151
|
Tahmasebivand M, Mousavi SR, Khorrami M, Ayromlou H, Rikhtegar R, Saberi L, Khademi B, Bahmanpour Z, Emamalizadeh B. miR-504 expression level is increased in multiple sclerosis patients responder to interferon-beta. J Neuroimmunol 2020; 342:577212. [PMID: 32199199 DOI: 10.1016/j.jneuroim.2020.577212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/04/2020] [Accepted: 03/06/2020] [Indexed: 01/19/2023]
Abstract
Multiple sclerosis is immune-mediated disease of the central nervous system characterized by demyelination in axons. IFN-β is first-line treatment of MS. Biomarkers are needed for early prediction of responders and non-responders to therapy in the first month of treatment to avoid further disabilities. In this study, we analyzed the expression level of miR-504 and miR-711 in 52 IFN-β responder patients in comparison to 53 non-responders. In the next step, the in-silico analysis was used to enrich related signaling pathways. The expression level of miR-504 was significantly higher in patients who respond to IFN-β therapy, compared with non-responders and we obtain related statistically significant KEGG molecular signaling pathways. Our findings suggest that miR-504 can be considered as a novel biomarker for response to IFN-b therapy.
Collapse
Affiliation(s)
- Mahsa Tahmasebivand
- Immunology research center, Tabriz University of medical science, Tabriz, Iran; Department of Medical Genetics, Faculty of Medicine, Tabriz university of Medical Sciences, Tabriz, Iran
| | - Seyyed Reza Mousavi
- Immunology research center, Tabriz University of medical science, Tabriz, Iran; Department of Medical Genetics, Faculty of Medicine, Tabriz university of Medical Sciences, Tabriz, Iran
| | - Mehdi Khorrami
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hormoz Ayromlou
- Neurology Department, Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rikhtegar
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Saberi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahareh Khademi
- Immunology research center, Tabriz University of medical science, Tabriz, Iran; Department of Medical Genetics, Faculty of Medicine, Tabriz university of Medical Sciences, Tabriz, Iran
| | - Zahra Bahmanpour
- Immunology research center, Tabriz University of medical science, Tabriz, Iran; Department of Medical Genetics, Faculty of Medicine, Tabriz university of Medical Sciences, Tabriz, Iran
| | - Babak Emamalizadeh
- Immunology research center, Tabriz University of medical science, Tabriz, Iran.
| |
Collapse
|
152
|
Liu S, Ning XH, Guan XL, Li XP, Sun L. Characterization of Streptococcus iniae-induced microRNA profiles in Paralichthys olivaceus and identification of pol-3p-10740_175 as a regulator of antibacterial immune response. FISH & SHELLFISH IMMUNOLOGY 2020; 98:860-867. [PMID: 31756455 DOI: 10.1016/j.fsi.2019.11.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/29/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
MicroRNAs (miRNAs) are involved in many biological activities including immune defense against pathogens. In this study, we applied high-throughput sequencing technology to examine miRNAs in Japanese flounder (Paralichthys olivaceus) infected with Streptococcus iniae at different times. A total of 1038 miRNAs were identified, of which, 249 were novel miRNAs, and 81 showed differential expression (named DEmiRNAs) after S. iniae infection. Of the 81 DEmiRNAs identified, 34 and 58 occurred at 6Â h and 24Â h post-infection, respectively; most DEmiRNAs were strongly time-specific, and only 13.6% of the DEmiRNAs were shared between the two time points. A total of 9582 target genes were predicted for the 81 DEmiRNAs. The putative target genes were enriched in various GO and KEGG pathways of biological processes and molecular/cellular functions, in particular endocytosis, regulation of transcription, lysososme, and the signaling pathways of MAPK, ErbB, and AMPK. One of the DEmiRNAs, pol-3p-10740_175, was found to target dual specificity phosphatase 6 (Dusp6) and repress the expression of the latter. Transfection of flounder FG cells with pol-3p-10740_175 caused a significant inhibition on S. iniae invasion. The results of this study provided the first S. iniae-induced miRNA profile in Japanese flounder and indicated that flounder miRNAs play an important role in antibacterial immunity.
Collapse
Affiliation(s)
- Shuang Liu
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xian-Hui Ning
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiao-Lu Guan
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xue-Peng Li
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
153
|
Chen L, Zhong JL. MicroRNA and heme oxygenase-1 in allergic disease. Int Immunopharmacol 2020; 80:106132. [DOI: 10.1016/j.intimp.2019.106132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/29/2019] [Accepted: 12/16/2019] [Indexed: 12/21/2022]
|
154
|
Kumar V, Das S, Kumar A, Tiwari N, Kumar A, Abhishek K, Mandal A, Kumar M, Shafi T, Bamra T, Singh RK, Vijayakumar S, Sen A, Das P. Leishmania donovani infection induce differential miRNA expression in CD4+ T cells. Sci Rep 2020; 10:3523. [PMID: 32103111 PMCID: PMC7044172 DOI: 10.1038/s41598-020-60435-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Visceral leishmaniasis is characterized by mixed production of Th1/2 cytokines and the disease is established by an enhanced level of Th2 cytokine. CD4+ T cells are main cell type which produces Th1/2 cytokine in the host upon Leishmania infection. However, the regulatory mechanism for Th1/2 production is not well understood. In this study, we co-cultured mice CD4+ T cells with Leishmania donovani infected and uninfected macrophage for the identification of dysregulated miRNAs in CD4+ T cells by next-generation sequencing. Here, we identified 604 and 613 known miRNAs in CD4+ T cells in control and infected samples respectively and a total of only 503 miRNAs were common in both groups. The expression analysis revealed that 112 miRNAs were up and 96 were down-regulated in infected groups, compared to uninfected control. Nineteen up-regulated and 17 down-regulated miRNAs were statistically significant (p < 0.05), which were validated by qPCR. Further, using insilco approach, we identified the gene targets of significant miRNAs on the basis of CD4+ T cell biology. Eleven up-regulated miRNAs and 9 down-regulated miRNAs were associated with the cellular immune responses and Th1/2 dichotomy upon Leishmania donovani infection. The up-regulated miRNAs targeted transcription factors that promote differentiation of CD4+ T cells towards Th1 phenotype. While down-regulated miRNAs targeted the transcription factors that facilitate differentiation of CD4+ T cells towards Th2 populations. The GO and pathway enrichment analysis also showed that the identified miRNAs target the pathway and genes related to CD4+ T cell biology which plays important role in Leishmania donovani infection.
Collapse
Affiliation(s)
- Vinod Kumar
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Sushmita Das
- Department of Microbiology, All India Institute of Medical Sciences, Phulwarisharif, Patna, Bihar, India
| | - Ajay Kumar
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Neeraj Tiwari
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ashish Kumar
- Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Kumar Abhishek
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Abhishek Mandal
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Manjay Kumar
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Taj Shafi
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Tanvir Bamra
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Rakesh Kumar Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Saravanan Vijayakumar
- Department of Bioinformatics, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Abhik Sen
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Pradeep Das
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India.
| |
Collapse
|
155
|
Xu H, Chen W, Zheng F, Tang D, Liu D, Wang G, Xu Y, Yin L, Zhang X, Dai Y. Reconstruction and analysis of the aberrant lncRNA-miRNA-mRNA network in systemic lupus erythematosus. Lupus 2020; 29:398-406. [PMID: 32070185 DOI: 10.1177/0961203320908927] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE A new perspective of determining the pathophysiology of systemic lupus erythematosus (SLE) development is required. The current study explores the aberrant expression of long non-coding RNAs (lncRNA), microRNA (miRNA) and mRNA. The study further constructs and analyses the lncRNA-miRNA-mRNA network to elucidate their gene regulation roles in SLE. METHOD We extracted mRNA, lncRNA and miRNA from the whole venous blood of 20 SLE patients and 20 normal control (NC) healthy individuals. A lncRNA-mRNA-miRNA network in SLE was constructed using a bioinformatics approach. Subsequently, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed using the Cytoscape plug-in BinGo, the DAVID database and Cytoscape software to explore the function of mRNAs in this network. RESULT A total of 855 mRNA, 7311 lncRNA and 134 miRNA with differentially expressed profiles were identified. Meanwhile, we established a competing endogenous RNA (ceRNA) subnetwork composed of 52 differentially expressed lncRNAs (DElncRNAs), seven differentially expressed miRNAs and 10 differentially expressed mRNAs. We extracted the subnetwork from the ceRNA network and found that three novel miRNAs were key: hsa-miR-145, hsa-miR-17 and hsa-miR-143. We also deduced that the DElncRNAs MIAT and NEAT1 might play crucial roles in the pathogenesis of SLE. The results were verified by bioinformatics analysis. CONCLUSION Our results provide a novel perspective for studying lncRNA-related and miRNA-related ceRNA networks in SLE.
Collapse
Affiliation(s)
- H Xu
- Clinical Medical Research Centre, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, PR China
| | - W Chen
- Clinical Medical Research Centre, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, PR China
| | - F Zheng
- Clinical Medical Research Centre, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, PR China
| | - D Tang
- Clinical Medical Research Centre, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, PR China
| | - D Liu
- Clinical Medical Research Centre, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, PR China
| | - G Wang
- Clinical Medical Research Centre, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, PR China
| | - Y Xu
- Clinical Medical Research Centre, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, PR China
| | - L Yin
- Division of Nephrology, The First Affiliated Hospital, Jinan University, Guangzhou, PR China
| | - X Zhang
- Key Renal Laboratory of Shenzhen, Department of Nephrology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, PR China
| | - Y Dai
- Clinical Medical Research Centre, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, PR China
| |
Collapse
|
156
|
MicroRNA-7 Inhibits Rotavirus Replication by Targeting Viral NSP5 In Vivo and In Vitro. Viruses 2020; 12:v12020209. [PMID: 32069901 PMCID: PMC7077326 DOI: 10.3390/v12020209] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/01/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
Rotavirus (RV) is the major causes of severe diarrhea in infants and young children under five years of age. There are no effective drugs for the treatment of rotavirus in addition to preventive live attenuated vaccine. Recent evidence demonstrates that microRNAs (miRNAs) can affect RNA virus replication. However, the antiviral effect of miRNAs during rotavirus replication are largely unknown. Here, we determined that miR-7 is upregulated during RV replication and that it targets the RV NSP5 (Nonstructural protein 5). Results suggested that miR-7 affected viroplasm formation and inhibited RV replication by down-regulating RV NSP5 expression. Up-regulation of miR-7 expression is a common regulation method of different G-type RV-infected host cells. Then, we further revealed the antiviral effect of miR-7 in diarrhea suckling mice model. MiR-7 is able to inhibit rotavirus replication in vitro and in vivo. These data provide that understanding the role of cellular miR-7 during rotaviral replication may help in the identification of novel therapeutic small RNA molecule drug for anti-rotavirus.
Collapse
|
157
|
Du Q, de la Morena MT, van Oers NSC. The Genetics and Epigenetics of 22q11.2 Deletion Syndrome. Front Genet 2020; 10:1365. [PMID: 32117416 PMCID: PMC7016268 DOI: 10.3389/fgene.2019.01365] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/12/2019] [Indexed: 12/19/2022] Open
Abstract
Chromosome 22q11.2 deletion syndrome (22q11.2del) is a complex, multi-organ disorder noted for its varying severity and penetrance among those affected. The clinical problems comprise congenital malformations; cardiac problems including outflow tract defects, hypoplasia of the thymus, hypoparathyroidism, and/or dysmorphic facial features. Additional clinical issues that can appear over time are autoimmunity, renal insufficiency, developmental delay, malignancy and neurological manifestations such as schizophrenia. The majority of individuals with 22q11.2del have a 3 Mb deletion of DNA on chromosome 22, leading to a haploinsufficiency of ~106 genes, which comprise coding RNAs, noncoding RNAs, and pseudogenes. The consequent haploinsufficiency of many of the coding genes are well described, including the key roles of T-box Transcription Factor 1 (TBX1) and DiGeorge Critical Region 8 (DGCR8) in the clinical phenotypes. However, the haploinsufficiency of these genes alone cannot account for the tremendous variation in the severity and penetrance of the clinical complications among those affected. Recent RNA and DNA sequencing approaches are uncovering novel genetic and epigenetic differences among 22q11.2del patients that can influence disease severity. In this review, the role of coding and non-coding genes, including microRNAs (miRNA) and long noncoding RNAs (lncRNAs), will be discussed in relation to their bearing on 22q11.2del with an emphasis on TBX1.
Collapse
Affiliation(s)
- Qiumei Du
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - M. Teresa de la Morena
- Department of Pediatrics, The University of Washington and Seattle Children’s Hospital, Seattle, WA, United States
| | - Nicolai S. C. van Oers
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
158
|
Din AU, Hassan A, Zhu Y, Zhang K, Wang Y, Li T, Wang Y, Wang G. Inhibitory effect of Bifidobacterium bifidum ATCC 29521 on colitis and its mechanism. J Nutr Biochem 2020; 79:108353. [PMID: 32145470 DOI: 10.1016/j.jnutbio.2020.108353] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 01/12/2020] [Accepted: 01/30/2020] [Indexed: 12/14/2022]
Abstract
Probiotics are known to be beneficial in preventing different diseases in model animals, including inflammatory bowel disease. However, there are few studies on probiotics related to miRNA regulation and disease status. In this article, the beneficial role and mechanisms of the probiotic strain Bifidobacterium bifidum ATCC 29521 have been studied in ulcerative colitis using dextran sodium sulphate (DSS) model. Male C57JBL/6 mice were randomly divided into three groups (n=7): Normal group, dextran sulphate sodium (DSS) group, and Bifido group gavage with Bifidobacterium bifidum ATCC 29521 (2×108 CFU/day). Our strain restored the DSS-caused damage by regulating the expression of immune markers and tight junction proteins (TJP) in the colon; briefly by up-regulating ROS-scavenging enzymes (SOD1, SOD2, CAT, and GPX2), anti-inflammatory cytokines (IL-10, PPARγ, IL-6), TJP's (ZO-1, MUC-2, Claudin-3, and E Cadherin-1) and downregulating inflammatory genes (TNF-α, IL-1β) in Bifido group mice. Inflammatory markers appeared to be regulated by NF-κB nuclear P65 subunit, and its translocation was inhibited in Bifido group mice colon. In addition, the expression of inflammatory genes and colonic TJP were also associated with the restoration of miRNAs (miR-150, miR-155, miR-223) in B. bifidum ATCC 29521 treated Bifido group. The dysbiosis executed by DSS was restored in the Bifido group, demonstrating that B. bifidum ATCC 29521 possessed a probiotic role in our DSS colitis mouse model. B. bifidum ATCC 29521 exhibited its probiotic role through its anti-inflammatory role by modulating miRNA-associated TJP and NF-κB regulation and by partially restoring dysbiosis.
Collapse
Affiliation(s)
- Ahmad Ud Din
- Key Laboratory for Bio-rheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China; Drug Discovery Research Center, Southwest Medical University Luzhou, China
| | - Adil Hassan
- Key Laboratory for Bio-rheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yuan Zhu
- Key Laboratory for Bio-rheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Kun Zhang
- Key Laboratory for Bio-rheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yi Wang
- Key Laboratory for Bio-rheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Tianhan Li
- Key Laboratory for Bio-rheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yang Wang
- Key Laboratory for Bio-rheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Guixue Wang
- Key Laboratory for Bio-rheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
159
|
Mendonça LSO, Santos JM, Kaneto CM, de Carvalho LD, Lima-Santos J, Augusto DG, Carvalho SMS, Soares-Martins JAP, Silva-Jardim I. Characterization of serum cytokines and circulating microRNAs that are predicted to regulate inflammasome genes in cutaneous leishmaniasis patients. Exp Parasitol 2020; 210:107846. [PMID: 32001303 DOI: 10.1016/j.exppara.2020.107846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 08/08/2019] [Accepted: 01/24/2020] [Indexed: 01/01/2023]
Abstract
Leishmaniasis is a neglected disease caused by an intracellular protozoan parasite of the genus Leishmania. Infection starts when this protozoan replicates in a phagolysosomal compartment in macrophages, after evading host immune responses. The balance of Th1 and Th2 immune responses is crucial in leishmaniasis because it will determine whether the infection will be under control or if clinical complications will occur. The inflammasome, which is activated during Leishmania infection, involves the action of caspase-1 and release of the proinflammatory cytokines interleukin-1β and interleukin-18. Together, they contribute to the maintenance of an inflammatory response and pyroptosis. Here, we evaluated the serum levels of cytokines and the expression of circulating microRNAs related to inflammasome regulation in twenty-seven patients with cutaneous leishmaniasis in comparison to nine healthy individuals, in the context of the inflammasome activation. Evaluation of serum cytokines activation (IL-1β, IL-2, IL-4, IL-6, IL-10, and IL-17) was performed by flow cytometry using CBA kits (cytometric beads array) while the expression of circulating microRNAs (miR-7, miR-133a, miR-146b, miR-155, miR-223, miR-328, and miR-342) in plasma was measured by quantitative polymerase chain reaction. Our results showed an increase of the expression of miR-7-5p (p < 10-5), miR-133a (p = 0.034), miR-146b (p = 0.003), miR-223-3p (p = 10-5), and miR-328-3p (p = 0.002), and cytokine levels for IL-1β (p = 0.0005), IL-6 (p = 0.001), and IL-17 (p = 0.001) in patients with cutaneous leishmaniasis compared to the controls. These results suggest that microRNAs and cytokines can play an important role in regulating the human immune responses to Leishmania infection. Our findings may contribute to the understanding of the mechanisms of the gene regulation during the cutaneous leishmaniasis and to the identification of possible biomarkers of the infection.
Collapse
Affiliation(s)
| | | | - Carla Martins Kaneto
- Department of Biological Sciences, Universidade Estadual de Santa Cruz (UESC), Ilhéus, BA, Brazil
| | | | - Jane Lima-Santos
- Department of Biological Sciences, Universidade Estadual de Santa Cruz (UESC), Ilhéus, BA, Brazil
| | - Danillo G Augusto
- Department of Biological Sciences, Universidade Estadual de Santa Cruz (UESC), Ilhéus, BA, Brazil; Department of Genetics, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | | | | | - Izaltina Silva-Jardim
- Department of Biological Sciences, Universidade Estadual de Santa Cruz (UESC), Ilhéus, BA, Brazil.
| |
Collapse
|
160
|
Abstract
New DNA sequencing technologies have uncovered non-coding RNA (ncRNA) as a major player in regulating cellular processes and can no longer be dismissed as "junk" or "dark" RNA. Among the ncRNA, microRNA (miRNA) is arguably the most extensively characterized category and a number of studies have implicated them in regulating critical functions that can influence autoimmune demyelination. Of specific interest to multiple sclerosis (MS), miRNA have been implicated in both regulating immune responses and myelination, thus making them an attractive candidate for both pharmacological intervention and as disease biomarkers. In addition, exosomes, small vesicles secreted by most cell types and present in all body fluids, have been also shown to play roles in immune signaling, inflammation and angiogenesis. Therefore, exosomes are also being explored as tools for therapeutic delivery and as biomarkers. This article reviews the recent advances in miRNA and exosome profiling in MS and experimental models.
Collapse
Affiliation(s)
- Marcin P Mycko
- Department of Neurology, Laboratory of Neuroimmunology, Faculty of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Sergio E Baranzini
- Department of Neurology, Weill Institute of Neuroscience, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
161
|
Differential Expression of miRNAs and Behavioral Change in the Cuprizone-Induced Demyelination Mouse Model. Int J Mol Sci 2020; 21:ijms21020646. [PMID: 31963761 PMCID: PMC7014274 DOI: 10.3390/ijms21020646] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/10/2020] [Accepted: 01/16/2020] [Indexed: 12/14/2022] Open
Abstract
The demyelinating diseases of the central nervous system involve myelin abnormalities, oligodendrocyte damage, and consequent glia activation. Neurotoxicant cuprizone (CPZ) was used to establish a mouse model of demyelination. However, the effects of CPZ on microRNA (miRNA) expression and behavior have not been clearly reported. We analyzed the behavior of mice administered a diet containing 0.2% CPZ for 6 weeks, followed by 6 weeks of recovery. Rotarod analysis demonstrated that the treated group had poorer motor coordination than control animals. This effect was reversed after 6 weeks of CPZ withdrawal. Open-field tests showed that CPZ-treated mice exhibited significantly increased anxiety and decreased exploratory behavior. CPZ-induced demyelination was observed to be alleviated after 4 weeks of CPZ treatment, according to luxol fast blue (LFB) staining and myelin basic protein (MBP) expression. miRNA expression profiling showed that the expression of 240 miRNAs was significantly changed in CPZ-fed mice compared with controls. Furthermore, miR-155-5p and miR-20a-5p upregulations enhanced NgR induction through Smad 2 and Smad 4 suppression in demyelination. Taken together, our results demonstrate that CPZ-mediated demyelination induces behavioral deficits with apparent alterations in miRNA expression, suggesting that differences in miRNA expression in vivo may be new potential therapeutic targets for remyelination.
Collapse
|
162
|
Pang F, Wang X, Chen Z, Zhang Z, Zhang M, Wang C, Yang X, An Q, Du L, Wang F. Integrated Analysis of Differentially Expressed miRNAs and mRNAs in Goat Skin Fibroblast Cells in Response to Orf Virus Infection Reveals That cfa-let-7a Regulates Thrombospondin 1 Expression. Viruses 2020; 12:v12010118. [PMID: 31963559 PMCID: PMC7019303 DOI: 10.3390/v12010118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 12/30/2022] Open
Abstract
Orf is a zoonotic disease that has caused huge economic losses globally. Systematical analysis of dysregulated cellular micro RNAs (miRNAs) in response to Orf virus (ORFV) infection has not been reported. In the current study, miRNA sequencing and RNA sequencing (RNA-seq) were performed in goat skin fibroblast (GSF) cells at 0, 18, and 30 h post infection (h.p.i). We identified 140 and 221 differentially expressed (DE) miRNAs at 18 and 30 h.p.i, respectively. We also identified 729 and 3961 DE genes (DEGs) at 18 and 30 h.p.i, respectively. GO enrichment analysis indicates enrichment of apoptotic regulation, defense response to virus, immune response, and inflammatory response at both time points. DE miRNAs and DEGs with reverse expression were used to construct miRNA-gene networks. Seven DE miRNAs and seven DEGs related to "negative regulation of viral genome replication" were identified. These were validated by RT-qPCR. Cfa-let-7a, a significantly upregulated miRNA, was found to repress Thrombospondin 1 (THBS1) mRNA and protein expression by directly targeting the THBS1 3' untranslated region. THBS1 has been reported to induce apoptosis; therefore, the cfa-let-7a-THBS1 axis may play an important role in cellular apoptosis during ORFV infection. This study provides new insights into ORFV and host cell interaction mechanisms.
Collapse
Affiliation(s)
- Feng Pang
- College of Animal Science and Technology, Hainan University, Hainan Key Lab of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Haikou 570228, China; (F.P.); (Z.C.); (Z.Z.); (M.Z.); (C.W.); (X.Y.); (Q.A.); (L.D.)
| | - Xinying Wang
- Guizhou Institute of Technology, Guiyang, 550003, China;
| | - Zhen Chen
- College of Animal Science and Technology, Hainan University, Hainan Key Lab of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Haikou 570228, China; (F.P.); (Z.C.); (Z.Z.); (M.Z.); (C.W.); (X.Y.); (Q.A.); (L.D.)
| | - Zhenxing Zhang
- College of Animal Science and Technology, Hainan University, Hainan Key Lab of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Haikou 570228, China; (F.P.); (Z.C.); (Z.Z.); (M.Z.); (C.W.); (X.Y.); (Q.A.); (L.D.)
| | - Mengmeng Zhang
- College of Animal Science and Technology, Hainan University, Hainan Key Lab of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Haikou 570228, China; (F.P.); (Z.C.); (Z.Z.); (M.Z.); (C.W.); (X.Y.); (Q.A.); (L.D.)
| | - Chengqiang Wang
- College of Animal Science and Technology, Hainan University, Hainan Key Lab of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Haikou 570228, China; (F.P.); (Z.C.); (Z.Z.); (M.Z.); (C.W.); (X.Y.); (Q.A.); (L.D.)
| | - Xiaohong Yang
- College of Animal Science and Technology, Hainan University, Hainan Key Lab of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Haikou 570228, China; (F.P.); (Z.C.); (Z.Z.); (M.Z.); (C.W.); (X.Y.); (Q.A.); (L.D.)
| | - Qi An
- College of Animal Science and Technology, Hainan University, Hainan Key Lab of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Haikou 570228, China; (F.P.); (Z.C.); (Z.Z.); (M.Z.); (C.W.); (X.Y.); (Q.A.); (L.D.)
| | - Li Du
- College of Animal Science and Technology, Hainan University, Hainan Key Lab of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Haikou 570228, China; (F.P.); (Z.C.); (Z.Z.); (M.Z.); (C.W.); (X.Y.); (Q.A.); (L.D.)
| | - Fengyang Wang
- College of Animal Science and Technology, Hainan University, Hainan Key Lab of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Haikou 570228, China; (F.P.); (Z.C.); (Z.Z.); (M.Z.); (C.W.); (X.Y.); (Q.A.); (L.D.)
- Correspondence:
| |
Collapse
|
163
|
Rojas E, Martinez-Pacheco M, Rodriguez-Sastre MA, Ramos-Espinosa P, Valverde M. Post-transcriptional regulation of Rad51c by miR-222 contributes cellular transformation. PLoS One 2020; 15:e0221681. [PMID: 31923208 PMCID: PMC6953820 DOI: 10.1371/journal.pone.0221681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/13/2019] [Indexed: 12/19/2022] Open
Abstract
DNA repair inhibition has been described as an essential event leading to the initiation of carcinogenesis. In a previous study, we observed that the exposure to metal mixture induces changes in the miR-nome of the cells that was correlated with the sub-expression of mRNA involved in processes and diseases associated with metal exposure. From this analysis, one of the miRNAs that shows changes in its expression is miR-222, which is overexpressed in various cancers associated with exposure to metals. In silico studies showed that a possible target for the microRNA-222 could be Rad 51c, a gene involved in the double-stranded DNA repair. We could appreciate that up-regulation of miR-222 reduces the expression both gene and as a protein expression of Rad51c by RT-PCR and immunoblot, respectively. A luciferase assay was performed to validate Rad51c as miR-222 target. Neutral comet assay was performed in order to evaluate DNA double-strand breaks under experimental conditions. Here, we demonstrate that miR-222 up-regulation, directly regulates Rad51c expression negatively, and impairs homologous recombination of double-strand break DNA repair during the initiation stage of cell transformation. This inhibition triggers morphological transformation in a two-stage Balb/c 3T3 cell assay, suggesting that this small RNA acts as an initiator of the carcinogenesis process.
Collapse
Affiliation(s)
- Emilio Rojas
- Universidad Nacional Autónoma de México, Instituto de Investigaciones Biomédicas, Departamento de Medicina Genómica y ToxicologÃa Ambiental, Mexico City, C.U., México
| | | | - Maria Alexandra Rodriguez-Sastre
- Universidad Nacional Autónoma de México, Instituto de Investigaciones Biomédicas, Departamento de Medicina Genómica y ToxicologÃa Ambiental, Mexico City, C.U., México
| | - Paulina Ramos-Espinosa
- Universidad Nacional Autónoma de México, Instituto de Investigaciones Biomédicas, Departamento de Medicina Genómica y ToxicologÃa Ambiental, Mexico City, C.U., México
| | - Mahara Valverde
- Universidad Nacional Autónoma de México, Instituto de Investigaciones Biomédicas, Departamento de Medicina Genómica y ToxicologÃa Ambiental, Mexico City, C.U., México
| |
Collapse
|
164
|
Abstract
MicroRNAs (miRNAs) are 20-22 nucleotides long single-stranded noncoding RNAs. They regulate gene expression posttranscriptionally by base pairing with the complementary sequences in the 3'-untranslated region of their targeted mRNA. Aberrant expression of miRNAs leads to alterations in the expression of oncogenes and tumor suppressors, thereby affecting cellular growth, proliferation, apoptosis, motility, and invasion capacity of gastrointestinal cells, including cells of esophageal squamous cell carcinoma (ESCC). Thus, alterations in miRNAs expression associated with the pathogenesis and progression of ESCC. In addition, expression profiles of miRNAs correlated with various clinicopathological factors, including pathological stages, histological differentiation, invasion, metastasis of cancer, as well as survival rates and therapy response of patients with ESCC. Consequently, expression profiles of miRNAs could be useful as diagnostic, prognostic, and prediction biomarkers in ESCC. Herein, we describe the quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and microarray methods for detection and quantitate miRNAs in ESCC. In addition, we summarize the roles of miRNAs in ESCC pathogenesis, progression, and prognosis.
Collapse
Affiliation(s)
- Farhadul Islam
- Cancer Molecular Pathology of School of Medicine, Griffith University, Gold Coast, Queensland, Australia
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Vinod Gopalan
- Cancer Molecular Pathology of School of Medicine, Griffith University, Gold Coast, Queensland, Australia
| | - Alfred K Lam
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland, Australia.
| |
Collapse
|
165
|
Calderon-Dominguez M, Belmonte T, Quezada-Feijoo M, Ramos-Sánchez M, Fernández-Armenta J, Pérez-Navarro A, Cesar S, Peña-Peña L, Vea À, Llorente-Cortés V, Mangas A, de Gonzalo-Calvo D, Toro R. Emerging role of microRNAs in dilated cardiomyopathy: evidence regarding etiology. Transl Res 2020; 215:86-101. [PMID: 31505160 DOI: 10.1016/j.trsl.2019.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 02/08/2023]
Abstract
Dilated cardiomyopathy (DCM) is a heart muscle disease characterized by ventricular dilation and systolic dysfunction in the absence of abnormal loading conditions or coronary artery disease. This cardiac disorder is a major health problem due to its high prevalence, morbidity, and mortality. DCM is a complex disease with a common phenotype but heterogeneous pathological mechanisms. Early etiological diagnosis and prognosis stratification is crucial for the clinical management of the patient. Advances in imaging technology and genetic tests have provided useful tools for clinical practice. Nevertheless, the assessment of the disease remains challenging. Novel noninvasive indicators are still needed to assist in decision-making. microRNAs (miRNAs), a group of small noncoding RNAs, have been identified as key mediators of cell biology. They are found in a stable form in body fluids and their concentration is altered in response to stress. Previous research has suggested that the miRNA signature constitutes a novel source of noninvasive biomarkers for a wide array of cardiovascular diseases. Specifically, several studies have reported the potential role of miRNAs as clinical indicators among the etiologies of DCM. However, this field has not been reviewed in detail. Here, we summarize the evidence of intracellular and circulating miRNAs in DCM and their usefulness in the development of novel diagnostic, prognostic and therapeutic approaches, with a focus on DCM etiology. Although the findings are still preliminary, due to methodological and technical limitations and the lack of robust population-based studies, miRNAs constitute a promising tool to assist in the clinical management of DCM.
Collapse
Affiliation(s)
- Maria Calderon-Dominguez
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain
| | - ThalÃa Belmonte
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain
| | - Maribel Quezada-Feijoo
- Department of Cardiology, Cruz Roja Central Hospital, Madrid, Spain; Alfonso X University (UAX), Madrid, Spain
| | - Monica Ramos-Sánchez
- Department of Cardiology, Cruz Roja Central Hospital, Madrid, Spain; Alfonso X University (UAX), Madrid, Spain
| | - Juan Fernández-Armenta
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain; Department of Cardiology, Puerta del Mar Universitary Hospital, Cádiz, Spain
| | - Amparo Pérez-Navarro
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain
| | - Sergi Cesar
- Department of Pediatric Cardiology, Sant Joan de Déu Hospital, Barcelona, Spain
| | - Luisa Peña-Peña
- Department of Cardiology, Virgen del Rocio Universitary Hospital, Sevilla, Spain
| | - Àngela Vea
- Institute of Biomedical Research of Barcelona (IIBB) - Spanish National Research Council (CSIC), Barcelona, Spain
| | - Vicenta Llorente-Cortés
- Institute of Biomedical Research of Barcelona (IIBB) - Spanish National Research Council (CSIC), Barcelona, Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; CIBERCV, Institute of Health Carlos III, Madrid, Spain
| | - Alipio Mangas
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain; Department of Internal Medicine, Puerta del Mar Universitary Hospital, Cádiz, Spain; Department of Medicine, School of Medicine, University of Cádiz, Cádiz, Spain
| | - David de Gonzalo-Calvo
- Institute of Biomedical Research of Barcelona (IIBB) - Spanish National Research Council (CSIC), Barcelona, Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; CIBERCV, Institute of Health Carlos III, Madrid, Spain.
| | - Rocio Toro
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain; Department of Internal Medicine, Puerta del Mar Universitary Hospital, Cádiz, Spain; Department of Medicine, School of Medicine, University of Cádiz, Cádiz, Spain.
| |
Collapse
|
166
|
Xu C, Shah MA, Mipam T, Wu S, Yi C, Luo H, Yuan M, Chai Z, Zhao W, Cai X. Bovid microRNAs involved in the process of spermatogonia differentiation into spermatocytes. Int J Biol Sci 2020; 16:239-250. [PMID: 31929752 PMCID: PMC6949159 DOI: 10.7150/ijbs.38232] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 09/28/2019] [Indexed: 12/17/2022] Open
Abstract
The male infertility of cattleyak resulted from spermatogenic arrest has greatly restricted the effective utilization of the heterosis from crossbreeding of cattle and yak. Based on our previous studies, the significant divergences of the transcriptomic and proteomic sequencing between yak and cattleyak prompt us to investigate the critical roles of microRNAs in post-transcriptional regulation of gene expression during spermatogenesis. TUNEL-POD analysis presented sharply decreased spermatogenic cell types and the increased apoptotic spermatogonia in cattleyak. The STA-PUT velocity sedimentation was employed to obtain spermatogonia and spermatocytes from cattle, yak and cattleyak and these spermatogenic cells were verified by the morphological and phenotypic identification. MicroRNA microarray showed that 27 differentially expressed miRNAs were simultaneously identified both in cattleyak vs cattle and in cattleyak vs yak comparisons. Further analysis revealed that the down-regulation of bta-let-7 families, bta-miR-125 and bta-miR-23a might impair the RA-induced differentiation of spermatogonia. Target gene analysis for differentially expressed miRNAs revealed that miRNAs targeted major players involved in vesicle-mediated transport, regulation of protein kinase activity and Pathways in cancer. In addition, spermatogonia transfection analysis revealed that the down-regulation of bta-miR-449a in the cattleyak might block the transition of male germ cells from the mitotic cycle to the meiotic program. The present study provided valuable information for future elucidating the regulatory roles of miRNAs involved in spermatogenic arrest of cattleyak.
Collapse
Affiliation(s)
- Chuanfei Xu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610041, Sichuan, China.,School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Mujahid Ali Shah
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - TserangDonko Mipam
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610041, Sichuan, China
| | - Shixin Wu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Chuanping Yi
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Hui Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Meng Yuan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Zhixin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610041, Sichuan, China
| | - Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610041, Sichuan, China.,School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| |
Collapse
|
167
|
A fluorescence/colorimetric dual-mode sensing strategy for miRNA based on graphene oxide. Anal Bioanal Chem 2019; 412:233-242. [PMID: 31828375 DOI: 10.1007/s00216-019-02269-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/28/2019] [Accepted: 11/08/2019] [Indexed: 12/24/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs, which are involved in RNA silencing and post-transcriptional regulation of gene expression. Numerous studies have determined the expression of certain miRNAs in specific tissues and cell types, and their aberrant expression is associated with a variety of serious diseases such as cancers, immune-related diseases, and many infectious diseases. This suggests that miRNAs may be attractive and promising non-invasive biomarkers of diseases. In this study, we established a graphene oxide (GO)-based fluorescence/colorimetric dual sensing platform for miRNA by using a newly designed probe. The probe was designed to form a hairpin-like configuration with a fluorescent dye-labeled long tail, possessing a guanine (G)-rich DNAzyme domain in the loop region and target binding domain over the stem region and tail. By introducing this new hairpin-like probe in a conventional GO-based fluorescence platform, we observed both the miRNA-responsive color change by direct observation and sensitive fluorescence increase even below the nanomolar levels in a single solution without an additional separation step.
Collapse
|
168
|
Czaja AJ. Examining pathogenic concepts of autoimmune hepatitis for cues to future investigations and interventions. World J Gastroenterol 2019; 25:6579-6606. [PMID: 31832000 PMCID: PMC6906207 DOI: 10.3748/wjg.v25.i45.6579] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Multiple pathogenic mechanisms have been implicated in autoimmune hepatitis, but they have not fully explained susceptibility, triggering events, and maintenance or escalation of the disease. Furthermore, they have not identified a critical defect that can be targeted. The goals of this review are to examine the diverse pathogenic mechanisms that have been considered in autoimmune hepatitis, indicate investigational opportunities to validate their contribution, and suggest interventions that might evolve to modify their impact. English abstracts were identified in PubMed by multiple search terms. Full length articles were selected for review, and secondary and tertiary bibliographies were developed. Genetic and epigenetic factors can affect susceptibility by influencing the expression of immune regulatory genes. Thymic dysfunction, possibly related to deficient production of programmed cell death protein-1, can allow autoreactive T cells to escape deletion, and alterations in the intestinal microbiome may help overcome immune tolerance and affect gender bias. Environmental factors may trigger the disease or induce epigenetic changes in gene function. Molecular mimicry, epitope spread, bystander activation, neo-antigen production, lymphocytic polyspecificity, and disturbances in immune inhibitory mechanisms may maintain or escalate the disease. Interventions that modify epigenetic effects on gene expression, alter intestinal dysbiosis, eliminate deleterious environmental factors, and target critical pathogenic mechanisms are therapeutic possibilities that might reduce risk, individualize management, and improve outcome. In conclusion, diverse pathogenic mechanisms have been implicated in autoimmune hepatitis, and they may identify a critical factor or sequence that can be validated and used to direct future management and preventive strategies.
Collapse
Affiliation(s)
- Albert J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, United States
| |
Collapse
|
169
|
Xu J, Liao K, Fu Z, Xiong Z. A new method for early detection of pancreatic cancer biomarkers: detection of microRNAs by nanochannels. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2634-2640. [PMID: 31220948 DOI: 10.1080/21691401.2019.1614594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Objective: To develop an effective new method for early detection of pancreatic cancer biomarkers and to aid early clinical diagnosis. Methods: A DNA probe (Probe) capable of specifically recognizing the target miRNA was designed. The specific probe of miRNA 21 is designed first, and then mixed with the miRNA 21 sample to form a complex molecule, and the complex molecule is added to the nanochannels to detect the received signal. The probe is designed to detect the electrical signal by means of pre-matching and post-matching and observe the stability of the signal. The miRNA 21, miRNA 155, miRNA 196a were added to the nano-single channel to detect the characteristic signals and blocking time. The miRNA 21·probe 21 mixture was mixed with other five cancer-associated microRNAs, and the signal results of the detection were collected and compared. Results: The signal of miRNA 21 was successfully detected. Whether the probe is designed at the front or the back, there are two signal results. The Probe should be designed to match the middle region of the miRNA. The three microRNA complex molecules have different characteristic signals and blocking times, which can be effectively distinguished. Conclusion: Nanochannels can effectively detect pancreatic cancer-related microRNAs.
Collapse
Affiliation(s)
- Jiasheng Xu
- a Department of Pathology, the First Affiliated Hospital of Nanchang University , Nanchang , China
| | - Kaili Liao
- b Department of Clinical Laboratory, the Second Affiliated Hospital of Nanchang University , Nanchang , China
| | - Zhonghua Fu
- c Department of Burns, the First Affiliated Hospital of Nanchang University , Nanchang , China
| | - Zhenfang Xiong
- a Department of Pathology, the First Affiliated Hospital of Nanchang University , Nanchang , China
| |
Collapse
|
170
|
Labi V, Peng S, Klironomos F, Munschauer M, Kastelic N, Chakraborty T, Schoeler K, Derudder E, Martella M, Mastrobuoni G, Hernandez-Miranda LR, Lahmann I, Kocks C, Birchmeier C, Kempa S, Quintanilla-Martinez de Fend L, Landthaler M, Rajewsky N, Rajewsky K. Context-specific regulation of cell survival by a miRNA-controlled BIM rheostat. Genes Dev 2019; 33:1673-1687. [PMID: 31699777 PMCID: PMC6942046 DOI: 10.1101/gad.330134.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/02/2019] [Indexed: 12/13/2022]
Abstract
Knockout of the ubiquitously expressed miRNA-17∼92 cluster in mice produces a lethal developmental lung defect, skeletal abnormalities, and blocked B lymphopoiesis. A shared target of miR-17∼92 miRNAs is the pro-apoptotic protein BIM, central to life-death decisions in mammalian cells. To clarify the contribution of miR-17∼92:Bim interactions to the complex miR-17∼92 knockout phenotype, we used a system of conditional mutagenesis of the nine Bim 3' UTR miR-17∼92 seed matches. Blocking miR-17∼92:Bim interactions early in development phenocopied the lethal lung phenotype of miR-17∼92 ablation and generated a skeletal kinky tail. In the hematopoietic system, instead of causing the predicted B cell developmental block, it produced a selective inability of B cells to resist cellular stress; and prevented B and T cell hyperplasia caused by Bim haploinsufficiency. Thus, the interaction of miR-17∼92 with a single target is essential for life, and BIM regulation by miRNAs serves as a rheostat controlling cell survival in specific physiological contexts.
Collapse
Affiliation(s)
- Verena Labi
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch 13125, Germany
- Program of Cellular and Molecular Medicine, Children's Hospital, and Immune Disease Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Siying Peng
- Program of Cellular and Molecular Medicine, Children's Hospital, and Immune Disease Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Filippos Klironomos
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch 13125, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch 13125, Germany
| | - Mathias Munschauer
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch 13125, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch 13125, Germany
| | - Nicolai Kastelic
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch 13125, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch 13125, Germany
| | - Tirtha Chakraborty
- Program of Cellular and Molecular Medicine, Children's Hospital, and Immune Disease Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Katia Schoeler
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Emmanuel Derudder
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch 13125, Germany
- Program of Cellular and Molecular Medicine, Children's Hospital, and Immune Disease Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Institute for Biomedical Ageing Research, University of Innsbruck, Innsbruck 6020, Austria
| | - Manuela Martella
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tübingen, Eberhard-Karls-University, Tübingen 72076, Germany
| | - Guido Mastrobuoni
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch 13125, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch 13125, Germany
| | - Luis R Hernandez-Miranda
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch 13125, Germany
| | - Ines Lahmann
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch 13125, Germany
| | - Christine Kocks
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch 13125, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch 13125, Germany
| | - Carmen Birchmeier
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch 13125, Germany
| | - Stefan Kempa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch 13125, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch 13125, Germany
| | | | - Markus Landthaler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch 13125, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch 13125, Germany
| | - Nikolaus Rajewsky
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch 13125, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch 13125, Germany
| | - Klaus Rajewsky
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch 13125, Germany
- Program of Cellular and Molecular Medicine, Children's Hospital, and Immune Disease Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
171
|
Iwasaki H, Shimura T, Yamada T, Okuda Y, Natsume M, Kitagawa M, Horike SI, Kataoka H. A novel urinary microRNA biomarker panel for detecting gastric cancer. J Gastroenterol 2019; 54:1061-1069. [PMID: 31240436 DOI: 10.1007/s00535-019-01601-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/19/2019] [Indexed: 02/04/2023]
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common causes of cancer deaths worldwide; however, reliable and non-invasive screening methods for GC are not established. Therefore, we conducted this study to develop a biomarker for GC detection, consisting of urinary microRNAs (miRNAs). METHODS We matched 306 participants by age and sex [153 pairs consisting of patients with GC and healthy controls (HCs)], then randomly divided them across three groups: (1) the discovery cohort (4 pairs); (2) the training cohort (95 pairs); and (3) the validation cohort (54 pairs). RESULTS There were 22 urinary miRNAs with significantly aberrant expressions between the two groups in the discovery cohort. Upon multivariate analysis of the training cohort, urinary expression levels of miR-6807-5p and miR-6856-5p were significantly independent biomarkers for diagnosis of GC, in addition to Helicobacter pylori (H. pylori) status. A diagnostic panel that combined these 2 miRNAs and H. pylori status distinguished between HC and GC samples with an area under the curve (AUC) = 0.736. In the validation cohort, urinary miR-6807-5p and miR-6856-5p showed significantly higher expression levels in the GC group, and the combination biomarker panel of miR-6807-5p, miR-6856-5p, and H. pylori status also showed excellent performance (AUC = 0.885). In addition, this biomarker panel could distinguish between HC and stage I GC patients with an AUC = 0.748. Urinary expression levels of miR-6807-5p and miR-6856-5p significantly decreased to undetectable level after curative resection of GC. CONCLUSIONS This novel biomarker panel enables early and non-invasive detection of GC.
Collapse
Affiliation(s)
- Hiroyasu Iwasaki
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Aichi, Japan
| | - Takaya Shimura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Aichi, Japan.
| | - Tamaki Yamada
- Okazaki Public Health Center, Okazaki, 1-3 Harusaki, Harisaki-cho, Okazaki, Aichi, Japan
| | - Yusuke Okuda
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Aichi, Japan
| | - Makoto Natsume
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Aichi, Japan
| | - Mika Kitagawa
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Aichi, Japan
| | - Shin-Ichi Horike
- Advanced Science Research Center, Kanazawa University, 13-1, Takaramachi, Kanazawa, 920-8640, Ishikawa, Japan
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Aichi, Japan
| |
Collapse
|
172
|
MicroRNA-155-5p is a key regulator of allergic inflammation, modulating the epithelial barrier by targeting PKIα. Cell Death Dis 2019; 10:884. [PMID: 31767859 PMCID: PMC6877533 DOI: 10.1038/s41419-019-2124-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022]
Abstract
Recent studies have demonstrated that microRNA-155-5p (miR-155-5p) plays an essential role in the regulation of allergen-induced inflammation and is overexpressed in the skin of patients with atopic dermatitis (AD), although the mechanism is unknown. In this study, silencing miR-155-5p attenuated the thickening of the epidermis in AD model and reduced the infiltration of inflammatory cells and the secretion of Th2 cytokines. Protein kinase inhibitor α (PKIα) was identified as a direct target of miR-155-5p and correlated negatively with miR-155-5p in our AD model. Fluorescence in situ hybridization showed that miR-155-5p-expressing cells were predominantly present in the epidermis. When epithelial cells were transfected with an miR-155-5p inhibitor, the expression of PKIα, occludin, and CLDN16 increased and that of TSLP decreased significantly, whereas the overexpression of miR-155-5p resulted in the opposite changes. The increased expression of PKIα and tight junction (TJ) proteins, with reduced TSLP and IL-33, was also detected in miR-155-5p-blocked mice, in both the initial and elicitation stages of AD. The expression of TJ proteins also decreased when cells were transfected with PKIα siRNA. TJ proteins increased and TSLP and IL-33 decreased significantly after the overexpression of PKIα. Our data provide the first evidence that miR-155-5p is critical for the allergic inflammation in a mouse model of AD by directly regulating PKIα and thus epithelial TJ expression. These findings suggest new therapeutic strategies that target miR-155-5p in patients with allergic disorders.
Collapse
|
173
|
Pakshir K, Badali H, Nami S, Mirzaei H, Ebrahimzadeh V, Morovati H. Interactions between immune response to fungal infection and microRNAs: The pioneer tuners. Mycoses 2019; 63:4-20. [PMID: 31597205 DOI: 10.1111/myc.13017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022]
Abstract
Due to their physiological and biological characteristics, numerous fungi are potentially emerging pathogens. Active dynamicity of fungal pathogens causes life-threatening infections annually impose high costs to the health systems. Although immune responses play crucial roles in controlling the fate of fungal infections, immunocompromised patients are at high risk with high mortality. Tuning the immune response against fungal infections might be an effective strategy for controlling and reducing the pathological damages. MicroRNAs (miRNAs) are known as the master regulators of immune response. These single-stranded tuners (18-23 bp non-coding RNAs) are endogenously expressed by all metazoan eukaryotes and have emerged as the master gene expression controllers of at least 30% human genes. In this review article, following the review of biology and physiology (biogenesis and mechanism of actions) of miRNAs and immune response against fungal infections, the interactions between them were scrutinised. In conclusion, miRNAs might be considered as one of the potential goals in immunotherapy for fungal infections. Undoubtedly, advanced studies in this field, further identifying of miRNA roles in governing the immune response, pave the way for inclusion of miRNA-related immunotherapeutic in the treatment of life-threatening fungal infections.
Collapse
Affiliation(s)
- Keyvan Pakshir
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Badali
- Invasive Fungi Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Fungus Testing Laboratory, Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sanam Nami
- Department of Medical Mycology and Parasitology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Veghar Ebrahimzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Morovati
- Department of Medical Mycology and Parasitology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
174
|
Inducible degradation of lncRNA Sros1 promotes IFN-γ-mediated activation of innate immune responses by stabilizing Stat1 mRNA. Nat Immunol 2019; 20:1621-1630. [PMID: 31740800 DOI: 10.1038/s41590-019-0542-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023]
Abstract
Interferon-γ (IFN-γ) is essential for the innate immune response to intracellular bacteria. Noncoding RNAs and RNA-binding proteins (RBPs) need to be further considered in studies of regulation of the IFN-γ-activated signaling pathway in macrophages. In the present study, we found that the microRNA miR-1 promoted IFN-γ-mediated clearance of Listeria monocytogenes in macrophages by indirectly stabilizing the Stat1 messenger RNA through the degradation of the cytoplasmic long noncoding RNA Sros1. Inducible degradation or genetic loss of Sros1 led to enhanced IFN-γ-dependent activation of the innate immune response. Mechanistically, Sros1 blocked the binding of Stat1 mRNA to the RBP CAPRIN1, which stabilized the Stat1 mRNA and, consequently, promoted IFN-γ-STAT1-mediated innate immunity. These observations shed light on the complex RNA-RNA regulatory networks involved in cytokine-initiated innate responses in host-pathogen interactions.
Collapse
|
175
|
Li C, Xu X. Biological functions and clinical applications of exosomal non-coding RNAs in hepatocellular carcinoma. Cell Mol Life Sci 2019; 76:4203-4219. [PMID: 31300868 PMCID: PMC11105530 DOI: 10.1007/s00018-019-03215-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/09/2019] [Accepted: 06/28/2019] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide, with a high mortality rate. Its dismal prognosis is attributed to late diagnosis, high risk of recurrence and drug resistance. To improve the survival of patients with HCC, new approaches are required for early diagnosis, real-time monitoring and effective treatment. Exosomes are small membranous vesicles released by most cells that contain biological molecules and play a great role in intercellular communication under physiological or pathological conditions. In cancer, exosomes from tumor cells or non-tumor cells can be taken up by neighboring or distant target cells, and the cargoes in exosomes are functional to modulate the behaviors of tumors or reshape tumor microenvironment (TME). As essential components, non-coding RNAs (ncRNAs) are selectively enriched in exosomes, and exosomal ncRNAs participate in regulating specific aspects of tumor development, including tumorigenesis, tumor metastasis, angiogenesis, immunomodulation and drug resistance. Besides, dysregulated exosomal ncRNAs have emerged as potential biomarkers, and exosomes can serve as natural vehicles to deliver tumor-suppressed ncRNAs for treatment. In this review, we briefly summarize the biology of exosomes, the functions of exosomal ncRNAs in HCC development and their potential clinical applications, including as biomarkers and therapeutic tools.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/physiology
- Carcinoma, Hepatocellular/diagnosis
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Drug Delivery Systems
- Exosomes/genetics
- Exosomes/metabolism
- Gene Expression Regulation, Neoplastic
- Genetic Therapy/methods
- Humans
- Liver Neoplasms/diagnosis
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Molecular Targeted Therapy/methods
- RNA, Neoplasm/metabolism
- RNA, Neoplasm/physiology
- RNA, Untranslated/metabolism
- RNA, Untranslated/physiology
Collapse
Affiliation(s)
- Changbiao Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS, Hangzhou, 310003, China
| | - Xiao Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, China.
- NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS, Hangzhou, 310003, China.
| |
Collapse
|
176
|
Van Hese I, Goossens K, Vandaele L, Opsomer G. Invited review: MicroRNAs in bovine colostrum-Focus on their origin and potential health benefits for the calf. J Dairy Sci 2019; 103:1-15. [PMID: 31677833 DOI: 10.3168/jds.2019-16959] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/06/2019] [Indexed: 12/23/2022]
Abstract
Colostrum is the first milk produced by a cow after she gives birth. Compared with mature milk, it has a high concentration of immunoglobulin G. Calves are born without circulating antibodies, thus ingestion of colostrum is necessary to protect the calf against pathogens in the first challenging weeks of life. In addition to the life-saving supply of antibodies, colostrum contains minerals, vitamins, growth factors, and immune cells. Recently, microRNAs (miRNAs) were added to that list. MicroRNAs are short, non-coding RNA molecules that can regulate gene expression at the post-transcriptional level. They are thought to act as key regulators of diverse biological and developmental processes. Colostrum contains higher amounts of miRNAs than mature milk; immune- and development-related miRNAs are prominent. Their expression pattern in milk is likely to be influenced by maternal nutrition and environment. The fat content of the maternal diet appears to have a major effect on expression of miRNAs in milk and in the neonate. The immunological state of the mammary gland seems to affect miRNA expression as well. In cows diagnosed with subclinical mastitis, alterations in the expression of miRNAs in milk have been observed. It is believed that miRNAs in colostrum and milk are signaling molecules passed from mother to newborn. They are packaged in extracellular vesicles, which makes them resistant to the harsh conditions in the gastrointestinal tract. Therefore, they can reach the small intestine, where they are absorbed and transferred into the bloodstream. MicroRNAs are important for the development of the intestines. For example, miRNAs stimulate cell viability, proliferation, and stem cell activity of the intestinal epithelium. Furthermore, miRNAs seem to act as key players in the development of the complete immune system. They can, among other things, regulate B- and T-cell differentiation and affect interleukin production of macrophages. The abundance of miRNAs in colostrum and milk and the possibility for their absorption in the intestines of the neonate supports the hypothesis that these tiny molecules are important for the development of the newborn. The probable relation of diet to the expression of miRNAs by the mother creates a possible avenue to optimize expression of miRNAs and improve neonatal maturation.
Collapse
Affiliation(s)
- I Van Hese
- Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Scheldeweg, Melle, 9090, Belgium; Department of Reproduction, Obstetrics and Herd Health Faculty of Veterinary Medicine, Ghent University, Salisburylaan, Merelbeke, 9820, Belgium.
| | - K Goossens
- Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Scheldeweg, Melle, 9090, Belgium
| | - L Vandaele
- Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Scheldeweg, Melle, 9090, Belgium
| | - G Opsomer
- Department of Reproduction, Obstetrics and Herd Health Faculty of Veterinary Medicine, Ghent University, Salisburylaan, Merelbeke, 9820, Belgium
| |
Collapse
|
177
|
Chen JX, Zhuo Y, Peng X, Chai YQ, Yuan R, Liang WB. A Dynamic DNA Machine via Free Walker Movement on Lipid Bilayer for Ultrasensitive Electrochemiluminescent Bioassay. Anal Chem 2019; 91:14125-14132. [PMID: 31583883 DOI: 10.1021/acs.analchem.9b03999] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Herein, an ultrasensitive electrochemiluminescent (ECL) strategy was proposed based on a highly efficient dynamic DNA machine based on microRNA triggered free movement on the lipid bilayer interface. Typically, the lipid bilayer is constructed on the electrode surface modified with nafion@ECL luminophore and gold nanoparticles to immobilize the DNA walker labeled with cholesterol and hairpin nucleotides labeled with cholesterol and ferrocene (Fc), based on the cholesterol-lipid interaction. On this state, Fc was close to the ECL luminophore, performing a quenched ECL emission. In the presence of target microRNA 21, it could trigger the entropy beacon-based DNA amplification to convert microRNA to massive special DNA sequences, which could further hybridize with the blocking DNA on DNA walker to reactivate the DNA walker and thus trigger the DNA walker-based amplification to make Fc to be far from the ECL luminophore, performing a recovered ECL emission related with the concentration of microRNA 21. Compared with the conventional DNA walker immobilized on the interface via chemical bonds or physical adsorption, a higher reaction efficiency could be achieved due to the free movements of DNA walker and its substrates on the interface. As expected, satisfactory performances for the detection of microRNA 21 were achieved with a detection limit of 0.4 fM and quantitative estimation in cells. Furthermore, this dynamic DNA machine-based ECL strategy could be readily expanded for the detection of other biomarkers for clinical diagnosis.
Collapse
Affiliation(s)
- Jin-Xuan Chen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China
| | - Ying Zhuo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China
| | - Xin Peng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China
| | - Ya-Qin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China
| | - Wen-Bin Liang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China
| |
Collapse
|
178
|
Wu W, Dai C, Duan X, Wang C, Lin X, Ke J, Wang Y, Zhang X, Liu H. miRNAs induced by white spot syndrome virus involve in immunity pathways in shrimp Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2019; 93:743-751. [PMID: 31408731 DOI: 10.1016/j.fsi.2019.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 07/04/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
White shrimp Litopenaeus vannamei are widely cultured in the world and white spot syndrome virus (WSSV) led to huge economic losses in the shrimp industry every year. In the present study, miRNAs involved in the response of shrimp L. vannamei to WSSV infection were obtained through the Illumina HiSeq 2500 high-throughput next-generation sequencing technique. A total number of 7 known miRNAs and 54 putative novel miRNAs were obtained. Among them, 14 DEMs were identified in the shrimp infected with WSSV. The putative target genes of these DEMs were related to host immune response or signaling pathways, indicating the importance of miRNAs in shrimp against WSSV infection. The results will provide information for further research on shrimp response to virus infection and contribute to the development of new strategies for effective protection against WSSV infections.
Collapse
Affiliation(s)
- Wenlin Wu
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou, 362000, China
| | - Congjie Dai
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou, 362000, China
| | - Xunwei Duan
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou, 362000, China
| | - Cuifang Wang
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou, 362000, China
| | - Xiaosi Lin
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou, 362000, China
| | - Jiaying Ke
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou, 362000, China
| | - Yixuan Wang
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou, 362000, China
| | - Xiaobo Zhang
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou, 362000, China; School of Life Science, Zhejiang University, Hangzhou, 310004, China.
| | - Haipeng Liu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, Fujian, China; Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources (Xiamen University), State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen, 361102, Fujian, China.
| |
Collapse
|
179
|
Heinicke F, Zhong X, Zucknick M, Breidenbach J, Sundaram AYM, T Flåm S, Leithaug M, Dalland M, Farmer A, Henderson JM, Hussong MA, Moll P, Nguyen L, McNulty A, Shaffer JM, Shore S, Yip HK, Vitkovska J, Rayner S, Lie BA, Gilfillan GD. Systematic assessment of commercially available low-input miRNA library preparation kits. RNA Biol 2019; 17:75-86. [PMID: 31559901 PMCID: PMC6948978 DOI: 10.1080/15476286.2019.1667741] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
High-throughput sequencing is increasingly favoured to assay the presence and abundance of microRNAs (miRNAs) in biological samples, even from low RNA amounts, and a number of commercial vendors now offer kits that allow miRNA sequencing from sub-nanogram (ng) inputs. Although biases introduced during library preparation have been documented, the relative performance of current reagent kits has not been investigated in detail. Here, six commercial kits capable of handling <100ng total RNA input were used for library preparation, performed by kit manufactures, on synthetic miRNAs of known quantities and human total RNA samples. We compared the performance of miRNA detection sensitivity, reliability, titration response and the ability to detect differentially expressed miRNAs. In addition, we assessed the use of unique molecular identifiers (UMI) sequence tags in one kit. We observed differences in detection sensitivity and ability to identify differentially expressed miRNAs between the kits, but none were able to detect the full repertoire of synthetic miRNAs. The reliability within the replicates of all kits was good, while larger differences were observed between the kits, although none could accurately quantify the relative levels of the majority of miRNAs. UMI tags, at least within the input ranges tested, offered little advantage to improve data utility. In conclusion, biases in miRNA abundance are heavily influenced by the kit used for library preparation, suggesting that comparisons of datasets prepared by different procedures should be made with caution. This article is intended to assist researchers select the most appropriate kit for their experimental conditions.
Collapse
Affiliation(s)
- Fatima Heinicke
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Xiangfu Zhong
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Manuela Zucknick
- Department of Biostatistics, Oslo Centre for Biostatistics and Epidemiology, University of Oslo, Oslo, Norway
| | - Johannes Breidenbach
- Norwegian Institute for Bioeconomy Research, National Forest Inventory, Ã…s, Norway
| | - Arvind Y M Sundaram
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Siri T Flåm
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Magnus Leithaug
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Marianne Dalland
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | | - Simon Rayner
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Benedicte A Lie
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Gregor D Gilfillan
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| |
Collapse
|
180
|
Gannavaram S, Bhattacharya P, Siddiqui A, Ismail N, Madhavan S, Nakhasi HL. miR-21 Expression Determines the Early Vaccine Immunity Induced by LdCen -/- Immunization. Front Immunol 2019; 10:2273. [PMID: 31608064 PMCID: PMC6769120 DOI: 10.3389/fimmu.2019.02273] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/09/2019] [Indexed: 12/21/2022] Open
Abstract
No vaccine exists against visceral leishmaniasis. Toward developing vaccines against VL, we have reported previously on the immunogenicity of live attenuated LdCen -/- parasites in animal models. Immunization with LdCen -/- parasites has been shown to induce durable protective immunity in pre-clinical animal models. Although the innate immune responses favoring a Th1 type immunity are produced following LdCen -/- immunization, the molecular determinants of such responses remain unknown. To identify early biomarkers of immunogenicity associated with live attenuated parasitic vaccines, we infected macrophages derived from healthy human blood donors with LdCen -/- or LdWT parasites ex vivo and compared the early gene expression profiles. In addition to altered expression of immune related genes, we identified several microRNAs that regulate important cytokine genes, significantly altered in LdCen -/- infection compared to LdWT infection. Importantly, we found that LdCen -/- infection suppresses the expression of microRNA-21 (miR-21) in human macrophages, which negatively regulates IL12, compared to LdWT infection. In murine DC experiments, LdCen -/- infection showed a reduced miR-21 expression with a concomitant induction of IL12. Silencing of miR-21 using specific inhibitors resulted in an augmented induction of IL12 in LdWT infected BMDCs, illustrating the role of miR-21 in LdWT mediated suppression of IL12. Further, exosomes isolated from LdCen -/- infected DCs contained significantly reduced levels of miR-21 compared to LdWT infection, that promoted proliferation of CD4+ T cells in vitro. Similar miR-21 mediated IL12 regulation was also observed in ex vivo human macrophage infection experiments indicating that miR-21 plays a role in early IL12 mediated immunity. Our studies demonstrate that LdCen -/- infection suppresses miR-21 expression, enables IL12 mediated induction of adaptive immunity including proliferation of antigen experienced CD4+ T cells and development of a Th1 immunity, and suggest that miR-21 could be an important biomarker for LdCen -/- vaccine immunity in human clinical trials. One Sentence Summary Role of miR-21 in vaccine induced immunity.
Collapse
Affiliation(s)
- Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Parna Bhattacharya
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Abid Siddiqui
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Nevien Ismail
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Subha Madhavan
- Innovation Center for Biomedical Informatics, Georgetown University, Washington, DC, United States
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
181
|
Razmara E, Bitaraf A, Yousefi H, Nguyen TH, Garshasbi M, Cho WCS, Babashah S. Non-Coding RNAs in Cartilage Development: An Updated Review. Int J Mol Sci 2019; 20:4475. [PMID: 31514268 PMCID: PMC6769748 DOI: 10.3390/ijms20184475] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023] Open
Abstract
In the development of the skeleton, the long bones are arising from the process of endochondral ossification (EO) in which cartilage is replaced by bone. This complex process is regulated by various factors including genetic, epigenetic, and environmental elements. It is recognized that DNA methylation, higher-order chromatin structure, and post-translational modifications of histones regulate the EO. With emerging understanding, non-coding RNAs (ncRNAs) have been identified as another mode of EO regulation, which is consist of microRNAs (miRNAs or miRs) and long non-coding RNAs (lncRNAs). There is expanding experimental evidence to unlock the role of ncRNAs in the differentiation of cartilage cells, as well as the pathogenesis of several skeletal disorders including osteoarthritis. Cutting-edge technologies such as epigenome-wide association studies have been employed to reveal disease-specific patterns regarding ncRNAs. This opens a new avenue of our understanding of skeletal cell biology, and may also identify potential epigenetic-based biomarkers. In this review, we provide an updated overview of recent advances in the role of ncRNAs especially focus on miRNA and lncRNA in the development of bone from cartilage, as well as their roles in skeletal pathophysiology.
Collapse
Affiliation(s)
- Ehsan Razmara
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-111, Iran
| | - Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-111, Iran
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, LA 70112, USA
| | - Tina H Nguyen
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, LA 70112, USA
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-111, Iran
| | | | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-111, Iran.
| |
Collapse
|
182
|
Zhang J, Luo H, Xiong Z, Wan K, Liao Q, He H. High-throughput sequencing reveals biofluid exosomal miRNAs associated with immunity in pigs. Biosci Biotechnol Biochem 2019; 84:53-62. [PMID: 31483222 DOI: 10.1080/09168451.2019.1661767] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Large numbers of miRNAs are found in biofluid exosomes. We isolated ~50-200Â nm diameter exosomes from four types of porcine biofluid (urine, plasma, semen, and bile) using serial centrifugation and ultracentrifugation procedures. A total of 42.15 M raw data were generated from four small RNA libraries. This produced 40.17 M map-able sequences, of which we identified 204 conserved miRNAs, and 190 novel candidate miRNAs. Furthermore, we identified 34 miRNAs specifically expressed in only one library, all with well-characterized immune-related functions. A set of five universally abundant miRNAs (miR-148a-3p, miR-21-5p, let-7f-5p, let-7i-5p, and miR-99a-5p) across all four biofluids was also found. Function enrichment analysis revealed that the target genes of the five ubiquitous miRNAs are primarily involved in immune and RNA metabolic processes. In summary, our findings suggest that porcine biofluid exosomes contain a large number of miRNAs, many of which may be crucial regulators of the immune system.
Collapse
Affiliation(s)
- Jie Zhang
- College of Animal Science, Southwest University, Chongqing, China
| | - Hui Luo
- College of Animal Science, Southwest University, Chongqing, China
| | - Zibiao Xiong
- College of Animal Science, Southwest University, Chongqing, China
| | - Kun Wan
- College of Animal Science, Southwest University, Chongqing, China
| | - Qinfeng Liao
- College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing, China
| | - Hang He
- College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing, China
| |
Collapse
|
183
|
Chen C, Su X, Hu Z. Immune promotive effect of bioactive peptides may be mediated by regulating the expression of SOCS1/miR-155. Exp Ther Med 2019; 18:1850-1862. [PMID: 31410147 PMCID: PMC6676218 DOI: 10.3892/etm.2019.7734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 04/26/2019] [Indexed: 02/06/2023] Open
Abstract
The present study was designed to evaluate the effect of bioactive hepatic peptide (BHP) on the immune function of mice and to examine the mechanism mediated by the related factors cytokine suppressor of cytokine signaling 1 (SOCS1) and microRNA (miR)-155. The mice were divided into eight groups, including a normal mouse group, normal peptide groups (low-dose, mid-dose and high-dose), an immunosuppressed group, and immunosuppressed with peptide groups (low-dose, mid-dose and high-dose). The proliferative ability of splenic lymphocytes was determined in vitro using a Cell Counting kit-8 assay. Wright's staining was used to assess the phagocytic function of macrophages. Histological changes in the spleen were evaluated by hematoxylin-eosin staining. The relevant factors SOCS1/miR-155 were assessed by immunohistochemistry and reverse transcription fluorescence-quantitative polymerase chain reaction analysis. The levels of the cytokines TGF-β1, IL-10 and IL-17A were determined by enzyme-linked immunosorbent assay. First, the organ index, percentage of lymphocytes, phagocytosis experiments and splenic lymphocyte proliferation test results revealed that the immunodeficient mouse model had been successfully established. Second, compared with the control mice, the normal peptide group mice exhibited increased spleen and thymus indices, percentages of lymphocyte subsets, macrophage phagocytosis percentages, phagocytic indices, splenic lymphocyte proliferation and expression of miR-155; however, the expression of SOCS1 was decreased in the normal peptide groups to varying extents. In addition, the expression of SOCS1 was upregulated, whereas that of miR-155 was downregulated in the immunosuppressed group. Compared with the mice in the immunosuppressed group, the mice in the immunosuppressed with peptide groups had increased spleen and thymus indices, percentages of lymphocyte subsets, macrophage phagocytosis percentages, phagocytic indices, splenic lymphocyte proliferation and expression of miR-155; however, the expression of SOCS1 was decreased in the immunosuppressed with peptide groups to varying extents. Following treatment with BHP, the secretion of TGF-β1 in the spleen of the normal mice and immunosuppressed mice was significantly decreased, and the secretion of IL-10 was significantly increased. No significant difference in the expression of IL-17A was observed among the groups. In summary, BHP improved the immune function of the normal mice and immunosuppressed mice. This data provides a scientific basis for the development of bioactive peptide health products.
Collapse
Affiliation(s)
- Caixia Chen
- Clinical Medicine Research Center of The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Xiulan Su
- Clinical Medicine Research Center of The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Zhiwei Hu
- Clinical Medicine Research Center of The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
- Department of Surgery, Division of Surgical Oncology, James Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
184
|
Association of Breastfeeding Duration with Susceptibility to Allergy, Influenza, and Methylation Status of TLR1 Gene. ACTA ACUST UNITED AC 2019; 55:medicina55090535. [PMID: 31454983 PMCID: PMC6780093 DOI: 10.3390/medicina55090535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 02/08/2023]
Abstract
Background and Objectives: This study aimed to investigate the possible association between exclusive breastfeeding duration during early infancy and susceptibility to allergy and influenza in adulthood. Furthermore, we also investigated the association of breastfeeding duration with DNA methylation at two sites in the promoter of the toll-like receptor-1 (TLR1) gene, as well as the association between DNA methylation of the toll-like receptor-1 (TLR1) gene and susceptibility to different diseases. Materials and Methods: Blood samples were collected from 100 adults and classified into two groups according to breastfeeding duration (<6 months and ≥6 months) during infancy. Subjects were asked to complete a questionnaire on their susceptibilities to different diseases and sign a consent form separately. Fifty-three samples underwent DNA extraction, and the DNA samples were divided into two aliquots, one of which was treated with bisulfite reagent. The promoter region of the TLR1 gene was then amplified by polymerase chain reaction (PCR) and sequenced. Results: We found a significant association between increased breastfeeding duration and a reduction in susceptibility to influenza and allergy, as well asa significant reduction in DNA methylation within the promoter of the TLR1 gene. No association was found between DNA methylation and susceptibility to different diseases. Conclusions: The findings demonstrate the significance of increased breastfeeding duration for improved health outcomes at the gene level.
Collapse
|
185
|
Xiao M, Wang X, Li L, Pei H. Stochastic RNA Walkers for Intracellular MicroRNA Imaging. Anal Chem 2019; 91:11253-11258. [DOI: 10.1021/acs.analchem.9b02265] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People’s Republic of China
| | - Xiwei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People’s Republic of China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People’s Republic of China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People’s Republic of China
| |
Collapse
|
186
|
Ji C, Guo X, Ren J, Zu Y, Li W, Zhang Q. Transcriptomic analysis of microRNAs-mRNAs regulating innate immune response of zebrafish larvae against Vibrio parahaemolyticus infection. FISH & SHELLFISH IMMUNOLOGY 2019; 91:333-342. [PMID: 31129189 DOI: 10.1016/j.fsi.2019.05.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
In recent years, microRNAs (miRNAs) have been shown to play important roles in immunity. Analyses of the functions of miRNAs and their targets are useful in understanding the regulation of the immune response. To understand the relationships between miRNAs and their targets during infection, we used zebrafish as an infection model in which to characterize the miRNA and mRNA transcriptomes of zebrafish larvae infected with Vibrio parahaemolyticus. We identified the differentially expressed miRNAs and mRNAs. Overall, 37 known zebrafish miRNAs were differentially expressed in the infection group and 107 predicted target genes of 26 miRNAs were differentially expressed in the mRNA transcriptome. These targets with specific Gene Ontology (GO) terms, such as peripheral nervous system neuron axonogenesis, organophosphate metabolic process, heme binding, protein binding, tetrapyrrole binding, protein dimerization activity, and aromatase activity, which regulate nerve conduction, energy metabolism, hematopoiesis, and protein synthesis. They were also associated with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways such as phototransduction, tryptophan metabolism, notch signaling, and purine metabolism. Our findings indicate that miRNAs regulate the innate immune response via complex networks, and zebrafish (Danio rerio, dre)-miR-205-3p, dre-miR-141-5p, dre-miR-200a-5p, dre-miR-92a-2-5p, dre-miR-192, and dre-miR-1788 may play important roles in the innate immune response by regulating target genes.
Collapse
Affiliation(s)
- Ce Ji
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Xinya Guo
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Jianfeng Ren
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Yao Zu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA
| | - Qinghua Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
187
|
Nziza N, Duroux-Richard I, Apparailly F. MicroRNAs in juvenile idiopathic arthritis: Can we learn more about pathophysiological mechanisms? Autoimmun Rev 2019; 18:796-804. [DOI: 10.1016/j.autrev.2019.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/03/2019] [Indexed: 01/05/2023]
|
188
|
Pettiette MT, Zhang S, Moretti AJ, Kim SJ, Naqvi AR, Nares S. MicroRNA Expression Profiles in External Cervical Resorption. J Endod 2019; 45:1106-1113.e2. [PMID: 31351582 DOI: 10.1016/j.joen.2019.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/06/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022]
Abstract
INTRODUCTION External cervical resorption (ECR) has been challenging for its diagnosis, prevention, and treatment. Its etiology and pathogenesis are largely unknown. This study characterized microRNA (miRNA) expression patterns of human tissues from ECR lesions and identified potential messenger RNA targets and pathways. METHODS Granulomatous tissues from ECR (n = 5) and their adjacent nonaffected asymptomatic gingival connective tissues (n = 5) were collected. Similarly, chronic periodontitis (CP) and control samples were collected (n = 3). Quantitative reverse transcription polymerase chain reaction array analysis compared the expression profiles of 88 miRNAs between diseases. Differentially expressed miRNAs were identified using the Student t test. Bioinformatics for messenger RNA (miRWalk) and KEGG pathway analyses were performed to identify predicted target genes and biological/cellular functions and signaling pathways. RESULTS Three miRNAs (miR-20a-5p, miR-210-3p, and miR-99a-4p) were significantly down-regulated and 1 miRNA (miR-122-5p) was significantly up-regulated in ECR (P < .05). One up-regulated and 1 down-regulated miRNA reached the significance threshold in CP. A comparison of miRNA expression in ECR and CP identified 3 differentially expressed miRNAs, indicating differences in disease pathobiology. Inflammation-associated Wnt, PI3K-Akt, mitogen-activated protein kinases signaling, and bone formation-associated transforming growth factor beta pathways were identified and predicted to be modulated by differentially expressed miRNAs in both ECR and CP. Biological processes unique to each disease entity were identified, such as T- and B-cell receptor signaling pathways, osteoclast differentiation, and extracellular matrix-receptor interaction for CP. Glycosaminoglycan biosynthesis, mineral absorption, and insulin signaling pathways for ECR were identified. CONCLUSIONS This proof-of-principle in vivo study indicated that ECR has both common and unique miRNA expression profiles in comparison with CP, which are predicted to target genes regulating inflammation, immunity, and metabolism of mineralized tissues.
Collapse
Affiliation(s)
- Mary T Pettiette
- Department of Endodontics, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| | - Shaoping Zhang
- Department of Periodontics, College of Dentistry, University of Iowa, Iowa City, Iowa.
| | - Antonio J Moretti
- Department of Periodontology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Steven J Kim
- Department of Periodontology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Afsar R Naqvi
- Mucosal Immunology Laboratory, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois
| | - Salvador Nares
- Mucosal Immunology Laboratory, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
189
|
Hou C, Wang D, Zhang L. MicroRNA‑34a‑3p inhibits proliferation of rheumatoid arthritis fibroblast‑like synoviocytes. Mol Med Rep 2019; 20:2563-2570. [PMID: 31524250 PMCID: PMC6691200 DOI: 10.3892/mmr.2019.10516] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 04/10/2019] [Indexed: 02/02/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory joint disease characterized by synovial inflammation. Fibroblast‑like synoviocytes (FLS) serve a vital role in the initiation and perpetuation of the immune response in patients with RA. The present study aimed to investigate the potential role of microRNA (miR)‑34a‑3p in the pathogenesis of RA. FLS were collected from patients with RA and osteoarthritis (OA). The miR‑34a‑3p mimics and inhibitor vectors were constructed and transfected into RAFLS using Lipofectamine® 2000. Cell proliferation was determined by Cell Counting kit‑8 assay and cell cycle progression was analyzed by flow cytometry. In addition, the expression levels of cell cycle control genes, matrix metalloproteinase (MMP)‑1 and MMP‑9, and pro‑inflammatory cytokines were detected by reverse transcription‑quantitative polymerase chain reaction and western blot analysis. The potential targets of miR‑34a‑3p were predicted by TargetScan and MiRWalk; the target genes were further verified using a luciferase reporter assay. The expression levels of miR‑34a‑3p were generally lower in RAFLS compared with in OAFLS. miR‑34a‑3p overexpression significantly inhibited the proliferation of FLS (P<0.01) by suppressing the expression levels of cyclin‑dependent kinase 2, cell division cycle 25A and cyclin D1 (P<0.01), and arresting FLS cell cycle progression at the G1 phase. Furthermore, the expression levels of MMP‑1 and 9 were markedly decreased, as were the mRNA and protein expression levels of pro‑inflammatory cytokines (tumor necrosis factor α and interleukin 6; P<0.01). Murine double minute 4 (MDM4) was predicted and verified as a potential target gene of miR‑34a‑3p; the 547‑554 nt position of the MDM4 3'‑untranslated region harbored one potential binding site for miR‑204‑3p. The results of the present study indicated that miR‑34a‑3p may be considered a promising therapeutic target for RA through inhibiting FLS proliferation and suppressing the production of pro‑inflammatory cytokines and MMPs.
Collapse
Affiliation(s)
- Chunfeng Hou
- Department of Rheumatology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Dan Wang
- Department of Rheumatology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Lihua Zhang
- Department of Rheumatology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
190
|
Chen Y, Liu W, Xu H, Liu J, Deng Y, Cheng H, Zhu S, Pei Y, Hu J, Hu Z, Liu X, Wang X, Gu M, Hu S, Liu X. MicroRNA Expression Profiling in Newcastle Disease Virus-Infected DF-1 Cells by Deep Sequencing. Front Microbiol 2019; 10:1659. [PMID: 31396181 PMCID: PMC6663980 DOI: 10.3389/fmicb.2019.01659] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 07/04/2019] [Indexed: 12/11/2022] Open
Abstract
Newcastle disease virus (NDV), causative agent of Newcastle disease (ND), is one of the most devastating pathogens for poultry industry worldwide. MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by regulating mRNA translation efficiency or mRNA abundance through binding to mRNA directly. Accumulating evidence has revealed that cellular miRNAs can also affect virus replication by controlling host-virus interaction. To identify miRNA expression profile and explore the roles of miRNA during NDV replication, in this study, small RNA deep sequencing was performed of non-inoculated DF-1 cells (chicken embryo fibroblast cell line) and JS 5/05-infected cells collected at 6 and 12 h post infection (hereafter called mock' NDV-6 h, and NDV-12 h groups respectively). A total of 73 miRNAs of NDV-6 h group and 64miRNAs of NDV-12 h group were significantly differentially expressed (SDE) when compared with those in mock group. Meanwhile, 50 SDE miRNAs, including 48 up- and 2 down-regulated, showed the same expression patterns in NDV-6 h and NDV-12 h groups. qRT-PCR validation of 15 selected miRNAs' expression patterns was consistent with deep sequencing. To investigate the role of these SDE miRNAs in NDV replication, miRNA mimics and inhibitors were transfected into DF-1 cells followed by NDV infection. The results revealed that gga-miR-451 and gga-miR-199-5p promoted NDV replication while gga-miR-19b-3p and gga-miR-29a-3p inhibited NDV replication. Further function research demonstrated gga-miR-451 suppressed NDV-induced inflammatory response via targeting YWHAZ (tyrosine3-monooxygenase/tryptophan5-monooxygenase activation protein zeta). Overall, our study presented a global miRNA expression profile in DF-1 cells in response to NDV infection and verified the roles of some SDE miRNAs in NDV replication which will underpin further studies of miRNAs' roles between the host and the virus.
Collapse
Affiliation(s)
- Yu Chen
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Wen Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Haixu Xu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jingjing Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yonghuan Deng
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Hao Cheng
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shanshan Zhu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yuru Pei
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zenglei Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Min Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
191
|
Yao Q, Wang X, He W, Song Z, Wang B, Zhang J, Qin Q. Circulating microRNA-144-3p and miR-762 are novel biomarkers of Graves' disease. Endocrine 2019; 65:102-109. [PMID: 30949910 DOI: 10.1007/s12020-019-01884-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/25/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Recently, it has been confirmed that circulating miRNAs play an important role in disease pathogenesis and can be biomarkers of many autoimmune diseases. However, the knowledge about circulating miRNAs in Graves' disease (GD) is very limited. In this study, we aimed to identify circulating miRNAs as potential biomarkers of GD. METHODS We recruited 68 participants who met the criteria for GD and healthy controls. The expression profile of miRNAs in plasma was detected using microarrays. We found five interesting miRNAs were differentially expressed between GD and control group and futher validated their relative expression by quantitative real-time PCR. According to their putative target genes predicted by the TargetScan database, we also performed Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analyses to predict their potential functions and related pathways. RESULTS Microarray data showed that five miRNAs were differentially expressed in GD and control plasma samples. Among them, miR-16-1-3p, miR-122-5p, miR-221-3p, and miR-762 were upregulated in GD (P < 0.001). In validation stage, we found miR-144-3p was significantly decreased and miR-762 was markedly upregulated in GD plasma (P < 0.01). In addition, miR-762 expression was positively associated with levels of FT3 (r = 0.307, P = 0.038) as well as TRAb (r = 0.302, P = 0.042). The receiver-operating characteristic (ROC) curve analysis showed that both miR-144-3p and miR-762 displayed good sensitivity and specificity in discriminating the GD patients from the rest of subjects with the area under the ROC curve (AUC) of 0.761 (P = 0.001, 95% CI = 0.648-0.875) and 0.737 (P = 0.001, 95% CI = 0.618-0.857), respectively. Combination of miR-144-3p and miR-762 could better discriminate GD patients from healthy controls with AUC of 0.861 (P < 0.001, 95% CI = 0.775-0.947). CONCLUSIONS We first demonstrated that aberrant levels of plasmic miR-144-3p and miR-762 were associated with GD, which may be biomarkers for GD diagnosis.
Collapse
Affiliation(s)
- Qiuming Yao
- Department of Endocrinology, Jinshan Hospital of Fudan University, No. 1508 Longhang Road, Jinshan District, Shanghai, 201508, China
| | - Xuan Wang
- Department of Endocrinology, Jinshan Hospital of Fudan University, No. 1508 Longhang Road, Jinshan District, Shanghai, 201508, China
| | - Weiwei He
- Department of Endocrinology, Affiliated Hospital of Yanan University, Shanxi, 716000, China
| | - Zhenyu Song
- Department of Urology, Jinshan Hospital of Fudan University, No. 1508 Longhang Road, Jinshan District, Shanghai, 201508, China
| | - Bin Wang
- Department of Endocrinology, Jinshan Hospital of Fudan University, No. 1508 Longhang Road, Jinshan District, Shanghai, 201508, China
| | - Jinan Zhang
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China.
| | - Qiu Qin
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China.
| |
Collapse
|
192
|
Schwann Cell-Like Cells Derived from Human Amniotic Mesenchymal Stem Cells Promote Peripheral Nerve Regeneration through a MicroRNA-214/c-Jun Pathway. Stem Cells Int 2019; 2019:2490761. [PMID: 31354837 PMCID: PMC6636479 DOI: 10.1155/2019/2490761] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/08/2019] [Accepted: 04/17/2019] [Indexed: 12/18/2022] Open
Abstract
Background The use of Schwann cell-like cells (SCLCs) derived from stem cells has been introduced as an effective strategy for promoting peripheral nerve regeneration (PNR). However, molecular mechanisms underlying therapeutic transplantation of SCLCs for PNR are often ignored. Objectives To explore the potential of SCLCs for the treatment of sciatic never injury and investigate the underlying molecule mechanisms. Method SCLCs differentiated from human amniotic mesenchymal stem cells (hAMSCs) and specific markers of Schwann cells were detected. SCLCs were transplanted into the injured sites of a rat model of sciatic nerve injury, and sciatic nerve functional index (SFI) was determined. Results SCLCs expressed specific markers of Schwann cells as well as secreted neurotrophic factors. The transplantation of SCLCs into injured sites of a rat model of sciatic nerve injury promoted the functional recovery. With regard to the underlying molecular mechanisms, we identified c-Jun as a negative regulator of the myelination of SCLCs. Moreover, we discovered a novel signaling transduction pathway in SCLCs; that is, miR-214 directly targets c-Jun to promote the myelination of SCLCs. Finally, we demonstrated that miR-214 upon overexpression in SCLCs enhanced the therapeutic effects of SCLCs on sciatic nerve injury. Conclusions We demonstrate that SCLCs have beneficial effect for myelination. Moreover, our results provide a previously unknown molecular basis underlying the treatment of peripheral nerve injury with SCLCs and also offer a practical strategy for future therapeutic promotion of PNR.
Collapse
|
193
|
Xiong T, Du Y, Fu Z, Geng G. MicroRNA-145-5p promotes asthma pathogenesis by inhibiting kinesin family member 3A expression in mouse airway epithelial cells. J Int Med Res 2019; 47:3307-3319. [PMID: 31264490 PMCID: PMC6683905 DOI: 10.1177/0300060518789819] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/28/2018] [Indexed: 12/23/2022] Open
Abstract
Background MicroRNA (miR)-145-5p is a respiratory disease biomarker, and is upregulated in asthma pathogenesis. However, its underlying mechanisms were unclear, so were investigated in the present study. Methods A mouse model of asthma was established by challenge with house dust mite (HDM) extract. An miR-145-5p antagomir was administered nasally and expression of kinesin family member 3A (KIF3A) and miR-145-5p was measured by immunohistochemistry, PCR, and western blot. Eosinophils in lavage fluid and levels of interleukin (IL)-4, IL-5, and IL-13 were quantified. Airway hyper-responsiveness was measured and KIF3A expression was tested following miR-145-5p overexpression or interference in the 16HBE14o- airway epithelial cell line. The effects of miR-145-5p and KIF3A co-transfection in 16HBE14o- cells were examined on cytokine release, epithelial barrier dysfunction, and epithelial repair in HDM-exposed cells. Results KIF3A downregulation and miR-145-5p upregulation were noted in airway epithelial cells of HDM-exposed asthmatic mice, while miR-145-5p antagonism significantly improved symptoms. MiR-145-5p promoted the HDM-induced release of chemokines and inflammatory factors and epithelial barrier dysfunction, and suppressed epithelial repair by directly targeting KIF3A. Conclusion miR-145-5p influenced HDM-induced epithelial cytokine release and epithelial barrier dysfunction via regulating KIF3 expression. It also affected epithelial repair, exacerbating the HDM-induced T helper 2-type immune response in mice.
Collapse
Affiliation(s)
- Tao Xiong
- Department of Cardiothoracic Surgery, Yongchuan Hospital of Chongqing Medical University, Yongchuan District, Chongqing, China
| | - Ying Du
- Department of Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhou Fu
- Department of Respiration, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Gang Geng
- Department of Respiration, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
194
|
Qi L, Gao C, Feng F, Zhang T, Yao Y, Wang X, Liu C, Li J, Li J, Sun C. MicroRNAs associated with lung squamous cell carcinoma: New prognostic biomarkers and therapeutic targets. J Cell Biochem 2019; 120:18956-18966. [PMID: 31241205 DOI: 10.1002/jcb.29216] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/31/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Lingyu Qi
- College of First Clinical MedicineShandong University of Traditional Chinese Medicine Jinan Shandong PR China
| | - Chundi Gao
- College of First Clinical MedicineShandong University of Traditional Chinese Medicine Jinan Shandong PR China
| | - Fubin Feng
- Department of OncologyWeifang Traditional Chinese Hospital Weifang Shandong PR China
| | - Tingting Zhang
- College of Traditional Chinese MedicineShandong University of Traditional Chinese Medicine Jinan Shandong PR China
| | - Yan Yao
- Clinical Medical CollegesWeifang Medical University Weifang Shandong PR China
| | - Xue Wang
- College of Basic MedicineQingdao University Qingdao Shandong PR China
| | - Cun Liu
- College of Traditional Chinese MedicineShandong University of Traditional Chinese Medicine Jinan Shandong PR China
| | - Jia Li
- Clinical Medical CollegesWeifang Medical University Weifang Shandong PR China
| | - Jie Li
- College of First Clinical MedicineShandong University of Traditional Chinese Medicine Jinan Shandong PR China
| | - Changgang Sun
- Department of OncologyAffiliated Hospital of Weifang Medical University Weifang Shandong PR China
- Department of OncologyAffiliated Hospital of Shandong University of Traditional Chinese Medicine Jinan Shandong PR China
| |
Collapse
|
195
|
Shi L, Guo H, Li Z, Wang Y, Wang Y, Cui Y. Adenovirus-mediated down-regulation of miR-21-5p alleviates experimental autoimmune uveoretinitis in mice. Int Immunopharmacol 2019; 74:105698. [PMID: 31228813 DOI: 10.1016/j.intimp.2019.105698] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022]
Abstract
MiR-21-5p has been found to be up-regulated in the retina of experimental autoimmune uveoretinitis (EAU) mice and correlated with the pathogenesis of EAU. The objective of the present study is to explore the role of miR-21-5p in EAU. C57 mice were immunized with residue1-20 (IRBP1-20) in complete Freund's adjuvant supplemented with Mycobacterium tuberculosis H37Ra to induce EAU, and miR-21-5p was knocked down via subretinal injection of anti-miR-21-5p adenovirus. The pathological score, TUNEL positive cells and the expression of pro-inflammatory factors in the retina were reduced, and the expression of IL-10 was increased by down-regulation of miR-21-5p. Up-regulation of miR-21-5p significantly decreased the mRNA and protein levels of IL-10 in ARPE-19 cells. The binding activity of miR-21-5p on the 3'UTR of IL-10 mRNA was confirmed by luciferase reporter assay. Moreover, the miR-21-5p level in splenic lymphocytes of EAU mice was increased at the 7th day after immunization and reached its peak at the 14th day, that was in accordance with the changing trend with the Th17 cell frequency in the spleen. Besides, lentivirus-mediated down-regulation of miR-21-5p reduced the Th17 cell frequency and increased the Treg cell fraction of IRBP1-20-stimulated lymphocytes in vitro. Taken together, in situ down-regulation of miR-21-5p attenuates EAU by inhibiting inflammatory responses and reducing retinal cell apoptosis. miR-21-5p may also participate in the progress of EAU by affecting Th17/Treg balance via the regulation of IL-10. Therefore, we demonstrate that miR-21-5p can serve as a therapeutic target in the management of uveitis and other autoimmune diseases.
Collapse
Affiliation(s)
- Long Shi
- Department of Ophthalmology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Hui Guo
- Department of Ophthalmology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Ziwei Li
- School of Medicine, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Yuwei Wang
- School of Medicine, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Yuanjian Wang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Yan Cui
- Department of Ophthalmology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong 250012, People's Republic of China.
| |
Collapse
|
196
|
Xia L, Wu L, Xia H, Bao J, Li Q, Chen X, Xia R. miR-337 suppresses cutaneous T-cell lymphoma via the STAT3 pathway. Cell Cycle 2019; 18:1635-1645. [PMID: 31213131 DOI: 10.1080/15384101.2019.1629789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is associated with the downregulation of miR-337 expression, although the exact underlying mechanism is unknown. In the present work, we investigated the molecular mechanism and function of miR-337 in regulating CTCL cell viability and invasion. We observed that miR-337 expression was downregulated in both CTCL tumors and cell lines. Furthermore, CCK assay, BrdU incorporation assay, and flow cytometry revealed that transfection with the miR-337 mimic resulted in decreased proliferation and increased apoptotic levels in CTCL cells. Results of the Transwell migration assay indicated that the miR-337 mimic decreased CTCL cell invasion in vitro. Both bioinformatics prediction and the dual-luciferase reporter assay revealed that miR-337 targets the 3'-UTR of STAT3 for silencing. Overexpression of STAT3 counteracted the pro-apoptotic influence of miR-337 in CTCL cell lines and restored their invasion properties. The results thus indicate that the miR-337-STAT3 axis inhibits the proliferation of malignant T cells and that miR-337 may serve as a promising therapeutic target for CTCL.
Collapse
Affiliation(s)
- Liang Xia
- a Department of Hematology , The First Affiliated Hospital of Anhui Medical University , Hefei , China
| | - Linlin Wu
- b Department of Hematology , Anhui Provincial NO. 2 People's Hospital , Hefei , China
| | - Hailong Xia
- a Department of Hematology , The First Affiliated Hospital of Anhui Medical University , Hefei , China
| | - Jing Bao
- a Department of Hematology , The First Affiliated Hospital of Anhui Medical University , Hefei , China
| | - Qingsheng Li
- a Department of Hematology , The First Affiliated Hospital of Anhui Medical University , Hefei , China
| | - Xiaowen Chen
- a Department of Hematology , The First Affiliated Hospital of Anhui Medical University , Hefei , China
| | - Ruixiang Xia
- a Department of Hematology , The First Affiliated Hospital of Anhui Medical University , Hefei , China
| |
Collapse
|
197
|
Zhou C, Tan L, Sun Y, Qiu X, Meng C, Liao Y, Song C, Liu W, Nair V, Ding C. Exosomes Carry microRNAs into Neighboring Cells to Promote Diffusive Infection of Newcastle Disease Virus. Viruses 2019; 11:v11060527. [PMID: 31174402 PMCID: PMC6631457 DOI: 10.3390/v11060527] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 12/26/2022] Open
Abstract
Newcastle disease virus (NDV), an avian paramyxovirus, was shown to prefer to replicate in tumor cells instead of normal cells; however, this mechanism has not been fully elucidated. Exosomes play a crucial role in intercellular communication due to the bioactive substances they carry. Several studies have shown that exosomes are involved in virus infections. However, the effect that exosomes have on NDV-infected tumor cells is not known. In this study, we focus on the role of exosomes secreted by NDV-infected HeLa cells in promoting NDV replication. Three miRNA candidates (miR-1273f, miR-1184, and miR-198) embraced by exosomes were associated with enhancing NDV-induced cytopathic effects on HeLa cells. Furthermore, luciferase assays, RT-qPCR, and enzyme-linked immunosorbent assay (ELISA) all demonstrated that these miRNAs could suppress interferon (IFN)-β gene expression. Enhanced NDV replication in HeLa cells was identified by Western blot and plaque assays. Based on these results, we speculate that NDV employed exosomes entry into neighboring cells, which carry miRNAs, resulting in inhibition of the IFN pathway and promotion of viral infection. To our knowledge, this is the first report on the involvement of NDV-employed exosomes in tumor cells, and as such, it provides new insights into the development of anti-tumor therapies.
Collapse
Affiliation(s)
- Changluan Zhou
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China; (C.Z.); (Y.S.); (X.Q.); (C.M.); (Y.L.); (C.S.); (W.L.)
| | - Lei Tan
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China; (C.Z.); (Y.S.); (X.Q.); (C.M.); (Y.L.); (C.S.); (W.L.)
- Correspondence: (L.T.); (C.D.); Tel.: +86-21-3429-3426 (L.T.); +86-21-3429-3441 (C.D.)
| | - Yingjie Sun
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China; (C.Z.); (Y.S.); (X.Q.); (C.M.); (Y.L.); (C.S.); (W.L.)
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China; (C.Z.); (Y.S.); (X.Q.); (C.M.); (Y.L.); (C.S.); (W.L.)
| | - Chunchun Meng
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China; (C.Z.); (Y.S.); (X.Q.); (C.M.); (Y.L.); (C.S.); (W.L.)
| | - Ying Liao
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China; (C.Z.); (Y.S.); (X.Q.); (C.M.); (Y.L.); (C.S.); (W.L.)
| | - Cuiping Song
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China; (C.Z.); (Y.S.); (X.Q.); (C.M.); (Y.L.); (C.S.); (W.L.)
| | - Weiwei Liu
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China; (C.Z.); (Y.S.); (X.Q.); (C.M.); (Y.L.); (C.S.); (W.L.)
| | - Venugopal Nair
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey Gu24 ONF, UK;
| | - Chan Ding
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China; (C.Z.); (Y.S.); (X.Q.); (C.M.); (Y.L.); (C.S.); (W.L.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Correspondence: (L.T.); (C.D.); Tel.: +86-21-3429-3426 (L.T.); +86-21-3429-3441 (C.D.)
| |
Collapse
|
198
|
Vega-Cárdenas M, Uresti-Rivera EE, Cortés-GarcÃa JD, Briones-Espinoza M, RuÃz-RodrÃguez VM, Reynaga-Hernández E, Mendez-Mancilla A, Portales-Pérez DP. Increased levels of adipose tissue-resident Th17 cells in obesity associated with miR-326. Immunol Lett 2019; 211:60-67. [PMID: 31136754 DOI: 10.1016/j.imlet.2019.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/30/2019] [Accepted: 05/24/2019] [Indexed: 01/25/2023]
Abstract
miRNAs are important immune regulators in the control of the CD4 + T cells phenotype. miR-326 regulates the differentiation towards Th17 cells and the inhibition of miR-155 is associated with low levels of Treg cells. However, miRNAs expression and transcription factors associated with these lymphocyte subsets in obesity-induced adipose tissue inflammation is still unknown. The aim of this work was to identify Th17 cells in subcutaneous adipose tissue (SAT), proinflammatory cytokine production and their association with the miRNAs and transcription factors involved. We collected SAT samples obtained by lipoaspiration from individuals with normal weight, overweight and obesity. We obtained the stromal vascular fractions and then a Ficoll gradient was performed to obtain adipose tissue mononuclear cells (ATMC). Th17 cells were evaluated by flow cytometry and the expression of miR-326, miR-155, RORC2 and FOXP3 by qRT-PCR. We also analyzed cytokines from the supernatants of the ATMC culture and measured the FOXP3 methylation percentage by bisulfite conversion by PCR. According to the results, the frequency of Th17 cells and RORC2 expression was higher in individuals with obesity and associated with miR-326 expression. The ATMC from this group secreted a proinflammatory cytokine profile by in vitro assay. In contrast, lower levels of mRNA FOXP3 expression was detected in ATMC from individuals with obesity that correlated with methylation percentage of FOXP3 gene but no association with miR-155 was detected. Our results suggested that miR-326 participates in the polarization towards Th17 promoting the inflammatory state in the obesity-induced adipose tissue.
Collapse
Affiliation(s)
- Mariela Vega-Cárdenas
- Center for Research in Health Sciences and Biomedicine, Autonomus University of San Luis PotosÃ, UASLP, Mexico
| | - Edith E Uresti-Rivera
- Center for Research in Health Sciences and Biomedicine, Autonomus University of San Luis PotosÃ, UASLP, Mexico
| | - Juan D Cortés-GarcÃa
- Laboratory of Immunology and Cellular and Molecular Biology, Faculty of Chemical Sciences, Autonomus University of San Luis PotosÃ, UASLP, Mexico
| | - Margarita Briones-Espinoza
- Center for Research in Health Sciences and Biomedicine, Autonomus University of San Luis PotosÃ, UASLP, Mexico
| | - VÃctor M RuÃz-RodrÃguez
- Center for Research in Health Sciences and Biomedicine, Autonomus University of San Luis PotosÃ, UASLP, Mexico
| | - Elizabeth Reynaga-Hernández
- Laboratory of Immunology and Cellular and Molecular Biology, Faculty of Chemical Sciences, Autonomus University of San Luis PotosÃ, UASLP, Mexico
| | - Alejandro Mendez-Mancilla
- Center for Research in Health Sciences and Biomedicine, Autonomus University of San Luis PotosÃ, UASLP, Mexico
| | - Diana P Portales-Pérez
- Laboratory of Immunology and Cellular and Molecular Biology, Faculty of Chemical Sciences, Autonomus University of San Luis PotosÃ, UASLP, Mexico; Center for Research in Health Sciences and Biomedicine, Autonomus University of San Luis PotosÃ, UASLP, Mexico.
| |
Collapse
|
199
|
Effects of high-fat diet on growth performance, lipid accumulation and lipid metabolism-related MicroRNA/gene expression in the liver of grass carp (Ctenopharyngodon idella). Comp Biochem Physiol B Biochem Mol Biol 2019; 234:34-40. [PMID: 31071453 DOI: 10.1016/j.cbpb.2019.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/22/2019] [Accepted: 04/29/2019] [Indexed: 12/18/2022]
Abstract
An 8 week experiment was conducted to evaluate the effects of dietary fat on growth and on the accumulation of lipids and the expression of lipid metabolism-related microRNAs (miRNAs) and genes in grass carp (Ctenopharyngodon idella). Two diets (normal fat diet (NFD), 60 g/kg lipid content; high fat diet (HFD), 160 g/kg lipid content) were fed to triplicate groups of 35 fish [initial weight of (40.0 ± 0.5) g]. The results showed that increased dietary fat did not lead to significant differences in the feed conversion rate (FCR) and specific growth rate (SGR) (P > .05), but the HFD significantly increased the hepatosomatic index (HSI) (P < .05). The serum high density lipoprotein-cholesterol (HDLC) level was significantly increased in the HFD group (P < .05). Oil Red O staining showed that both the size and amounts of lipid droplets in the liver of fish fed a diet with 2 g/kg lipid content increased significantly. In the liver of fish fed with 160 g/kg dietary fat, the expression of mir-33a, mir-30, mir-122 and mir-16 significantly decreased (P < .05). In contrast, the expression of sterol regulatory element-binding transcription factor 1 (SREBP1), peroxisome proliferator-activated receptor gamma (PPARγ), liver X receptor alpha (LXRα) and ATP-binding cassette transporter A1 (ABCA1) significantly increased (P < .05). In conclusion, 2 g/kg dietary fat did not influence growth but altered the expression of miRNAs and genes related to lipid metabolism in the liver of grass carp, which caused severe lipid deposition.
Collapse
|
200
|
El-Said H, Fayyad-Kazan M, Aoun R, Borghol N, Skafi N, Rouas R, Vanhamme L, Mourtada M, Ezzeddine M, Burny A, Fayyad-Kazan H, Badran B. MiR302c, Sp1, and NFATc2 regulate interleukin-21 expression in human CD4+CD45RO+ T lymphocytes. J Cell Physiol 2019; 234:5998-6011. [PMID: 30343493 DOI: 10.1002/jcp.27151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/09/2018] [Indexed: 12/21/2022]
Abstract
Interleukin-21 (IL-21) is a cytokine with potent regulatory effects on different immune cells. Recently, IL-21 has been contemplated for use in the treatment of cancers. However, the molecular mechanisms regulating human IL-21 gene expression has not yet been described. In this study, we initially studied the promoter region and identified the transcription start site. We thereafter described the essential region upstream of the transcription start site and showed the in vivo binding of NFATc2 and SP1 transcription factors to this region, in addition to their positive role in IL-21 expression. We also studied the role of microRNAs (miRNAs) in regulating IL-21 expression. We, thus, established the miRNA profile of CD4+CD45RO+ versus CD4+CD45RA+ isolated from healthy volunteers and identified a signature composed of 12 differentially expressed miRNAs. We showed that miR-302c is able to negatively regulate IL-21 expression by binding directly to its target site in the 3'-untranslated region. Moreover, after using fresh human CD4-positive T cells, we observed the high acetylation level of histone H4, an observation well in line with the already described high expression of IL-21 in CD4+CD45RO+ versus CD4+CD45RA+ T cells. Altogether, our data identified different molecular mechanisms regulating IL-21 expression.
Collapse
Affiliation(s)
- Hassan El-Said
- Department of Biology, Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Mohammad Fayyad-Kazan
- Department of Hematology, Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Rabab Aoun
- Department of Biology, Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Nada Borghol
- Department of Biology, Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Najwa Skafi
- Department of Biology, Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Redouane Rouas
- Department of Hematology, Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Luc Vanhamme
- Department of Molecular Biology, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, Gosselies, Belgium
| | - Mohamad Mourtada
- Department of Biology, Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Mohamad Ezzeddine
- Department of Biology, Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Arsène Burny
- Department of Hematology, Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Hussein Fayyad-Kazan
- Department of Biology, Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Bassam Badran
- Department of Biology, Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| |
Collapse
|