151
|
Johnstone S, Isakson B, Locke D. Biological and biophysical properties of vascular connexin channels. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 278:69-118. [PMID: 19815177 PMCID: PMC2878191 DOI: 10.1016/s1937-6448(09)78002-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intercellular channels formed by connexin proteins play a pivotal role in the direct movement of ions and larger cytoplasmic solutes between vascular endothelial cells, between vascular smooth muscle cells, and between endothelial and smooth muscle cells. Multiple genetic and epigenetic factors modulate connexin expression levels and/or channel function, including cell-type-independent and cell-type-specific transcription factors, posttranslational modifications, and localized membrane targeting. Additionally, differences in protein-protein interactions, including those between connexins, significantly contribute to both vascular homeostasis and disease progression. The biophysical properties of the connexin channels identified in the vasculature, those formed by Cx37, Cx40, Cx43 and/or Cx45 proteins, are discussed in this chapter in the physiological and pathophysiological context of vessel function.
Collapse
Affiliation(s)
- Scott Johnstone
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 29908
| | - Brant Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 29908
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 29908
| | - Darren Locke
- Department of Pharmacology and Physiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103
| |
Collapse
|
152
|
Scemes E, Spray DC, Meda P. Connexins, pannexins, innexins: novel roles of "hemi-channels". Pflugers Arch 2008; 457:1207-26. [PMID: 18853183 DOI: 10.1007/s00424-008-0591-5] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 09/17/2008] [Indexed: 12/11/2022]
Affiliation(s)
- Eliana Scemes
- The Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| | | | | |
Collapse
|
153
|
Danesh-Meyer HV, Huang R, Nicholson LFB, Green CR. Connexin43 antisense oligodeoxynucleotide treatment down-regulates the inflammatory response in an in vitro interphase organotypic culture model of optic nerve ischaemia. J Clin Neurosci 2008; 15:1253-63. [PMID: 18824359 DOI: 10.1016/j.jocn.2008.08.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2008] [Accepted: 08/24/2008] [Indexed: 10/21/2022]
Abstract
Using a model of optic nerve ischaemia, this study investigated oxygen-glucose deprivation (OGD) on isolated rat optic nerve segments cultured in vitro. Thereafter, the effect of antisense oligodeoxynucleotides (ASODN) specific to the gap junction protein connexin43 (Cx43) was evaluated in this same model. Following exposure to OGD for 2 hours, optic nerves were maintained in interphase organotypic culture with and without exposure to Cx43 ASODN. Optic nerves were sectioned at 2 hours, 6 hours, and at days 1, 2, 3 and 6 following culture. Cell death was quantified using propidium iodide (PI) staining and specific markers for Cx43, capillaries (von Willebrand factor), astrocytes (glial fibrillary acidic protein), microglia and endothelial cells (isolectin B4) were used to evaluate these parameters in conjunction with digital light and confocal microscopy. In this model, up-regulation of Cx43 was seen at 2 hours following exposure of the optic nerve to OGD and peaked at day 3. Cx43 ASODN treatment dampened this up-regulation. Additionally, more PI labeled cells were found in the centre of control optic nerve segments than in treated nerves (p<0.01). Controls also showed evidence of capillary breakdown and increased numbers of astrocytes and activated microglia compared to Cx43 ASODN treated nerves (p<0.05). Thus, the application of Cx43 ASODN to post-ischaemic optic nerve segments significantly reduced the up-regulation of Cx43 and, subsequently, the spread of injury and a resultant inflammatory response. Cx43 up-regulation may play an important role in optic nerve injury, offering a potential avenue for treatment in optic neuropathy.
Collapse
Affiliation(s)
- Helen V Danesh-Meyer
- Department of Ophthalmology, Private Bag 92019, Auckland, 1020, University of Auckland, New Zealand.
| | | | | | | |
Collapse
|
154
|
Evans WH, Leybaert L. Mimetic peptides as blockers of connexin channel-facilitated intercellular communication. ACTA ACUST UNITED AC 2008; 14:265-73. [PMID: 18392994 DOI: 10.1080/15419060801891034] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
There is a dearth of chemical inhibitors of connexin-mediated intercellular communication. The advent of short "designer" connexin mimetic peptides has provided new tools to inhibit connexin channels quickly and reversibly. This perspective describes the development of mimetic peptides, especially Gap 26 and 27 that are the most popular and correspond to specific sequences in the extracellular loops of connexins 37, 40 and 43. Initially they were used to inhibit gap-junctional coupling in a wide range of mammalian cells and tissues. Currently, they are also being examined as therapeutic agents that accelerate wound healing and in the early treatment of spinal cord injury. The mimetic peptides bind to connexin hemichannels, influencing channel properties as shown by lowering of electrical conductivity and potently blocking the entry of small reporter dyes and the release of ATP by cells. A mechanism is proposed to help explain the dual action of connexin mimetic peptides on connexin hemichannels and gap-junctional coupling.
Collapse
Affiliation(s)
- W Howard Evans
- Department of Medical Biochemistry and Immunology, Wales Heart Research Institute Cardiff University Medical School, Heath Park, Cardiff, UK.
| | | |
Collapse
|
155
|
Das S, Lin D, Jena S, Shi A, Battina S, Hua DH, Allbaugh R, Takemoto DJ. Protection of retinal cells from ischemia by a novel gap junction inhibitor. Biochem Biophys Res Commun 2008; 373:504-8. [PMID: 18590704 DOI: 10.1016/j.bbrc.2008.06.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 06/15/2008] [Indexed: 11/19/2022]
Abstract
Retinal cells which become ischemic will pass apoptotic signal to adjacent cells, resulting in the spread of damage. This occurs through open gap junctions. A class of novel drugs, based on primaquine (PQ), was tested for binding to connexin 43 using simulated docking studies. A novel drug has been synthesized and tested for inhibition of gap junction activity using R28 neuro-retinal cells in culture. Four drugs were initially compared to mefloquine, a known gap junction inhibitor. The drug with optimal inhibitory activity, PQ1, was tested for inhibition and was found to inhibit dye transfer by 70% at 10 microM. Retinal ischemia was produced in R28 cells using cobalt chloride as a chemical agent. This resulted in activation of caspase-3 which was prevented by PQ1, the gap junction inhibitor. Results demonstrate that novel gap junction inhibitors may provide a means to prevent retinal damage during ischemia.
Collapse
Affiliation(s)
- Satyabrata Das
- Department of Biochemistry, Kansas State University, 141 Chalmers Hall, Manhattan, KS 66506, USA
| | | | | | | | | | | | | | | |
Collapse
|
156
|
Besancon E, Guo S, Lok J, Tymianski M, Lo EH. Beyond NMDA and AMPA glutamate receptors: emerging mechanisms for ionic imbalance and cell death in stroke. Trends Pharmacol Sci 2008; 29:268-75. [DOI: 10.1016/j.tips.2008.02.003] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 02/11/2008] [Accepted: 02/15/2008] [Indexed: 01/25/2023]
|
157
|
Samoilova M, Wentlandt K, Adamchik Y, Velumian AA, Carlen PL. Connexin 43 mimetic peptides inhibit spontaneous epileptiform activity in organotypic hippocampal slice cultures. Exp Neurol 2008; 210:762-75. [DOI: 10.1016/j.expneurol.2008.01.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 01/02/2008] [Accepted: 01/07/2008] [Indexed: 01/12/2023]
|
158
|
Sáez JC. Astrocytes as connexin-dependent signaling cells for local blood flow regulation. Am J Physiol Heart Circ Physiol 2008; 294:H586-7. [PMID: 18178716 DOI: 10.1152/ajpheart.91445.2007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
159
|
Vinken M, Henkens T, De Rop E, Fraczek J, Vanhaecke T, Rogiers V. Biology and pathobiology of gap junctional channels in hepatocytes. Hepatology 2008; 47:1077-88. [PMID: 18058951 DOI: 10.1002/hep.22049] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The present review provides the state of the art of the current knowledge concerning gap junctional channels and their roles in liver functioning. In the first part, we summarize some relevant biochemical properties of hepatic gap junctional channels, including their structure and regulation. In the second part, we discuss the involvement of gap junctional channels in the occurrence of liver cell growth, liver cell differentiation, and liver cell death. We further exemplify their relevance in hepatic pathophysiology. Finally, a number of directions for future liver gap junctional channel research are proposed, and the up-regulation of gap junctional channel activity as a novel strategy in (liver) cancer therapy is illustrated.
Collapse
Affiliation(s)
- Mathieu Vinken
- Department of Toxicology, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
160
|
Two-photon imaging of stroke onset in vivo reveals that NMDA-receptor independent ischemic depolarization is the major cause of rapid reversible damage to dendrites and spines. J Neurosci 2008; 28:1756-72. [PMID: 18272696 DOI: 10.1523/jneurosci.5128-07.2008] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We adapt a mouse global ischemia model to permit rapid induction of ischemia and reperfusion in conjunction with two-photon imaging to monitor the initial ionic, structural, and functional implications of brief interruptions of blood flow (6-8 min) in vivo. After only 2-3 min of global ischemia, a wide spread loss of mouse somatosensory cortex apical dendritic structure is initiated during the passage of a propagating wave (3.3 mm/min) of ischemic depolarization. Increases in intracellular calcium levels occurred during the wave of ischemic depolarization and were coincident with the loss of dendritic structure, but were not triggered by reperfusion. To assess the role of NMDA receptors, we locally applied the antagonist MK-801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate] at concentrations sufficient to fully block local NMDA agonist-evoked changes in intracellular calcium levels in vivo. Changes in dendritic structure and intracellular calcium levels were independent of NMDA receptor activation. Local application of the non-NMDA glutamate receptor antagonist CNQX also failed to block ischemic depolarization or rapid changes in dendrite structure. Within 3-5 min of reperfusion, damage ceased and restoration of synaptic structure occurred over 10-60 min. In contrast to a reperfusion promoting damage, over this time scale, the majority of spines and dendrites regained their original structure during reperfusion. Intrinsic optical signal imaging of sensory evoked maps indicated that reversible alteration in dendritic structure during reperfusion was accompanied by restored functional maps. Our results identify glutamate receptor-independent ischemic depolarization as the major ionic event associated with disruption of synaptic structure during the first few minutes of ischemia in vivo.
Collapse
|
161
|
|
162
|
Handel A, Yates A, Pilyugin SS, Antia R. Gap junction-mediated antigen transport in immune responses. Trends Immunol 2007; 28:463-6. [DOI: 10.1016/j.it.2007.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 08/14/2007] [Accepted: 08/14/2007] [Indexed: 12/26/2022]
|
163
|
|
164
|
Talhouk RS, Zeinieh MP, Mikati MA, El-Sabban ME. Gap junctional intercellular communication in hypoxia-ischemia-induced neuronal injury. Prog Neurobiol 2007; 84:57-76. [PMID: 18006137 DOI: 10.1016/j.pneurobio.2007.10.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 08/29/2007] [Accepted: 10/04/2007] [Indexed: 01/07/2023]
Abstract
Brain hypoxia-ischemia is a relatively common and serious problem in neonates and in adults. Its consequences include long-term histological and behavioral changes and reduction in seizure threshold. Gap junction intercellular communication is pivotal in the spread of hypoxia-ischemia related injury and in mediating its long-term effects. This review provides a comprehensive and critical review of hypoxia-ischemia and hypoxia in the brain and the potential role of gap junctions in the spread of the neuronal injury induced by these insults. It also presents the effects of hypoxia-ischemia and of hypoxia on the state of gap junctions in vitro and in vivo. Understanding the mechanisms involved in gap junction-mediated neuronal injury due to hypoxia will lead to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Rabih S Talhouk
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | | | | | | |
Collapse
|
165
|
Franco R, Schoneveld OJ, Pappa A, Panayiotidis MI. The central role of glutathione in the pathophysiology of human diseases. Arch Physiol Biochem 2007; 113:234-58. [PMID: 18158646 DOI: 10.1080/13813450701661198] [Citation(s) in RCA: 373] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reduced glutathione (L-gamma-glutamyl-L-cysteinyl-glycine, GSH) is the prevalent low-molecular-weight thiol in mammalian cells. It is formed in a two-step enzymatic process including, first, the formation of gamma-glutamylcysteine from glutamate and cysteine, by the activity of the gamma-glutamylcysteine synthetase; and second, the formation of GSH by the activity of GSH synthetase which uses gamma-glutamylcysteine and glycine as substrates. While its synthesis and metabolism occur intracellularly, its catabolism occurs extracellularly by a series of enzymatic and plasma membrane transport steps. Glutathione metabolism and transport participates in many cellular reactions including: antioxidant defense of the cell, drug detoxification and cell signaling (involved in the regulation of gene expression, apoptosis and cell proliferation). Alterations in its concentration have also been demonstrated to be a common feature of many pathological conditions including diabetes, cancer, AIDS, neurodegenerative and liver diseases. Additionally, GSH catabolism has been recently reported to modulate redox-sensitive components of signal transduction cascades. In this manuscript, we review the current state of knowledge on the role of GSH in the pathogenesis of human diseases with the aim to underscore its relevance in translational research for future therapeutic treatment design.
Collapse
Affiliation(s)
- R Franco
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
166
|
Retamal MA, Schalper KA, Shoji KF, Orellana JA, Bennett MVL, Sáez JC. Possible involvement of different connexin43 domains in plasma membrane permeabilization induced by ischemia-reperfusion. J Membr Biol 2007; 218:49-63. [PMID: 17705051 DOI: 10.1007/s00232-007-9043-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2007] [Accepted: 06/15/2007] [Indexed: 01/04/2023]
Abstract
In vitro and in vivo studies support the involvement of connexin 43-based cell-cell channels and hemichannels in cell death propagation induced by ischemia-reperfusion. In this context, open connexin hemichannels in the plasma membrane have been proposed to act as accelerators of cell death. Progress on the mechanisms underlying the cell permeabilization induced by ischemia-reperfusion reveals the involvement of several factors leading to an augmented open probability and increased number of hemichannels on the cell surface. While open probability can be increased by a reduction in extracellular concentration of divalent cations and changes in covalent modifications of connexin 43 (oxidation and phosphorylation), increase in number of hemichannels requires an elevation of the intracellular free Ca(2+) concentration. Reversal of connexin 43 redox changes and membrane permeabilization can be induced by intracellular, but not extracellular, reducing agents, suggesting a cytoplasmic localization of the redox sensor(s). In agreement, hemichannels formed by connexin 45, which lacks cytoplasmic cysteines, or by connexin 43 with its C-terminal domain truncated to remove its cysteines are insensitive to reducing agents. Although further studies are required for a precise localization of the redox sensor of connexin 43 hemichannels, modulation of the redox potential is proposed as a target for the design of pharmacological tools to reduce cell death induced by ischemia-reperfusion in connexin 43-expressing cells.
Collapse
Affiliation(s)
- Mauricio A Retamal
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
167
|
Zappalà A, Li Volti G, Serapide MF, Pellitteri R, Falchi M, La Delia F, Cicirata V, Cicirata F. Expression of pannexin2 protein in healthy and ischemized brain of adult rats. Neuroscience 2007; 148:653-67. [PMID: 17692470 DOI: 10.1016/j.neuroscience.2007.06.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 05/31/2007] [Accepted: 06/18/2007] [Indexed: 10/23/2022]
Abstract
The expression pattern of the pannexin2 protein (Px2) in healthy and ischemized brains of adult rats was investigated. A polyclonal antibody for rat Px2 was generated in chicken and purified for affinity. This antibody was used to study by Western blot, Enzyme-Linked Immunosorbent Assay, and immunohistochemistry, the expression pattern of Px2 in healthy brain of adult rats and in the hippocampus of rats submitted to bilateral clamping of carotid arteries for 20 min, followed by different times of reperfusion (I/R) (8 h, 24 h, 48 h, 72 h, 14 days and 30 days). Immunohistochemical studies visualized the wide and complex expression pattern of Px2 in the healthy brain. All Px2(+) positive cells were neurons which also showed no puncta on their cellular membranes. Both pyramidal cells and interneurons, the majority of which were positive to parvalbumin, were stained in healthy hippocampus. The number of Px2 interneurons in the hippocampus showed a progressive reduction at successive time intervals after I/R, with a negative peak of about -40% after 72 h from I/R. Interneurons which were positive for both Px2 and parvalbumin, represented about the 85% of all parvalbumin cells stained in the hippocampus. This percentage rested grossly unmodified at different time intervals after I/R in spite of the progressive neuronal depletion. Concomitantly, an intense astrogliosis occurred in the hippocampus. Most of the astroglial cells expressed de novo and for a transient time (from 24 h to 14 days from I/R), Px2. Primary co-cultures of hippocampal neurons and astrocytes were submitted to transient ischemia-like injury. This set of experiments further confirmed the in vivo results by showing that Px2 is de novo and transiently expressed in astroglial cells following a transient ischemia-like injury. These results suggested the expression of Px2 in the astrocytes may be induced either from injured neurons or by biochemical pathways internal to the astrocyte itself. In conclusion, our results showed the transient expression of Px2 in astrocytes of reactive gliosis occurring in the hippocampus following I/R injury. We hypothesize that Px2 expression in astrocytes following an ischemic insult is principally involved in the formation of hemichannels for the release of signaling molecules devoted to influence the cellular metabolism and the redox status of the surrounding environment.
Collapse
Affiliation(s)
- A Zappalà
- Department of Physiological Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | | | | | | | | | | | | | | |
Collapse
|
168
|
Frenguelli BG, Wigmore G, Llaudet E, Dale N. Temporal and mechanistic dissociation of ATP and adenosine release during ischaemia in the mammalian hippocampus. J Neurochem 2007; 101:1400-13. [PMID: 17459147 PMCID: PMC1920548 DOI: 10.1111/j.1471-4159.2006.04425.x] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adenosine is well known to be released during cerebral metabolic stress and is believed to be neuroprotective. ATP release under similar circumstances has been much less studied. We have now used biosensors to measure and compare in real time the release of ATP and adenosine during in vitro ischaemia in hippocampal slices. ATP release only occurred following the anoxic depolarisation, whereas adenosine release was apparent almost immediately after the onset of ischaemia. ATP release required extracellular Ca2+. By contrast adenosine release was enhanced by removal of extracellular Ca2+, whilst TTX had no effect on either ATP release or adenosine release. Blockade of ionotropic glutamate receptors substantially enhanced ATP release, but had only a modest effect on adenosine release. Carbenoxolone, an inhibitor of gap junction hemichannels, also greatly enhanced ischaemic ATP release, but had little effect on adenosine release. The ecto-ATPase inhibitor ARL 67156, whilst modestly enhancing the ATP signal detected during ischaemia, had no effect on adenosine release. Adenosine release during ischaemia was reduced by pre-treament with homosysteine thiolactone suggesting an intracellular origin. Adenosine transport inhibitors did not inhibit adenosine release, but instead they caused a twofold increase of release. Our data suggest that ATP and adenosine release during ischaemia are for the most part independent processes with distinct underlying mechanisms. These two purines will consequently confer temporally distinct influences on neuronal and glial function in the ischaemic brain.
Collapse
Affiliation(s)
- Bruno G Frenguelli
- Neurosciences Institute, Division of Pathology & Neuroscience, University of Dundee, Ninewells HospitalDundee, UK
| | - Geoffrey Wigmore
- Department of Biological Sciences, University of WarwickCoventry, UK
| | - Enrique Llaudet
- Department of Biological Sciences, University of WarwickCoventry, UK
| | - Nicholas Dale
- Department of Biological Sciences, University of WarwickCoventry, UK
| |
Collapse
|
169
|
Retamal MA, Schalper KA, Shoji KF, Bennett MVL, Sáez JC. Opening of connexin 43 hemichannels is increased by lowering intracellular redox potential. Proc Natl Acad Sci U S A 2007; 104:8322-7. [PMID: 17494739 PMCID: PMC1895948 DOI: 10.1073/pnas.0702456104] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nonjunctional membrane in many cells contains connexin gap junction hemichannels (or connexons) that can open to allow permeation of small molecules. Opening of Cx43 hemichannels is infrequent in normal extracellular Ca(2+) and enhanced by low Ca(2+), positive membrane potentials, and dephosphorylation of critical residues. Here we report that lowering intracellular redox potential increases Cx43 hemichannel open probability under otherwise normal conditions. We studied dye uptake and single-channel activity in HeLa cells transfected with wild-type Cx43, Cx43 with enhanced GFP attached to its C terminus (Cx43-EGFP), and Cx43 with enhanced GFP attached to its N terminus (EGFP-Cx43). Dithiothreitol [(DTT) 10 mM], a membrane permeant-reducing agent, increased the rate of dye uptake by cells expressing Cx43 and Cx43-EGFP, but not by parental cells or cells expressing EGFP-Cx43. Induced dye uptake was blocked by La(3+), by a peptide gap junction and hemichannel blocker (gap 26), and by flufenamic acid. DTT increased Cx43-EGFP hemichannel opening at positive voltages. Bath application of reduced glutathione, a membrane impermeant-reducing agent, did not increase dye uptake, but glutathione in the recording pipette increased hemichannel opening at positive voltages, suggesting that it acted intracellularly. DTT caused little change in levels of surface Cx43 or Cx43-EGFP, or in intracellular pH. These findings suggest that lowering intracellular redox potential increases the opening of Cx43 and Cx43-EGFP hemichannels, possibly by action on cytoplasmic cysteine residues in the connexin C terminus.
Collapse
Affiliation(s)
- Mauricio A. Retamal
- *Núcleo Milenio Inmunología e Inmunoterapia
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Santiago 4860, Chile; and
| | - Kurt A. Schalper
- *Núcleo Milenio Inmunología e Inmunoterapia
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Santiago 4860, Chile; and
| | - Kenji F. Shoji
- *Núcleo Milenio Inmunología e Inmunoterapia
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Santiago 4860, Chile; and
| | - Michael V. L. Bennett
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
- To whom correspondence may be addressed. E-mail: or
| | - Juan C. Sáez
- *Núcleo Milenio Inmunología e Inmunoterapia
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Santiago 4860, Chile; and
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
170
|
Sung JY, Lee HJ, Jeong EI, Oh Y, Park J, Kang KS, Chung KC. Alpha-synuclein overexpression reduces gap junctional intercellular communication in dopaminergic neuroblastoma cells. Neurosci Lett 2007; 416:289-93. [PMID: 17337120 DOI: 10.1016/j.neulet.2007.02.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 02/03/2007] [Accepted: 02/07/2007] [Indexed: 10/23/2022]
Abstract
Alpha-synuclein has been implicated in the pathology of certain neurodegenerative diseases, including Parkinson disease (PD) and dementia with Lewy bodies (LBs). Overexpression of human alpha-synuclein in neuronal cells reduces cell viability, but the precise cellular and molecular mechanisms remain poorly understood. Gap junctional intercellular communication (GJIC) is thought to be essential for maintaining cellular homeostasis and growth control. In the present study, the effect of alpha-synuclein overexpression on GJIC in human dopaminergic neuroblastoma SH-SY5Y cells was investigated. Cells overexpressing wild-type alpha-synuclein were more vulnerable to hydrogen peroxide and 6-hydroxydopamine. GJIC was decreased in cells overexpressing alpha-synuclein. In addition, alpha-synuclein binds directly to connexin-32 (Cx32). As such, the post-translational modification of Cx32 was enhanced in cells overexpressing alpha-synuclein. These findings suggest that alpha-synuclein can modulate GJIC in a dopaminergic neuronal cell line through specific binding to Cx32.
Collapse
Affiliation(s)
- Jee Young Sung
- Department of Medical Science, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | | | | | | | | | | | | |
Collapse
|
171
|
Giaume C, Kirchhoff F, Matute C, Reichenbach A, Verkhratsky A. Glia: the fulcrum of brain diseases. Cell Death Differ 2007; 14:1324-35. [PMID: 17431421 DOI: 10.1038/sj.cdd.4402144] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Neuroglia represented by astrocytes, oligodendrocytes and microglial cells provide for numerous vital functions. Glial cells shape the micro-architecture of the brain matter; they are involved in information transfer by virtue of numerous plasmalemmal receptors and channels; they receive synaptic inputs; they are able to release 'glio'transmitters and produce long-range information exchange; finally they act as pluripotent neural precursors and some of them can even act as stem cells, which provide for adult neurogenesis. Recent advances in gliology emphasised the role of glia in the progression and handling of the insults to the nervous system. The brain pathology, is, to a very great extent, a pathology of glia, which, when falling to function properly, determines the degree of neuronal death, the outcome and the scale of neurological deficit. Glial cells are central in providing for brain homeostasis. As a result glia appears as a brain warden, and as such it is intrinsically endowed with two opposite features: it protects the nervous tissue as long as it can, but it also can rapidly assume the guise of a natural killer, trying to eliminate and seal the damaged area, to save the whole at the expense of the part.
Collapse
Affiliation(s)
- C Giaume
- INSERM, U840 and Collège de France, Paris, France
| | | | | | | | | |
Collapse
|
172
|
Lin D, Shanks D, Prakash O, Takemoto DJ. Protein kinase C gamma mutations in the C1B domain cause caspase-3-linked apoptosis in lens epithelial cells through gap junctions. Exp Eye Res 2007; 85:113-22. [PMID: 17493614 PMCID: PMC2030616 DOI: 10.1016/j.exer.2007.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Revised: 02/13/2007] [Accepted: 03/15/2007] [Indexed: 01/13/2023]
Abstract
Failure to control oxidative stress is closely related to aging and to a diverse range of human diseases. We have reported that protein kinase C gamma (PKCgamma) acts as a primary oxidative stress sensor in the lens. PKCgamma has a Zn-finger C1B stress switch domain, residues 101-150. Mutation, H101Y, in the C1B domain of PKCgamma proteins causes a failure of the PKCgamma oxidative stress response [Lin, D., Takemoto, D.J., 2005. Oxidative activation of protein kinase Cgamma through the C1 domain. Effects on gap junctions. J. Biol. Chem. 280, 13682-13693]. Some human neurodegenerative spinocerebellar ataxia type 14 are caused by mutations in the PKCgamma C1B domain. In the current study we have investigated the effects of these mutations on lens epithelial cell responses to oxidative stress. The results demonstrate that PKCgamma C1B mutants had lower basal enzyme activities and were not activated by H(2)O(2). Furthermore, the PKCgamma mutations caused a failure of endogenous wild type PKCgamma to be activated by H(2)O(2). These PKCgamma mutations abolished the effect of H(2)O(2) on phosphorylation of Cx43 and Cx50 by H(2)O(2) activation of PKCgamma. The cells with PKCgamma C1B mutations had more Cx43 and/or Cx50 gap junction plaques which were not decreased by H(2)O(2). Since open gap junctions could have a bystander effect this could cause apoptosis to occur. H(2)O(2) (100 microM, 3 h) activated a caspase-3 apoptotic pathway in the lens epithelial cells but was more severe in cells expressing PKCgamma mutations. The presence of 18alpha-glycyrrhetinic acid (AGA), an inhibitor of gap junctions, decreased Cx43 and Cx50 protein levels and gap junction plaque number. This reduction in gap junctions by AGA resulted in inhibition of H(2)O(2)-induced apoptosis. Our results demonstrate that there is a dominant negative effect of PKCgamma C1B mutations on endogenous PKCgamma which results in loss of control of gap junctions. Modeled structures suggest that the severity of C1B mutation effects may be related to the extent of loss of C1B structure. Mutations in the C1B domain of PKCgamma result in increased apoptosis in lens epithelial cells. This can be prevented by a gap junction inhibitor. Thus, propagation of apoptosis from cell-to-cell in lens epithelial cells may be through open gap junctions. The control of gap junctions requires PKCgamma.
Collapse
Affiliation(s)
- Dingbo Lin
- Department of Biochemistry, Kansas State University, 141 Chalmers Hall, Manhattan, KS 66506, USA
| | | | | | | |
Collapse
|
173
|
Morita M, Saruta C, Kozuka N, Okubo Y, Itakura M, Takahashi M, Kudo Y. Dual regulation of astrocyte gap junction hemichannels by growth factors and a pro-inflammatory cytokine via the mitogen-activated protein kinase cascade. Glia 2007; 55:508-15. [PMID: 17211868 DOI: 10.1002/glia.20471] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Evidence that glutamate and ATP release from astrocytes can occur via gap junction hemichannels (GJHCs) is accumulating. However, the GJHC is still only one possible release mechanism and has not been detected in some studies, although this may be because the levels were below those detectable by the system used. Because of these conflicting results, we hypothesized that release from astrocyte GJHCs might depend on different astrocyte states, and screened for factors affecting astrocyte GJHC activity by measuring fluorescent dye leakage via GJHCs using a conventional method for GJHC acivation, i.e. removal of extracellular divalent cations. Astrocytes cultured in Dulbecco's minimal essential medium containing 10% fetal calf serum, a medium widely used for astrocyte studies, did not show dye leakage, whereas those cultured in a defined medium showed substantial dye leakage, which was confirmed pharmacologically to be due to GJHCs and not to P2x7 receptors. EGF and bFGF inhibited the GJHC activity via the mitogen-activated protein kinase cascade, and the effect of the growth factors was reversed by interleukin-1beta. These factors altered GJHC activity within 10 min, but did not affect connexin 43 expression. GJHC activity in hippocampal slice culture preparations was measured using the same methods and found to be regulated in a similar manner. These results indicate that astrocyte GJHC activity is regulated by brain environmental factors.
Collapse
Affiliation(s)
- Mitsuhiro Morita
- Laboratory of Cellular Neurobiology, School of Life Science, Tokyo University of Pharmacy and Life Science, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
174
|
Harris AL. Connexin channel permeability to cytoplasmic molecules. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2007; 94:120-43. [PMID: 17470375 PMCID: PMC1995164 DOI: 10.1016/j.pbiomolbio.2007.03.011] [Citation(s) in RCA: 369] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Connexin channels are known to be permeable to a variety of cytoplasmic molecules. The first observation of second messenger junctional permeability, made approximately 30 years ago, sparked broad interest in gap junction channels as mediators of intercellular molecular signaling. Since then, much has been learned about the diversity of connexin channels with regard to isoform diversity, tissue and developmental distribution, modes of channel regulation, assembly, expression, biochemical modification and permeability, all of which appear to be dynamically regulated. This information has expanded the potential roles of connexin channels in development, physiology and disease, and made their elucidation much more complex--30 years ago such an orchestra of junctional dynamics was unanticipated. Only recently, however, have investigators been able to directly address, in this more complex framework, the key issue: what specific biological molecules, second messengers and others, are able to permeate the various types of connexin channels, and how well? An important related issue, given the ever-growing list of connexin-related pathologies, is how these permeabilities are altered by disease-causing connexin mutations. Together, many studies show that a variety of cytoplasmic molecules can permeate the different types of connexin channels. A few studies reveal differences in permeation by different molecules through a particular type of connexin channel, and differences in permeation by a particular molecule through different types of connexin channels. This article describes and evaluates the various methods used to obtain these data, presents an annotated compilation of the results, and discusses the findings in the context of what can be inferred about mechanism of selectivity and potential relevance to signaling. The data strongly suggest that highly specific interactions take place between connexin pores and specific biological molecular permeants, and that those interactions determine which cytoplasmic molecules can permeate and how well. At this time, the nature of those interactions is unclear. One hopes that with more detailed permeability and structural information, the specific molecular mechanisms of the selectivity can be elucidated.
Collapse
Affiliation(s)
- Andrew L Harris
- Department of Pharmacology and Physiology, New Jersey Medical School of UMDNJ, Newark, NJ 07103, USA.
| |
Collapse
|
175
|
Rodríguez-Sinovas A, Cabestrero A, López D, Torre I, Morente M, Abellán A, Miró E, Ruiz-Meana M, García-Dorado D. The modulatory effects of connexin 43 on cell death/survival beyond cell coupling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2007; 94:219-32. [PMID: 17462722 DOI: 10.1016/j.pbiomolbio.2007.03.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Connexins form a diverse and ubiquitous family of integral membrane proteins. Characteristically, connexins are assembled into intercellular channels that aggregate into discrete cell-cell contact areas termed gap junctions (GJ), allowing intercellular chemical communication, and are essential for propagation of electrical impulses in excitable tissues, including, prominently, myocardium, where connexin 43 (Cx43) is the most important isoform. Previous studies have shown that GJ-mediated communication has an important role in the cellular response to stress or ischemia. However, recent evidence suggests that connexins, and in particular Cx43, may have additional effects that may be important in cell death and survival by mechanisms independent of cell to cell communication. Connexin hemichannels, located at the plasma membrane, may be important in paracrine signaling that could influence intracellular calcium and cell survival by releasing intracellular mediators as ATP, NAD(+), or glutamate. In addition, recent studies have shown the presence of connexins in cell structures other than the plasma membrane, including the cell nucleus, where it has been suggested that Cx43 influences cell growth and differentiation. In addition, translocation of Cx43 to mitochondria appears to be important for certain forms of cardioprotection. These findings open a new field of research of previously unsuspected roles of Cx43 intracellular signaling.
Collapse
Affiliation(s)
- Antonio Rodríguez-Sinovas
- Laboratorio de Cardiología Experimental, Servicio de Cardiologia, Hospital Vall d'Hebron, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Wang M, Berthoud VM, Beyer EC. Connexin43 increases the sensitivity of prostate cancer cells to TNFalpha-induced apoptosis. J Cell Sci 2007; 120:320-9. [PMID: 17200141 PMCID: PMC2754384 DOI: 10.1242/jcs.03343] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To examine the effects of increased expression of connexin43 (Cx43) upon cell viability and response to cytotoxic agents, we expressed Cx43 in LNCaP and PC3 prostate cancer cells by infection with a recombinant adenovirus (Ad-Cx43). Infection with Ad-Cx43 led to the formation of Cx43-containing gap junction plaques at appositional membranes and increased Lucifer Yellow transfer in LNCaP cells, but not in PC3 cells. The increased intercellular communication was blocked by co-infection with an adenovirus containing a dominant-negative Cx43 (Ad-Cx43DN). Infection of LNCaP (but not PC3) cells with Ad-Cx43 greatly increased their sensitivity to killing by tumor necrosis factor alpha (TNFalpha), anti-Fas antibodies, and TRAIL as quantified using an MTS assay. The TNFalpha-induced cell death was dependent on cell density, and it was associated with increased annexin V staining, an increased proportion of sub-G1 cells, and activation of caspase 8. The TNFalpha-induced effects on Ad-Cx43-infected LNCaP cells were blocked by co-infection with Ad-Cx43DN or by pre-incubation with neutralizing antibodies directed against TNFalpha receptor 1. These results demonstrate that TNFalpha induces apoptosis in LNCaP cells by signaling through TNFalpha receptor 1 and that expression of functional Cx43 gap junction channels increases their sensitivity to TNFalpha.
Collapse
|
177
|
Jiang JX, Siller-Jackson AJ, Burra S. Roles of gap junctions and hemichannels in bone cell functions and in signal transmission of mechanical stress. FRONTIERS IN BIOSCIENCE : A JOURNAL AND VIRTUAL LIBRARY 2007; 12:1450-62. [PMID: 17127393 PMCID: PMC1797155 DOI: 10.2741/2159] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gap junctions formed by connexins (Cx) play an important role in transmitting signals between bone cells such as osteoblasts and osteoclasts, cells responsible for bone formation and bone remodeling, respectively. Gap junction intercellular communication (GJIC) has been demonstrated to mediate the process of osteoblast differentiation and bone formation. Furthermore, GJIC propagates Ca2+ signaling, conveys anabolic effects of hormones and growth factors, and regulates gene transcription of osteoblast differentiation markers. GJIC is also implicated to regulate osteoclast formation, survival and apoptosis. Compared with other bone cells, the most abundant type are osteocytes, which express large amounts of connexins. Mechanosensing osteocytes connect and form gap junctions with themselves and other cells only through the tips of their dendritic processes, a relatively small percent of the total cell surface area compared to other cells. Recent studies show that in addition to gap junctions, osteoblasts and osteocytes express functional hemichannels, the un-opposed halves of gap junction channels. Hemichannels are localized at the cell surface and function independently of gap junctions. Hemichannels in osteocytes mediate the immediate release of prostaglandins in response to mechanical stress. The major challenges remaining in the field are how the functions of these two types of channels are coordinated in bone cells and what the asserted, distinct effects of these channels are on bone formation and remodeling processes, and on conveying signals elicited by mechanical loading.
Collapse
Affiliation(s)
- Jean Xin Jiang
- Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA.
| | | | | |
Collapse
|
178
|
Haupt C, Witte OW, Frahm C. Temporal profile of connexin 43 expression after photothrombotic lesion in rat brain. Neuroscience 2007; 144:562-70. [PMID: 17112677 DOI: 10.1016/j.neuroscience.2006.09.054] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 09/29/2006] [Accepted: 09/30/2006] [Indexed: 11/20/2022]
Abstract
Following focal ischemic injury, several mechanisms lead to secondary expansion of the affected area and therefore increase the initial damage. We thoroughly investigated the expression of astrocytic connexin 43 (Cx43) after photothrombosis in rat brain. The temporal profile of Cx43 mRNA as well as protein expression was studied in remote, structurally uninjured cortical and hippocampal areas. The hippocampal formation revealed an increased number of Cx43 mRNA positive astrocytes and an up-regulated protein expression exclusively in the ipsilateral stratum oriens. We assume a participation of this region in glia scar formation. While Cx43 mRNA positive cells were transiently increased, immunoreactivity was reduced in the somatosensory cortex of injured hemispheres. The observed decrease of Cx43 protein in the post-ischemic cerebral cortex implies an impairment of gap junctional intercellular communication which might be detrimental to the brain.
Collapse
Affiliation(s)
- C Haupt
- Department of Neurology, Friedrich-Schiller-University, Erlanger Allee 101, 07747 Jena, Germany
| | | | | |
Collapse
|
179
|
González D, Gómez-Hernández JM, Barrio LC. Species specificity of mammalian connexin-26 to form open voltage-gated hemichannels. FASEB J 2006; 20:2329-38. [PMID: 17077310 DOI: 10.1096/fj.06-5828com] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mutations of connexin-26 (Cx26) cause nonsyndromic hearing loss and other syndromes affecting ectoderm-derived tissues. While the exact mechanisms underlying these diseases remain elusive, Cx's are generally considered to mediate cell-to-cell communication by forming gap junction channels. We show here that unlike rat Cx26, human and sheep Cx26 form voltage-gated hemichannels when expressed in oocytes and Neuro2A cells. A single evolutionary amino acidic change at position 159 of the rodent protein, the replacement of aspartic acid with asparagine in the human and sheep proteins, accounts for this species specificity. At the resting potential and in normal millimolar extracellular calcium, open human Cx26 hemichannels can be detected both electrophysiologically and by dye uptake, although they did not affect cell viability. These hemichannels opened at approximately -50 mV and their activation increased by depolarization until they inactivate at positive membrane potentials. Single-channel analysis revealed that activation and inactivation involved two distinct voltage gating mechanisms and that the fully open hemichannel displays a conductance twice that of the intercellular channel. The existence of a hemichannel that opens under physiological control of the membrane potential may have important implications for the normal and pathological activity of Cx26 in humans, particularly with respect to hearing and the epidermis.
Collapse
Affiliation(s)
- Daniel González
- Unit of Experimental Neurology, Research Department, Ramón y Cajal Hospital, Madrid, Spain
| | | | | |
Collapse
|
180
|
Abstract
"Hemichannels" are defined as the halves of gap junction channels (also termed connexons) that are contributed by one cell; "hemichannels" are considered to be functional if they are open in nonjunctional membranes in the absence of pairing with partners from adjacent cells. Several recent reviews have summarized the blossoming literature regarding functional "hemichannels", in some cases encyclopedically. However, most of these previous reviews have been written with the assumption that all data reporting "hemichannel" involvement really have studied phenomena in which connexons actually form the permeability or conductance pathway. In this review, we have taken a slightly different approach. We review the concept of "hemichannels", summarize properties that might be expected of half gap junctions and evaluate the extent to which the properties of presumptive "hemichannels" match expectations. Then we consider functions attributed to hemichannels, provide an overview of other channel types that might fulfill similar roles and provide sets of criteria that might be applied to verify involvement of connexin hemichannels in cell and tissue function. One firm conclusion is reached. The study of hemichannels is technically challenging and fraught with opportunities for misinterpretation, so that future studies must apply rigorous standards for detection of hemichannel expression and function. At the same time there are reasons to expect surprises, including the possibility that some time honored techniques for studying gap junctions may prove unsuitable for detecting hemichannels. We advise hemichannel researchers to proceed with caution and an open mind.
Collapse
Affiliation(s)
- David C Spray
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Zu-Cheng Ye
- Department of Neurology, University of Washington School of Medicine, Seattle, Washington
| | - Bruce R Ransom
- Department of Neurology, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
181
|
Evans WH, De Vuyst E, Leybaert L. The gap junction cellular internet: connexin hemichannels enter the signalling limelight. Biochem J 2006; 397:1-14. [PMID: 16761954 PMCID: PMC1479757 DOI: 10.1042/bj20060175] [Citation(s) in RCA: 332] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 03/22/2006] [Accepted: 03/23/2006] [Indexed: 02/07/2023]
Abstract
Cxs (connexins), the protein subunits forming gap junction intercellular communication channels, are transported to the plasma membrane after oligomerizing into hexameric assemblies called connexin hemichannels (CxHcs) or connexons, which dock head-to-head with partner hexameric channels positioned on neighbouring cells. The double membrane channel or gap junction generated directly couples the cytoplasms of interacting cells and underpins the integration and co-ordination of cellular metabolism, signalling and functions, such as secretion or contraction in cell assemblies. In contrast, CxHcs prior to forming gap junctions provide a pathway for the release from cells of ATP, glutamate, NAD+ and prostaglandin E2, which act as paracrine messengers. ATP activates purinergic receptors on neighbouring cells and forms the basis of intercellular Ca2+ signal propagation, complementing that occuring more directly via gap junctions. CxHcs open in response to various types of external changes, including mechanical, shear, ionic and ischaemic stress. In addition, CxHcs are influenced by intracellular signals, such as membrane potential, phosphorylation and redox status, which translate external stresses to CxHc responses. Also, recent studies demonstrate that cytoplasmic Ca2+ changes in the physiological range act to trigger CxHc opening, indicating their involvement under normal non-pathological conditions. CxHcs not only respond to cytoplasmic Ca2+, but also determine cytoplasmic Ca2+, as they are large conductance channels, suggesting a prominent role in cellular Ca2+ homoeostasis and signalling. The functions of gap-junction channels and CxHcs have been difficult to separate, but synthetic peptides that mimic short sequences in the Cx subunit are emerging as promising tools to determine the role of CxHcs in physiology and pathology.
Collapse
Affiliation(s)
- W Howard Evans
- Department of Medical Biochemistry and Immunology and the Wales Heart Research Institute, Cardiff University Medical School, Cardiff CF14 4XN, Wales, UK.
| | | | | |
Collapse
|
182
|
Dykes IM, Macagno ER. Molecular characterization and embryonic expression of innexins in the leech Hirudo medicinalis. Dev Genes Evol 2006; 216:185-97. [PMID: 16440200 DOI: 10.1007/s00427-005-0048-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Accepted: 11/21/2005] [Indexed: 10/25/2022]
Abstract
Gap junctions are direct intercellular channels that permit the passage of ions and small signaling molecules. The temporal and spatial regulation of gap junctional communication is, thus, one mechanism by which cell interactions, and hence cell properties and cell fate, may be regulated during development. The nervous system of the leech, Hirudo medicinalis, is a particularly advantageous system in which to study developmental mechanisms involving gap junctions because interactions between identified cells may be studied in vivo in both the embryo and the adult. As in most invertebrates, gap junctions in the leech are composed of innexin proteins, which are distantly related to the vertebrate pannexins and are encoded by a multi-gene family. We have cloned ten novel leech innexins and describe the expression of these, plus two other previously reported members of this gene family, in the leech embryo between embryonic days 6 and 12, a period during which the main features of the central nervous system are established. Four innexins are expressed in neurons and two in glia, while several innexins are expressed in the excretory, circulatory, and reproductive organs. Of particular interest is Hm-inx6, whose expression appears to be restricted to the characterized S cell and two other neurons putatively identified as presynaptic to this cell. Two other innexins also show highly restricted expressions in neurons and may be developmentally regulated.
Collapse
Affiliation(s)
- Iain M Dykes
- Section of Cell and Developmental Biology, Division of Biological Sciences, NSB 6213, University of California, San Diego, La Jolla, 92093-0376, USA
| | | |
Collapse
|
183
|
Rouach N, Pébay A, Même W, Cordier J, Ezan P, Etienne E, Giaume C, Tencé M. S1P inhibits gap junctions in astrocytes: involvement of Giand Rho GTPase/ROCK. Eur J Neurosci 2006; 23:1453-64. [PMID: 16553609 DOI: 10.1111/j.1460-9568.2006.04671.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a potent and pleiotropic bioactive lysophospholipid mostly released by activated platelets that acts on its target cells through its own G protein-coupled receptors. We have previously reported that mouse striatal astrocytes expressed mRNAs for S1P1 and S1P3 receptors and proliferate in response to S1P. Here, we investigated the effect of S1P on gap junctions. We show that a short-term exposure of astrocytes to S1P causes a robust inhibition of gap junctional communication, as demonstrated by dye coupling experiments and double voltage-clamp recordings of junctional currents. The inhibitory effect of S1P on dye coupling involves the activation of both Gi and Rho GTPases. Rho-associated kinase (ROCK) also plays a critical role. The capacity of S1P to activate a Rho/ROCK axis in astrocytes is demonstrated by the typical remodeling of actin cytoskeleton. Connexin43, the protein forming gap junction channels, is a target of the Gi- and Rho/ROCK-mediated signaling cascades. Indeed, as shown by Western blots and confocal immunofluorescence, its nonphosphorylated form increases following S1P treatment and this change does not occur when both cascades are disrupted. This novel effect of S1P may have an important physiopathological significance when considering the proposed roles for astrocyte gap junctions on neuronal survival.
Collapse
Affiliation(s)
- Nathalie Rouach
- INSERM U587, Collège de France, 11, Place Marcelin Berthelot, 75005 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
184
|
Retamal MA, Cortés CJ, Reuss L, Bennett MVL, Sáez JC. S-nitrosylation and permeation through connexin 43 hemichannels in astrocytes: induction by oxidant stress and reversal by reducing agents. Proc Natl Acad Sci U S A 2006; 103:4475-80. [PMID: 16537412 PMCID: PMC1450196 DOI: 10.1073/pnas.0511118103] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Marked increase in cell permeability ascribed to open connexin (Cx)43 hemichannels is induced by metabolic inhibition (MI) of cortical astrocytes in culture, but the molecular mechanisms are not established. Dephosphorylation and/or oxidation of Cx43 hemichannels was proposed as a potential mechanism to increase their open probability. We now demonstrate that MI increases the number of hemichannels on the cell surface assayed by biotinylation and Western blot, and that this change is followed by increased dephosphorylation and S-nitrosylation. The increase in rate of dye uptake caused by MI is comparable to the increase in surface expression; thus, open probability and permeation per hemichannel may be unchanged. Reducing agents did not affect dephosphorylation of Cx43 hemichannels but reduced dye uptake and S-nitrosylation. Uptake was also reduced by elevated intracellular but not extracellular levels of reduced glutathione. Moreover, nitric oxide donors induced dye uptake and nitrosylation of surface Cx43 but did not affect its abundance or phosphorylation. Thus, permeability per channel is increased, presumably because of increase in open probability. We propose that increased dye uptake induced by MI is mediated by an increased number of Cx43 hemichannels in the surface and is associated with multiple molecular changes, among which nitrosylation of intracellular Cx43 cysteine residues may be a critical factor.
Collapse
Affiliation(s)
- Mauricio A. Retamal
- *Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Santiago 6513492, Chile
| | - Constanza J. Cortés
- *Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Santiago 6513492, Chile
| | - Luis Reuss
- Sealy Center for Structural Biology and Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Michael V. L. Bennett
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461; and
| | - Juan C. Sáez
- *Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Santiago 6513492, Chile
| |
Collapse
|
185
|
Krysko DV, Leybaert L, Vandenabeele P, D'Herde K. Gap junctions and the propagation of cell survival and cell death signals. Apoptosis 2005; 10:459-69. [PMID: 15909108 DOI: 10.1007/s10495-005-1875-2] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Gap junctions are a unique type of intercellular channels that connect the cytoplasm of adjoining cells. Each gap junction channel is comprised of two hemichannels or connexons and each connexon is formed by the aggregation of six protein subunits known as connexins. Gap junction channels allow the intercellular passage of small (< 1.5 kDa) molecules and regulate essential processes during development and differentiation. However, their role in cell survival and cell death is poorly understood. We review experimental data that support the hypothesis that gap junction channels may propagate cell death and survival modulating signals. In addition, we explore the hypothesis that hemichannels (or unapposed connexons) might be used as a paracrine conduit to spread factors that modulate the fate of the surrounding cells. Finally, direct signal transduction activity of connexins in cell death and survival pathways is addressed.
Collapse
Affiliation(s)
- D V Krysko
- Department of Human Anatomy, Embryology, Histology and Medical Physics, Ghent University, 9000 Ghent, Belgium.
| | | | | | | |
Collapse
|
186
|
Sáez JC, Retamal MA, Basilio D, Bukauskas FF, Bennett MVL. Connexin-based gap junction hemichannels: gating mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1711:215-24. [PMID: 15955306 PMCID: PMC3617572 DOI: 10.1016/j.bbamem.2005.01.014] [Citation(s) in RCA: 309] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Revised: 01/20/2005] [Accepted: 01/26/2005] [Indexed: 01/16/2023]
Abstract
Connexins (Cxs) form hemichannels and gap junction channels. Each gap junction channel is composed of two hemichannels, also termed connexons, one from each of the coupled cells. Hemichannels are hexamers assembled in the ER, the Golgi, or a post Golgi compartment. They are transported to the cell surface in vesicles and inserted by vesicle fusion, and then dock with a hemichannel in an apposed membrane to form a cell-cell channel. It was thought that hemichannels should remain closed until docking with another hemichannel because of the leak they would provide if their permeability and conductance were like those of their corresponding cell-cell channels. Now it is clear that hemichannels formed by a number of different connexins can open in at least some cells with a finite if low probability, and that their opening can be modulated under various physiological and pathological conditions. Hemichannels open in different kinds of cells in culture with conductance and permeability properties predictable from those of the corresponding gap junction channels. Cx43 hemichannels are preferentially closed in cultured cells under resting conditions, but their open probability can be increased by the application of positive voltages and by changes in protein phosphorylation and/or redox state. In addition, increased activity can result from the recruitment of hemichannels to the plasma membrane as seen in metabolically inhibited astrocytes. Mutations of connexins that increase hemichannel open probability may explain cellular degeneration in several hereditary diseases. Taken together, the data indicate that hemichannels are gated by multiple mechanisms that independently or cooperatively affect their open probability under physiological as well as pathological conditions.
Collapse
Affiliation(s)
- Juan C Sáez
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | | | | | | | | |
Collapse
|