Department of Medicine and Surgery, University of Insubria, via H. Dunant 5, Varese, Italy
| | - Manuela Viola
- Department of Medicine and Surgery, University of Insubria, via H. Dunant 5, Varese, Italy
| | - Francesca Crema
- Department of Internal Medicine and Therapeutics, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Gianmario Frigo
- Department of Internal Medicine and Therapeutics, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, via H. Dunant 5, Varese, Italy
| | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, via H. Dunant 5, Varese, Italy.
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, via H. Dunant 5, Varese, Italy
| |
Collapse
|
168
|
Compagnone M, Gatti V, Presutti D, Ruberti G, Fierro C, Markert EK, Vousden KH, Zhou H, Mauriello A, Anemone L, Bongiorno-Borbone L, Melino G, Peschiaroli A. ΔNp63-mediated regulation of hyaluronic acid metabolism and signaling supports HNSCC tumorigenesis. Proc Natl Acad Sci U S A 2017; 114:13254-13259. [PMID: 29162693 PMCID: PMC5740608 DOI: 10.1073/pnas.1711777114] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, and several molecular pathways that underlie the molecular tumorigenesis of HNSCC have been identified. Among them, amplification or overexpression of ΔNp63 isoforms is observed in the majority of HNSCCs. Here, we unveiled a ΔNp63-dependent transcriptional program able to regulate the metabolism and the signaling of hyaluronic acid (HA), the major component of the extracellular matrix (ECM). We found that ∆Np63 is capable of sustaining the production of HA levels in cell culture and in vivo by regulating the expression of the HA synthase HAS3 and two hyaluronidase genes, HYAL-1 and HYAL-3. In addition, ∆Np63 directly regulates the expression of CD44, the major HA cell membrane receptor. By controlling this transcriptional program, ∆Np63 sustains the epithelial growth factor receptor (EGF-R) activation and the expression of ABCC1 multidrug transporter gene, thus contributing to tumor cell proliferation and chemoresistance. Importantly, p63 expression is positively correlated with CD44, HAS3, and ABCC1 expression in squamous cell carcinoma datasets and p63-HA pathway is a negative prognostic factor of HNSCC patient survival. Altogether, our data shed light on a ∆Np63-dependent pathway functionally important to the regulation of HNSCC progression.
Collapse
Affiliation(s)
- Mirco Compagnone
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Veronica Gatti
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), 00015 Monterotondo (Rome), Italy
| | - Dario Presutti
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), 00015 Monterotondo (Rome), Italy
| | - Giovina Ruberti
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), 00015 Monterotondo (Rome), Italy
| | - Claudia Fierro
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Elke Katrin Markert
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD United Kingdom
| | | | - Huiqing Zhou
- Radboud Institute for Molecular Life Sciences, Department of Human Genetics 855, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
- Faculty of Science, Radboud Institute for Molecular Life Sciences, Department of Molecular Developmental Biology, Radboud University, 6525 GA Nijmegen, The Netherlands
| | - Alessandro Mauriello
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Lucia Anemone
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Lucilla Bongiorno-Borbone
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133 Rome, Italy;
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, United Kingdom
| | - Angelo Peschiaroli
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), 00015 Monterotondo (Rome), Italy;
| |
Collapse
|
169
|
Nagy N, de la Zerda A, Kaber G, Johnson PY, Hu KH, Kratochvil MJ, Yadava K, Zhao W, Cui Y, Navarro G, Annes JP, Wight TN, Heilshorn SC, Bollyky PL, Butte MJ. Hyaluronan content governs tissue stiffness in pancreatic islet inflammation. J Biol Chem 2017; 293:567-578. [PMID: 29183997 DOI: 10.1074/jbc.ra117.000148] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/10/2017] [Indexed: 12/14/2022] Open
Abstract
We have identified a novel role for hyaluronan (HA), an extracellular matrix polymer, in governing the mechanical properties of inflamed tissues. We recently reported that insulitis in type 1 diabetes of mice and humans is preceded by intraislet accumulation of HA, a highly hygroscopic polymer. Using the double transgenic DO11.10 × RIPmOVA (DORmO) mouse model of type 1 diabetes, we asked whether autoimmune insulitis was associated with changes in the stiffness of islets. To measure islet stiffness, we used atomic force microscopy (AFM) and developed a novel "bed of nails"-like approach that uses quartz glass nanopillars to anchor islets, solving a long-standing problem of keeping tissue-scale objects immobilized while performing AFM. We measured stiffness via AFM nanoindentation with a spherical indenter and found that insulitis made islets mechanically soft compared with controls. Conversely, treatment with 4-methylumbelliferone, a small-molecule inhibitor of HA synthesis, reduced HA accumulation, diminished swelling, and restored basal tissue stiffness. These results indicate that HA content governs the mechanical properties of islets. In hydrogels with variable HA content, we confirmed that increased HA leads to mechanically softer hydrogels, consistent with our model. In light of recent reports that the insulin production of islets is mechanosensitive, these findings open up an exciting new avenue of research into the fundamental mechanisms by which inflammation impacts local cellular responses.
Collapse
Affiliation(s)
- Nadine Nagy
- From the Department of Medicine, Division of Infectious Diseases,
| | | | - Gernot Kaber
- From the Department of Medicine, Division of Infectious Diseases
| | - Pamela Y Johnson
- the Matrix Biology Program, Benaroya Research Institute, Seattle, Washington 98101
| | | | - Michael J Kratochvil
- From the Department of Medicine, Division of Infectious Diseases.,the Department of Materials Science and Engineering
| | - Koshika Yadava
- From the Department of Medicine, Division of Infectious Diseases
| | - Wenting Zhao
- the Department of Materials Science and Engineering
| | - Yi Cui
- the Department of Materials Science and Engineering
| | | | - Justin P Annes
- the Department of Medicine, Division of Endocrinology, and
| | - Thomas N Wight
- the Matrix Biology Program, Benaroya Research Institute, Seattle, Washington 98101
| | | | - Paul L Bollyky
- From the Department of Medicine, Division of Infectious Diseases
| | - Manish J Butte
- the Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Stanford University, Stanford, California 94305 and
| |
Collapse
|
170
|
Abstract
The glycosaminoglycan hyaluronan (HA) is a key component of the microenvironment surrounding cells. In healthy tissues, HA molecules have extremely high molecular mass and consequently large hydrodynamic volumes. Tethered to the cell surface by clustered receptor proteins, HA molecules crowd each other, as well as other macromolecular species. This leads to severe nonideality in physical properties of the biomatrix, because steric exclusion leads to an increase in effective concentration of the macromolecules. The excluded volume depends on both polymer concentration and hydrodynamic volume/molecular mass. The biomechanical properties of the extracellular matrix, tissue hydration, receptor clustering, and receptor-ligand interactions are strongly affected by the presence of HA and by its molecular mass. In inflammation, reactive oxygen and nitrogen species fragment the HA chains. Depending on the rate of chain degradation relative to the rates of new synthesis and removal of damaged chains, short fragments of the HA molecules can be present at significant levels. Not only are the physical properties of the extracellular matrix affected, but the HA fragments decluster their primary receptors and act as endogenous danger signals. Bioanalytical methods to isolate and quantify HA fragments have been developed to determine profiles of HA content and size in healthy and diseased biological fluids and tissues. These methods have potential use in medical diagnostic tests. Therapeutic agents that modulate signaling by HA fragments show promise in wound healing and tissue repair without fibrosis.
Collapse
Affiliation(s)
- Mary K Cowman
- Tandon School of Engineering, New York University, New York, NY, United States
| |
Collapse
|
171
|
Bohaumilitzky L, Huber AK, Stork EM, Wengert S, Woelfl F, Boehm H. A Trickster in Disguise: Hyaluronan's Ambivalent Roles in the Matrix. Front Oncol 2017; 7:242. [PMID: 29062810 PMCID: PMC5640889 DOI: 10.3389/fonc.2017.00242] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/22/2017] [Indexed: 02/04/2023] Open
Abstract
Hyaluronan (HA) is a simple but diverse glycosaminoglycan. It plays a major role in aging, cellular senescence, cancer, and tissue homeostasis. In which way HA affects the surrounding tissues greatly depends on the molecular weight of HA. Whereas high molecular weight HA is associated with homeostasis and protective effects, HA fragments tend to be linked to the pathologic state. Furthermore, the interaction of HA with its binding partners, the hyaladherins, such as CD44, is essential for sustaining tissue integrity and is likewise related to cancer. The naked mole rat, a rodent species, possesses a special form of very high molecular weight (vHMW) HA, which is associated with the extraordinary cancer resistance and longevity of those animals. This review addresses HA and its diverse facets: from HA synthesis to degradation, from oligomeric HA to vHMW-HA and from its beneficial properties to the involvement in pathologies. We further discuss the functions of HA in the naked mole rat and compare them to human conditions. Though intensively researched, this simple polymer bears some secrets that may hold the key for a better understanding of cellular processes and the development of diseases, such as cancer.
Collapse
Affiliation(s)
- Lena Bohaumilitzky
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Ann-Kathrin Huber
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Eva Maria Stork
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Simon Wengert
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Franziska Woelfl
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Heike Boehm
- CSF Biomaterials, Max Planck Institute for Medical Research, Heidelberg, Germany.,Department of Biophysical Chemistry, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
172
|
Preca BT, Bajdak K, Mock K, Lehmann W, Sundararajan V, Bronsert P, Matzge-Ogi A, Orian-Rousseau V, Brabletz S, Brabletz T, Maurer J, Stemmler MP. A novel ZEB1/HAS2 positive feedback loop promotes EMT in breast cancer. Oncotarget 2017; 8:11530-11543. [PMID: 28086235 PMCID: PMC5355283 DOI: 10.18632/oncotarget.14563] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/26/2016] [Indexed: 01/02/2023] Open
Abstract
Cancer metastasis is the main reason for poor patient survival. Tumor cells delaminate from the primary tumor by induction of epithelial-mesenchymal transition (EMT). EMT is mediated by key transcription factors, including ZEB1, activated by tumor cell interactions with stromal cells and the extracellular matrix (ECM). ZEB1-mediated EMT and motility is accompanied by substantial cell reprogramming and the acquisition of a stemness phenotype. However, understanding of the underlying mechanism is still incomplete. We identified hyaluronic acid (HA), one major ECM proteoglycan and enriched in mammary tumors, to support EMT and enhance ZEB1 expression in cooperation with CD44s. In breast cancer cell lines HA is synthesized mainly by HAS2, which was already shown to be implicated in cancer progression. ZEB1 and HAS2 expression strongly correlates in various cancer entities and high HAS2 levels associate with an early relapse. We identified HAS2, tumor cell-derived HA and ZEB1 to form a positive feedback loop as ZEB1, elevated by HA, directly activates HAS2 expression. In an in vitro differentiation model HA-conditioned medium of breast cancer cells is enhancing osteoclast formation, an indicator of tumor cell-induced osteolysis that facilitates formation of bone metastasis. In combination with the previously identified ZEB1/ESRP1/CD44s feedback loop, we found a novel autocrine mechanism how ZEB1 is accelerating EMT.
Collapse
Affiliation(s)
- Bogdan-Tiberius Preca
- Department of General and Visceral Surgery, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karolina Bajdak
- Department of General and Visceral Surgery, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Kerstin Mock
- Department of General and Visceral Surgery, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Waltraut Lehmann
- Department of General and Visceral Surgery, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Vignesh Sundararajan
- Department of General and Visceral Surgery, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Peter Bronsert
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Institute for Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany.,Tumorbank Comprehensive Cancer Center Freiburg, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Alexandra Matzge-Ogi
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Eggenstein-Leopoldshafen, Germany.,Amcure GmbH, Eggenstein-Leopoldshafen, Germany
| | - Véronique Orian-Rousseau
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Eggenstein-Leopoldshafen, Germany
| | - Simone Brabletz
- Department of Experimental Medicine I, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine I, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jochen Maurer
- Department of General and Visceral Surgery, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marc P Stemmler
- Department of Experimental Medicine I, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
173
|
Li S, Wang S, Fu X, Liu XW, Wang PG, Fang J. Sequential one-pot multienzyme synthesis of hyaluronan and its derivative. Carbohydr Polym 2017; 178:221-227. [PMID: 29050588 DOI: 10.1016/j.carbpol.2017.09.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/01/2017] [Accepted: 09/12/2017] [Indexed: 10/18/2022]
Abstract
Hyaluronan (HA) is a linear polysaccharide composed of repeating disaccharide units. It has been well documented to play an array of biological functions in cancer events. Here, we reported a sequential one-pot multienzyme (OPME) strategy for in vitro synthesis of HA and its derivatives. The strategy, which combined in situ sugar nucleotides generation with HA chain polymerization, could convert cheap monosaccharides into HA polymers without consuming exogenous sugar nucleotide donors. HA polymers (number-average molecular weight ranged from 1.5×104 to 5.5×105Da) with over 70% yields were efficiently synthesized and purified from this one-pot system. More importantly, partial labeled HA derivative was further synthesized by metabolic incorporation of unnatural monosaccharide analogues into the sequential OPME system. Cross-linked HA hydrogel was achieved via copper (I)-catalyzed azide-alkyne cycloaddition and exhibited novel networks consisting of both inter- and intra-connected HA chains, which could facilitate the potential applications of this unique polysaccharide.
Collapse
Affiliation(s)
- Shuang Li
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Glycochemistry Glycobiology, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Shuaishuai Wang
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302-4098, USA
| | - Xuan Fu
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Glycochemistry Glycobiology, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Xian-Wei Liu
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Glycochemistry Glycobiology, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Peng George Wang
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Glycochemistry Glycobiology, Shandong University, Jinan, Shandong 250100, People's Republic of China; Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302-4098, USA
| | - Junqiang Fang
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Glycochemistry Glycobiology, Shandong University, Jinan, Shandong 250100, People's Republic of China.
| |
Collapse
|
174
|
Sha M, Yao W, Zhang X, Li Z. Synthesis of structure-defined branched hyaluronan tetrasaccharide glycoclusters. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.06.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
175
|
Gulati K, Meher MK, Poluri KM. Glycosaminoglycan-based resorbable polymer composites in tissue refurbishment. Regen Med 2017. [DOI: 10.2217/rme-2017-0012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Regeneration of tissue structure with the aid of bioactive polymer matrices/composites and scaffolds for respective applications is one of the emerging areas of biomedical engineering. Recent advances in conjugated glycosaminoglycan (GAG) hybrids using natural and synthetic polymers have opened new avenues for producing a wide variety of resorbable polymer matrices. These hybrid scaffolds are low-immunogenic, highly biocompatible and biodegradable with incredible mechanical and tensile properties. GAG-based resorbable polymeric matrices are being exploited in migration of stem cells, cartilage and bone replacement/regeneration and production of scaffolds for various tissue engineering applications. In the current review, we will discuss the role of GAG-based resorbable polymer matrices in the field of regenerative medicine.
Collapse
Affiliation(s)
- Khushboo Gulati
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Mukesh Kumar Meher
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
176
|
Yang J, Cheng F, Yu H, Wang J, Guo Z, Stephanopoulos G. Key Role of the Carboxyl Terminus of Hyaluronan Synthase in Processive Synthesis and Size Control of Hyaluronic Acid Polymers. Biomacromolecules 2017; 18:1064-1073. [DOI: 10.1021/acs.biomac.6b01239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
| | | | | | | | | | - Gregory Stephanopoulos
- Department
of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
177
|
Walimbe T, Panitch A, Sivasankar PM. A Review of Hyaluronic Acid and Hyaluronic Acid-based Hydrogels for Vocal Fold Tissue Engineering. J Voice 2017; 31:416-423. [PMID: 28262503 DOI: 10.1016/j.jvoice.2016.11.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/11/2016] [Accepted: 11/15/2016] [Indexed: 11/30/2022]
Abstract
Vocal fold scarring is a common cause of dysphonia. Current treatments involving vocal fold augmentation do not yield satisfactory outcomes in the long term. Tissue engineering and regenerative medicine offer an attractive treatment option for vocal fold scarring, with the aim to restore the native extracellular matrix microenvironment and biomechanical properties of the vocal folds by inhibiting progression of scarring and thus leading to restoration of normal vocal function. Hyaluronic acid is a bioactive glycosaminoglycan responsible for maintaining optimum viscoelastic properties of the vocal folds and hence is widely targeted in tissue engineering applications. This review covers advances in hyaluronic acid-based vocal fold tissue engineering and regeneration strategies.
Collapse
Affiliation(s)
- Tanaya Walimbe
- Weldon School of Biomedical Engineering, West Lafayette, Indiana
| | - Alyssa Panitch
- Weldon School of Biomedical Engineering, West Lafayette, Indiana; Department of Biomedical Engineering, University of California, Davis, California
| | - Preeti M Sivasankar
- Weldon School of Biomedical Engineering, West Lafayette, Indiana; Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana.
| |
Collapse
|
178
|
HA metabolism in skin homeostasis and inflammatory disease. Food Chem Toxicol 2017; 101:128-138. [PMID: 28109952 DOI: 10.1016/j.fct.2017.01.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 01/10/2023]
|
179
|
Kuo YZ, Fang WY, Huang CC, Tsai ST, Wang YC, Yang CL, Wu LW. Hyaluronan synthase 3 mediated oncogenic action through forming inter-regulation loop with tumor necrosis factor alpha in oral cancer. Oncotarget 2017; 8:15563-15583. [PMID: 28107185 PMCID: PMC5362506 DOI: 10.18632/oncotarget.14697] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/27/2016] [Indexed: 12/31/2022] Open
Abstract
Hyaluronan (HA) is a major extracellular matrix component. However, its role and mediation in oral cancer remains elusive. Hyaluronan synthase 3 (HAS3), involved in pro-inflammatory short chain HA synthesis, was the predominant synthase in oral cancer cells and tissues. HAS3 overexpression significantly increased oral cancer cell migration, invasion and xenograft tumorigenesis accompanied with the increased expression of tumor necrosis factor alpha (TNF-α) and monocyte chemoattractant protein 1 (MCP-1). Conversely, HAS3 depletion abrogated HAS3-mediated stimulation. HAS3 induced oncogenic actions partly through activating EGFR-SRC signaling. HAS3-derived HA release into extracellular milieu enhanced transendothelial monocyte migration and MCP-1 expression, which was attenuated by anti-HAS3 antibodies or a HAS inhibitor, 4-Methylumbelliferone (4-MU). The NF-κB-binding site III at -1692 to -1682 bp upstream from the transcript 1 start site in HAS3 proximal promoter was the most responsive to TNF-α-stimulated transcription. ChIP-qPCR analysis confirmed the highest NF-κB-p65 enrichment on site III. Increased HAS3 mRNA expression was negatively correlated with the overall survival of oral cancer patients. A concomitant increase of TNF-α, a stimulus for HAS3 expression, with HAS3 expression was not only associated with lymph node metastasis but also negated clinical outcome. Together, HAS3 and TNF-α formed an inter-regulation loop to enhance tumorigenesis in oral cancer.
Collapse
Affiliation(s)
- Yi-Zih Kuo
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Wei-Yu Fang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Cheng-Chih Huang
- Department of Otolaryngology, National Cheng Kung University Hospital, Tainan 70428, Taiwan, R.O.C
| | - Sen-Tien Tsai
- Department of Otolaryngology, National Cheng Kung University Hospital, Tainan 70428, Taiwan, R.O.C.,Department of Radiation Oncology, National Cheng Kung University Hospital, Tainan 70428, Taiwan, R.O.C
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Chih-Li Yang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Li-Wha Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C.,Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C.,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| |
Collapse
|
180
|
Jokela T, Kärnä R, Rauhala L, Bart G, Pasonen-Seppänen S, Oikari S, Tammi MI, Tammi RH. Human Keratinocytes Respond to Extracellular UTP by Induction of Hyaluronan Synthase 2 Expression and Increased Hyaluronan Synthesis. J Biol Chem 2017; 292:4861-4872. [PMID: 28188289 DOI: 10.1074/jbc.m116.760322] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 01/26/2017] [Indexed: 12/16/2022] Open
Abstract
The release of nucleotides into extracellular space is triggered by insults like wounding and ultraviolet radiation, resulting in stimulatory or inhibitory signals via plasma membrane nucleotide receptors. As similar insults are known to activate hyaluronan synthesis we explored the possibility that extracellular UTP or its breakdown products UDP and UMP act as mediators for hyaluronan synthase (HAS) activation in human epidermal keratinocytes. UTP increased hyaluronan both in the pericellular matrix and in the culture medium of HaCaT cells. 10-100 μm UTP strongly up-regulated HAS2 expression, although the other hyaluronan synthases (HAS1, HAS3) and hyaluronidases (HYAL1, HYAL2) were not affected. The HAS2 response was rapid and transient, with the maximum stimulation at 1.5 h. UDP exerted a similar effect, but higher concentrations were required for the response, and UMP showed no stimulation at all. Specific siRNAs against the UTP receptor P2Y2, and inhibitors of UDP receptors P2Y6 and P2Y14, indicated that the response to UTP was mediated mainly through P2Y2 and to a lesser extent via UDP receptors. UTP increased the phosphorylation of p38, ERK, CREB, and Ser-727 of STAT3 and induced nuclear translocation of pCaMKII. Inhibitors of PKC, p38, ERK, CaMKII, STAT3, and CREB partially blocked the activation of HAS2 expression, confirming the involvement of these pathways in the UTP-induced HAS2 response. The present data reveal a selective up-regulation of HAS2 expression by extracellular UTP, which is likely to contribute to the previously reported rapid activation of hyaluronan metabolism in response to tissue trauma or ultraviolet radiation.
Collapse
Affiliation(s)
- Tiina Jokela
- From the Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Riikka Kärnä
- From the Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Leena Rauhala
- From the Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Genevieve Bart
- From the Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | | | - Sanna Oikari
- From the Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Markku I Tammi
- From the Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Raija H Tammi
- From the Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
181
|
Jung YR, Hwang C, Ha JM, Choi DK, Sohn KC, Lee Y, Seo YJ, Lee YH, Kim CD, Lee JH, Im M. Hyaluronic Acid Decreases Lipid Synthesis in Sebaceous Glands. J Invest Dermatol 2017; 137:1215-1222. [PMID: 28163068 DOI: 10.1016/j.jid.2017.01.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 11/25/2016] [Accepted: 01/04/2017] [Indexed: 12/13/2022]
Abstract
Hyaluronic acid (HA) is the major glycosaminoglycan in the extracellular matrix and has been implicated in several functions in skin cells. However, evidence is lacking regarding the HA signaling in sebaceous glands, and its potential role needs to be clarified. We investigated the role of HA in lipid production in sebaceous glands in an experimental study of human sebocytes followed by a clinical study. We first examined the effects of HA on sebaceous glands in hamsters and intradermal injection of HA into hamster auricles decreased both the size of sebaceous glands and the level of lipid production. We demonstrated that human skin sebaceous glands in vivo and sebocytes in vitro express CD44 (HA binding receptor) and that HA downregulates lipid synthesis in a dose-dependent manner. To evaluate the clinical relevance of HA in human skin, 20 oily participants were included in a double-blind, placebo-controlled, split-face study, and the HA-treated side showed a significant decrease in sebum production. The results of this study indicate that HA plays a functional role in human sebaceous gland biology and HA signaling is an effective candidate in the management of disorders in which sebum production is increased.
Collapse
Affiliation(s)
- Yu Ra Jung
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Chul Hwang
- Oracle Dermatologic Clinic, Daejeon, Korea
| | - Jeong-Min Ha
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Dae-Kyoung Choi
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Kyung-Cheol Sohn
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Young Lee
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Young-Joon Seo
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Young-Ho Lee
- Department of Anatomy, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Chang-Deok Kim
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Jeung-Hoon Lee
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Myung Im
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Korea.
| |
Collapse
|
182
|
Tromayer M, Gruber P, Markovic M, Rosspeintner A, Vauthey E, Redl H, Ovsianikov A, Liska R. A biocompatible macromolecular two-photon initiator based on hyaluronan. Polym Chem 2017; 8:451-460. [PMID: 28261331 PMCID: PMC5310395 DOI: 10.1039/c6py01787h] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/21/2016] [Indexed: 12/24/2022]
Abstract
The possibility of the direct encapsulation of living cells via two-photon induced photopolymerization enables the microfabrication of hydrogel scaffolds with high initial cell loadings and intimate matrix-cell contact. While highly efficient water-soluble two-photon initiators based on benzylidene ketone dyes have been developed, they exhibit considerable cyto- and phototoxicity. To address the problem of photoinitiator migration from the extracellular matrix into the cytosol, a two-photon initiator bound to a polymeric hyaluronan backbone (HAPI) was synthesized in this work. HAPI exhibited a distinct improvement of cytocompatibility compared to a reference two-photon initiator. Basic photophysical investigations were performed to characterize the absorption and fluorescence behavior of HAPI. Laser scanning microscopy was used to visualize and confirm the hindered transmembrane migration behavior of HAPI. The performance of HAPI was tested in two-photon polymerization at exceedingly high printing speeds of 100 mm s-1 producing gelatin-based complex 3D hydrogel scaffolds with a water content of 85%. The photodamage of the structuring process was low and viable MC3T3 cells embedded in the gel were monitored for several days after structuring.
Collapse
Affiliation(s)
- Maximilian Tromayer
- Institute of Applied Synthetic Chemistry , TU Wien (Technische Universitaet Wien) , Getreidemarkt 9/163/MC , 1060 Vienna , Austria ; Austrian Cluster for Tissue Regeneration , Austria
| | - Peter Gruber
- Institute of Materials Science and Technology , TU Wien (Technische Universitaet Wien) , Getreidemarkt 9/308 , 1060 Vienna , Austria ; Austrian Cluster for Tissue Regeneration , Austria
| | - Marica Markovic
- Institute of Materials Science and Technology , TU Wien (Technische Universitaet Wien) , Getreidemarkt 9/308 , 1060 Vienna , Austria ; Austrian Cluster for Tissue Regeneration , Austria
| | - Arnulf Rosspeintner
- Physical Chemistry Department , Sciences II , University of Geneva , 30 Quai Ernest Ansermet , CH-1211 Geneva 4 , Switzerland
| | - Eric Vauthey
- Physical Chemistry Department , Sciences II , University of Geneva , 30 Quai Ernest Ansermet , CH-1211 Geneva 4 , Switzerland
| | - Heinz Redl
- Ludwig Boltzmann Institute - Experimental and Clinical Traumatology , Donaueschingenstraße 13 , 1200 Vienna , Austria ; Austrian Cluster for Tissue Regeneration , Austria
| | - Aleksandr Ovsianikov
- Institute of Materials Science and Technology , TU Wien (Technische Universitaet Wien) , Getreidemarkt 9/308 , 1060 Vienna , Austria ; Austrian Cluster for Tissue Regeneration , Austria
| | - Robert Liska
- Institute of Applied Synthetic Chemistry , TU Wien (Technische Universitaet Wien) , Getreidemarkt 9/163/MC , 1060 Vienna , Austria ; Austrian Cluster for Tissue Regeneration , Austria
| |
Collapse
|
183
|
Silva LPD, Pirraco RP, Santos TC, Novoa-Carballal R, Cerqueira MT, Reis RL, Correlo VM, Marques AP. Neovascularization Induced by the Hyaluronic Acid-Based Spongy-Like Hydrogels Degradation Products. ACS APPLIED MATERIALS & INTERFACES 2016; 8:33464-33474. [PMID: 27960396 DOI: 10.1021/acsami.6b11684] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Neovascularization has been a major challenge in many tissue regeneration strategies. Hyaluronic acid (HA) of 3-25 disaccharides is known to be angiogenic due to its interaction with endothelial cell receptors. This effect has been explored with HA-based structures but a transitory response is observed due to HA burst biodegradation. Herein we developed gellan gum (GG)-HA spongy-like hydrogels from semi-interpenetrating network hydrogels with different HA amounts. Enzymatic degradation was more evident in the GG-HA with high HA amount due to their lower mechanical stability, also resulting from the degradation itself, which facilitated the access of the enzyme to the HA in the bulk. GG-HA spongy-like hydrogels hyaluronidase-mediated degradation lead to the release of HA oligosaccharides of different amounts and sizes in a HA content-dependent manner which promoted in vitro proliferation of human umbilical cord vein endothelial cells (HUVECs) but not their migration. Although no effect was observed in human dermal microvascular endothelial cells (hDMECs) in vitro, the implantation of GG-HA spongy-like hydrogels in an ischemic hind limb mice model promoted neovascularization in a material-dependent manner, consistent with the in vitro degradation profile. Overall, GG-HA spongy-like hydrogels with a sustained release of HA oligomers are valuable options to improve tissue vascularization, a critical issue in several applications in the tissue engineering and regenerative medicine field.
Collapse
Affiliation(s)
- Lucília P da Silva
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Taipas, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Rogério P Pirraco
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Taipas, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Tírcia C Santos
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Taipas, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Ramon Novoa-Carballal
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Taipas, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Mariana T Cerqueira
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Taipas, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Taipas, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Vitor M Correlo
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Taipas, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Alexandra P Marques
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Taipas, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães, Portugal
| |
Collapse
|
184
|
Effects of 4-methylumbelliferone and high molecular weight hyaluronic acid on the inflammation of corneal stromal cells induced by LPS. Graefes Arch Clin Exp Ophthalmol 2016; 255:559-566. [PMID: 27924359 DOI: 10.1007/s00417-016-3561-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 10/30/2016] [Accepted: 11/21/2016] [Indexed: 12/29/2022] Open
|
185
|
Mustonen AM, Nieminen P, Joukainen A, Jaroma A, Kääriäinen T, Kröger H, Lázaro-Ibáñez E, Siljander PRM, Kärjä V, Härkönen K, Koistinen A, Rilla K. First in vivo detection and characterization of hyaluronan-coated extracellular vesicles in human synovial fluid. J Orthop Res 2016; 34:1960-1968. [PMID: 26919117 DOI: 10.1002/jor.23212] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/17/2016] [Indexed: 02/04/2023]
Abstract
Extracellular vesicles (EVs) function in intercellular signaling by transporting different membrane and cytosolic molecules, including hyaluronan (HA) and its synthesis machinery. As both EVs and HA are abundant in synovial fluid, we hypothesized that HA synthesized in synovial membrane would be carried on the surface of EVs. Synovial fluid (n = 15) and membrane samples (n = 5) were obtained from knee surgery patients. HA concentrations were analyzed in synovial fluid and HA and its synthesis machinery were examined with histochemical stainings in synovial membrane. To assess the size distribution of EVs in synovial fluid and to visualize HA on EVs, nanoparticle tracking analysis (NTA), confocal laser scanning microscopy (CLSM) and transmission electron microscopy (TEM) were utilized. The average HA concentration in synovial fluid was 2.0 ± 0.21 mg/ml without significant differences between the patients with trauma/diagnostic arthroscopy and primary or post-traumatic osteoarthritis. Positive stainings of HA synthases (HAS1-3), HA and its receptor CD44 in synovial cells indicated active HA secretion in synovial membrane. According to NTA, EVs were abundant in synovial fluid and their main populations were ≤300 nm in diameter after differential centrifugation. There were no significant differences in the EV counts between the patients with primary or post-traumatic osteoarthritis. TEM verified that HA-positive particles detected by CLSM were lipid membrane vesicles surrounded by a HA coat. Our results provide the first in vivo evidence that human synovial fluid contains HA-positive EVs, one source of which presumably is the long HAS-positive protrusions of synovial fibroblasts. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1960-1968, 2016.
Collapse
Affiliation(s)
- Anne-Mari Mustonen
- Faculty of Health Sciences, Institute of Biomedicine/Anatomy, University of Eastern Finland, School of Medicine, P.O. Box 1627, FI-70211 Kuopio, Finland.,Faculty of Science and Forestry, Department of Biology, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
| | - Petteri Nieminen
- Faculty of Health Sciences, Institute of Biomedicine/Anatomy, University of Eastern Finland, School of Medicine, P.O. Box 1627, FI-70211 Kuopio, Finland.,Faculty of Science and Forestry, Department of Biology, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
| | - Antti Joukainen
- Department of Orthopaedics, Traumatology and Hand Surgery, Kuopio University Hospital, P.O. Box 100, FI-70290 Kuopio, Finland
| | - Antti Jaroma
- Department of Orthopaedics, Traumatology and Hand Surgery, Kuopio University Hospital, P.O. Box 100, FI-70290 Kuopio, Finland
| | - Tommi Kääriäinen
- Department of Orthopaedics, Traumatology and Hand Surgery, Kuopio University Hospital, P.O. Box 100, FI-70290 Kuopio, Finland
| | - Heikki Kröger
- Department of Orthopaedics, Traumatology and Hand Surgery, Kuopio University Hospital, P.O. Box 100, FI-70290 Kuopio, Finland
| | - Elisa Lázaro-Ibáñez
- Faculty of Biological and Environmental Sciences, Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, P.O. Box 56 (Viikinkaari 4), FI-00014 Helsinki, Finland.,Faculty of Pharmacy, Division of Pharmaceutical Biosciences, Centre for Drug Research, University of Helsinki, P.O. Box 56 (Viikinkaari 4), FI-00014 Helsinki, Finland
| | - Pia R-M Siljander
- Faculty of Biological and Environmental Sciences, Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, P.O. Box 56 (Viikinkaari 4), FI-00014 Helsinki, Finland.,Faculty of Pharmacy, Division of Pharmaceutical Biosciences, Centre for Drug Research, University of Helsinki, P.O. Box 56 (Viikinkaari 4), FI-00014 Helsinki, Finland
| | - Vesa Kärjä
- Department of Pathology, Kuopio University Hospital, P.O. Box 1777, FI-70211 Kuopio, Finland
| | - Kai Härkönen
- Faculty of Health Sciences, Institute of Biomedicine/Anatomy, University of Eastern Finland, School of Medicine, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Arto Koistinen
- University of Eastern Finland, SIB Labs, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Kirsi Rilla
- Faculty of Health Sciences, Institute of Biomedicine/Anatomy, University of Eastern Finland, School of Medicine, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
186
|
Knopf-Marques H, Pravda M, Wolfova L, Velebny V, Schaaf P, Vrana NE, Lavalle P. Hyaluronic Acid and Its Derivatives in Coating and Delivery Systems: Applications in Tissue Engineering, Regenerative Medicine and Immunomodulation. Adv Healthc Mater 2016; 5:2841-2855. [PMID: 27709832 DOI: 10.1002/adhm.201600316] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/11/2016] [Indexed: 12/28/2022]
Abstract
As an Extracellular Matrix (ECM) component, Hyaluronic acid (HA) plays a multi-faceted role in cell migration, proliferation and differentiation at micro level and system level events such as tissue water homeostasis. Among its biological functions, it is known to interact with cytokines and contribute to their retention in ECM microenvironment. In addition to its biological functions, it has advantageous physical properties which result in the industrial endeavors in the synthesis and extraction of HA for variety of applications ranging from medical to cosmetic. Recently, HA and its derivatives have been the focus of active research for applications in biomedical device coatings, drug delivery systems and in the form of scaffolds or cell-laden hydrogels for tissue engineering. A specific reason for the increase in use of HA based structures is their immunomodulatory and regeneration inducing capacities. In this context, this article reviews recent literature on modulation of the implantable biomaterial microenvironment by systems based on HA and its derivatives, particularly hydrogels and microscale coatings that are able to deliver cytokines in order to reduce the adverse immune reactions and promote tissue healing.
Collapse
Affiliation(s)
- Helena Knopf-Marques
- Inserm UMR 1121; 11 rue Humann 67085 Strasbourg France
- Faculté de Chirurgie Dentaire; Université de Strasbourg; 3 rue Sainte Elisabeth 67000 Strasbourg France
| | - Martin Pravda
- Contipro Biotech S. R. O; Dolni Dobrouc 401 561 02 Dolni Dobrouc Czech Republic
| | - Lucie Wolfova
- Contipro Biotech S. R. O; Dolni Dobrouc 401 561 02 Dolni Dobrouc Czech Republic
| | - Vladimir Velebny
- Contipro Biotech S. R. O; Dolni Dobrouc 401 561 02 Dolni Dobrouc Czech Republic
| | - Pierre Schaaf
- Inserm UMR 1121; 11 rue Humann 67085 Strasbourg France
- Faculté de Chirurgie Dentaire; Université de Strasbourg; 3 rue Sainte Elisabeth 67000 Strasbourg France
- Institut Charles Sadron; CNRS UPR 22; 23 rue du Lœss 67034 Strasbourg France
| | - Nihal Engin Vrana
- Inserm UMR 1121; 11 rue Humann 67085 Strasbourg France
- Protip Medical; 8 Place de l'Hôpital 67000 Strasbourg France
| | - Philippe Lavalle
- Inserm UMR 1121; 11 rue Humann 67085 Strasbourg France
- Faculté de Chirurgie Dentaire; Université de Strasbourg; 3 rue Sainte Elisabeth 67000 Strasbourg France
| |
Collapse
|
187
|
Beghini J, Giraldo PC, Eleutério J, Amaral RLD, Polpeta NC, Gonçalves AK. Vaginal Inflammation: Association between Leukocyte Concentration and Levels of Immune Mediators. Am J Reprod Immunol 2016; 75:126-33. [PMID: 26773532 DOI: 10.1111/aji.12475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 12/07/2015] [Indexed: 01/08/2023] Open
Abstract
PROBLEM A wide variety of mediators are involved in inflammatory processes. However, the identity of those participating in vaginal immune responses has not been established. We correlated extracellular matrix metalloproteinase inducer (EMMPRIN), matrix metalloproteinase-8 (MMP-8), hyaluronan (HA), hyaluronidase-1 (Hyal-1), human β-defensin-2 (hBD2), and neutrophil gelatinase-associated lipocalin (NGAL) concentrations with the extent of leukocyte infiltration into the vagina and suggest their participation in vaginal inflammation. METHODS OF STUDY Vaginal fluid was obtained from 233 women seen at the outpatient clinic in the Department of Obstetrics and Gynecology at Campinas University, Brazil. The magnitude of vaginal inflammation was determined by the leukocyte count on vaginal smears and categorized as no inflammation (0 leukocytes/field), moderate inflammation (1-4 leukocytes/field), and intense inflammation (>4 leukocytes/field). Concentrations of EMMPRIN, MMP-8, HA, Hyal-1, hBD2, and NGAL were determined in vaginal fluid by ELISA. RESULTS EMMPRIN, MMP-8, HA, hBD2, and NGAL concentration increased with elevated leukocyte numbers (P < 0.05), while Hyal-1 did not. EMMPRIN concentrations were correlated with HA and MMP-8 levels. CONCLUSION EMMPRIN, MMP-8, HA, β-defensin, and NGAL are elevated in women with vaginal inflammation.
Collapse
Affiliation(s)
- Joziani Beghini
- Department of Gynecology and Obstetrics, University of Campinas, Campinas, Brazil
| | - Paulo C Giraldo
- Department of Gynecology and Obstetrics, University of Campinas, Campinas, Brazil
| | - José Eleutério
- Department of Motherhood and Child, Federal University of Ceará, Fortaleza, Brazil
| | - Rose Luce do Amaral
- Department of Gynecology and Obstetrics, University of Campinas, Campinas, Brazil
| | - Nádia C Polpeta
- Department of Gynecology and Obstetrics, University of Campinas, Campinas, Brazil
| | - Ana Katherine Gonçalves
- Department of Gynecology and Obstetrics, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
188
|
Viola M, Brüggemann K, Karousou E, Caon I, Caravà E, Vigetti D, Greve B, Stock C, De Luca G, Passi A, Götte M. MDA-MB-231 breast cancer cell viability, motility and matrix adhesion are regulated by a complex interplay of heparan sulfate, chondroitin-/dermatan sulfate and hyaluronan biosynthesis. Glycoconj J 2016; 34:411-420. [PMID: 27744520 DOI: 10.1007/s10719-016-9735-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/23/2016] [Accepted: 09/28/2016] [Indexed: 10/20/2022]
Abstract
Proteoglycans and glycosaminoglycans modulate numerous cellular processes relevant to tumour progression, including cell proliferation, cell-matrix interactions, cell motility and invasive growth. Among the glycosaminoglycans with a well-documented role in tumour progression are heparan sulphate, chondroitin/dermatan sulphate and hyaluronic acid/hyaluronan. While the mode of biosynthesis differs for sulphated glycosaminoglycans, which are synthesised in the ER and Golgi compartments, and hyaluronan, which is synthesized at the plasma membrane, these polysaccharides partially compete for common substrates. In this study, we employed a siRNA knockdown approach for heparan sulphate (EXT1) and heparan/chondroitin/dermatan sulphate-biosynthetic enzymes (β4GalT7) in the aggressive human breast cancer cell line MDA-MB-231 to study the impact on cell behaviour and hyaluronan biosynthesis. Knockdown of β4GalT7 expression resulted in a decrease in cell viability, motility and adhesion to fibronectin, while these parameters were unchanged in EXT1-silenced cells. Importantly, these changes were associated with a decreased expression of syndecan-1, decreased signalling response to HGF and an increase in the synthesis of hyaluronan, due to an upregulation of the hyaluronan synthases HAS2 and HAS3. Interestingly, EXT1-depleted cells showed a downregulation of the UDP-sugar transporter SLC35D1, whereas SLC35D2 was downregulated in β4GalT7-depleted cells, indicating an intricate regulatory network that connects all glycosaminoglycans synthesis. The results of our in vitro study suggest that a modulation of breast cancer cell behaviour via interference with heparan sulphate biosynthesis may result in a compensatory upregulation of hyaluronan biosynthesis. These findings have important implications for the development of glycosaminoglycan-targeted therapeutic approaches for malignant diseases.
Collapse
Affiliation(s)
- Manuela Viola
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy.
| | - Kathrin Brüggemann
- Department of Gynaecology and Obstetrics, Muenster University Hospital, Muenster, Germany
| | - Evgenia Karousou
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Ilaria Caon
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Elena Caravà
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Davide Vigetti
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, University Hospital Muenster, Muenster, Germany
| | - Christian Stock
- Institute of Physiology II, University of Muenster, Muenster, Germany.,Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Giancarlo De Luca
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Alberto Passi
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy.
| | - Martin Götte
- Department of Gynaecology and Obstetrics, Muenster University Hospital, Muenster, Germany
| |
Collapse
|
189
|
Stellavato A, Corsuto L, D’Agostino A, La Gatta A, Diana P, Bernini P, De Rosa M, Schiraldi C. Hyaluronan Hybrid Cooperative Complexes as a Novel Frontier for Cellular Bioprocesses Re-Activation. PLoS One 2016; 11:e0163510. [PMID: 27723763 PMCID: PMC5056743 DOI: 10.1371/journal.pone.0163510] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/09/2016] [Indexed: 11/19/2022] Open
Abstract
Hyaluronic Acid (HA)-based dermal formulations have rapidly gained a large consensus in aesthetic medicine and dermatology. HA, highly expressed in the Extracellular Matrix (ECM), acts as an activator of biological cascades, stimulating cell migration and proliferation, and operating as a regulator of the skin immune surveillance, through specific interactions with its receptors. HA may be used in topical formulations, as dermal inducer, for wound healing. Moreover, intradermal HA formulations (injectable HA) provide an attractive tool to counteract skin aging (e.g., facial wrinkles, dryness, and loss of elasticity) and restore normal dermal functions, through simple and minimally invasive procedures. Biological activity of a commercially available hyaluronic acid, Profhilo®, based on NAHYCO™ technology, was compared to H-HA or L-HA alone. The formation of hybrid cooperative complexes was confirmed by the sudden drop in η0 values in the rheological measurements. Besides, hybrid cooperative complexes proved stable to hyaluronidase (BTH) digestion. Using in vitro assays, based on keratinocytes, fibroblasts cells and on the Phenion® Full Thickness Skin Model 3D, hybrid cooperative complexes were compared to H-HA, widely used in biorevitalization procedures, and to L-HA, recently proposed as the most active fraction modulating the inflammatory response. Quantitative real-time PCR analyses were accomplished for the transcript quantification of collagens and elastin. Finally immunofluorescence staining permitted to evaluate the complete biosynthesis of all the molecules investigated. An increase in the expression levels of type I and type III collagen in fibroblasts and type IV and VII collagen in keratinocytes were found with the hybrid cooperative complexes, compared to untreated cells (CTR) and to the H-HA and L-HA treatments. The increase in elastin expression found in both cellular model and in the Phenion® Full Thickness Skin Model 3D also at longer time (up to 7 days), supports the clinically observed improvement of skin elasticity. The biomarkers analyzed suggest an increase of tissue remodeling in the presence of Profhilo®, probably due to the long lasting release and the concurrent action of the two HA components.
Collapse
Affiliation(s)
- Antonietta Stellavato
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology, Second University of Naples, Bioteknet, Naples, Italy
| | - Luisana Corsuto
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology, Second University of Naples, Bioteknet, Naples, Italy
| | - Antonella D’Agostino
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology, Second University of Naples, Bioteknet, Naples, Italy
| | - Annalisa La Gatta
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology, Second University of Naples, Bioteknet, Naples, Italy
| | - Paola Diana
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology, Second University of Naples, Bioteknet, Naples, Italy
| | | | - Mario De Rosa
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology, Second University of Naples, Bioteknet, Naples, Italy
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology, Second University of Naples, Bioteknet, Naples, Italy
| |
Collapse
|
190
|
Lompardía SL, Díaz M, Papademetrio DL, Pibuel M, Álvarez É, Hajos SE. 4-methylumbelliferone and imatinib combination enhances senescence induction in chronic myeloid leukemia cell lines. Invest New Drugs 2016; 35:1-10. [DOI: 10.1007/s10637-016-0397-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/29/2016] [Indexed: 01/07/2023]
|
191
|
D'Agostino A, Stellavato A, Corsuto L, Diana P, Filosa R, La Gatta A, De Rosa M, Schiraldi C. Is molecular size a discriminating factor in hyaluronan interaction with human cells? Carbohydr Polym 2016; 157:21-30. [PMID: 27987920 DOI: 10.1016/j.carbpol.2016.07.125] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/27/2016] [Accepted: 07/31/2016] [Indexed: 12/21/2022]
Abstract
Nowadays there is a great interest in investigating the effect of particular hyaluronan fragments in the biomedical field and in cosmeceutical applications. Literature has reported that very low molecular weight HA (Mw<5kDa) has an inflammatory effect, whilst HA ranging from 15 to 250 has shown controversial effects. This work aims to give better elucidation on the correlation between the different sized HA fragments and their biological functions. In this respect, a simple and effective degradation strategy is used to obtain several HA fragments. Also, an hydrodynamic and structural characterization was performed in order to obtain samples suitable to evaluate cellular response. In particular an in vitro scratch test in time lapse experiments was used to study the effect of HA fragments, ranging from 1800 to 6kDa on wound dermal reparation based on human keratinocytes. All high and low Mw HA used in this study allowed for faster wound closure compared to the un-treated cells, except for 6kDa that, on the contrary, prevented repair. In addition, TGF-β 1, TNFα and IL-6, representative biomarkers of the inflammation phase occurring in wound healing process, were quantified by RT-PCR. A general up-regulation trend of these biomarkers was found with the HA molecular weight reduction. LHA6kDa was the only treatment that induced a major inflammatory response (over 30 fold increase respect to control) confirming the recent literature outcomes. IL-6 protein level evaluated through ELISA assay corroborated the previous results. Furthermore, activation of key HA receptors, such as CD44, RHAMM, TLR4, with respect to hyaluronan size, was evaluated, at transcriptional level showing selective recognition by HA 1800, 1400, 500 for CD44, whilst the lower Mw fragments activated TLR-4 moderately at 50 and 15kDa. An increase to "alarm" level was found for 6kDa fragments. Immunofluorescence staining confirmed this data. The present research work demonstrated that the diverse pharma grade hyaluronan fragments could modulate cellular processes differently. From 1800kDa down to 50kDa, CD44 was the recognized receptor and pro-inflammatory biomarkers were only slightly up-regulated during wound healing in the presence of HA. Finally our outcomes showed that the lower the fragment size the higher the concern for inflammatory cytokines up-regulation; repair process impairment was highlighted only for 6kDa chains.
Collapse
Affiliation(s)
| | | | - Luisana Corsuto
- Second University of Naples, Via L. De Crecchio, 7 80138 Napoli, Italy.
| | - Paola Diana
- Second University of Naples, Via L. De Crecchio, 7 80138 Napoli, Italy.
| | - Rosanna Filosa
- Second University of Naples, Via L. De Crecchio, 7 80138 Napoli, Italy.
| | - Annalisa La Gatta
- Second University of Naples, Via L. De Crecchio, 7 80138 Napoli, Italy.
| | - Mario De Rosa
- Second University of Naples, Via L. De Crecchio, 7 80138 Napoli, Italy.
| | - Chiara Schiraldi
- Second University of Naples, Via L. De Crecchio, 7 80138 Napoli, Italy.
| |
Collapse
|
192
|
Liu RM, Sun RG, Zhang LT, Zhang QF, Chen DX, Zhong JJ, Xiao JH. Hyaluronic acid enhances proliferation of human amniotic mesenchymal stem cells through activation of Wnt/β-catenin signaling pathway. Exp Cell Res 2016; 345:218-229. [PMID: 27237096 DOI: 10.1016/j.yexcr.2016.05.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 05/15/2016] [Accepted: 05/23/2016] [Indexed: 01/11/2023]
Abstract
This study investigated the pro-proliferative effect of hyaluronic acid (HA) on human amniotic mesenchymal stem cells (hAMSCs) and the underlying mechanisms. Treatment with HA increased cell population growth in a dose- and time-dependent manner. Analyses by flow cytometry and immunocytochemistry revealed that HA did not change the cytophenotypes of hAMSCs. Additionally, the osteogenic, chondrogenic, and adipogenic differentiation capabilities of these hAMSCs were retained after HA treatment. Moreover, HA increased the mRNA expressions of wnt1, wnt3a, wnt8a, cyclin D1, Ki-67, and β-catenin as well as the protein level of β-catenin and cyclin D1 in hAMSCs; and the nuclear localization of β-catenin was also enhanced. Furthermore, the pro-proliferative effect of HA and up-regulated expression of Wnt/β-catenin pathway-associated proteins - wnt3a, β-catenin and cyclin D1 in hAMSCs were significantly inhibited upon pre-treatment with Wnt-C59, an inhibitor of the Wnt/β-catenin pathway. These results suggest that HA may positively regulate hAMSCs proliferation through regulation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Ru-Ming Liu
- Guizhou Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi 563000, PR China
| | - Ren-Gang Sun
- Guizhou Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi 563000, PR China
| | - Ling-Tao Zhang
- Guizhou Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi 563000, PR China
| | - Qing-Fang Zhang
- Guizhou Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi 563000, PR China
| | - Dai-Xiong Chen
- Guizhou Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi 563000, PR China
| | - Jian-Jiang Zhong
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Jian-Hui Xiao
- Guizhou Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi 563000, PR China.
| |
Collapse
|
193
|
Mende M, Bednarek C, Wawryszyn M, Sauter P, Biskup MB, Schepers U, Bräse S. Chemical Synthesis of Glycosaminoglycans. Chem Rev 2016; 116:8193-255. [DOI: 10.1021/acs.chemrev.6b00010] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Marco Mende
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Christin Bednarek
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Mirella Wawryszyn
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Paul Sauter
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Moritz B. Biskup
- Division
2—Informatics, Economics and Society, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, D-76131 Karlsruhe, Germany
| | - Ute Schepers
- Institute
of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute
of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
194
|
Nascimento TL, Hillaireau H, Vergnaud J, Fattal E. Lipid-based nanosystems for CD44 targeting in cancer treatment: recent significant advances, ongoing challenges and unmet needs. Nanomedicine (Lond) 2016; 11:1865-87. [DOI: 10.2217/nnm-2016-5000] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Extensive experimental evidence demonstrates the important role of hyaluronic acid (HA)-CD44 interaction in cell proliferation and migration, inflammation and tumor growth. Taking advantage of this interaction, the design of HA-modified nanocarriers has been investigated for targeting CD44-overexpressing cells with the purpose of delivering drugs to cancer or inflammatory cells. The effect of such modification on targeting efficacy is influenced by several factors. In this review, we focus on the impact of HA-modification on the characteristics of lipid-based nanoparticles. We try to understand how these modifications influence particle physicochemical properties, interaction with CD44 receptors, intracellular trafficking pathways, toxicity, complement/macrophage activation and pharmacokinetics. Our aim is to provide insight in tailoring particle modification by HA in order to design more efficient CD44-targeting lipid nanocarriers.
Collapse
Affiliation(s)
- Thais Leite Nascimento
- Institut Galien Paris-Sud, Faculté de pharmacie, Université Paris-Sud, 5 rue JB Clément, 92296 Châtenay-Malabry Cedex, France
- CNRS, UMR 8612, 5 rue JB Clément, 92296 Châtenay-Malabry Cedex, France
- CAPES Foundation, Ministry of Education of Brazil, Brasília – DF 70040-020, Brazil
| | - Hervé Hillaireau
- Institut Galien Paris-Sud, Faculté de pharmacie, Université Paris-Sud, 5 rue JB Clément, 92296 Châtenay-Malabry Cedex, France
- CNRS, UMR 8612, 5 rue JB Clément, 92296 Châtenay-Malabry Cedex, France
| | - Juliette Vergnaud
- Institut Galien Paris-Sud, Faculté de pharmacie, Université Paris-Sud, 5 rue JB Clément, 92296 Châtenay-Malabry Cedex, France
- CNRS, UMR 8612, 5 rue JB Clément, 92296 Châtenay-Malabry Cedex, France
| | - Elias Fattal
- Institut Galien Paris-Sud, Faculté de pharmacie, Université Paris-Sud, 5 rue JB Clément, 92296 Châtenay-Malabry Cedex, France
- CNRS, UMR 8612, 5 rue JB Clément, 92296 Châtenay-Malabry Cedex, France
| |
Collapse
|
195
|
Hyaluronan and hyaluronan synthases expression and localization in embryonic mouse molars. J Mol Histol 2016; 47:413-20. [PMID: 27318667 DOI: 10.1007/s10735-016-9684-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 06/13/2016] [Indexed: 12/28/2022]
Abstract
Hyaluronan (HA) and hyaluronan synthases (HASs) have been shown to play critical roles in embryogenesis and organ development. However, there have not been any studies examining HA and HAS expression and localization during tooth development. The present study was designed to investigate the expression of HA and three isoforms of HASs (HAS1, 2, 3) in embryonic mouse molars. The first mandibular embryonic mouse molars were examined by immunohistochemistry at E11.5, E13.5, E14.5, E16.5, and E18.5. PCR and western blot analyses were performed on RNA and proteins samples from E13.5 to E18.5 tooth germs. At the initial stage (E11.5), HA and HASs were expressed in the dental epithelium but not the underlying dental mesenchyme. HA immunostaining gradually increased in the enamel organ from the bud stage (E13.5) to the late bell stage (E18.5), and HA and HASs were highly expressed in the stellate reticulum and stratum intermedium. HA immunostaining was also enhanced in the dental mesenchyme and its derived tissues, but it was not expressed in the ameloblast and odontoblast regions. The three HAS isoforms had distinct expression patterns, and they were expressed in the dental mesenchyme and odontoblast at various levels. Furthermore, HAS1 and HAS2 expression decreased, while HAS3 expression increased from E13.5 to E18.5. These results suggested that HA synthesized by different HASs is involved in embryonic mouse molar morphogenesis and cytodifferentiation.
Collapse
|
196
|
Taparra K, Tran PT, Zachara NE. Hijacking the Hexosamine Biosynthetic Pathway to Promote EMT-Mediated Neoplastic Phenotypes. Front Oncol 2016; 6:85. [PMID: 27148477 PMCID: PMC4834358 DOI: 10.3389/fonc.2016.00085] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/27/2016] [Indexed: 01/07/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a highly conserved program necessary for orchestrating distant cell migration during embryonic development. Multiple studies in cancer have demonstrated a critical role for EMT during the initial stages of tumorigenesis and later during tumor invasion. Transcription factors (TFs) such as SNAIL, TWIST, and ZEB are master EMT regulators that are aberrantly overexpressed in many malignancies. Recent evidence correlates EMT-related transcriptomic alterations with metabolic reprograming in cancer. Metabolic alterations may allow cancer to adapt to environmental stressors, supporting the irregular macromolecular demand of rapid proliferation. One potential metabolic pathway of increasing importance is the hexosamine biosynthesis pathway (HBP). The HBP utilizes glycolytic intermediates to generate the metabolite UDP-GlcNAc. This and other charged nucleotide sugars serve as the basis for biosynthesis of glycoproteins and other glycoconjugates. Recent reports in the field of glycobiology have cultivated great curiosity within the cancer research community. However, specific mechanistic relationships between the HBP and fundamental pathways of cancer, such as EMT, have yet to be elucidated. Altered protein glycosylation downstream of the HBP is well positioned to mediate many cellular changes associated with EMT including cell-cell adhesion, responsiveness to growth factors, immune system evasion, and signal transduction programs. Here, we outline some of the basics of the HBP and putative roles the HBP may have in driving EMT-related cancer processes. With novel appreciation of the HBP's connection to EMT, we hope to illuminate the potential for new therapeutic targets of cancer.
Collapse
Affiliation(s)
- Kekoa Taparra
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Phuoc T Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Natasha E Zachara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| |
Collapse
|
197
|
Arnal-Pastor M, Pérez-Garnes M, Monleón Pradas M, Vallés Lluch A. Topologically controlled hyaluronan-based gel coatings of hydrophobic grid-like scaffolds to modulate drug delivery. Colloids Surf B Biointerfaces 2016; 140:412-420. [DOI: 10.1016/j.colsurfb.2016.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/11/2015] [Accepted: 01/02/2016] [Indexed: 01/08/2023]
|
198
|
Olivares CN, Alaniz LD, Menger MD, Barañao RI, Laschke MW, Meresman GF. Inhibition of Hyaluronic Acid Synthesis Suppresses Angiogenesis in Developing Endometriotic Lesions. PLoS One 2016; 11:e0152302. [PMID: 27018976 PMCID: PMC4809563 DOI: 10.1371/journal.pone.0152302] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/12/2016] [Indexed: 01/11/2023] Open
Abstract
Background The development and long-term survival of endometriotic lesions is crucially dependent on an adequate vascularization. Hyaluronic acid (HA) through its receptor CD44 has been described to be involved in the process of angiogenesis. Objective To study the effect of HA synthesis inhibition using non-toxic doses of 4-methylumbelliferone (4-MU) on endometriosis-related angiogenesis. Materials and Methods The cytotoxicity of different in vitro doses of 4-MU on endothelial cells was firstly tested by means of a lactate dehydrogenase assay. The anti-angiogenic action of non-cytotoxic doses of 4-MU was then assessed by a rat aortic ring assay. In addition, endometriotic lesions were induced in dorsal skinfold chambers of female BALB/c mice, which were daily treated with an intraperitoneal injection of 0.9% NaCl (vehicle group; n = 6), 20mg/kg 4-MU (n = 8) or 80mg/kg 4-MU (n = 7) throughout an observation period of 14 days. The effect of 4-MU on their vascularization, survival and growth were studied by intravital fluorescence microscopy, histology and immunohistochemistry. Main Results Non-cytotoxic doses of 4-MU effectively inhibited vascular sprout formation in the rat aortic ring assay. Endometriotic lesions in dorsal skinfold chambers of 4-MU-treated mice dose-dependently exhibited a significantly smaller vascularized area and lower functional microvessel density when compared to vehicle-treated controls. Histological analyses revealed a downregulation of HA expression in 4-MU-treated lesions. This was associated with a reduced density of CD31-positive microvessels within the lesions. In contrast, numbers of PCNA-positive proliferating and cleaved caspase-3-positive apoptotic cells did not differ between 4-MU-treated and control lesions. Conclusions The present study demonstrates for the first time that targeting the synthesis of HA suppresses angiogenesis in developing endometriotic lesions. Further studies have to clarify now whether in the future this anti-angiogenic effect can be used beneficially for the treatment of endometriosis.
Collapse
Affiliation(s)
- Carla N. Olivares
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- * E-mail:
| | - Laura D. Alaniz
- CIT NOBA, Universidad Nacional del Noroeste de la Provincia de Buenos Aires (CONICET-UNNOBA), Junín, Buenos Aires, Argentina
| | - Michael D. Menger
- Institute for Clinical & Experimental Surgery, University of Saarland, Homburg/Saar, Germany
| | - Rosa I. Barañao
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Matthias W. Laschke
- Institute for Clinical & Experimental Surgery, University of Saarland, Homburg/Saar, Germany
| | - Gabriela F. Meresman
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
199
|
Chen KL, Yeh YY, Lung J, Yang YC, Yuan K. Mineralization Effect of Hyaluronan on Dental Pulp Cells via CD44. J Endod 2016; 42:711-6. [PMID: 26975415 DOI: 10.1016/j.joen.2016.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/13/2016] [Accepted: 01/15/2016] [Indexed: 12/25/2022]
Abstract
INTRODUCTION CD44 is a cell-surface glycoprotein involved in various cellular functions. Recent studies have suggested that CD44 is involved in early mineralization of odontoblasts. Hyaluronic acid (HA) is the principal ligand for receptor CD44. Whether and how HA regulated the mineralization process of dental pulp cells were investigated. METHODS The effects of high-molecular-weight HA on differentiation and mineral deposition of dental pulp cells were tested by using alkaline phosphatase (ALP) activity assay and alizarin red S staining. Osteogenesis real-time polymerase chain reaction array, quantitative polymerase chain reaction, and Western blotting were performed to identify downstream molecules involved in the mineralization induction of HA. CD44 was knocked down and examined to confirm whether the mineralization effect of HA was mediated by receptor CD44. Immunohistochemistry was used to understand the localization patterns of CD44 and the identified downstream proteins in vivo. RESULTS Pulse treatment of HA enhanced ALP activity and mineral deposition in dental pulp cells. Tissue-nonspecific ALP, bone morphogenetic protein 7 (BMP7), and type XV collagen (Col15A1) were upregulated via the HA-CD44 pathway in vitro. Immunohistochemistry of tooth sections showed that the staining pattern of BMP7 was very similar to that of CD44. CONCLUSIONS Results of this study indicated that high-molecular-weight HA enhanced early mineralization of dental pulp cells mediated via CD44. The process involved important mineralization-associated molecules including tissue-nonspecific ALP, BMP7, and Col15A1. The findings may help develop new strategies in regenerative endodontics.
Collapse
Affiliation(s)
- Kuan-Liang Chen
- Department of Endodontics, ChiMei Medical Center, Tainan, Taiwan; Department of Dental Laboratory Technology, Min-Hwei College of Healthcare Management, Tainan, Taiwan
| | - Ying-Yi Yeh
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jrhau Lung
- Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yu-Chi Yang
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuo Yuan
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Stomatology, National Cheng Kung University Hospital, Tainan, Taiwan.
| |
Collapse
|
200
|
Sasarman F, Maftei C, Campeau PM, Brunel-Guitton C, Mitchell GA, Allard P. Biosynthesis of glycosaminoglycans: associated disorders and biochemical tests. J Inherit Metab Dis 2016; 39:173-88. [PMID: 26689402 DOI: 10.1007/s10545-015-9903-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 12/11/2022]
Abstract
Glycosaminoglycans (GAG) are long, unbranched heteropolymers with repeating disaccharide units that make up the carbohydrate moiety of proteoglycans. Six distinct classes of GAGs are recognized. Their synthesis follows one of three biosynthetic pathways, depending on the type of oligosaccharide linker they contain. Chondroitin sulfate, dermatan sulfate, heparan sulfate, and heparin sulfate contain a common tetrasaccharide linker that is O-linked to specific serine residues in core proteins. Keratan sulfate can contain three different linkers, either N-linked to asparagine or O-linked to serine/threonine residues in core proteins. Finally, hyaluronic acid does not contain a linker and is not covalently attached to a core protein. Most inborn errors of GAG biosynthesis are reported in small numbers of patients. To date, in 20 diseases, convincing evidence for pathogenicity has been presented for mutations in a total of 16 genes encoding glycosyltransferases, sulfotransferases, epimerases or transporters. GAG synthesis defects should be suspected in patients with a combination of characteristic clinical features in more than one connective tissue compartment: bone and cartilage (short long bones with or without scoliosis), ligaments (joint laxity/dislocations), and subepithelial (skin, sclerae). Some produce distinct clinical syndromes. The commonest laboratory tests used for this group of diseases are analysis of GAGs, enzyme assays, and molecular testing. In principle, GAG analysis has potential as a general first-line diagnostic test for GAG biosynthesis disorders.
Collapse
Affiliation(s)
- Florin Sasarman
- Division of Medical Genetics, Department of Pediatrics, Université de Montréal and CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Catalina Maftei
- Division of Medical Genetics, Department of Pediatrics, Université de Montréal and CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Philippe M Campeau
- Division of Medical Genetics, Department of Pediatrics, Université de Montréal and CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Catherine Brunel-Guitton
- Division of Medical Genetics, Department of Pediatrics, Université de Montréal and CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Grant A Mitchell
- Division of Medical Genetics, Department of Pediatrics, Université de Montréal and CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Pierre Allard
- Division of Medical Genetics, Department of Pediatrics, Université de Montréal and CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montreal, QC, H3T 1C5, Canada.
| |
Collapse
|