151
|
Bellan D, Biscaia S, Rossi G, Cristal A, Gonçalves J, Oliveira C, Simas F, Sabry D, Rocha H, Franco C, Chammas R, Gillies R, Trindade E. Green does not always mean go: A sulfated galactan from Codium isthmocladum green seaweed reduces melanoma metastasis through direct regulation of malignancy features. Carbohydr Polym 2020; 250:116869. [DOI: 10.1016/j.carbpol.2020.116869] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/10/2020] [Accepted: 07/30/2020] [Indexed: 01/19/2023]
|
152
|
Xu F, Kong M, Xu JD, Xu J, Jiang Y, Li SL. Effects of sulfur fumigation and heating desulfurization on quality of medicinal herbs evaluated by metabolomics and glycomics: Codonopsis Radix, a pilot study. J Pharm Biomed Anal 2020; 191:113581. [PMID: 32892083 DOI: 10.1016/j.jpba.2020.113581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 11/28/2022]
Abstract
Sulfur fumigation and heating desulfurization are used together in the post-harvest processing of many medicinal herbs. However, little is known about the effects of sulfur fumigation on saccharide components, nor about the effects of heating desulfurization on all herbal constituents. In this study, metabolomics and glycomics were integrated to investigate the effects of these two processes on the chemistry of Codonopsis Radix (CR) as a pilot study. The results showed that both sulfur fumigation and heating desulfurization significantly changed the non-saccharide small-molecule metabolome and the glycome of CR in different ways. Chemical mechanisms, such as esterification, glycosidic hydrolysis, esterolysis, amide bond hydrolysis, oxidation and dehydration, are proposed to be involved. These facts strongly inspire that, in addition to investigations of how sulfur fumigation impacts non-saccharide small-molecule metabolites, researches on heating desulfurization and saccharides should be conducted so as to enable accurate, comprehensive evaluation of the quality of sulfur-fumigated herbs.
Collapse
Affiliation(s)
- Fei Xu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Ming Kong
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, People's Republic of China
| | - Jin-Di Xu
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing 210028, People's Republic of China
| | - Jun Xu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, People's Republic of China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing 210028, People's Republic of China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong.
| | - Yan Jiang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| | - Song-Lin Li
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, People's Republic of China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing 210028, People's Republic of China.
| |
Collapse
|
153
|
Sun Y, Zhang M, Fang Z. Efficient physical extraction of active constituents from edible fungi and their potential bioactivities: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.02.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
154
|
Matusiak J, Grządka E, Bastrzyk A. Stabilizing properties of fucoidan for the alumina suspension containing the cationic surfactant. Carbohydr Polym 2020; 245:116523. [PMID: 32718627 DOI: 10.1016/j.carbpol.2020.116523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/21/2020] [Accepted: 05/25/2020] [Indexed: 12/02/2022]
Abstract
The paper presents the influence of fucoidan (FD) on stability of alumina suspensions in the presence of cationic surfactant hexadecyltrimethylammonium bromide (CTAB). The research results show that fucoidan adsorbs on the alumina surface and that the adsorption decreases in the CTAB presence. This is due to formation of the polymer-surfactant complexes characterized by lower affinity for the alumina surface than pure fucoidan. The complex formation was confirmed by the tensiometric studies where the increase of the CTAB/FD surface tension in comparison to pure CTAB was observed. It was established that fucoidan possesses great stabilizing efficiency regardless of pH. Furthermore, stability of the fucoidan/alumina system increased after CTAB addition due to the presence of non-adsorbed complexes between the alumina particles. The results indicate that fucoidan could be successfully used as a stabilizer of colloidal suspensions where the presence of surfactant is required, that is in cosmetic and pharmaceutical industries.
Collapse
Affiliation(s)
- Jakub Matusiak
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland.
| | - Elżbieta Grządka
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland.
| | - Anna Bastrzyk
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland.
| |
Collapse
|
155
|
Wu J, Xu Y, Zhu B, Liu K, Wang S, Sheng Y, Wang H, Shi S, Zhang Q, Wang S, Qin L. Characterization of an arabinogalactan from the fruit hulls of Ficus pumila Linn. and its immunomodulatory effect. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
156
|
|
157
|
Polysaccharide-based triboelectric nanogenerators: A review. Carbohydr Polym 2020; 251:117055. [PMID: 33142607 DOI: 10.1016/j.carbpol.2020.117055] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/13/2020] [Accepted: 09/02/2020] [Indexed: 01/24/2023]
Abstract
Triboelectric nanogenerators (TENGs) are versatile electronic devices used for environmental energy harvesting and self-powered electronics with a wide range of potential applications. The rapid development of TENGs has caused great concern regarding the environmental impacts of conventional electronic devices. Under this context, researching alternatives to synthetic and toxic materials in electronics are of major significance. In this review, we focused on TENGs based on natural polysaccharide materials. Firstly, a general overview of the working mechanisms and materials for high-performance TENGs were summarized and discussed. Then, the recent progress of polysaccharide-based TENGs along with their potential applications reported in the literature from 2015 to 2020 was reviewed. Here, we aimed to present polysaccharide polymers as a promising and viable alternative to the development of green TENGs and tackle the challenges of recycling e-wastes.
Collapse
|
158
|
Hu J, Liu Y, Cheng L, Shi R, Qayum A, Bilawal A, Gantumur MA, Hussain MA, Jiang Z, Tian B. Comparison in bioactivity and characteristics of Ginkgo biloba seed polysaccharides from four extract pathways. Int J Biol Macromol 2020; 159:1156-1164. [DOI: 10.1016/j.ijbiomac.2020.05.129] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/10/2020] [Accepted: 05/15/2020] [Indexed: 01/11/2023]
|
159
|
Alkahtani J, Soliman Elshikh M, Almaary KS, Ali S, Imtiyaz Z, Bilal Ahmad S. Anti-bacterial, anti-scavenging and cytotoxic activity of garden cress polysaccharides. Saudi J Biol Sci 2020; 27:2929-2935. [PMID: 33100848 PMCID: PMC7569137 DOI: 10.1016/j.sjbs.2020.08.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/27/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023] Open
Abstract
Plants polysaccharides are an infinite stock of drug composites with varying pharmacological and biological activities. The present investigation aimed to examine the antibacterial, anti-scavenging and cytotoxic potential of garden cress (GC) polysaccharides. The antibacterial effects vs Escherichia coli and as well as Staphylococcus aureus of GC polysaccharides were examined by means of agar diffusion assay, minimum inhibitory concentration (MIC), outer and inner cell membrane permeability. Antioxidant potential of the GC polysaccharides were performed by free radical DPPH scavenging, superoxide anion scavenging, hydroxyl radical scavenging, reducing power potential assay, and hydrogen peroxide method. Cytotoxicity potential of GC polysaccharides were evaluated by MTT assay in human cervical (HeLa) and liver carcinoma (HepG2) cell lines. The findings showed that GC polysaccharides MIC were 1.06 and 0.56 mg mL-1 against E. coli and S. aureus, respectively. Compared to the standard inhibitor, the GC polysaccharides showed essential inhibitor assays in a very dose dependent approach, and notable actions to scavenge reactive oxygen species (ROS) are also due to the large quantities of hydrophilic polyphenols. The IC50 values of all tested parameters were measured against standard ascorbic acid antioxidant agent. The GC polysaccharides diminish the cell viability percentage of HeLa and HepG2 in a concentration dependent manner. GC polysaccharides at a dose of 500 µg ml-1 exhibited higher anti-tumor activity in both HeLa (65.33 ± 3.75%) and HepG2 (60.33 ± 3.48%). The findings obtained in this study indicate that GC polysaccharides has antibacterial and has a possible source of natural antioxidant and also has cytotoxic effect on different carcinoma cell lines.
Collapse
Affiliation(s)
- Jawaher Alkahtani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid S Almaary
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shafat Ali
- Department of Biochemistry, Government Medical College (GMC-Srinagar), 190010 India
| | - Zuha Imtiyaz
- College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Sheikh Bilal Ahmad
- Division of Veterinary, Biochemistry, SKUAST-Kashmir, Shuhama, Alustang, J&K 190006, India
| |
Collapse
|
160
|
Feng Z, Lin S, McDonagh A, Yu C. Natural Hydrogels Applied in Photodynamic Therapy. Curr Med Chem 2020; 27:2681-2703. [PMID: 31622196 DOI: 10.2174/0929867326666191016112828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 08/27/2019] [Accepted: 10/04/2019] [Indexed: 01/11/2023]
Abstract
Natural hydrogels are three-dimensional (3D) water-retaining materials with a skeleton consisting of natural polymers, their derivatives or mixtures. Natural hydrogels can provide sustained or controlled drug release and possess some unique properties of natural polymers, such as biodegradability, biocompatibility and some additional functions, such as CD44 targeting of hyaluronic acid. Natural hydrogels can be used with photosensitizers (PSs) in photodynamic therapy (PDT) to increase the range of applications. In the current review, the pertinent design variables are discussed along with a description of the categories of natural hydrogels available for PDT.
Collapse
Affiliation(s)
- Zhipan Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shiying Lin
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | | | - Chen Yu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
161
|
Guo L, Ma JY, Ma YZ, Zhang TL, Mao SL, Kong DX, Hua Y. Orthogonal Test Design for Optimization of the Extraction of Polysaccharides from Inonotus cuticularis and Their Antioxidant Activities. Chem Biodivers 2020; 17:e2000326. [PMID: 32744414 DOI: 10.1002/cbdv.202000326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/26/2020] [Indexed: 11/12/2022]
Abstract
Medical fungi polysaccharides belong to a very important species of biological macromolecules, which are the basic substances that effectively maintain and ensure the normal operation of biological life activities. However, research on extraction and biological activity of Inonotus cuticularis polysaccharides has never been reported. In this study, the optimum yield of Inonotus cuticularis polysaccharides was determined by the orthogonal experimental design. The highest yield of 3.10±0.06 % was obtained with extraction temperature of 80 °C, extraction time of 150 min, and water to raw material ratio of 30 mL/g and repeated twice. After deproteinization for 5 times, the protein removal rate reached 70.10±1.75 %, and the content of polysaccharides and protein were 46.64 and 0.42 %. Infrared spectrometer indicated that Inonotus cuticularis polysaccharides are typical β-pyranose with characteristic peaks of polysaccharides. Subsequently, the activities of scavenging free radicals for the deproteinated polysaccharides were studied. When the concentration of Inonotus cuticularis polysaccharides was 0.3 mg/mL, the scavenging activities of the sample on DPPH. , . OH, ABTS.+ and O2 .- reached 83.67±0.27, 65.21±4.82, 43.45±1.36 and 80.28±2.30 %, respectively, and the reducing power reached 0.46±0.01. The IC50 values scavenging DPPH. , . OH, ABTS.+ and O2 .- were 0.139±0.13, 0.162±0.14, 0.317±0.30 and 0.121±0.10 mg/mL, respectively. Results showed that Inonotus cuticularis polysaccharides present potential stronger antioxidant activities, especially .OH scavenging activity and reducing power. Experimental results could provide research basis of Inonotus cuticularis polysaccharides for further exploitation and utilization.
Collapse
Affiliation(s)
- Lei Guo
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, P. R. China.,School of Life Science, Southwest Forestry University, Kunming, 650224, P. R. China
| | - Jia-Yu Ma
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, P. R. China
| | - Yan-Zhen Ma
- School of Life Science, Southwest Forestry University, Kunming, 650224, P. R. China
| | - Tian-Li Zhang
- School of Life Science, Southwest Forestry University, Kunming, 650224, P. R. China
| | - Sheng-Liu Mao
- School of Life Science, Southwest Forestry University, Kunming, 650224, P. R. China
| | - De-Xian Kong
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, P. R. China
| | - Yan Hua
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, P. R. China
| |
Collapse
|
162
|
Hao Y, Huang Y, Chen J, Li J, Yuan Y, Wang M, Han L, Xin X, Wang H, Lin D, Peng F, Yu F, Zheng C, Shen C. Exopolysaccharide from Cryptococcus heimaeyensis S20 induces autophagic cell death in non-small cell lung cancer cells via ROS/p38 and ROS/ERK signalling. Cell Prolif 2020; 53:e12869. [PMID: 32597573 PMCID: PMC7445402 DOI: 10.1111/cpr.12869] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 06/03/2020] [Accepted: 06/13/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Cryptococcus heimaeyensis S20 is found in Antarctica and can produce exopolysaccharides (CHEPS). Here, we explore the anti-tumour effects of CHEPS on non-small cell lung cancer (NSCLC). MATERIALS AND METHODS Cell viability was assessed by CCK8 and colony formation assays. Flow cytometry was used to analyse the cell cycle, cell apoptosis and reactive oxygen species (ROS). Cell autophagy was detected by EGFP-LC3 puncta assay, Lyso-Tracker Red staining and transmission electron microscopy. mRNA and protein levels were analysed by qRT-PCR and Western blot. Related mechanisms were confirmed using appropriate inhibitors or shRNA. In vitro results were further confirmed by a tumour xenograft study. RESULTS CHEPS inhibited the proliferation of NSCLC cells by inducing S- and G2/M-phase arrest and autophagic cell death, but not apoptosis. CHEPS was less toxic to normal human embryonic lung fibroblasts. CHEPS activated the MAPK pathway in NSCLC cells, and p38 and ERK promoted CHEPS-induced cell death. Further studies showed that p38 and ERK promoted CHEPS-induced NSCLC cell autophagy and ERK promoted CHEPS-induced S- and G2/M-phase arrest. ROS were induced by CHEPS. A ROS scavenger attenuated CHEPS-induced p38 and ERK activation, autophagy and cell death. Finally, CHEPS reduced orthotopic lung tumour growth without organ-related toxicity. CHEPS also induced ROS, activated p38 and ERK, and triggered autophagy in vivo. CONCLUSIONS CHEPS induces autophagic cell death and S- and G2/M-phase arrest in NSCLC cells via ROS/p38 and ROS/ERK signalling.
Collapse
Affiliation(s)
- Yao Hao
- State Key Laboratory of VirologyCollege of Life SciencesWuhan UniversityWuhanChina
| | - Yao Huang
- College of Life SciencesWuhan UniversityWuhanChina
| | - Jingyi Chen
- State Key Laboratory of VirologyCollege of Life SciencesWuhan UniversityWuhanChina
| | - Jiadai Li
- State Key Laboratory of VirologyCollege of Life SciencesWuhan UniversityWuhanChina
| | - Yuncong Yuan
- State Key Laboratory of VirologyCollege of Life SciencesWuhan UniversityWuhanChina
| | - Mingzhen Wang
- State Key Laboratory of VirologyCollege of Life SciencesWuhan UniversityWuhanChina
| | - Lingling Han
- State Key Laboratory of VirologyCollege of Life SciencesWuhan UniversityWuhanChina
| | - Xiu Xin
- Institute of Pathogenic Microorganism and College of Bioscience and EngineeringJiangxi Agricultural UniversityNanchangChina
| | - Hailong Wang
- State Key Laboratory of VirologyCollege of Life SciencesWuhan UniversityWuhanChina
| | - Danqing Lin
- College of Life SciencesWuhan UniversityWuhanChina
| | - Fang Peng
- College of Life SciencesWuhan UniversityWuhanChina
- China Center for Type Culture CollectionWuhan UniversityWuhanChina
| | - Fang Yu
- Department of PathologyZhongnan HospitalWuhan University
| | - Congyi Zheng
- State Key Laboratory of VirologyCollege of Life SciencesWuhan UniversityWuhanChina
- China Center for Type Culture CollectionWuhan UniversityWuhanChina
| | - Chao Shen
- State Key Laboratory of VirologyCollege of Life SciencesWuhan UniversityWuhanChina
- China Center for Type Culture CollectionWuhan UniversityWuhanChina
| |
Collapse
|
163
|
Structural Characterization of an Exopolysaccharide Isolated from Enterococcus faecalis, and Study on its Antioxidant Activity, and Cytotoxicity Against HeLa Cells. Curr Microbiol 2020; 77:3125-3135. [PMID: 32725340 DOI: 10.1007/s00284-020-02130-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/13/2020] [Indexed: 01/18/2023]
Abstract
An exopolysaccharide (EPS-I) having the molecular weight ~ 2.6 × 105 Da, was isolated from a Zinc resistant strain of Enterococcus faecalis from costal area. The exopolysaccharide consists of D-mannose, D-glucose, and L-fucose in molar ratio of 9:4:1. The monosaccharide units in the EPS-1 were determined through chemical (total acid hydrolysis and methylation analysis) and spectroscopic (FTIR and 1H NMR experiment) analysis. The mannose-rich EPS-1 showed total antioxidant activity (1 mg mL-1 of EPS-I as functional as approximately to 500 ± 5.2 µM of ascorbic acid) and Fe2+ metal ion chelation activity (EC50 = 405.6 µg mL-1) and hydroxyl radical scavenging activity (EC50 = 219.5 µg mL-1). The in vitro cytotoxicity experiment of EPS-I against cervical carcinoma cell line, HeLa cells showed strong cytotoxic effect (LC50 = 267.3 µg mL-1) and at that concentration, it found almost nontoxic against normal healthy cells (HEK-293).
Collapse
|
164
|
Zhao R, Fang D, Ji Y, Chen X, Ma G, Su A, Xie M, Zhao L, Hu Q. In vitro and in vivo functional characterization of an immune activation Flammulina velutipes polysaccharide based on gut microbiota regulation. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1754345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Ruiqiu Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Donglu Fang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Yang Ji
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, People’s Republic of China
| | - Xin Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Gaoxing Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, People’s Republic of China
| | - Anxiang Su
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, People’s Republic of China
| | - Minhao Xie
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, People’s Republic of China
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Qiuhui Hu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, People’s Republic of China
| |
Collapse
|
165
|
Azeman NH, Arsad N, A Bakar AA. Polysaccharides as the Sensing Material for Metal Ion Detection-Based Optical Sensor Applications. SENSORS 2020; 20:s20143924. [PMID: 32679650 PMCID: PMC7412221 DOI: 10.3390/s20143924] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/02/2020] [Accepted: 06/15/2020] [Indexed: 12/30/2022]
Abstract
The incorporation of a proper sensing material towards the construction of high selectivity optical sensing devices is vital. Polysaccharides, such as chitosan and carrageenan, are among the bio-based sensing materials that are extensively employed due to their remarkable physicochemical attributes. This paper highlights the critical aspects of the design of suitable polysaccharides for the recognition of specific analytes through physical and chemical modifications of polysaccharide structure. Such modifications lead to the enhancement of physicochemical properties of polysaccharides and optical sensor performance. Chitosan and carrageenan are two materials that possess excellent features which are capable of sensing target analytes via various interactions. The interaction between polysaccharides and analytes is dependent on the availability of functional groups in their structure. The integration of polysaccharides with various optical sensing techniques further improves optical sensor performance. The application of polysaccharides as sensing materials in various optical sensing techniques is also highlighted, particularly for metal ion sensing.
Collapse
|
166
|
Idris S, Mishra A, Khushtar M. Phytochemical, ethanomedicinal and pharmacological applications of escin from Aesculus hippocastanum L. towards future medicine. J Basic Clin Physiol Pharmacol 2020; 31:/j/jbcpp.ahead-of-print/jbcpp-2019-0115/jbcpp-2019-0115.xml. [PMID: 32649293 DOI: 10.1515/jbcpp-2019-0115] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/19/2020] [Indexed: 01/11/2023]
Abstract
Medicinal plants are used from ancient times for treatment of various ailments. Aesculus hippocastanum (Horse chestnut), is the popular and most valuable tree native to the South East Europe. It's seed extracts and their concentrates contain phytocompounds like flavonoids, polyphenols, triterpenoid saponin glycosides (escin), epicatechin, tannins, kaempferol, esculin, fraxin, carbohydrate, essential fatty acids (linoleic acid), oleic acid and purine bases (adenine and guanine). Due to these vital phyto-constituents, horse chestnut is used in phytomedicine for the prevention and treatment of diverse disorders as in venous congestion in leg ulcers, bruises, arthritis, rheumatism, diarrhoea, phlebitis etc. We collected the pharmacological applications of Aesculus hippocastanum L. extracts and escin as the cheif bioactive compound and their uses in traditionally and clinically for the management of various disorders. This review describes the efficacy of A. hippocastanum L. extracts and their bioactive compounds. So in the furtue this plant may be useful for the alternative treatment measure for various ailments via incorporating either extract or escin into novel delivery systems for improving the social health in future and would provide improved quality of life.
Collapse
Affiliation(s)
- Sahar Idris
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Anuradha Mishra
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Mohd Khushtar
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
167
|
Golovchenko VV, Naranmandakh S, Ganbaatar J, Prilepskii AY, Burygin GL, Chizhov AO, Shashkov AS. Structural investigation and comparative cytotoxic activity of water-soluble polysaccharides from fruit bodies of the medicinal fungus quinine conk. PHYTOCHEMISTRY 2020; 175:112313. [PMID: 32353551 DOI: 10.1016/j.phytochem.2020.112313] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 02/06/2020] [Accepted: 02/17/2020] [Indexed: 06/11/2023]
Abstract
The structures and cytotoxic activities of water-soluble polysaccharides were investigated to search for biologically active polysaccharides from the fruit bodies of quinine conks (Fomitopsis officinalis). The decoctions of this medical fungus are actively used in folk medicine in many countries and traditional Chinese medicine. From the fungal extract we prepared, only branched β-glucan had cytotoxic activity among all the water-soluble polysaccharides. This glucan is characterized by a regular structure. Its backbone is formed by 1,3-linked β-D-Glcp residues, of which every third residue is substituted at O-6 by a single β-D-Glcp residue. It has a triple helix conformation according to the data obtained from a colorimetric assay with Congo red dye and is characterized by a high-weight average molar mass (Mw > 800 kDa). β-Glucan possessed cytotoxic activity against HeLa cells (IC50 = 318 ± 47 μg/mL) and induced the formation of apoptotic bodies around most cancer cells at a concentration of 200 μg/mL. It should be noted that extraction with boiling water, which is usually used to obtain extracts and decoctions, is unable to isolate active β-glucan. Active β-glucan can be obtained in an individual state by cold alkali extraction after dehydration of the fruit bodies and removal of the components extractable by boiling water.
Collapse
Affiliation(s)
- Victoria V Golovchenko
- Institute of Physiology of Komi Science Centre of The Urals Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, 50, Pervomaiskaya Str., 167982, Syktyvkar, Russia.
| | - Shinen Naranmandakh
- School of Arts and Sciences, National University of Mongolia, Ulaanbaatar, 14201, Mongolia
| | - Jamsranjav Ganbaatar
- Institute of Chemistry and Chemical Technology, The Mongolian Academy of Sciences, Ulaanbaatar 51, Mongolia
| | - Artur Yu Prilepskii
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13, Prospect Entuziastov, Saratov, 410049, Russia
| | - Gennady L Burygin
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13, Prospect Entuziastov, Saratov, 410049, Russia; N.I. Vavilov Saratov State Agrarian University, 1, Teatralnaya Ploshchad, Saratov, 410012, Russia
| | - Alexander O Chizhov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky Prospect, Moscow, 119991, Russia
| | - Alexander S Shashkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky Prospect, Moscow, 119991, Russia
| |
Collapse
|
168
|
Surin S, You S, Seesuriyachan P, Muangrat R, Wangtueai S, Jambrak AR, Phongthai S, Jantanasakulwong K, Chaiyaso T, Phimolsiripol Y. Optimization of ultrasonic-assisted extraction of polysaccharides from purple glutinous rice bran (Oryza sativa L.) and their antioxidant activities. Sci Rep 2020; 10:10410. [PMID: 32591579 PMCID: PMC7319984 DOI: 10.1038/s41598-020-67266-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/04/2020] [Indexed: 01/06/2023] Open
Abstract
Purple glutinous rice bran (Kum Doi Saket rice (KUM)) contains high content of edible polysaccharides and anthocyanins and has an excellent antioxidant activity. This research aimed to optimize the extraction of crude polysaccharides from defatted purple glutinous rice bran using an ultrasonic-assisted extraction (UAE) and compared with a hot water extraction (HWE). Results showed that optimal extraction condition was as follows: a defatted rice bran to water ratio of 1:20 w/v, extraction temperature and time of 70 °C for 20 min. Under the optimal extraction condition, the yield of polysaccharide of UAE (4%) was significantly higher than that obtained from the HWE (0.8%). Additionally, antioxidant activities of extracted polysaccharide including IC50 value DPPH, IC50 value ABTS, and FRAP value were 1.09 mg/mL, 2.80 mg/mL and 197 µM Fe2+/g, respectively. It is suggested that the UAE process is promising method to decrease the processing time and to enhance extracted polysaccharide yields by 4 times.
Collapse
Affiliation(s)
- Siriluck Surin
- Division of Food and Nutrition, Faculty of Science, Chandrakasem Rajabhat University, Bangkok, 10900, Thailand
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangwon, 210-702, Republic of Korea
| | - Phisit Seesuriyachan
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.,Cluster of Agro Bio-Circular-Green Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Rattana Muangrat
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Sutee Wangtueai
- College of Maritime Studies and Management, Chiang Mai University, Samuth Sakorn, 74000, Thailand
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Suphat Phongthai
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.,Cluster of High Value Product from Thai Rice for Health, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Kittisak Jantanasakulwong
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.,Cluster of Agro Bio-Circular-Green Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Thanongsak Chaiyaso
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.,Cluster of Agro Bio-Circular-Green Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Yuthana Phimolsiripol
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand. .,Cluster of High Value Product from Thai Rice for Health, Chiang Mai University, Chiang Mai, 50100, Thailand. .,Cluster of Agro Bio-Circular-Green Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.
| |
Collapse
|
169
|
Lee H, Nam K, Zahra Z, Farooqi MQU. Potentials of truffles in nutritional and medicinal applications: a review. Fungal Biol Biotechnol 2020; 7:9. [PMID: 32566240 PMCID: PMC7301458 DOI: 10.1186/s40694-020-00097-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/19/2020] [Indexed: 12/21/2022] Open
Abstract
Truffles, the symbiotic hypogeous edible fungi, have been worldwide regarded as a great delicacy because of their unique flavor and high nutritional value. By identifying their bioactive components such as phenolics, terpenoids, polysaccharides, anandamide, fatty acids, and ergosterols, researchers have paid attention to their biological activities including antitumor, antioxidant, antibacterial, anti-inflammatory, and hepatoprotective activities. In addition, numerous factors have been investigating that can affect the quality and productivity of truffles to overcome their difficulty in culturing and preserving. To provide the information for their potential applications in medicine as well as in functional food, this review summarizes the relevant literature about the biochemical composition, aromatic and nutritional benefits, and biological properties of truffles. Besides, various factors affecting their productivity and quality as well as the preservation methods are also highlighted.
Collapse
Affiliation(s)
- Heayyean Lee
- College of Pharmacy, Chung-Ang University, Seoul, 06974 Republic of Korea.,Plamica Labs, Batten Hall, 125 Western Ave, Allston, 02163 MA USA
| | - Kyungmin Nam
- Plamica Labs, Batten Hall, 125 Western Ave, Allston, 02163 MA USA
| | - Zahra Zahra
- College of Pharmacy, Chung-Ang University, Seoul, 06974 Republic of Korea.,Department of Civil & Environmental Engineering, University of California, Irvine, CA 92697 USA
| | | |
Collapse
|
170
|
Jiang J, Wang F, Luo A, Lin S, Feng X, Yan W, Shi Y, Zhang Q, Gu X, Cui G, Wang J, Wang L, Zhang Q, Tan W. Polyporus Polysaccharide Ameliorates Bleomycin-Induced Pulmonary Fibrosis by Suppressing Myofibroblast Differentiation via TGF-β/Smad2/3 Pathway. Front Pharmacol 2020; 11:767. [PMID: 32528292 PMCID: PMC7264095 DOI: 10.3389/fphar.2020.00767] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022] Open
Abstract
Pulmonary fibrosis is a major cause of morbidity and mortality in systemic sclerosis (SSc) with no effective medication. Polyporus polysaccharide (PPS), extracted from Chinese herbs, has immune regulation, anticancer, antioxidant and antiinflammatory activities. This study aims to investigate antifibrotic effects of PPS. We show that PPS markedly ameliorates bleomycin-induced lung fibrosis in mice. Myofibroblasts are the effector cells responsible for excessive deposition of extracellular matrix (ECM) proteins in fibrotic diseases. In vitro evidence reveals that PPS exerts potent antifibrotic effects by inhibiting fibroblast-to-myofibroblast transition, suppressing ECM deposition, and repressing lung fibroblast proliferation and migration. We also find that PPS inhibits TGF-β1-induced Smad2/3 activating. This study is the first to demonstrate an antifibrotic role of PPS in lungs, thus warranting further therapeutic evaluation.
Collapse
Affiliation(s)
- Jintao Jiang
- Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing, China.,Division of Rheumatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fang Wang
- Division of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Aishu Luo
- Division of Rheumatology, Yancheng First People's Hospital, Yancheng, China
| | - Shiyu Lin
- Division of Rheumatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoke Feng
- Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing, China
| | - Wei Yan
- Division of Rheumatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yumeng Shi
- Division of Rheumatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Zhang
- Division of Rheumatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Gu
- Division of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guoliang Cui
- Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing, China
| | - Jianan Wang
- Division of Rheumatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Wang
- Division of Rheumatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiande Zhang
- Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing, China
| | - Wenfeng Tan
- Division of Rheumatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
171
|
Isolation, characterization and cytoprotective effects against UV radiation of exopolysaccharide produced from Paenibacillus polymyxa PYQ1. J Biosci Bioeng 2020; 130:283-289. [PMID: 32507385 DOI: 10.1016/j.jbiosc.2020.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/22/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023]
Abstract
A novel exopolysaccharide (EPS) from Paenibacillus polymyxa PYQ1 was extracted, well purified and characterized. This EPS was homogeneous glucomannan-type polysaccharide with the average molecular weight of 4.38 × 106 Da. Structural characterization indicated that the monosaccharides of EPS were pyranoses connected by β-glycosidic linkages. Furthermore, our results showed the protective benefits of EPS against UVC induced cytotoxicity in HaCaT cells through scavenging excessive reactive oxygen species, mitigating the decrease of mitochondrial membrane potential, improving catalase activity and maintaining membrane integrity. Taken together, this study qualified EPS from P. polymyxa PYQ1 was a promising natural polymer which worth further investigation as a skin-care agent.
Collapse
|
172
|
Ji X, Hou C, Shi M, Yan Y, Liu Y. An Insight into the Research Concerning Panax ginseng C. A. Meyer Polysaccharides: A Review. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1771363] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Xiaolong Ji
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, P.R. China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, P.R. China
- Collaborative Innovation Center of Food Production and Safety, Henan Province, P.R. China
| | - Chunyan Hou
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, P.R. China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, P.R. China
- Collaborative Innovation Center of Food Production and Safety, Henan Province, P.R. China
| | - Miaomiao Shi
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, P.R. China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, P.R. China
- Collaborative Innovation Center of Food Production and Safety, Henan Province, P.R. China
| | - Yizhe Yan
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, P.R. China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, P.R. China
- Collaborative Innovation Center of Food Production and Safety, Henan Province, P.R. China
| | - Yanqi Liu
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, P.R. China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, P.R. China
- Collaborative Innovation Center of Food Production and Safety, Henan Province, P.R. China
| |
Collapse
|
173
|
Lv H, Hu C, Xie Z, Wang P, Chen X, Wen C. Purification, characterization and anti-tumor activity of a pectic-type polysaccharide isolated from Ficus pandurata H. Int J Biol Macromol 2020; 153:201-206. [DOI: 10.1016/j.ijbiomac.2020.02.244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 01/25/2023]
|
174
|
Osemwegie OO, Adetunji CO, Ayeni EA, Adejobi OI, Arise RO, Nwonuma CO, Oghenekaro AO. Exopolysaccharides from bacteria and fungi: current status and perspectives in Africa. Heliyon 2020; 6:e04205. [PMID: 32577572 PMCID: PMC7303563 DOI: 10.1016/j.heliyon.2020.e04205] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 01/13/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
Bacterial and fungal exopolysaccharides (EPSs) are extracellular metabolites of living organisms (plants, animals, algae, bacteria and fungi) associated with adaptation, survival and functionalities. The EPSs also afford humans multiple value-adding applications across different spheres of endeavors. The variable chemical and biochemical architecture that characterizes an EPS presets its biological functionality and potential biotechnological benefits. Suffices to say that it is amenable to genetic, biotechnological and biochemical maneuverability for desired bioactivity or application during their production and extraction. EPSs have been shown to have, antioxidant, anti-tumor and antiviral activities; enhance soil aridity and nutritional value of food consumed by humans. Their innocuous domestic and commercial versatility and biotechnological relevance is a reliable confirmation of the recent attention accorded EPSs by the global research community. This is especially with respect to their biosynthesis, composition, production, structure, characterization, sources, functional properties and applications. It is also responsible for the development of newer strategies for their extraction. EPSs' relative prospects, perspectives and orientation in the African context are seldom reported in recognized scientific literature data bases. A random preliminary study showed that EPS applications, biotechnological and research orientations are still developing, and influenced by preponderant vegetation, level of industrialization, political will and culture. Africa is endowed with untapped bioresources (biomaterials), bioproducts and bioequivalents that can mediate several global foods, industrial and technological challenges for which EPS may be a potential remedy.
Collapse
Affiliation(s)
| | - Charles Oluwaseun Adetunji
- Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Department of Microbiology, Edo University Iyamho, PMB 04, Auchi, Edo State, Nigeria
| | - Eugene Ayodele Ayeni
- Department of Biological Sciences, Microbiology Unit, Landmark University, P.M.B 1001, Omu-Aran, Kwara State, Nigeria
| | - Oluwaniyi Isaiah Adejobi
- Department of Biological Sciences, Microbiology Unit, Landmark University, P.M.B 1001, Omu-Aran, Kwara State, Nigeria
- Chinese Academy of Sciences, Kunming Institute of Botany, Key Laboratory for Economic Plants and Biotechnology, Yunnan Province, China
| | - Rotimi Olusunya Arise
- Chinese Academy of Sciences, Kunming Institute of Botany, Key Laboratory for Economic Plants and Biotechnology, Yunnan Province, China
| | | | - Abbot Okotie Oghenekaro
- Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Benin, PMB1154, Benin City, Edo State, Nigeria
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3N 2N2, Canada
| |
Collapse
|
175
|
Chen N, Zhao X, Wang F, Lu Z, Wang Y, Jin M. Proteomic study of sulfated polysaccharide from Enterobacter cloacae Z0206 against H2O2-induced oxidative damage in murine macrophages. Carbohydr Polym 2020; 237:116147. [DOI: 10.1016/j.carbpol.2020.116147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/01/2020] [Accepted: 03/08/2020] [Indexed: 12/22/2022]
|
176
|
Gan QX, Wang J, Hu J, Lou GH, Xiong HJ, Peng CY, Huang QW. Modulation of Apoptosis by Plant Polysaccharides for Exerting Anti-Cancer Effects: A Review. Front Pharmacol 2020; 11:792. [PMID: 32536869 PMCID: PMC7267062 DOI: 10.3389/fphar.2020.00792] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer has become a significant public health problem with high disease burden and mortality. At present, radiotherapy and chemotherapy are the main means of treating cancer, but they have shown serious safety problems. The severity of this problem has caused further attention and research on effective and safe cancer treatment methods. Polysaccharides are natural products with anti-cancer activity that are widely present in a lot of plants, and many studies have found that inducing apoptosis of cancer cells is one of their important mechanisms. Therefore, this article reviews the various ways in which plant polysaccharides promote apoptosis of cancer cells. The major apoptotic pathways involved include the mitochondrial pathway, the death receptor pathway, and their upstream signal transduction such as MAPK pathway, PI3K/AKT pathway, and NF-κB pathway. Moreover, the paper has also been focused on the absorption and toxicity of plant polysaccharides with reference to extant literature, making the research more scientific and comprehensive. It is hoped that this review could provide some directions for the future development of plant polysaccharides as anticancer drugs in pharmacological experiments and clinical researches.
Collapse
Affiliation(s)
- Qing-Xia Gan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ju Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guan-Hua Lou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai-Jun Xiong
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng-Yi Peng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qin-Wan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
177
|
Anti-Inflammatory and Antioxidant Effect of Eucommia ulmoides Polysaccharide in Hepatic Ischemia-Reperfusion Injury by Regulating ROS and the TLR-4-NF- κB Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1860637. [PMID: 32566664 PMCID: PMC7273391 DOI: 10.1155/2020/1860637] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/25/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022]
Abstract
Eucommia ulmoides polysaccharide (EUP) has been shown to have anti-inflammatory and antioxidant effects. However, the mechanism underlying these effects has rarely been reported, and whether EUP can reduce liver injury in hepatic ischemia-reperfusion injury (HIRI) has not been reported. In this study, 40 Sprague-Dawley (SD) rats were randomly divided into 5 groups: the sham group, ischemia-reperfusion (I/R) group, and three EUP pretreatment groups (320 mg/kg, 160 mg/kg, and 80 mg/kg). SD rats were pretreated with EUP by gavage once a day prior to I/R injury for 10 days. Except for the sham group, blood flow in the middle and left liver lobes was blocked in all the other groups, resulting in 70% liver ischemia, and the ischemia and reperfusion times were 1 h and 4 h, respectively. Ischemic liver tissue and serum were obtained to detect biochemical markers and liver histopathological damage. Compared with the I/R group, after EUP pretreatment, serum alanine aminotransferase, aspartate aminotransferase, tumor necrosis factor-α, and interleukin-1β levels were significantly decreased, malondialdehyde levels in liver tissues were significantly decreased, superoxide dismutase levels were significantly increased, and the area of liver necrosis was notably reduced. To understand the specific mechanism involved, we determined the levels of Toll-like receptor- (TLR-) 4-nuclear factor-kappaB (NF-κB) pathway-associated proteins in vivo and in vitro. The data showed that EUP can reduce liver damage by decreasing ROS levels and inhibiting TLR-4-NF-κB pathway activation and may be a promising drug in liver surgery to prevent HIRI.
Collapse
|
178
|
Ascorbic acid induced degradation of polysaccharide from natural products: a review. Int J Biol Macromol 2020; 151:483-491. [DOI: 10.1016/j.ijbiomac.2020.02.193] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/09/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023]
|
179
|
Bellan DL, Mazepa E, Biscaia SMP, Gonçalves JP, Oliveira CC, Rossi GR, Ferreira LG, Noseda MD, Trindade ES, Duarte MER, Franco CRC. Non-Cytotoxic Sulfated Heterorhamnan from Gayralia brasiliensis Green Seaweed Reduces Driver Features of Melanoma Metastatic Progression. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:194-206. [PMID: 31970542 DOI: 10.1007/s10126-020-09944-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Melanoma is a form of skin cancer with high mortality owing to its fast progression and metastatic capacity. The treatments available nowadays are only palliative in advanced stages of the disease. Thus, alternative therapies for cancer treatment are in demand, and molecules from natural sources, such as polysaccharides, could represent new possible therapeutic approaches. Polysaccharides of freshwater and marine algae with biological activities, such as antitumor properties, are greatly reported in the scientific literature. In the present study, a sulfated heterorhamnan obtained from the green seaweed Gayralia brasiliensis (Gb1 fraction) was chemically characterized and its biological activities in the B16-F10 murine melanoma cell line were evaluated. The Gb1 polysaccharidic fraction tested concentrations presented low or absence of cytotoxicity to B16-F10 cells and neither cell proliferation nor cell cycle were altered. Interestingly, Gb1 treatment decreased B16-F10 cells migration and invasion capabilities and CD44 labeling, showing to be a promising compound for further in vitro and in vivo antitumor studies.
Collapse
Affiliation(s)
- D L Bellan
- Department of Cellular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil.
| | - E Mazepa
- Department of Biochemistry, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - S M P Biscaia
- Department of Cellular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - J P Gonçalves
- Department of Cellular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - C C Oliveira
- Department of Cellular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - G R Rossi
- Department of Cellular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - L G Ferreira
- Department of Biochemistry, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - M D Noseda
- Department of Biochemistry, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - E S Trindade
- Department of Cellular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - M E R Duarte
- Department of Biochemistry, Federal University of Paraná, Curitiba, Paraná, Brazil.
| | - C R C Franco
- Department of Cellular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
180
|
Wang Y, Hwang J, Yadav D, Oda T, Lee PCW, Jin JO. Inhibitory effect of porphyran on lipopolysaccharide-induced activation of human immune cells. Carbohydr Polym 2020; 232:115811. [DOI: 10.1016/j.carbpol.2019.115811] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/26/2019] [Accepted: 12/29/2019] [Indexed: 02/06/2023]
|
181
|
Meng Y, Lyu F, Xu X, Zhang L. Recent Advances in Chain Conformation and Bioactivities of Triple-Helix Polysaccharides. Biomacromolecules 2020; 21:1653-1677. [PMID: 31986015 DOI: 10.1021/acs.biomac.9b01644] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Natural polysaccharides derived from renewable biomass sources are regarded as environmentally friendly and sustainable polymers. As the third most abundant biomacromolecule in nature, after proteins and nucleic acids, polysaccharides are also closely related with many different life activities. In particular, β-glucans are one of the most widely reported bioactive polysaccharides and are usually considered as biological response modifiers. Among them, β-glucans with triple-helix conformation have been the hottest and most well-researched polysaccharides at present, especially lentinan and schizophyllan, which are clinically used as cancer therapies in some Asian countries. Thus, creation of these active triple-helix polysaccharides is beneficial to the research and development of sustainable "green" biopolymers in the fields of food and life sciences. Therefore, full fundamental research of triple-helix polysaccharides is essential to discover more applications for polysaccharides. In this Review, the recent research progress of chain conformations, bioactivities, and structure-function relationships of triple-helix β-glucans is summarized. The main contents include the characterization methods of the macromolecular conformation, proof of triple helices, bioactivities, and structure-function relationships. We believe that the governments, enterprises, universities, and institutes dealing with the survival and health of human beings can expect the development of natural bioproducts in the future. Hence, a deep understanding of β-glucans with triple-helix chain conformation is necessary for application of natural medicines and biologics for a sustainable world.
Collapse
Affiliation(s)
- Yan Meng
- College of Chemistry & Molecule Sciences, Wuhan University, Wuhan 430072, China.,College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Fengzhi Lyu
- College of Chemistry & Molecule Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaojuan Xu
- College of Chemistry & Molecule Sciences, Wuhan University, Wuhan 430072, China
| | - Lina Zhang
- College of Chemistry & Molecule Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
182
|
Kokoulin MS, Filshtein AP, Romanenko LA, Chikalovets IV, Chernikov OV. Structure and bioactivity of sulfated α-D-mannan from marine bacterium Halomonas halocynthiae KMM 1376T. Carbohydr Polym 2020; 229:115556. [DOI: 10.1016/j.carbpol.2019.115556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/26/2019] [Accepted: 10/29/2019] [Indexed: 11/29/2022]
|
183
|
The anti-tumor activity of exopolysaccharides from Pseudomonas strains against HT-29 colorectal cancer cell line. Int J Biol Macromol 2020; 149:1072-1076. [PMID: 32004609 DOI: 10.1016/j.ijbiomac.2020.01.268] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 12/16/2022]
Abstract
The anti-tumor activity of extracted exopolysaccharides (EPSs) (without any side effects) of Pseudomonas aeruginosa on HT-29 colorectal cancer cell line has not been previously investigated. The extraction and partial characterization of EPS from the strains of P. aeruginosa including A (CIP A22(PTCC1310)), and B (a clinical strain) were performed. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and sulphorhodamine B (SRB) assays as well as microscopy were used to estimate the cell viability and morphological changes in HT-29 cells subjected to EPS at 0, 7.6, 15.8, 31.2, 62.5 and 125 μg/ml. The apoptotic effects of EPS were also examined by flow cytometry. The EPSs were found to be cytotoxic against HT-29 cells with IC50 values at 44.8 (EPS-A) and 12.7 (EPS-B) μg/ml. The counteraction of 125 μg/ml of EPS-A (87.5 and 56.7%) and EPS-B (86.7 and 59.2%) resulted in the highest repressive rates using the MTT and SRB assays, respectively. Flow cytometric results showed that EPS-A and EPS-B could induce apoptosis (33% and 39%) and necrosis (65% and 59%). The extracted EPSs of both bacterial strains can be used as natural, effective, efficient and anti-cancer drugs. However, more characterization at molecular and structural levels in this respect may be required.
Collapse
|
184
|
Nazeam JA, El-Hefnawy HM, Singab ANB. Structural Elucidation of Immunomodulators, Acetylated Heteroglycan and Galactosamine, Isolated from Aloe arborescens Leaves. J Med Food 2020; 23:895-901. [PMID: 31976801 DOI: 10.1089/jmf.2019.0229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Plant polysaccharides gained extended scientific attention for their immunomodulatory effect. However, few scientific studies structurally defined polysaccharides in relation to their biological modifier response. Therefore, the study explored the effect of structurally identified isolated macromolecules from Aloe arborescens against cytokine modulation (interferon [IFN-γ], interleukins [IL-2 and IL-12], and tumor necrosis factor [TNF-α]) in vitro. The structures were elucidated by GC, GPC, FT-IR spectroscopy, 1D NMR, COSY, HMBC, and HSQC. Two acetylated glucomannans (AANP4 and AAAP6), one deoxy-glucogalactan (AANP5), and one deoxy-N-acetyl-[1-4]-galactosamine (AANP2) were isolated. The results showed significant induction for all cytokines and the most potent component was AAAP6; acetylated phenolic glucomannan with a (1 → 3)-linked glucose-mannose and (1 → 4)-linked mannose backbone, which stimulated IL-12 by more than 10-fold compared with phytohemagglutinin (positive control). In conclusion, A. arborescens polysaccharides could be a landmark for development of effective immunotherapeutics against cancer and chronic inflammatory conditions.
Collapse
Affiliation(s)
- Jilan A Nazeam
- Pharmacognosy Department, Faculty of Pharmacy, October 6th University, Cairo, Egypt
| | - Hala M El-Hefnawy
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Abdel-Naser B Singab
- Pharmacognosy Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
185
|
Wang C, Zhou Y, Gong X, Zheng L, Li Y. In vitro and in situ study on characterization and mechanism of the intestinal absorption of 2,3,5,4'-tetrahydroxy-stilbene-2-O-β-D-glucoside. BMC Pharmacol Toxicol 2020; 21:7. [PMID: 31969193 PMCID: PMC6977318 DOI: 10.1186/s40360-020-0384-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/13/2020] [Indexed: 01/29/2023] Open
Abstract
Background 2,3,5,4′-tetrahydroxystilbence-2-O-β-D-glucoside (TSG) is a polyhydroxyphenolic compound, which exhibited a broad spectrum of pharmacological activities, such as anti-inflammatory, anti-depression, anti-oxidation and anti-atherosclerosis. However, the compound had poor bioavailability and the underlying absorption mechanisms had not been studied. Therefore, the purpose of this study was to investigate the intestinal absorption mechanism of TSG. Methods This study used Caco-2 cell monolayer model and single-pass intestinal perfusion model to explore the gastrointestinal absorption mechanisms of TSG. The effects of basic parameters such as drug concentration, time and pH on the intestinal absorption of TSG were analyzed by high performance liquid chromatography. The absorption susceptibility of TSG to three inhibitors, P-gp inhibitors verapamil hydrochloride and quinidine, and MRP2 inhibitor probenecid were also assessed. Results TSG was poorly absorbed in the intestines and the absorption of TSG in stomach is much higher than that in intestine. Both in vitro and in situ experiments showed that the absorption of TSG was saturated with increasing concentration and it was better absorbed in a weakly acidic environment pH 6.4. Moreover, TSG interacts with P-gp and MRP2, and TSG was not only the substrate of the P-gp and MRP2, but also affected the expression of P-gp and MRP2. Conclusions It was concluded that the gastrointestinal absorption the most unique active ingredient and considered as the mechanisms of TSG involved processes passive transport and the participation of efflux transporters.
Collapse
Affiliation(s)
- Cheng Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.,Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu, 611137, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Yimeng Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.,Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu, 611137, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Xiaohong Gong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.,Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu, 611137, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Li Zheng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.,Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu, 611137, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Yunxia Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China. .,Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu, 611137, China. .,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China.
| |
Collapse
|
186
|
Udchumpisai W, Bangyeekhun E. Purification, Structural Characterization, and Biological Activity of Polysaccharides from Lentinus velutinus. MYCOBIOLOGY 2020; 48:51-57. [PMID: 32158606 PMCID: PMC7048199 DOI: 10.1080/12298093.2019.1693482] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/29/2019] [Accepted: 11/10/2019] [Indexed: 05/13/2023]
Abstract
A polysaccharide (LVP) was purified from fruiting body of Lentinus velutinus by ethanol precipitation fractionation and DEAE and Sephadex G-100 column chromatography. The yield of purified polysaccharide was 0.025%. Molecular characteristics of LVP were determined by gel permeation chromatography, FT-IR spectroscopy, and thin-layer chromatography. Our results revealed that LVP is a polysaccharide composed of only glucose units, and has a molecular weight of 336 kDa. Biological activity assays indicated that LVP exhibits both cytotoxic and antioxidant activity. LVP showed specific cytotoxicity against cancer cells (HeLa and HepG2 cells), and alterations in cancer cell morphology were found after LVP treatment.
Collapse
Affiliation(s)
- Wascharin Udchumpisai
- Department of Microbiology, Faculty of Science, Silpakorn University, Mueang, Nakhon Pathom, Thailand
| | - Eakaphun Bangyeekhun
- Department of Microbiology, Faculty of Science, Silpakorn University, Mueang, Nakhon Pathom, Thailand
- CONTACT Eakaphun Bangyeekhun
| |
Collapse
|
187
|
Chu Q, Yu X, Jia R, Wang Y, Zhang Y, Zhang S, Liu Y, Li Y, Chen W, Ye X, Zheng X. Flavonoids from Apios americana Medikus Leaves Protect RAW264.7 Cells against Inflammation via Inhibition of MAPKs, Akt-mTOR Pathways, and Nfr2 Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1563024. [PMID: 31915502 PMCID: PMC6930734 DOI: 10.1155/2019/1563024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/20/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023]
Abstract
Apios americana Medikus was once widely accepted as staple food in India for a long time, and the tuber of which possesses high nutrients. During the past decades, most of the research has focused on the biological activity in the tubers of Apios americana Medikus whereas the leaves were ignored. In this study, the Apios americana Medikus leaf extract (ALE) was obtained and seven compounds were identified. LPS-induced RAW264.7 cells were used to study the anti-inflammation activity of ALE. As expected, ALE reduced the secretion of nitric oxide (NO) and inflammatory cytokines via inhibition of NF-κB and MAPK signaling together with activation of Nrf2-Keap1 and FOXO pathways, as well as alleviating the oxidative stress and mitochondrial dysfunction. In addition, ALE could activate HMGB1-Beclin1 and Sirt1-FoxO1 pathways and inhibit the Akt-mTOR signaling pathway to activate autophagy, protecting RAW264.7 cells from inflammation. In summary, our results suggested that ALE might help activate the anti-inflammation system, resulting in the prevention of LPS-induced damage in RAW264.7 cells.
Collapse
Affiliation(s)
- Qiang Chu
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xin Yu
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ruoyi Jia
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yaxuan Wang
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yiru Zhang
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Shuang Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yangyang Liu
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yonglu Li
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wen Chen
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiang Ye
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
188
|
Meng M, Wang H, Li Z, Guo M, Hou L. Protective effects of polysaccharides from Cordyceps gunnii mycelia against cyclophosphamide-induced immunosuppression to TLR4/TRAF6/NF-κB signalling in BALB/c mice. Food Funct 2019; 10:3262-3271. [PMID: 31089650 DOI: 10.1039/c9fo00482c] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Polysaccharides are closely associated with immune regulation. In this study, the aim was to investigate the effect of polysaccharides from Cordyceps gunnii mycelia (PPS) in cyclophosphamide (CTX)-induced immunodeficient mice. Compared with the CTX-induced immunosuppressed mice, the spleen and thymus indexes in mice with orally administered PPS were significantly increased, body weight loss was alleviated, and the natural killer (NK) cytotoxicity and proliferative activities of the lymphocytes were elevated. The recovery of peripheral white blood cells, red blood cells, hemoglobins and platelets was accelerated. Furthermore, the results from ELISA showed that PPS could up-regulate the serum levels of IL-2, IL-12, IFN-γ and IgG, and reduce the level of TGF-β. Histopathological analysis of the spleen revealed the protective effect of PPS against CTX-induced immunosuppression. Western blotting results showed that PPS possessed immunomodulatory activity via TLR4/TRAF6/NF-κB signalling pathways. Finally, the intestinal absorption of PPS was poor, as detected in the Caco-2 transwell system. Taken together, these findings suggest that PPS plays a crucial role in protection against immunosuppression in cyclophosphamide-treated mice and could be a potential candidate for use in immune therapy regimens.
Collapse
Affiliation(s)
- Meng Meng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of food Engineering and Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, People Republic of China.
| | | | | | | | | |
Collapse
|
189
|
Nikolova B, Semkova S, Tsoneva I, Antov G, Ivanova J, Vasileva I, Kardaleva P, Stoineva I, Christova N, Nacheva L, Kabaivanova L. Characterization and potential antitumor effect of a heteropolysaccharide produced by the red alga Porphyridium sordidum. Eng Life Sci 2019; 19:978-985. [PMID: 32624987 PMCID: PMC6999067 DOI: 10.1002/elsc.201900019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/25/2019] [Accepted: 07/01/2019] [Indexed: 01/18/2023] Open
Abstract
Taking into account the rising trend of the incidence of cancers of various organs, effective therapies are urgently needed to control human malignancies. However, almost all chemotherapy drugs currently on the market cause serious side effects. Fortunately, several studies have shown that some non-toxic biological macromolecules, including algal polysaccharides, possess anti-cancer activities or can increase the efficacy of conventional chemotherapy drugs. Polysaccharides are characteristic secondary metabolites of many algae. The efficacy of polysaccharides on the normal and cancer cells is not well investigated, but our investigations proved a cell specific effect of a newly isolated extracellular polysaccharide from the red microalga Porphyridium sordidum. The investigated substance was composed of xylose:glucose and galactose:manose:rhamnose in a molar ratio of 1:0.52:0.44:0.31. Reversible electroporation has been exploited to increase the transport through the plasma membrane into the tested breast cancer tumor cells MCF-7 and MDA-MB231. Application of 75 µg/mL polysaccharide in combination with 200 V/cm electroporation induced 40% decrease in viability of MDA-MB231 cells and changes in cell morphology while control cells (MCF10A) remained with normal morphology and kept vitality.
Collapse
Affiliation(s)
- Biliana Nikolova
- Institute of Biophysics and Biomedical EngineeringBulgarian Academy of SciencesSofiaBulgaria
| | - Severina Semkova
- Institute of Biophysics and Biomedical EngineeringBulgarian Academy of SciencesSofiaBulgaria
| | - Iana Tsoneva
- Institute of Biophysics and Biomedical EngineeringBulgarian Academy of SciencesSofiaBulgaria
| | - Georgi Antov
- Institute of Biophysics and Biomedical EngineeringBulgarian Academy of SciencesSofiaBulgaria
| | - Juliana Ivanova
- Institute of Plant Physiology and GeneticsBulgarian Academy of SciencesSofiaBulgaria
| | - Ivanina Vasileva
- Institute of Plant Physiology and GeneticsBulgarian Academy of SciencesSofiaBulgaria
| | - Proletina Kardaleva
- Institute of Organic Chemistry with Centre of PhytochemistryBulgarian Academy of SciencesSofiaBulgaria
| | - Ivanka Stoineva
- Institute of Organic Chemistry with Centre of PhytochemistryBulgarian Academy of SciencesSofiaBulgaria
| | - Nelly Christova
- The Stephan Angeloff Institute of MicrobiologyBulgarian Academy of SciencesSofiaBulgaria
| | - Lilyana Nacheva
- The Stephan Angeloff Institute of MicrobiologyBulgarian Academy of SciencesSofiaBulgaria
| | - Lyudmila Kabaivanova
- The Stephan Angeloff Institute of MicrobiologyBulgarian Academy of SciencesSofiaBulgaria
| |
Collapse
|
190
|
Oliveira RS, Biscaia SM, Bellan DL, Viana SR, Di-Medeiros Leal MC, Vasconcelos AFD, Lião LM, Trindade ES, Carbonero ER. Structure elucidation of a bioactive fucomannogalactan from the edible mushroom Hypsizygus marmoreus. Carbohydr Polym 2019; 225:115203. [DOI: 10.1016/j.carbpol.2019.115203] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 01/14/2023]
|
191
|
Chu Q, Jia R, Chen M, Li Y, Yu X, Wang Y, Chen W, Ye X, Liu Y, Jiang Y, Zheng X. Tetrastigma hemsleyanum tubers polysaccharide ameliorates LPS-induced inflammation in macrophages and Caenorhabditis elegans. Int J Biol Macromol 2019; 141:611-621. [DOI: 10.1016/j.ijbiomac.2019.09.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 08/17/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023]
|
192
|
Chu Q, Jia R, Chen W, Liu Y, Li Y, Ye X, Jiang Y, Zheng X. Purified Tetrastigma hemsleyanum vines polysaccharide attenuates EC-induced toxicity in Caco-2 cells and Caenorhabditis elegans via DAF-16/FOXO pathway. Int J Biol Macromol 2019; 150:1192-1202. [PMID: 31739013 DOI: 10.1016/j.ijbiomac.2019.10.128] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/12/2019] [Accepted: 10/14/2019] [Indexed: 12/16/2022]
Abstract
Ethyl Carbamate (EC), as a carcinogen widely found in fermented foods, was verified that its cytotoxicity was associated with oxidative stress. Polysaccharides from natural sources due to their antioxidative capacity have attracted great attention in the past time. In this study, purified polysaccharide from Tetrastigma hemsleyanum vines (TVP) with 64.89 kDA was extracted and conducted multiple analysis to identify its structural information. It could be discovered that TVP was composed of mannose, rhamnose, glucuronic acid, glucose, galactose, and arabinose. In vitro, TVP could inhibit cytotoxicity and genotoxicity, attenuate oxidative damage and mitochondrial dysfunction induced by EC in Caco-2 cells. Meanwhile, TVP could suppress apoptosis by mTOR and Bcl-2 signaling pathways, ameliorate oxidative via Sirt1-FoxO1 and Nrf2-Keap1 signaling pathways. In vivo, EC as well triggered the decline of survival and athletic ability in Caenorhabditis elegans (C. elegans) and TVP could reverse the decline. In the meantime, TVP could ameliorate oxidative damage in N2 and daf-2 (-) mutant but fail in daf-16 (-) mutant, which suggested that DAF-16 (FOXO) might affect the antioxidative protection of TVP in C. elegans. In brief, our results manifested that TVP could attenuate EC-induced cytotoxicity both in vitro and in vivo.
Collapse
Affiliation(s)
- Qiang Chu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Ruoyi Jia
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Wen Chen
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yangyang Liu
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yonglu Li
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiang Ye
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yong Jiang
- Shanghai Zhengyue Enterprise Management Co, Ltd., 19th Floor, Block B, Xinchengkonggu Building, No. 388 Zhongjiang Road, Putuo District, Shanghai 600062, People's Republic of China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
193
|
Rodrigues Barbosa J, Dos Santos Freitas MM, da Silva Martins LH, de Carvalho RN. Polysaccharides of mushroom Pleurotus spp.: New extraction techniques, biological activities and development of new technologies. Carbohydr Polym 2019; 229:115550. [PMID: 31826512 DOI: 10.1016/j.carbpol.2019.115550] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/22/2019] [Accepted: 10/27/2019] [Indexed: 02/07/2023]
Abstract
The biodiversity of mushrooms Pleurotus spp. is impressive due to its complexity and diversity related to the composition of chemical structures such as polysaccharides, glycoproteins and secondary metabolites such as alkaloids, flavonoids and betalains. Recent studies of polysaccharides and their structural elucidation have helped to direct research and development of technologies related to pharmacological action, production of bioactive foods and application of new, more sophisticated extraction tools. The diversity of bioactivities related to these biopolymers, their mechanisms and routes of action are constant focus of researches. The elucidation of bioactivities has helped to formulate new vaccines and targeted drugs. In this context, in terms of polysaccharides and the diversity of mushrooms Pleurotus spp., this review seeks to revisit the genus, making an updated approach on the recent discoveries of polysaccharides, new extraction techniques and bioactivities, emphasising on their mechanisms and routes in order to update the reader on the recent technologies related to these polymers.
Collapse
Affiliation(s)
- Jhonatas Rodrigues Barbosa
- LABEX/FEA (Extraction Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| | - Maurício Madson Dos Santos Freitas
- LAPOA/FEA (Laboratory of Products of Animal Origin/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| | - Luiza Helena da Silva Martins
- LABIOTEC/FEA (Biotechnological Process Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| | - Raul Nunes de Carvalho
- LABEX/FEA (Extraction Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| |
Collapse
|
194
|
Cui Y, Guo X, Lai X, Sun H, Liang B, Hou W, Liu X, Wang L. Green Synthesis of Jujube‐Polysaccharide‐Stabilized Gold Nanoparticles for Reduction of 4‐Nitrophenol. ChemistrySelect 2019. [DOI: 10.1002/slct.201902531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yanshuai Cui
- State Key Laboratory of Metastable Materials Science and TechnologyYanshan University Qinhuangdao 066004 China
| | - Xiaolei Guo
- Key Laboratory of Applied ChemistryCollege of Environmental and Chemical EngineeringYanshan University Qinhuangdao 066004 China
| | - Xiang Lai
- Key Laboratory of Applied ChemistryCollege of Environmental and Chemical EngineeringYanshan University Qinhuangdao 066004 China
| | - Haotian Sun
- Department of Chemical and Biological EngineeringUniversity at BuffaloThe State University of New York, Buffalo NY 14260 USA
| | - Bo Liang
- State Key Laboratory of Metastable Materials Science and TechnologyYanshan University Qinhuangdao 066004 China
| | - Wenlong Hou
- Key Laboratory of Active Components and Functions in Natural Products of HebeiHebei Normal University of Science and Technology Qinhuangdao 066600 China
| | - Xiaoning Liu
- Key Laboratory of Applied ChemistryCollege of Environmental and Chemical EngineeringYanshan University Qinhuangdao 066004 China
| | - Longgang Wang
- Key Laboratory of Applied ChemistryCollege of Environmental and Chemical EngineeringYanshan University Qinhuangdao 066004 China
| |
Collapse
|
195
|
Effect of Sulfated Polysaccharide from Undaria pinnatifida (SPUP) on Proliferation, Migration, and Apoptosis of Human Prostatic Cancer. INT J POLYM SCI 2019. [DOI: 10.1155/2019/7690764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective. To observe the effect of sulfated polysaccharide from Undaria pinnatifida (SPUP) on proliferation, migration, and apoptosis of human prostatic cancer. Methods. DU145 human prostate cancer cells were cultured in vitro, and the proliferation activity both in the control group and the SPUP treatment groups (25, 50, 100, 200 μg/ml) was measured by CCK-8 assay. The wound healing assay was conducted to detect the cell migration. Cell apoptosis was measured by flow cytometry. The protein and mRNA expressions of matrix metalloproteinase-9 (MMP-9) and apoptosis-related factor Bax were detected by qRT-PCR and Western blot. The expressions of cleaved caspase-3 and cleaved caspase-9 were also determined by Western blot. Results. (1) CCK-8 results showed that the proliferative activity of DU145 cells was significantly decreased with the increase of SPUP treatment concentration (P<0.05) in a dose-dependent manner and that the inhibitory effect of SPUP was most significant at 72 h (P<0.05) as compared with the control group; (2) the migration rate of SPUP-treated cells was significantly decreased (P<0.05) as compared with the control group. And the results of qRT-PCR and Western blot assays showed that SPUP inhibited the expression of MMP-9 in DU145 cells; (3) compared with the control group, the SPUP-treated groups had increased apoptosis of the cells. The expressions of apoptosis-related factors cleaved caspase-3, cleaved caspase-9, and Bax were upregulated (P<0.05), and the mRNA expression of Bax was increased (P<0.05). Conclusion. SPUP showed an antitumor activity in prostatic cancer, and the underlying mechanism may be pertaining to inhibition of migration, proliferation, and induction of apoptosis of cancer cells.
Collapse
|
196
|
Wan F, Yang RC, Shi YP, Tang YW, Tang XL, Zhu XL, Li YG, Wang YJ. The protective effect of Phellinus linteus decoction on podocyte injury in the kidney of FSGS rats. Altern Ther Health Med 2019; 19:272. [PMID: 31638956 PMCID: PMC6802307 DOI: 10.1186/s12906-019-2705-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/09/2019] [Indexed: 11/10/2022]
Abstract
BACKGROUND This study aimed to investigate the effect of the Phellinus linteus (Mesima) decoction on podocyte injury in a rat model of focal and segmental glomerulosclerosis (FSGS) and evaluate the potential mechanisms. METHODS FSGS resembling primary FSGS in humans was established in rats by uninephrectomy and the repeated injection of doxorubicin. The FSGS rats were randomly divided into the model group, low-dose group of P. linteus decoction (PLD-LD), medium-dose group of P. linteus decoction (PLD-MD), and high-dose group of P. linteus decoction (PLD-HD). Blood and urine analysis were performed after 12 weeks and the molecular indicators of renal function and the renal pathological changes were examined. RESULTS FSGS developed within 12 weeks in the test group and showed progressive proteinuria and segmental glomerular scarring. Urinary protein, serum creatinine, urea nitrogen, triglycerides and cholesterol were significantly reduced following the 12-week intervention with P.linteus decoction, especially in the PLD-LD group. Renal nephrin and podocin were markedly increased. Moreover, the pathological damage in the renal tissue was alleviated by the PLD-LD intervention. CONCLUSION The P. linteus decoction alleviated the podocyte injury in the FSGS rat model, thus minimizing the progression of glomerular sclerosis and improving renal function.
Collapse
|
197
|
Chemical modifications of polysaccharides and their anti-tumor activities. Carbohydr Polym 2019; 229:115436. [PMID: 31826393 DOI: 10.1016/j.carbpol.2019.115436] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 09/14/2019] [Accepted: 10/03/2019] [Indexed: 12/24/2022]
Abstract
With the rising trend of incidence of cancers, effective therapies are urgently needed to control human malignancies. However, the chemotherapy drugs currently on the market cause serious side effects. Polysaccharides belong to a class of biomacromolecules, which have drawn considerable research interest over the years as it possess anti-cancer activities or can increase the efficacy of conventional chemotherapy drugs with fewer side effects. The antitumor activity of many polysaccharides was significantly increased after modification. Based on these encouraging observations, a great deal of effort has been focused on discovering anti-cancer polysaccharides and modified derivatives for the development of effective therapeutics for various human cancers. This review highlights recent advances on the major chemical modification methods of polysaccharides, and discusses the effect of molecular modification on the physicochemical properties and anti-tumor activities of polysaccharides. Meanwhile, the underlying anti-tumor mechanisms of polysaccharide and its modified derivatives were also discussed.
Collapse
|
198
|
Mingyi Y, Belwal T, Devkota HP, Li L, Luo Z. Trends of utilizing mushroom polysaccharides (MPs) as potent nutraceutical components in food and medicine: A comprehensive review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.08.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
199
|
Costa CRDM, Menolli RA, Osaku EF, Tramontina R, de Melo RH, do Amaral AE, Duarte PA, de Carvalho MM, Smiderle FR, Silva JLDC, Mello RG. Exopolysaccharides from Aspergillus terreus: Production, chemical elucidation and immunoactivity. Int J Biol Macromol 2019; 139:654-664. [DOI: 10.1016/j.ijbiomac.2019.08.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/15/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022]
|
200
|
Review of isolation, structural properties, chain conformation, and bioactivities of psyllium polysaccharides. Int J Biol Macromol 2019; 139:409-420. [DOI: 10.1016/j.ijbiomac.2019.08.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/25/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022]
|