151
|
Silva AKA, Luciani N, Gazeau F, Aubertin K, Bonneau S, Chauvierre C, Letourneur D, Wilhelm C. Combining magnetic nanoparticles with cell derived microvesicles for drug loading and targeting. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:645-55. [PMID: 25596340 DOI: 10.1016/j.nano.2014.11.009] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 10/31/2014] [Accepted: 11/19/2014] [Indexed: 02/08/2023]
Abstract
Inspired by microvesicle-mediated intercellular communication, we propose a hybrid vector for magnetic drug delivery. It consists of macrophage-derived microvesicles engineered to enclose different therapeutic agents together with iron oxide nanoparticles. Here, we investigated in vitro how magnetic nanoparticles may influence the vector effectiveness in terms of drug uptake and targeting. Human macrophages were loaded with iron oxide nanoparticles and different therapeutic agents: a chemotherapeutic agent (doxorubicin), tissue-plasminogen activator (t-PA) and two photosensitizers (disulfonated tetraphenyl chlorin-TPCS2a and 5,10,15,20-tetra(m-hydroxyphenyl)chlorin-mTHPC). The hybrid cell microvesicles were magnetically responsive, readily manipulated by magnetic forces and MRI-detectable. Using photosensitizer-loaded vesicles, we showed that the uptake of microvesicles by cancer cells could be kinetically modulated and spatially controlled under magnetic field and that cancer cell death was enhanced by the magnetic targeting. From the clinical editor: In this article, the authors devised a biogenic method using macrophages to produce microvesicles containing both iron oxide and chemotherapeutic agents. They showed that the microvesicles could be manipulated by magnetic force for targeting and subsequent delivery of the drug payload against cancer cells. This smart method could provide a novel way for future fight against cancer.
Collapse
Affiliation(s)
- Amanda K A Silva
- Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS and Université Paris Diderot, France; Inserm, U1148, Cardiovascular Bio-Engineering, X. Bichat Hospital, Université Paris Diderot Paris, France; Université Paris 13, Sorbonne Paris Cité, France
| | - Nathalie Luciani
- Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS and Université Paris Diderot, France
| | - Florence Gazeau
- Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS and Université Paris Diderot, France
| | - Kelly Aubertin
- Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS and Université Paris Diderot, France
| | - Stéphanie Bonneau
- Laboratoire Jean Perrin-CNRS FRE3231, Université Pierre et Marie Curie-Paris 6, France
| | - Cédric Chauvierre
- Inserm, U1148, Cardiovascular Bio-Engineering, X. Bichat Hospital, Université Paris Diderot Paris, France; Université Paris 13, Sorbonne Paris Cité, France
| | - Didier Letourneur
- Inserm, U1148, Cardiovascular Bio-Engineering, X. Bichat Hospital, Université Paris Diderot Paris, France; Université Paris 13, Sorbonne Paris Cité, France
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS and Université Paris Diderot, France.
| |
Collapse
|
152
|
Wong PT, Choi SK. Mechanisms and implications of dual-acting methotrexate in folate-targeted nanotherapeutic delivery. Int J Mol Sci 2015; 16:1772-90. [PMID: 25590303 PMCID: PMC4307333 DOI: 10.3390/ijms16011772] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/05/2015] [Indexed: 01/05/2023] Open
Abstract
The rational design of a nanoplatform in drug delivery plays a crucial role in determining its targeting specificity and efficacy in vivo. A conventional approach relies on the surface conjugation of a nanometer-sized particle with two functionally distinct types of molecules, one as a targeting ligand, and the other as a therapeutic agent to be delivered to the diseased cell. However, an alternative simplified approach can be used, in which a single type of molecule displaying dual function as both a targeting ligand and therapeutic agent is conjugated to the nanoparticle. In this review, we evaluate the validity of this new strategy by using methotrexate, which displays multifunctional mechanisms of action. Methotrexate binds to the folate receptor, a surface biomarker frequently overexpressed in tumor cells, and also inhibits dihydrofolate reductase, an enzyme critical for cell survival and division. Thus we describe a series of fifth generation poly(amido amine) dendrimers conjugated with methotrexate, and discuss several lines of evidence supporting the efficacy of this new platform strategy based on surface plasmon resonance spectroscopy, enzyme activity assays, and cell-based studies with folate receptor (+) KB cancer cells.
Collapse
Affiliation(s)
- Pamela T Wong
- Department of Internal Medicine, Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Seok Ki Choi
- Department of Internal Medicine, Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
153
|
Akrami M, Khoobi M, Khalilvand-Sedagheh M, Haririan I, Bahador A, Faramarzi MA, Rezaei S, Javar HA, Salehi F, Ardestani SK, Shafiee A. Evaluation of multilayer coated magnetic nanoparticles as biocompatible curcumin delivery platforms for breast cancer treatment. RSC Adv 2015. [DOI: 10.1039/c5ra13838h] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel biocompatible multi-layer iron oxide magnetic nanoparticles with sustained sensitive release profile, and improved cellular uptake.
Collapse
|
154
|
Nandwana V, De M, Chu S, Jaiswal M, Rotz M, Meade TJ, Dravid VP. Theranostic Magnetic Nanostructures (MNS) for Cancer. Cancer Treat Res 2015; 166:51-83. [PMID: 25895864 PMCID: PMC4494108 DOI: 10.1007/978-3-319-16555-4_3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Despite the complexities of cancer, remarkable diagnostic and therapeutic advances have been made during the past decade, which include improved genetic, molecular, and nanoscale understanding of the disease. Physical science and engineering, and nanotechnology in particular, have contributed to these developments through out-of-the-box ideas and initiatives from perspectives that are far removed from classical biological and medicinal aspects of cancer. Nanostructures, in particular, are being effectively utilized in sensing/diagnostics of cancer while nanoscale carriers are able to deliver therapeutic cargo for timed and controlled release at localized tumor sites. Magnetic nanostructures (MNS) have especially attracted considerable attention of researchers to address cancer diagnostics and therapy. A significant part of the promise of MNS lies in their potential for "theranostic" applications, wherein diagnostics makes use of the enhanced localized contrast in magnetic resonance imaging (MRI) while therapy leverages the ability of MNS to heat under external radio frequency (RF) field for thermal therapy or use of thermal activation for release of therapy cargo. In this chapter, we report some of the key developments in recent years in regard to MNS as potential theranostic carriers. We describe that the r₂relaxivity of MNS can be maximized by allowing water (proton) diffusion in the vicinity of MNS by polyethylene glycol (PEG) anchoring, which also facilitates excellent fluidic stability in various media and extended in vivo circulation while maintaining high r₂values needed for T₂-weighted MRI contrast. Further, the specific absorption rate (SAR) required for thermal activation of MNS can be tailored by controlling composition and size of MNS. Together, emerging MNS show considerable promise to realize theranostic potential. We discuss that properly functionalized MNS can be designed to provide remarkable in vivo stability and accompanying pharmacokinetics exhibit organ localization that can be tailored for specific applications. In this context, even iron-based MNS show extended circulation as well as diverse organ accumulation beyond liver, which otherwise renders MNS potentially toxic to liver function. We believe that MNS, including those based on iron oxides, have entered a renaissance era where intelligent synthesis, functionalization, stabilization, and targeting provide ample evidence for applications in localized cancer theranostics.
Collapse
Affiliation(s)
- Vikas Nandwana
- Department of Materials Science and Engineering, Northwestern University, Evanston, USA
| | | | | | | | | | | | | |
Collapse
|
155
|
Wang Y, Cui H, Yang Y, Zhao X, Sun C, Chen W, Du W, Cui J. Mechanism Study of Gene Delivery and Expression in PK-15 Cells Using Magnetic Iron Oxide Nanoparticles as Gene Carriers. ACTA ACUST UNITED AC 2014. [DOI: 10.1142/s1793984414410189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The mechanism of gene delivery and expression is one of the most important concerns raised by the development of gene delivery methods. Limited investigation is performed on how magnetic nanoparticles combine with DNA and deliver gene into mammalian cells. In this context, polyethyleneimine (PEI) coated iron oxide magnetic nanoparticles (MNPs) were used as gene carriers for binding and condensing with plasmid DNA expressing enhanced green fluorescent protein (EGFP). The morphology and structure of MNP–DNA complexes were characterized by transmission electron microscopy (TEM) and atomic force microscopy (AFM). We evidenced that large amounts of DNA wrapped around the surface of MNPs and that the MNPs were physically entrapped by the DNA arranged both horizontally and vertically. EGFP gene was successfully expressed under mediation of an external magnetic field which is necessary to efficiently target EGFP gene to the cells. Fluorescence from EGFP was separately detected in the cell cytoplasm and cell nucleus.
Collapse
Affiliation(s)
- Yan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 South Street of Zhongguancun Haidian District, Beijing 100081, P. R. China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 South Street of Zhongguancun Haidian District, Beijing 100081, P. R. China
| | - Yongguang Yang
- Department of Cancer and Cell Biology, University of Cincinnati, College of Medicine, 3125 Eden Avenue, Cincinnati, OH 45267, USA
| | - Xiang Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 South Street of Zhongguancun Haidian District, Beijing 100081, P. R. China
| | - Changjiao Sun
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 South Street of Zhongguancun Haidian District, Beijing 100081, P. R. China
| | - Wenjie Chen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 South Street of Zhongguancun Haidian District, Beijing 100081, P. R. China
| | - Wei Du
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 South Street of Zhongguancun Haidian District, Beijing 100081, P. R. China
| | - Jinhui Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 South Street of Zhongguancun Haidian District, Beijing 100081, P. R. China
| |
Collapse
|
156
|
15 years of ATTEMPTS: a macromolecular drug delivery system based on the CPP-mediated intracellular drug delivery and antibody targeting. J Control Release 2014; 205:58-69. [PMID: 25483423 DOI: 10.1016/j.jconrel.2014.12.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/18/2014] [Accepted: 12/01/2014] [Indexed: 01/22/2023]
Abstract
Traditionally, any drug intended for combating the tumor would distribute profoundly to other organs and tissues as lack of targeting specificity, thus resulting in limited therapeutic effects toward the tumor but severe drug-induced toxic side effects. To prevail over this obstacle of drug-induced systemic toxicity, a novel approach termed "ATTEMPTS" (antibody targeted triggered electrically modified prodrug type strategy) was designed, which directly introduces both of the targeting and prodrug features onto the protein drugs. The ATTEMPTS system is composed of the antibody targeting component consisting of antibodies linked with heparin, and the cell penetrating peptide (CPP) modified drug component. The two components mentioned above self-assembled into a tight complex via the charge to charge interaction between the anionic heparin and cationic CPP. Once accumulated at the targeting site, the CPP modified drug is released from the blockage by a second triggering agent, while remaining inactive in the circulation during tumor targeting thus aborting its effect on normal tissues. We utilized the heparin-induced inhibition on the cell-penetrating activity of CPP to create the prodrug feature, and subsequently the protamine-induced reversal of heparin inhibition to resume cell transduction of the protein drug via the CPP function. Our approach is the first known system to overcome this selectivity issue, enabling CPP-mediated cellular drug delivery to be practically applicable clinically. In this review, we thoroughly discussed the historical and novel progress of the "ATTEMPTS" system.
Collapse
|
157
|
Study of amphotericin B magnetic liposomes for brain targeting. Int J Pharm 2014; 475:9-16. [DOI: 10.1016/j.ijpharm.2014.08.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/08/2014] [Accepted: 08/19/2014] [Indexed: 12/30/2022]
|
158
|
Sahoo B, Devi KSP, Dutta S, Maiti TK, Pramanik P, Dhara D. Biocompatible mesoporous silica-coated superparamagnetic manganese ferrite nanoparticles for targeted drug delivery and MR imaging applications. J Colloid Interface Sci 2014; 431:31-41. [DOI: 10.1016/j.jcis.2014.06.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/31/2014] [Accepted: 06/02/2014] [Indexed: 11/29/2022]
|
159
|
Do MA, Yoon GJ, Yeum JH, Han M, Chang Y, Choi JH. Polyethyleneimine-mediated synthesis of superparamagnetic iron oxide nanoparticles with enhanced sensitivity in T 2 magnetic resonance imaging. Colloids Surf B Biointerfaces 2014; 122:752-759. [DOI: 10.1016/j.colsurfb.2014.08.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/08/2014] [Accepted: 08/13/2014] [Indexed: 01/07/2023]
|
160
|
Li D, Tang X, Pulli B, Lin C, Zhao P, Cheng J, Lv Z, Yuan X, Luo Q, Cai H, Ye M. Theranostic nanoparticles based on bioreducible polyethylenimine-coated iron oxide for reduction-responsive gene delivery and magnetic resonance imaging. Int J Nanomedicine 2014; 9:3347-61. [PMID: 25045265 PMCID: PMC4099417 DOI: 10.2147/ijn.s61463] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Theranostic nanoparticles based on superparamagnetic iron oxide (SPIO) have a great promise for tumor diagnosis and gene therapy. However, the availability of theranostic nanoparticles with efficient gene transfection and minimal toxicity remains a big challenge. In this study, we construct an intelligent SPIO-based nanoparticle comprising a SPIO inner core and a disulfide-containing polyethylenimine (SSPEI) outer layer, which is referred to as a SSPEI-SPIO nanoparticle, for redox-triggered gene release in response to an intracellular reducing environment. We reveal that SSPEI-SPIO nanoparticles are capable of binding genes to form nano-complexes and mediating a facilitated gene release in the presence of dithiothreitol (5–20 mM), thereby leading to high transfection efficiency against different cancer cells. The SSPEI-SPIO nanoparticles are also able to deliver small interfering RNA (siRNA) for the silencing of human telomerase reverse transcriptase genes in HepG2 cells, causing their apoptosis and growth inhibition. Further, the nanoparticles are applicable as T2-negative contrast agents for magnetic resonance (MR) imaging of a tumor xenografted in a nude mouse. Importantly, SSPEI-SPIO nanoparticles have relatively low cytotoxicity in vitro at a high concentration of 100 μg/mL. The results of this study demonstrate the utility of a disulfide-containing cationic polymer-decorated SPIO nanoparticle as highly potent and low-toxic theranostic nano-system for specific nucleic acid delivery inside cancer cells.
Collapse
Affiliation(s)
- Dan Li
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Tongji University, People's Republic of China
| | - Xin Tang
- Shanghai East Hospital, The Institute for Biomedical Engineering and Nanoscience, Tongji University School of Medicine, Tongji University, People's Republic of China
| | - Benjamin Pulli
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Tongji University, People's Republic of China
| | - Chao Lin
- Shanghai East Hospital, The Institute for Biomedical Engineering and Nanoscience, Tongji University School of Medicine, Tongji University, People's Republic of China
| | - Peng Zhao
- Shanghai East Hospital, The Institute for Biomedical Engineering and Nanoscience, Tongji University School of Medicine, Tongji University, People's Republic of China
| | - Jian Cheng
- Shanghai East Hospital, The Institute for Biomedical Engineering and Nanoscience, Tongji University School of Medicine, Tongji University, People's Republic of China
| | - Zhongwei Lv
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Tongji University, People's Republic of China
| | - Xueyu Yuan
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Tongji University, People's Republic of China
| | - Qiong Luo
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Tongji University, People's Republic of China
| | - Haidong Cai
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Tongji University, People's Republic of China
| | - Meng Ye
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Tongji University, People's Republic of China
| |
Collapse
|
161
|
Georgiadou V, Dendrinou-Samara C. Impact of the Presence of Octadecylamine on the Properties of Hydrothermally Prepared CoFe2O4Nanoparticles. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402323] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
162
|
Zhou J, Zhang J, Gao W. Enhanced and selective delivery of enzyme therapy to 9L-glioma tumor via magnetic targeting of PEG-modified, β-glucosidase-conjugated iron oxide nanoparticles. Int J Nanomedicine 2014; 9:2905-17. [PMID: 24959078 PMCID: PMC4061166 DOI: 10.2147/ijn.s59556] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The stability of enzyme-conjugated magnetic iron oxide nanoparticles in plasma is of great importance for in vivo delivery of the conjugated enzyme. In this study, β-glucosidase was conjugated on aminated magnetic iron oxide nanoparticles using the glutaraldehyde method (β-Glu-MNP), and further PEGylated via N-hydroxysuccinimide chemistry. The PEG-modified, β-glucosidase-immobilized magnetic iron oxide nanoparticles (PEG-β-Glu-MNPs) were characterized by hydrodynamic diameter distribution, zeta potential, Fourier transform infrared spectroscopy, transmission electron microscopy, and a superconducting quantum interference device. The results showed that the multidomain structure and magnetization properties of these nanoparticles were conserved well throughout the synthesis steps, with an expected diameter increase and zeta potential shifts. The Michaelis constant was calculated to evaluate the activity of conjugated β-glucosidase on the magnetic iron oxide nanoparticles, indicating 73.0% and 65.4% of enzyme activity remaining for β-Glu-MNP and PEG-β-Glu-MNP, respectively. Both magnetophoretic mobility analysis and pharmacokinetics showed improved in vitro/in vivo stability of PEG-β-Glu-MNP compared with β-Glu-MNP. In vivo magnetic targeting of PEG-β-Glu-MNP was confirmed by magnetic resonance imaging and electron spin resonance analysis in a mouse model of subcutaneous 9L-glioma. Satisfactory accumulation of PEG-β-Glu-MNP in tumor tissue was successfully achieved, with an iron content of 627±45 nmol Fe/g tissue and β-glucosidase activity of 32.2±8.0 mU/g tissue.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Urology, Hubei Hospital of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Jian Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Wenxi Gao
- Department of Urology, Hubei Hospital of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| |
Collapse
|
163
|
Abolmaali SS, Tamaddon A, Yousefi G, Javidnia K, Dinarvand R. Sequential optimization of methotrexate encapsulation in micellar nano-networks of polyethyleneimine ionomer containing redox-sensitive cross-links. Int J Nanomedicine 2014; 9:2833-48. [PMID: 24944513 PMCID: PMC4057327 DOI: 10.2147/ijn.s61614] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A functional polycation nanonetwork was developed for delivery of water soluble chemotherapeutic agents. The complexes of polyethyleneimine grafted methoxy polyethylene glycol (PEI-g-mPEG) and Zn(2+) were utilized as the micellar template for cross-linking with dithiodipropionic acid, followed by an acidic pH dialysis to remove the metal ion from the micellar template. The synthesis method was optimized according to pH, the molar ratio of Zn(2+), and the cross-link ratio. The atomic force microscopy showed soft, discrete, and uniform nano-networks. They were sensitive to the simulated reductive environment as determined by Ellman's assay. They showed few positive ζ potential and an average hydrodynamic diameter of 162±10 nm, which decreased to 49±11 nm upon dehydration. The ionic character of the nano-networks allowed the achievement of a higher-loading capacity of methotrexate (MTX), approximately 57% weight per weight, depending on the cross-link and the drug feed ratios. The nano-networks actively loaded with MTX presented some suitable properties, such as the hydrodynamic size of 117±16 nm, polydispersity index of 0.22, and a prolonged swelling-controlled release profile over 24 hours that boosted following reductive activation of the nanonetwork biodegradation. Unlike the PEI ionomer, the nano-networks provided an acceptable cytotoxicity profile. The drug-loaded nano-networks exhibited more specific cytotoxicity against human hepatocellular carcinoma cells if compared to free MTX at concentrations above 1 μM. The enhanced antitumor activity in vitro might be attributed to endocytic entry of MTX-loaded nano-networks that was found in the epifluorescence microscopy experiment for the fluorophore-labeled nano-networks.
Collapse
Affiliation(s)
- Samira Sadat Abolmaali
- Department of Pharmaceutics, Shiraz School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Tamaddon
- Department of Pharmaceutics, Shiraz School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamhossein Yousefi
- Department of Pharmaceutics, Shiraz School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Katayoun Javidnia
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rasoul Dinarvand
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
164
|
Zhang H, Li J, Sun W, Hu Y, Zhang G, Shen M, Shi X. Hyaluronic acid-modified magnetic iron oxide nanoparticles for MR imaging of surgically induced endometriosis model in rats. PLoS One 2014; 9:e94718. [PMID: 24722347 PMCID: PMC3983238 DOI: 10.1371/journal.pone.0094718] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 03/18/2014] [Indexed: 01/09/2023] Open
Abstract
Endometriosis is defined as the presence of endometrial tissue outside the uterine, which may affect nearly 60% of women in reproductive age. Deep infiltrating endometriosis (DIE) defined as an endometriotic lesion penetrating into the retroperitoneal space or the wall of the pelvic organs to a depth of at least 5 mm represents the most diagnostic challenge. Herein, we reported the use of hyaluronic acid (HA)-modified magnetic iron oxide nanoparticles (HA-Fe3O4 NPs) for magnetic resonance (MR) imaging of endometriotic lesions in the rodent model. Sixteen endometriotic lesions were surgically induced in eight rats by autologous transplantation. Four weeks after lesion induction, three rats were scanned via MR imaging after tail vein injection of the HA-Fe3O4 NPs. Accordingly, the remaining five mice were sacrificed in the corresponding time points. The ectopic uterine tissues (EUTs) were confirmed by histological analysis. Quantification of Fe in the EUT was also performed by inductively coupled plasma-optical emission spectroscopy. Our results showed that by using the HA-Fe3O4 NPs, the EUTs were able to be visualized via T2-weighted MR imaging at 2 hours post injection, corroborating the Prussian blue staining results. The developed HA-Fe3O4 NPs could be used as negative contrast agents for sensitively detecting endometriosis in a mouse model and may be applied for future hyperthermia treatment of endometriosis.
Collapse
Affiliation(s)
- He Zhang
- Department of Radiology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, PR China
| | - Jingchao Li
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, PR China
| | - Wenjie Sun
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, PR China
| | - Yong Hu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, PR China
| | - Guofu Zhang
- Department of Radiology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, PR China
- * E-mail: (GZ); (MS); (XS)
| | - Mingwu Shen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, PR China
- * E-mail: (GZ); (MS); (XS)
| | - Xiangyang Shi
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, PR China
- * E-mail: (GZ); (MS); (XS)
| |
Collapse
|
165
|
Singh D, McMillan JM, Kabanov AV, Sokolsky-Papkov M, Gendelman HE. Bench-to-bedside translation of magnetic nanoparticles. Nanomedicine (Lond) 2014; 9:501-16. [PMID: 24910878 PMCID: PMC4150086 DOI: 10.2217/nnm.14.5] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Magnetic nanoparticles (MNPs) are a new and promising addition to the spectrum of biomedicines. Their promise revolves around the broad versatility and biocompatibility of the MNPs and their unique physicochemical properties. Guided by applied external magnetic fields, MNPs represent a cutting-edge tool designed to improve diagnosis and therapy of a broad range of inflammatory, infectious, genetic and degenerative diseases. Magnetic hyperthermia, targeted drug and gene delivery, cell tracking, protein bioseparation and tissue engineering are but a few applications being developed for MNPs. MNPs toxicities linked to shape, size and surface chemistry are real and must be addressed before clinical use is realized. This article presents both the promise and perils of this new nanotechnology, with an eye towards opportunity in translational medical science.
Collapse
Affiliation(s)
- Dhirender Singh
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - JoEllyn M McMillan
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Alexander V Kabanov
- Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marina Sokolsky-Papkov
- Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Howard E Gendelman
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| |
Collapse
|
166
|
Singh D, McMillan JM, Kabanov AV, Sokolsky-Papkov M, Gendelman HE. Bench-to-bedside translation of magnetic nanoparticles. Nanomedicine (Lond) 2014; 9:501-16. [PMID: 24910878 PMCID: PMC4150086 DOI: 10.2217/nmm.14.5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Magnetic nanoparticles (MNPs) are a new and promising addition to the spectrum of biomedicines. Their promise revolves around the broad versatility and biocompatibility of the MNPs and their unique physicochemical properties. Guided by applied external magnetic fields, MNPs represent a cutting-edge tool designed to improve diagnosis and therapy of a broad range of inflammatory, infectious, genetic and degenerative diseases. Magnetic hyperthermia, targeted drug and gene delivery, cell tracking, protein bioseparation and tissue engineering are but a few applications being developed for MNPs. MNPs toxicities linked to shape, size and surface chemistry are real and must be addressed before clinical use is realized. This article presents both the promise and perils of this new nanotechnology, with an eye towards opportunity in translational medical science.
Collapse
Affiliation(s)
- Dhirender Singh
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - JoEllyn M McMillan
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Alexander V Kabanov
- Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marina Sokolsky-Papkov
- Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Howard E Gendelman
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| |
Collapse
|
167
|
Zhang J, Shin MC, Yang VC. Magnetic targeting of novel heparinized iron oxide nanoparticles evaluated in a 9L-glioma mouse model. Pharm Res 2014; 31:579-92. [PMID: 24065589 PMCID: PMC3943844 DOI: 10.1007/s11095-013-1182-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/09/2013] [Indexed: 12/31/2022]
Abstract
PURPOSE A novel PEGylated and heparinized magnetic iron oxide nano-platform (DNPH) was synthesized for simultaneous magnetic resonance imaging (MRI) and tumor targeting. METHODS Starch-coated magnetic iron oxide nanoparticles ("D") were crosslinked, aminated (DN) and then simultaneously PEGylated and heparinized with different feed ratios of PEG and heparin (DNPH1-4). DNPH products were characterized by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and superconducting quantum interference device (SQUID). The magentic targeting of DNPH3, with appropriate amounts of conjugated PEG and heparin, in a mouse 9L-glioma subcutaneous tumor model was confirmed by magnetic resonance imaging (MRI)/electron spin resonance (ESR). RESULTS DNPH3 showed long circulating properties in vivo (half-life >8 h, more than 60-fold longer than that of parent D) and low reticuloendothelial system (RES) recognition in liver and spleen. Protamine, a model cationic protein, was efficiently loaded onto DNPH3 with a maximum loading content of 26.4 μg/mg Fe. Magnetic capture of DNPH3 in tumor site with optimized conditions (I.D. of 12 mg/kg, targeting time of 45 min) was up to 29.42 μg Fe/g tissue (12.26% I.D./g tissue). CONCLUSION DNPH3 showed the potential to be used as a platform for cationic proteins for simultaneous tumor targeting and imaging.
Collapse
Affiliation(s)
- Jian Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA
| | - Meong Cheol Shin
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA
| | - Victor C. Yang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA
| |
Collapse
|
168
|
LIANG RUICHAO, FANG FANG. THE APPLICATION OF NANOMATERIALS IN DIAGNOSIS AND TREATMENT FOR MALIGNANT PRIMARY BRAIN TUMORS. NANO 2014. [DOI: 10.1142/s1793292014300011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Malignant primary brain tumors have a very high morbidity and mortality. Even though enormous advances have been made in primary brain tumor management, in the case of malignant primary brain tumors, current diagnostic strategies cannot identify exact infiltrating margins, surgery alone cannot achieve total mass resection, and adjuvant therapies cannot improve survivals. Therefore, there is an urgent need to explore novel strategies to diagnose and treat such infiltrating brain tumors. Nanomaterials, particularly zero-dimensional and one-dimensional platforms, can carry various compounds such as contrast agents, anticancer drugs and genes into brain tumor cells specifically. Thus, contrast agent-based nanomaterials can selectively present infiltrating tumor outlines, while anticancer agent-based nanomaterials can specifically kill malignant tumor cells. In addition, dual-targeting nanomaterials, multifunctional nanocarriers, theranostic nanovehicles as well as convection-enhanced delivery technology hold promise to increase drug accumulation in tumor tissues, which could largely improve anticancer efficacy. In this review, we will mainly focus on the application of nanomaterials in preoperative diagnosis, intraoperative diagnosis and adjuvant treatment for malignant primary brain tumors.
Collapse
Affiliation(s)
- RUICHAO LIANG
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - FANG FANG
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
169
|
Dong X, Qiu XC, Liu Q, Jia J. Bibliometric analysis of nanotechnology applied in oncology from 2002 to 2011. Tumour Biol 2014; 34:3273-8. [PMID: 23959469 DOI: 10.1007/s13277-013-1032-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/18/2013] [Indexed: 10/26/2022] Open
Abstract
Innovation in the last decade has endowed nanotechnology with an assortment of tools for drug delivery system, imaging, and sensing in cancer research. These rapidly emerging tools are indicative of a burgeoning field ready to expand into medical applications. The aim of this study is to analyze the applications of nanotechnology in oncology with bibliometric methods and evaluate development in this field. Literature search was performed using PubMed search engines with MeSH terms (all)--nanotechnology, nanomedicine, nanoparticle, nanocapsules, micellar systems, and oncology or cancer or neoplasms. Within 2,543 articles from 2002 to 2011 in over 50 medical magazines from over 30 countries, we did a series analysis on these articles' countries, keywords, and authors. Our results show that articles in nanotechnology in oncology are increasing year by year, especially in recent years. Quantity and quality of the articles are becoming more and influential. In the global research, the USA is leading in this field, accounting for half above of the whole articles, followed by countries like Japan, Germany, and France and also some emerging nations like China, in the second place, and India. Subjects like nanoparticles, tumor marker, and drug delivery are the common research focus. So, with more and more scientists' interests and attention drawn to this field, it is likely to make major breakthroughs in the coming years.
Collapse
|
170
|
Cheng Y, Morshed RA, Auffinger B, Tobias AL, Lesniak MS. Multifunctional nanoparticles for brain tumor imaging and therapy. Adv Drug Deliv Rev 2014; 66:42-57. [PMID: 24060923 PMCID: PMC3948347 DOI: 10.1016/j.addr.2013.09.006] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 08/28/2013] [Accepted: 09/13/2013] [Indexed: 12/16/2022]
Abstract
Brain tumors are a diverse group of neoplasms that often carry a poor prognosis for patients. Despite tremendous efforts to develop diagnostic tools and therapeutic avenues, the treatment of brain tumors remains a formidable challenge in the field of neuro-oncology. Physiological barriers including the blood-brain barrier result in insufficient accumulation of therapeutic agents at the site of a tumor, preventing adequate destruction of malignant cells. Furthermore, there is a need for improvements in brain tumor imaging to allow for better characterization and delineation of tumors, visualization of malignant tissue during surgery, and tracking of response to chemotherapy and radiotherapy. Multifunctional nanoparticles offer the potential to improve upon many of these issues and may lead to breakthroughs in brain tumor management. In this review, we discuss the diagnostic and therapeutic applications of nanoparticles for brain tumors with an emphasis on innovative approaches in tumor targeting, tumor imaging, and therapeutic agent delivery. Clinically feasible nanoparticle administration strategies for brain tumor patients are also examined. Furthermore, we address the barriers towards clinical implementation of multifunctional nanoparticles in the context of brain tumor management.
Collapse
Affiliation(s)
- Yu Cheng
- The Brain Tumor Center, The University of Chicago, Chicago, IL, USA
| | - Ramin A Morshed
- The Brain Tumor Center, The University of Chicago, Chicago, IL, USA
| | - Brenda Auffinger
- The Brain Tumor Center, The University of Chicago, Chicago, IL, USA
| | - Alex L Tobias
- The Brain Tumor Center, The University of Chicago, Chicago, IL, USA
| | - Maciej S Lesniak
- The Brain Tumor Center, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
171
|
Shevtsov MA, Nikolaev BP, Yakovleva LY, Marchenko YY, Dobrodumov AV, Mikhrina AL, Martynova MG, Bystrova OA, Yakovenko IV, Ischenko AM. Superparamagnetic iron oxide nanoparticles conjugated with epidermal growth factor (SPION-EGF) for targeting brain tumors. Int J Nanomedicine 2014; 9:273-87. [PMID: 24421639 PMCID: PMC3888267 DOI: 10.2147/ijn.s55118] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) conjugated with recombinant human epidermal growth factor (SPION–EGF) were studied as a potential agent for magnetic resonance imaging contrast enhancement of malignant brain tumors. Synthesized conjugates were characterized by transmission electron microscopy, dynamic light scattering, and nuclear magnetic resonance relaxometry. The interaction of SPION–EGF conjugates with cells was analyzed in a C6 glioma cell culture. The distribution of the nanoparticles and their accumulation in tumors were assessed by magnetic resonance imaging in an orthotopic model of C6 gliomas. SPION–EGF nanosuspensions had the properties of a negative contrast agent with high coefficients of relaxation efficiency. In vitro studies of SPION–EGF nanoparticles showed high intracellular incorporation and the absence of a toxic influence on C6 cell viability and proliferation. Intravenous administration of SPION–EGF conjugates in animals provided receptor-mediated targeted delivery across the blood–brain barrier and tumor retention of the nanoparticles; this was more efficient than with unconjugated SPIONs. The accumulation of conjugates in the glioma was revealed as hypotensive zones on T2-weighted images with a twofold reduction in T2 relaxation time in comparison to unconjugated SPIONs (P<0.001). SPION–EGF conjugates provide targeted delivery and efficient magnetic resonance contrast enhancement of EGFR-overexpressing C6 gliomas.
Collapse
Affiliation(s)
- Maxim A Shevtsov
- Institute of Cytology of the Russian Academy of Sciences (RAS), St Petersburg, Russia ; AL Polenov Russian Scientific Research Institute of Neurosurgery, St Petersburg, Russia
| | - Boris P Nikolaev
- Research Institute of Highly Pure Biopreparations, St Petersburg, Russia
| | | | | | - Anatolii V Dobrodumov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences (RAS), St Petersburg, Russia
| | - Anastasiya L Mikhrina
- IM Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences (RAS), St Petersburg, Russia
| | - Marina G Martynova
- Institute of Cytology of the Russian Academy of Sciences (RAS), St Petersburg, Russia
| | - Olga A Bystrova
- Institute of Cytology of the Russian Academy of Sciences (RAS), St Petersburg, Russia
| | - Igor V Yakovenko
- AL Polenov Russian Scientific Research Institute of Neurosurgery, St Petersburg, Russia
| | | |
Collapse
|
172
|
|
173
|
Tomitaka =A, Jo JI, Aoki I, Tabata Y. Preparation of biodegradable iron oxide nanoparticles with gelatin for magnetic resonance imaging. Inflamm Regen 2014. [DOI: 10.2492/inflammregen.34.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
174
|
Anticancer activity of ferulic acid-inorganic nanohybrids synthesized via two different hybridization routes, reconstruction and exfoliation-reassembly. ScientificWorldJournal 2013; 2013:421967. [PMID: 24453848 PMCID: PMC3886211 DOI: 10.1155/2013/421967] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 09/26/2013] [Indexed: 11/17/2022] Open
Abstract
We have successfully prepared nanohybrids of biofunctional ferulic acid and layered double hydroxide nanomaterials through reconstruction and exfoliation-reassembly routes. From X-ray diffraction and infrared spectroscopy, both nanohybrids were determined to incorporate ferulic acid molecules in anionic form. Micrsocopic results showed that the nanohybrids had average particle size of 150 nm with plate-like morphology. As the two nanohybridization routes involved crystal disorder and random stacking of layers, the nanohybrids showed slight alteration in z-axis crystallinity and particle size. The zeta potential values of pristine and nanohybrids in deionized water were determined to be positive, while those in cell culture media shifted to negative values. According to the in vitro anticancer activity test on human cervical cancer HeLa cells, it was revealed that nanohybrids showed twice anticancer activity compared with ferulic acid itself. Therefore we could conclude that the nanohybrids of ferulic acid and layered double hydroxide had cellular delivery property of intercalated molecules on cancer cell lines.
Collapse
|
175
|
Cao Z, Yue X, Li X, Dai Z. Stabilized magnetic cerasomes for drug delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:14976-83. [PMID: 24188471 DOI: 10.1021/la401965a] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Doxorubicin hydrochloride (DOX)-loaded magnetic cerasomes (DLMCs) were successfully constructed by loading both hydrophobic Fe3O4 nanoparticles (NPs) and antitumor drug DOX into the aqueous interior of cerasomes via facile one-step construction. A possible explanation is that the hydrophobic Fe3O4 NPs can be trapped inside the aqueous core of cerasomes through the formation of an intermediate Fe3O4/micelle complex. It was found that the loading content of Fe3O4 in DLMCs could reach the maximum at a Fe3O4/lipid molar ratio of 4:1. Moreover, DLMCs demonstrated high superparamagnetism and responded strongly to magnetic fields. In addition, DLMCs had a high encapsulation efficiency of 43.4 ± 4.7% and a high drug loading content of 3.2 ± 1.3%. In comparison to drug-loaded liposomes, DLMCs exhibited higher storage stability and better sustained release behavior. A cellular uptake study showed that the use of an external magnetic field enables a rapid and efficient uptake of DLMCs by cancer cells, resulting in higher capability to kill tumor cells than non-magnetic drug-loaded cerasomes. This study suggests that magnetic cerasome offers a potential and effective drug carrier for anticancer applications.
Collapse
Affiliation(s)
- Zhong Cao
- Department of Biomedical Engineering, College of Engineering, Peking University , Beijing 100871, People's Republic of China
| | | | | | | |
Collapse
|
176
|
He H, Liang Q, Shin MC, Lee K, Gong J, Ye J, Liu Q, Wang J, Yang V. Significance and strategies in developing delivery systems for bio-macromolecular drugs. Front Chem Sci Eng 2013. [DOI: 10.1007/s11705-013-1362-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
177
|
Xiao N, Gu W, Wang H, Deng Y, Shi X, Ye L. T1-T2 dual-modal MRI of brain gliomas using PEGylated Gd-doped iron oxide nanoparticles. J Colloid Interface Sci 2013; 417:159-65. [PMID: 24407672 DOI: 10.1016/j.jcis.2013.11.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/08/2013] [Accepted: 11/09/2013] [Indexed: 12/13/2022]
Abstract
To overcome the negative contrast limitations of iron oxide-based contrast agents and to improve the biocompatibility of Gd-chelate contrast agents, PEGylated Gd-doped iron oxide (PEG-GdIO) NPs as a T1-T2 dual-modal contrast agent were synthesized by the polyol method. The transverse relaxivity (r2) and longitudinal relaxivity (r1) of PEG-GdIO were determined to be 66.9 and 65.9 mM(-1) s(-1), respectively. The high r1 value and low r2/r1 ratio make PEG-GdIO NPs suitable as a T1-T2 dual-modal contrast agent. The in vivo MRI demonstrated a brighter contrast enhancement in T1-weighted image and a simultaneous darken effect in T2-weighted MR image compared to the pre-contrast image in the region of glioma. Furthermore, the biocompatibility of PEG-GdIO NPs was confirmed by the in vitro MTT cytotoxicity and in vivo histological analyses (H&E). Therefore, PEG-GdIO NPs hold great potential in T1-T2 dual-modal imaging for the diagnosis of brain glioma.
Collapse
Affiliation(s)
- Ning Xiao
- School of Chemical Biology and Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Wei Gu
- School of Chemical Biology and Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Hao Wang
- Regeneration and Repair, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Capital Medical University, Beijing 100069, PR China
| | - Yunlong Deng
- School of Chemical Biology and Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Xin Shi
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China
| | - Ling Ye
- School of Chemical Biology and Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
178
|
Zhang J, Shin MC, David AE, Zhou J, Lee K, He H, Yang VC. Long-circulating heparin-functionalized magnetic nanoparticles for potential application as a protein drug delivery platform. Mol Pharm 2013; 10:3892-902. [PMID: 24024964 PMCID: PMC3812800 DOI: 10.1021/mp400360q] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Starch-coated, PEGylated, and heparin-functionalized iron oxide magnetic nanoparticles (DNPH) were successfully synthesized and characterized in detail. The PEGylation (20 kDa) process resulted in an average coating of 430 PEG molecules per nanoparticle. After that, heparin conjugation was carried out to attain the final DNPH platform with 35.4 μg of heparin/mg of Fe. Commercially acquired heparin-coated magnetic nanoparticles were also PEGylated (HP) and characterized for comparison. Protamine was selected as a model protein to demonstrate the strong binding affinity and high loading content of DNPH for therapeutically relevant cationic proteins. DNPH showed a maximum loading of 22.9 μg of protamine/mg of Fe. In the pharmacokinetic study, DNPH displayed a long-circulating half-life of 9.37 h, 37.5-fold longer than that (0.15 h) of HP. This improved plasma stability enabled extended exposure of DNPH to the tumor lesions, as was visually confirmed in a flank 9L-glioma mouse model using magnetic resonance imaging (MRI). Quantitative analysis of the Fe content in excised tumor lesions further demonstrated the superior tumor targeting ability of DNPH, with up to 31.36 μg of Fe/g of tissue (13.07% injected dose (I.D.)/g of tissue) and 7.5-fold improvement over that (4.27 μg of Fe/g of tissue; 1.78% I.D./g of tissue) of HP. Overall, this study shed light on the potential of DNPH to be used as a protein drug delivery platform.
Collapse
Affiliation(s)
- Jian Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, MI 48109, USA
| | - Meong Cheol Shin
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, MI 48109, USA
| | - Allan E. David
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, 222 Ross Hall, Auburn, AL 36849, USA
| | - Jie Zhou
- Department of Urology, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, P.R. China
| | - Kyuri Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, MI 48109, USA
| | - Huining He
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Victor C. Yang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
179
|
Zhou J, Zhang J, David AE, Yang VC. Magnetic tumor targeting of β-glucosidase immobilized iron oxide nanoparticles. NANOTECHNOLOGY 2013; 24:375102. [PMID: 23974977 PMCID: PMC4039207 DOI: 10.1088/0957-4484/24/37/375102] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Directed enzyme/prodrug therapy (DEPT) has promising application for cancer therapy. However, most current DEPT strategies face shortcomings such as the loss of enzyme activity during preparation, low delivery and transduction efficiency in vivo and difficultly of monitoring. In this study, a novel magnetic directed enzyme/prodrug therapy (MDEPT) was set up by conjugating β-glucosidase (β-Glu) to aminated, starch-coated, iron oxide magnetic iron oxide nanoparticles (MNPs), abbreviated as β-Glu-MNP, using glutaraldehyde as the crosslinker. This β-Glu-MNP was then characterized in detail by size distribution, zeta potential, FTIR spectra, TEM, SQUID and magnetophoretic mobility analysis. Compared to free enzyme, the conjugated β-Glu on MNPs retained 85.54% ± 6.9% relative activity and showed much better temperature stability. The animal study results showed that β-Glu-MNP displays preferable pharmacokinetics characteristics in relation to MNPs. With an adscititious magnetic field on the surface of a tumor, a significant quantity of β-Glu-MNP was selectively delivered into a subcutaneous tumor of a glioma-bearing mouse. Remarkably, the enzyme activity of the delivered β-Glu in tumor lesions showed as high as 20.123±5.022 mU g(-1) tissue with 2.14 of tumor/non-tumor β-Glu activity.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Urology, The First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, People's Republic of China.
| | | | | | | |
Collapse
|
180
|
Fond G, Macgregor A, Miot S. Nanopsychiatry--the potential role of nanotechnologies in the future of psychiatry: a systematic review. Eur Neuropsychopharmacol 2013. [PMID: 23183130 DOI: 10.1016/j.euroneuro.2012.10.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nanomedicine is defined as the area using nanotechnology's concepts for the benefit of human beings' health and well being. In this article, we aimed to provide an overview of areas where nanotechnology is applied and how they could be extended to care for psychiatric illnesses. The main applications of nanotechnology in psychiatry are (i) pharmacology. There are two main difficulties in neuropharmacology: drugs have to pass the blood-brain barrier and then to be internalized by targeted cells. Nanoparticles could increase drugs bioavailability and pharmacokinetics, especially improving safety and efficacy of psychotropic drugs. Liposomes, nanosomes, nanoparticle polymers, nanobubbles are some examples of this targeted drug delivery. Nanotechnologies could also add new pharmacological properties, like nanoshells and dendrimers (ii) living analysis. Nanotechnology provides technical assistance to in vivo imaging or metabolome analysis (iii) central nervous system modeling. Research teams have succeeded to modelize inorganic synapses and mimick synaptic behavior, a step essential for further creation of artificial neural systems. Some nanoparticle assemblies present the same small worlds and free-scale networks architecture as cortical neural networks. Nanotechnologies and quantum physics could be used to create models of artificial intelligence and mental illnesses. We are not about to see a concrete application of nanomedicine in daily psychiatric practice. Even if nanotechnologies are promising, their safety is still inconsistent and this must be kept in mind. However, it seems essential that psychiatrists do not forsake this area of research the perspectives of which could be decisive in the field of mental illness.
Collapse
Affiliation(s)
- G Fond
- Université Montpellier 1, Montpellier F-34000, France; Institut National de Santé et de Recherche Médicale INSERM, U1061, Montpellier F-34093, France; Service Universitaire de Psychiatrie Adulte, Hôpital La Colombière/CHRU de Montpellier, F-34000, France.
| | | | | |
Collapse
|
181
|
Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. Prog Polym Sci 2013. [DOI: 10.1016/j.progpolymsci.2013.02.003] [Citation(s) in RCA: 909] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
182
|
Lueshen E, Venugopal I, Kanikunnel J, Soni T, Alaraj A, Linninger A. Intrathecal magnetic drug targeting using gold-coated magnetite nanoparticles in a human spine model. Nanomedicine (Lond) 2013; 9:1155-69. [PMID: 23862614 DOI: 10.2217/nnm.13.69] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM We aimed to magnetically guide and locally confine nanoparticles in desired locations within the spinal canal to achieve effective drug administration for improved treatment of chronic pain, cancers, anesthesia and spasticity. MATERIALS & METHODS We developed a physiologically and anatomically consistent in vitro human spine model to test the feasibility of intrathecal magnetic drug targeting. Gold-coated magnetite nanoparticles were infused into the model and targeted to specific regions using external magnetic fields. Experiments and simulations aiming to determine the effect of key parameters, such as magnet strength, duration of magnetic field exposure, magnet location and ferrous implants, on the collection efficiency of superparamagnetic nanoparticles in targeted regions were performed. RESULTS An 891% increase in nanoparticle collection efficiency within the target region was achieved using intrathecal magnetic drug targeting when compared with the control. Nanoparticle collection efficiency at the target region increased with time and reached a steady value within 15 min. Ferrous epidural implants generated sufficiently high-gradient magnetic fields, even when magnets were placed at a distance equal to the space between a patient's epidermis and spinal canal. CONCLUSION Our experiments indicate that intrathecal magnetic drug targeting is a promising technique for concentrating and localizing drugs at targeted sites within the spinal canal for treating diseases affecting the CNS.
Collapse
Affiliation(s)
- Eric Lueshen
- University of Illinois at Chicago, Department of Bioengineering, Laboratory for Product & Process Design, 851 South Morgan Street - 218 SEO, Chicago, IL 60607-7000, USA
| | | | | | | | | | | |
Collapse
|
183
|
Preparation of thermoresponsive Fe3O4/P(acrylic acid–methyl methacrylate–N-isopropylacrylamide) magnetic composite microspheres with controlled shell thickness and its releasing property for phenolphthalein. J Colloid Interface Sci 2013; 398:51-8. [DOI: 10.1016/j.jcis.2013.01.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/17/2013] [Accepted: 01/21/2013] [Indexed: 01/04/2023]
|
184
|
|
185
|
Fond G, Miot S. [Nanopsychiatry. The potential role of nanotechnologies in the future of psychiatry. A systematic review]. Encephale 2013; 39:252-7. [PMID: 23545476 DOI: 10.1016/j.encep.2013.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 01/14/2013] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Nanomedicine is defined as the area using nanotechnology's concepts for the benefit of human beings, their health and well being. The field of nanotechnology opened new unsuspected fields of research a few years ago. AIM OF THE STUDY To provide an overview of nanotechnology application areas that could affect care for psychiatric illnesses. METHODS We conducted a systematic review using the PRISMA criteria (preferred reporting items for systematic reviews and meta-analysis). Inclusion criteria were specified in advance: all studies describing the development of nanotechnology in psychiatry. The research paradigm was: "(nanotechnology OR nanoparticles OR nanomedicine) AND (central nervous system)" Articles were identified in three research bases, Medline (1966-present), Web of Science (1975-present) and Cochrane (all articles). The last search was carried out on April 2, 2012. Seventy-six items were included in this qualitative review. RESULTS The main applications of nanotechnology in psychiatry are (i) pharmacology. There are two main difficulties in neuropharmacology. Drugs have to pass the blood brain barrier and then to be internalized by targeted cells. Nanoparticles could increase drugs' bioavailability and pharmacokinetics, especially improving safety and efficacy of psychotropic drugs. Liposomes, nanosomes, nanoparticle polymers, nanobubbles are some examples of this targeted drug delivery. Nanotechnologies could also add new pharmacological properties, like nanohells and dendrimers; (ii) living analysis. Nanotechnology provides technical assistance to in vivo imaging or metabolome analysis; (iii) central nervous system modeling. Research teams have modelized inorganic synapses and mimicked synaptic behavior, essential for further creation of artificial neural systems. Some nanoparticle assemblies present the same small world and free-scale network architecture as cortical neural networks. Nanotechnologies and quantum physics could be used to create models of artificial intelligence and mental illnesses. DISCUSSION Even if nanotechnologies are promising, their safety is still tricky and this must be kept in mind. CONCLUSION We are not about to see a concrete application of nanomedicine in daily psychiatric practice. However, it seems essential that psychiatrists do not forsake this area of research the perspectives of which could be decisive in the field of mental illness.
Collapse
Affiliation(s)
- G Fond
- Service universitaire de psychiatrie adulte, hôpital La Colombière, hôpitaux université Montpellier 1, Inserm U1061, CHU de Montpellier, 39, avenue Charles-Flahault, 34295 Montpellier cedex 05, France; Institut national de santé et de recherche médicale, Inserm U1061, 34093 Montpellier, France; Service universitaire de psychiatrie adulte, hôpital La Colombière, CHRU de Montpellier, 34000 Montpellier, France.
| | | |
Collapse
|
186
|
Duan Y, Zhao X, Ren W, Wang X, Yu KF, Li D, Zhang X, Zhang Q. Antitumor activity of dichloroacetate on C6 glioma cell: in vitro and in vivo evaluation. Onco Targets Ther 2013; 6:189-98. [PMID: 23515860 PMCID: PMC3601023 DOI: 10.2147/ott.s40992] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dichloroacetate (DCA), a small molecule mitochondria-targeting agent, can penetrate the blood-brain barrier, showing potential therapeutic effects on brain tumors. Considering the effects of DCA on tumor cellular metabolism, penetrating across the blood-brain barrier, as well as having potential antitumor activity on brain tumors, the purpose of this study is to investigate the antitumor activity of DCA on C6 glioma cells in vitro and in vivo. DCA inhibited C6 glioma cell proliferation, induced C6 cell apoptosis, and arrested C6 cells in S phase. DCA can inhibit the expression of heat shock proteins 70 (Hsp70) in a dose-dependent and time-dependent manner (P < 0.01). Our in vivo antitumor effect results indicated that DCA markedly inhibited the growth of C6 glioma tumors in both C6 brain tumor-bearing rats and C6 tumor-bearing nude mice (P < 0.01). DCA significantly induced the ROS production and decreased the mitochondrial membrane potential in tumor tissues. Our in vivo antitumor effect results also indicated that DCA has potential antiangiogenic effects. In conclusion, DCA may be a viable therapeutic agent in the treatment of gliomas.
Collapse
Affiliation(s)
- Yu Duan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
187
|
Cai H, An X, Cui J, Li J, Wen S, Li K, Shen M, Zheng L, Zhang G, Shi X. Facile hydrothermal synthesis and surface functionalization of polyethyleneimine-coated iron oxide nanoparticles for biomedical applications. ACS APPLIED MATERIALS & INTERFACES 2013; 5:1722-1731. [PMID: 23388099 DOI: 10.1021/am302883m] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We report the facile hydrothermal synthesis and surface functionalization of branched polyethyleneimine (PEI)-coated iron oxide nanoparticles (Fe3O4-PEI NPs) for biomedical applications. In this study, Fe3O4-PEI NPs were synthesized via a one-pot hydrothermal method in the presence of PEI. The formed Fe3O4-PEI NPs with primary amine groups on the surface were able to be further functionalized with polyethylene glycol (PEG), acetic anhydride, and succinic anhydride, respectively. The formed pristine and functionalized Fe3O4-PEI NPs were characterized via different techniques. We showed that the sizes of the Fe3O4-PEI NPs were able to be controlled by varying the mass ratio of Fe(II) salt and PEI. In addition, the formed Fe3O4-PEI NPs with different surface functionalities had good water dispersibility, colloidal stability, and relatively high R2 relaxivity (130-160 1/(mM·s)). Cell viability assay data revealed that the surface PEGylation and acylation of Fe3O4-PEI NPs rendered them with good biocompatibility in the given concentration range, while the pristine aminated Fe3O4-PEI NPs started to display slight toxicity at the concentration of 50 μg/mL. Importantly, macrophage cellular uptake results demonstrated that both PEGylation and acetylation of Fe3O4-PEI NPs were able to significantly reduce the nonspecific macrophage uptake, likely rendering the particles with prolonged circulation time. With the proven hemocompatibility and rich amine conjugation chemistry, the Fe3O4-PEI NPs with different surface functionalities may be applied for various biomedical applications, especially for magnetic resonance imaging and therapy.
Collapse
Affiliation(s)
- Hongdong Cai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Sun Z, Yathindranath V, Worden M, Thliveris JA, Chu S, Parkinson FE, Hegmann T, Miller DW. Characterization of cellular uptake and toxicity of aminosilane-coated iron oxide nanoparticles with different charges in central nervous system-relevant cell culture models. Int J Nanomedicine 2013; 8:961-70. [PMID: 23494517 PMCID: PMC3593762 DOI: 10.2147/ijn.s39048] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Aminosilane-coated iron oxide nanoparticles (AmS-IONPs) have been widely used in constructing complex and multifunctional drug delivery systems. However, the biocompatibility and uptake characteristics of AmS-IONPs in central nervous system (CNS)-relevant cells are unknown. The purpose of this study was to determine the effect of surface charge and magnetic field on toxicity and uptake of AmS-IONPs in CNS-relevant cell types. Methods The toxicity and uptake profile of positively charged AmS-IONPs and negatively charged COOH-AmS-IONPs of similar size were examined using a mouse brain microvessel endothelial cell line (bEnd.3) and primary cultured mouse astrocytes and neurons. Cell accumulation of IONPs was examined using the ferrozine assay, and cytotoxicity was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results No toxicity was observed in bEnd.3 cells at concentrations up to 200 μg/mL for either AmS-IONPs or COOH-AmS-IONPs. AmS-IONPs at concentrations above 200 μg/mL reduced neuron viability by 50% in the presence or absence of a magnetic field, while only 20% reductions in viability were observed with COOH-AmS-IONPs. Similar concentrations of AmS-IONPs in astrocyte cultures reduced viability to 75% but only in the presence of a magnetic field, while exposure to COOH-AmS-IONPs reduced viability to 65% and 35% in the absence and presence of a magnetic field, respectively. Cellular accumulation of AmS-IONPs was greater in all cell types examined compared to COOH-AmS-IONPs. Rank order of cellular uptake for AmS-IONPs was astrocytes > bEnd.3 > neurons. Accumulation of COOH-AmS-IONPs was minimal and similar in magnitude in different cell types. Magnetic field exposure enhanced cellular accumulation of both AmS- and COOH-AmS-IONPs. Conclusion Both IONP compositions were nontoxic at concentrations below 100 μg/mL in all cell types examined. At doses above 100 μg/mL, neurons were more sensitive to AmS-IONPs, whereas astrocytes were more vulnerable toward COOH-AmS-IONPs. Toxicity appears to be dependent on the surface coating as opposed to the amount of iron-oxide present in the cell.
Collapse
Affiliation(s)
- Zhizhi Sun
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | | | |
Collapse
|
189
|
Peng Q, Sun X, Gong T, Wu CY, Zhang T, Tan J, Zhang ZR. Injectable and biodegradable thermosensitive hydrogels loaded with PHBHHx nanoparticles for the sustained and controlled release of insulin. Acta Biomater 2013; 9:5063-9. [PMID: 23036950 DOI: 10.1016/j.actbio.2012.09.034] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 09/22/2012] [Accepted: 09/25/2012] [Indexed: 01/04/2023]
Abstract
Biodegradable PHBHHx (poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)) nanoparticles containing insulin phospholipid complex were loaded in chitosan-based thermosensitive hydrogels for long-term sustained and controlled delivery of insulin. The injectable hydrogels, prepared by adding β-glycerophosphate disodium salt (GP) solution to chitosan (CS) solution under stirring, showed a rapid solution-to-gel transition at 37 °C, a porous structure and a comparative degradation and swelling rate in vitro. In the in vitro release studies, only 19.11% of total insulin was released from the nanoparticle-loaded hydrogel (NP-CS/GP) within 31 days. However, 96.41% of total insulin was released from the free insulin-loaded hydrogel (INS-CS/GP) within 16 days. Most importantly, the hypoglycemic effect of NP-CS/GP following subcutaneous injection in diabetic rats lasted for >5 days, much longer than the effect caused by INS-CS/GP or other long-acting insulin formulations. The pharmacological availability of NP-CS/GP relative to INS-CS/GP was 379.85%, indicating that the bioavailability of insulin was significantly enhanced by NP-CS/GP gels. Therefore, biodegradable and thermosensitive NP-CS/GP gels have great potential for use in novel ultralong-acting insulin injections. In addition, the NP-loaded hydrogel system also paves the way for long-term delivery of other proteins and peptides.
Collapse
Affiliation(s)
- Q Peng
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
190
|
Magnetic nanoparticles for tumor imaging and therapy: a so-called theranostic system. Pharm Res 2013; 30:2445-58. [PMID: 23344909 DOI: 10.1007/s11095-013-0982-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 01/07/2013] [Indexed: 10/27/2022]
Abstract
In this review, we discussed the establishment of a so-called "theranostic" system by instituting the basic principles including the use of: [1] magnetic iron oxide nanoparticles (MION)-based drug carrier; [2] intra-arterial (I.A.) magnetic targeting; [3] macromolecular drugs with unmatched therapeutic potency and a repetitive reaction mechanism; [4] cell-penetrating peptide-mediated cellular drug uptake; and [5] heparin/protamine-regulated prodrug protection and tumor-specific drug re-activation into one single drug delivery system to overcome all possible obstacles, thereby achieving a potentially non-invasive, magnetic resonance imaging-guided, clinically enabled yet minimally toxic brain tumor drug therapy. By applying a topography-optimized I.A. magnetic targeting to dodge rapid organ clearance of the carrier during its first passage into the circulation, tumor capture of MION was enriched by >350 folds over that by conventional passive enhanced permeability and retention targeting. By adopting the prodrug strategy, we observed by far the first experimental success in a rat model of delivering micro-gram quantity of the large β-galactosidase model protein selectively into a brain tumor but not to the ipsi- or contra-lateral normal brain regions. With the therapeutic regimens of most toxin/siRNA drugs to fully (>99.9%) eradicate a tumor being in the nano-molar range, the prospects of reaching this threshold become practically accomplishable.
Collapse
|
191
|
|
192
|
Wang Y, Liu E, Sun X, Huang P, Long H, Wang H, Yu X, Zheng C, Huang Y. Pluronic L61 as a long-circulating modifier for enhanced liposomal delivery of cancer drugs. Polym Chem 2013. [DOI: 10.1039/c3py00042g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
193
|
Mody VV, Singh A, Wesley B. Basics of magnetic nanoparticles for their application in the field of magnetic fluid hyperthermia. EUROPEAN JOURNAL OF NANOMEDICINE 2013. [DOI: 10.1515/ejnm-2012-0008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
194
|
Sahoo B, Sahu SK, Bhattacharya D, Dhara D, Pramanik P. A novel approach for efficient immobilization and stabilization of papain on magnetic gold nanocomposites. Colloids Surf B Biointerfaces 2013; 101:280-9. [DOI: 10.1016/j.colsurfb.2012.07.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 07/02/2012] [Accepted: 07/06/2012] [Indexed: 10/28/2022]
|
195
|
Gai L, Han X, Hou Y, Chen J, Jiang H, Chen X. Surfactant-free synthesis of Fe3O4@PANI and Fe3O4@PPy microspheres as adsorbents for isolation of PCR-ready DNA. Dalton Trans 2013; 42:1820-6. [DOI: 10.1039/c2dt32164e] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
196
|
Honglawan A, Ni H, Weissman D, Yang S. Synthesis of random copolymer based pH-responsive nanoparticles as drug carriers for cancer therapeutics. Polym Chem 2013. [DOI: 10.1039/c3py00390f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
197
|
MC8 peptide-mediated Her-2 receptor targeting based on PEI-β-CyD as gene delivery vector. Appl Biochem Biotechnol 2012; 169:450-61. [PMID: 23225019 DOI: 10.1007/s12010-012-9959-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 11/06/2012] [Indexed: 10/27/2022]
Abstract
A novel vector with high gene delivery efficiency and special cell targeting ability was developed using a good strategy that utilized low molecular weight polyethylenimine (PEI; molecular weight, 600 KDa [PEI600]) cross-linked to β-cyclodextrin (β-CyD) via a facile synthetic route. Human epidermal growth factor receptor 2 (Her-2) are highly expressed in a variety of human cancer cells and are potential targets for cancer therapy. MC8 peptides, which have been proven to combine especially with Her-2 on cell membranes were coupled to PEI-β-CyD using N-succinimidyl-3-(2-pyridyldithio) propionate as a linker. The ratios of PEI600, β-CyD, and peptide were calculated based on proton integral values obtained from the (1)H-NMR spectra of the resulting products. Electron microscope observations showed that MC8-PEI-β-CyD can efficiently condense plasmid DNA (pDNA) into nanoparticles of about 200 nm, and MTT assays suggested the decreased toxicity of the polymer. Experiments on gene delivery efficiency in vitro showed that MC8-PEI-β-CyD/pDNA polyplexes had significantly greater transgene activities than PEI-β-CyD/pDNA in the Skov3 and A549 cells, which positively expressed Her-2, whereas, no such effect was observed in the MCF-7 cells, which negatively expressed Her-2. Our current research indicated that the synthesized nonviral vector shows improved gene delivery efficiency and targeting specificity in Her-2 positive cells.
Collapse
|
198
|
Mok H, Zhang M. Superparamagnetic iron oxide nanoparticle-based delivery systems for biotherapeutics. Expert Opin Drug Deliv 2012. [PMID: 23199200 DOI: 10.1517/17425247.2013.747507] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Superparamagnetic iron oxide nanoparticle (SPION)-based carrier systems have many advantages over other nanoparticle-based systems. They are biocompatible, biodegradable, facilely tunable and superparamagnetic and thus controllable by an external magnetic field. These attributes enable their broad biomedical applications. In particular, magnetically driven carriers are drawing considerable interest as an emerging therapeutic delivery system because of their superior delivery efficiency. AREAS COVERED This article reviews the recent advances in use of SPION-based carrier systems to improve the delivery efficiency and target specificity of biotherapeutics. The authors examine various formulations of SPION-based delivery systems, including SPION micelles, clusters, hydrogels, liposomes and micro/nanospheres, as well as their specific applications in delivery of biotherapeutics. EXPERT OPINION Recently, biotherapeutics including therapeutic cells, proteins and genes have been studied as alternative treatments to various diseases. Despite the advantages of high target specificity and low adverse effects, clinical translation of biotherapeutics has been hindered by the poor stability and low delivery efficiency compared with chemical drugs. Accordingly, biotherapeutic delivery systems that can overcome these limitations are actively pursued. SPION-based materials can be ideal candidates for developing such delivery systems because of their excellent biocompatibility and superparamagnetism that enables long-term accumulation/retention at target sites by utilization of a suitable magnet. In addition, synthesis technologies for production of finely tuned, homogeneous SPIONs have been well developed, which may promise their rapid clinical translation.
Collapse
Affiliation(s)
- Hyejung Mok
- Konkuk University, Department of Bioscience and Biotechnology, Seoul 143-701, Republic of Korea
| | | |
Collapse
|
199
|
Reddy LH, Arias JL, Nicolas J, Couvreur P. Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 2012; 112:5818-78. [PMID: 23043508 DOI: 10.1021/cr300068p] [Citation(s) in RCA: 1166] [Impact Index Per Article: 89.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- L Harivardhan Reddy
- Laboratoire de Physico-Chimie, Pharmacotechnie et Biopharmacie, Université Paris-Sud XI, UMR CNRS, Faculté de Pharmacie, IFR, Châtenay-Malabry, France
| | | | | | | |
Collapse
|
200
|
Bamdad M, Ghotbi MY. A new approach to the synthesis of nanostructured Fe3Al alloy and aluminum doped iron oxide material. ADV POWDER TECHNOL 2012. [DOI: 10.1016/j.apt.2011.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|