151
|
Buxa MK, Slotman JA, van Royen ME, Paul MW, Houtsmuller AB, Renkawitz R. Insulator speckles associated with long-distance chromatin contacts. Biol Open 2016; 5:1266-74. [PMID: 27464669 PMCID: PMC5051650 DOI: 10.1242/bio.019455] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nuclear foci of chromatin binding factors are, in many cases, discussed as sites of long-range chromatin interaction in the three-dimensional nuclear space. Insulator binding proteins have been shown to aggregate into insulator bodies, which are large structures not involved in insulation; however, the more diffusely distributed insulator speckles have not been analysed in this respect. Furthermore, insulator binding proteins have been shown to drive binding sites for Polycomb group proteins into Polycomb bodies. Here we find that insulator speckles, marked by the insulator binding protein dCTCF, and Polycomb bodies show differential association with the insulator protein CP190. They differ in number and three-dimensional location with only 26% of the Polycomb bodies overlapping with CP190. By using fluorescence in situ hybridization (FISH) probes to identify long-range interaction (kissing) of the Hox gene clusters Antennapedia complex (ANT-C) and Bithorax complex (BX-C), we found the frequency of interaction to be very low. However, these rare kissing events were associated with insulator speckles at a significantly shorter distance and an increased speckle number. This suggests that insulator speckles are associated with long-distance interaction.
Collapse
Affiliation(s)
- Melanie K Buxa
- Institute for Genetics, Justus-Liebig-University, Heinrich-Buff-Ring 58, Giessen D35392, Germany
| | - Johan A Slotman
- Department of Pathology, Josephine Nefkens Institute, Erasmus Optical Imaging Centre, Erasmus MC, Postbus 2040, Rotterdam 3000 CA, The Netherlands
| | - Martin E van Royen
- Department of Pathology, Josephine Nefkens Institute, Erasmus Optical Imaging Centre, Erasmus MC, Postbus 2040, Rotterdam 3000 CA, The Netherlands
| | - Maarten W Paul
- Department of Pathology, Josephine Nefkens Institute, Erasmus Optical Imaging Centre, Erasmus MC, Postbus 2040, Rotterdam 3000 CA, The Netherlands
| | - Adriaan B Houtsmuller
- Department of Pathology, Josephine Nefkens Institute, Erasmus Optical Imaging Centre, Erasmus MC, Postbus 2040, Rotterdam 3000 CA, The Netherlands
| | - Rainer Renkawitz
- Institute for Genetics, Justus-Liebig-University, Heinrich-Buff-Ring 58, Giessen D35392, Germany
| |
Collapse
|
152
|
Hodges C, Kirkland JG, Crabtree GR. The Many Roles of BAF (mSWI/SNF) and PBAF Complexes in Cancer. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a026930. [PMID: 27413115 DOI: 10.1101/cshperspect.a026930] [Citation(s) in RCA: 298] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During the last decade, a host of epigenetic mechanisms were found to contribute to cancer and other human diseases. Several genomic studies have revealed that ∼20% of malignancies have alterations of the subunits of polymorphic BRG-/BRM-associated factor (BAF) and Polybromo-associated BAF (PBAF) complexes, making them among the most frequently mutated complexes in cancer. Recurrent mutations arise in genes encoding several BAF/PBAF subunits, including ARID1A, ARID2, PBRM1, SMARCA4, and SMARCB1 These subunits share some degree of conservation with subunits from related adenosine triphosphate (ATP)-dependent chromatin remodeling complexes in model organisms, in which a large body of work provides insight into their roles in cancer. Here, we review the roles of BAF- and PBAF-like complexes in these organisms, and relate these findings to recent discoveries in cancer epigenomics. We review several roles of BAF and PBAF complexes in cancer, including transcriptional regulation, DNA repair, and regulation of chromatin architecture and topology. More recent results highlight the need for new techniques to study these complexes.
Collapse
Affiliation(s)
- Courtney Hodges
- Departments of Pathology, Developmental Biology, and Genetics, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305
| | - Jacob G Kirkland
- Departments of Pathology, Developmental Biology, and Genetics, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305
| | - Gerald R Crabtree
- Departments of Pathology, Developmental Biology, and Genetics, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
153
|
Formation of a Polycomb-Domain in the Absence of Strong Polycomb Response Elements. PLoS Genet 2016; 12:e1006200. [PMID: 27466807 PMCID: PMC4965088 DOI: 10.1371/journal.pgen.1006200] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 06/25/2016] [Indexed: 12/24/2022] Open
Abstract
Polycomb group response elements (PREs) in Drosophila are DNA-elements that recruit Polycomb proteins (PcG) to chromatin and regulate gene expression. PREs are easily recognizable in the Drosophila genome as strong peaks of PcG-protein binding over discrete DNA fragments; many small but statistically significant PcG peaks are also observed in PcG domains. Surprisingly, in vivo deletion of the four characterized strong PREs from the PcG regulated invected-engrailed (inv-en) gene complex did not disrupt the formation of the H3K27me3 domain and did not affect inv-en expression in embryos or larvae suggesting the presence of redundant PcG recruitment mechanism. Further, the 3D-structure of the inv-en domain was only minimally altered by the deletion of the strong PREs. A reporter construct containing a 7.5kb en fragment that contains three weak peaks but no large PcG peaks forms an H3K27me3 domain and is PcG-regulated. Our data suggests a model for the recruitment of PcG-complexes to Drosophila genes via interactions with multiple, weak PREs spread throughout an H3K27me3 domain.
Collapse
|
154
|
Randise-Hinchliff C, Brickner JH. Transcription factors dynamically control the spatial organization of the yeast genome. Nucleus 2016; 7:369-74. [PMID: 27442220 PMCID: PMC5039007 DOI: 10.1080/19491034.2016.1212797] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
In yeast, inducible genes such as INO1, PRM1 and HIS4 reposition from the nucleoplasm to nuclear periphery upon activation. This leads to a physical interaction with nuclear pore complex (NPC), interchromosomal clustering, and stronger transcription. Repositioning to the nuclear periphery is controlled by cis-acting transcription factor (TF) binding sites located within the promoters of these genes and the TFs that bind to them. Such elements are both necessary and sufficient to control positioning of genes to the nuclear periphery. We have identified 4 TFs capable of controlling the regulated positioning of genes to the nuclear periphery in budding yeast under different conditions: Put3, Cbf1, Gcn4 and Ste12. In each case, we have defined the molecular basis of regulated relocalization to the nuclear periphery. Put3- and Cbf1-mediated targeting to nuclear periphery is regulated through local recruitment of Rpd3(L) histone deacetylase complex by transcriptional repressors. Rpd3(L), through its histone deacetylase activity, prevents TF-mediated gene positioning by blocking TF binding. Many yeast transcriptional repressors were capable of blocking Put3-mediated recruitment; 11 of these required Rpd3. Thus, it is a general function of transcription repressors to regulate TF-mediated recruitment. However, Ste12 and Gcn4-mediated recruitment is regulated independently of Rpd3(L) and transcriptional repressors. Ste12-mediated recruitment is regulated by phosphorylation of an inhibitor called Dig2, and Gcn4-mediated gene targeting is up-regulated by increasing Gcn4 protein levels. The ability to control spatial position of genes in yeast represents a novel function for TFs and different regulatory strategies provide dynamic control of the yeast genome through different time scales.
Collapse
Affiliation(s)
| | - Jason H Brickner
- a Department of Molecular Biosciences , Northwestern University , Evanston , IL , USA
| |
Collapse
|
155
|
Veluchamy A, Jégu T, Ariel F, Latrasse D, Mariappan KG, Kim SK, Crespi M, Hirt H, Bergounioux C, Raynaud C, Benhamed M. LHP1 Regulates H3K27me3 Spreading and Shapes the Three-Dimensional Conformation of the Arabidopsis Genome. PLoS One 2016; 11:e0158936. [PMID: 27410265 PMCID: PMC4943711 DOI: 10.1371/journal.pone.0158936] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 06/24/2016] [Indexed: 11/18/2022] Open
Abstract
Precise expression patterns of genes in time and space are essential for proper development of multicellular organisms. Dynamic chromatin conformation and spatial organization of the genome constitute a major step in this regulation to modulate developmental outputs. Polycomb repressive complexes (PRCs) mediate stable or flexible gene repression in response to internal and environmental cues. In Arabidopsis thaliana, LHP1 co-localizes with H3K27me3 epigenetic marks throughout the genome and interacts with PRC1 and PRC2 members as well as with a long noncoding RNA. Here, we show that LHP1 is responsible for the spreading of H3K27me3 towards the 3' end of the gene body. We also identified a subset of LHP1-activated genes and demonstrated that LHP1 shapes local chromatin topology in order to control transcriptional co-regulation. Our work reveals a general role of LHP1 from local to higher conformation levels of chromatin configuration to determine its accessibility to define gene expression patterns.
Collapse
Affiliation(s)
- Alaguraj Veluchamy
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Teddy Jégu
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405, Orsay, France
| | - Federico Ariel
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405, Orsay, France
| | - David Latrasse
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405, Orsay, France
| | - Kiruthiga Gayathri Mariappan
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Soon-Kap Kim
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Martin Crespi
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405, Orsay, France
| | - Heribert Hirt
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Catherine Bergounioux
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405, Orsay, France
| | - Cécile Raynaud
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405, Orsay, France
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405, Orsay, France
- * E-mail:
| |
Collapse
|
156
|
UMI-4C for quantitative and targeted chromosomal contact profiling. Nat Methods 2016; 13:685-91. [PMID: 27376768 DOI: 10.1038/nmeth.3922] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 05/27/2016] [Indexed: 01/10/2023]
Abstract
We developed a targeted chromosome conformation capture (4C) approach that uses unique molecular identifiers (UMIs) to derive high-complexity quantitative chromosome contact profiles with controlled signal-to-noise ratios. UMI-4C detects chromosomal interactions with improved sensitivity and specificity, and it can easily be multiplexed to allow robust comparison of contact distributions between loci and conditions. This approach may open the way to the incorporation of contact distributions into quantitative models of gene regulation.
Collapse
|
157
|
Piunti A, Shilatifard A. Epigenetic balance of gene expression by Polycomb and COMPASS families. Science 2016; 352:aad9780. [PMID: 27257261 DOI: 10.1126/science.aad9780] [Citation(s) in RCA: 350] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epigenetic regulation of gene expression in metazoans is central for establishing cellular diversity, and its deregulation can result in pathological conditions. Although transcription factors are essential for implementing gene expression programs, they do not function in isolation and require the recruitment of various chromatin-modifying and -remodeling machineries. A classic example of developmental chromatin regulation is the balanced activities of the Polycomb group (PcG) proteins within the PRC1 and PRC2 complexes, and the Trithorax group (TrxG) proteins within the COMPASS family, which are highly mutated in a large number of human diseases. In this review, we will discuss the latest findings regarding the properties of the PcG and COMPASS families and the insight they provide into the epigenetic control of transcription under physiological and pathological settings.
Collapse
Affiliation(s)
- Andrea Piunti
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 East Superior Street, Chicago, IL 60611, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 East Superior Street, Chicago, IL 60611, USA.
| |
Collapse
|
158
|
Sanli I, Feil R. PRC-mediated interaction networks of repressed genes: emerging insights and possible roles. Epigenomics 2016; 8:733-5. [DOI: 10.2217/epi-2016-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Ildem Sanli
- Institute of Molecular Genetics (IGMM), UMR5535, Centre National de Recherche Scientifique (CNRS), 1919 Route de Mende, 34293 Montpellier, France
- The University of Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
| | - Robert Feil
- Institute of Molecular Genetics (IGMM), UMR5535, Centre National de Recherche Scientifique (CNRS), 1919 Route de Mende, 34293 Montpellier, France
- The University of Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
| |
Collapse
|
159
|
Fotuhi Siahpirani A, Ay F, Roy S. A multi-task graph-clustering approach for chromosome conformation capture data sets identifies conserved modules of chromosomal interactions. Genome Biol 2016; 17:114. [PMID: 27233632 PMCID: PMC4882777 DOI: 10.1186/s13059-016-0962-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 04/22/2016] [Indexed: 01/13/2023] Open
Abstract
Chromosome conformation capture methods are being increasingly used to study three-dimensional genome architecture in multiple cell types and species. An important challenge is to examine changes in three-dimensional architecture across cell types and species. We present Arboretum-Hi-C, a multi-task spectral clustering method, to identify common and context-specific aspects of genome architecture. Compared to standard clustering, Arboretum-Hi-C produced more biologically consistent patterns of conservation. Most clusters are conserved and enriched for either high- or low-activity genomic signals. Most genomic regions diverge between clusters with similar chromatin state except for a few that are associated with lamina-associated domains and open chromatin.
Collapse
Affiliation(s)
| | - Ferhat Ay
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, 92037, CA, USA
| | - Sushmita Roy
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, 53717, WI, USA. .,Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, 53717, WI, USA.
| |
Collapse
|
160
|
Entrevan M, Schuettengruber B, Cavalli G. Regulation of Genome Architecture and Function by Polycomb Proteins. Trends Cell Biol 2016; 26:511-525. [PMID: 27198635 DOI: 10.1016/j.tcb.2016.04.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 12/13/2022]
Abstract
Polycomb group (PcG) proteins dynamically define cellular identities through the epigenetic repression of key developmental regulatory genes. PcG proteins are recruited to specific regulatory elements to modify the chromatin surrounding them. In addition, they regulate the organization of their target genes in the 3D space of the nucleus, and this regulatory function of the 3D genome architecture is involved in cell differentiation and the maintenance of cellular memory. In this review we discuss recent advances in our understanding of how PcG proteins are recruited to chromatin to induce local and global changes in chromosome conformation and regulate their target genes.
Collapse
Affiliation(s)
- Marianne Entrevan
- Institute of Human Genetics, CNRS UPR1142 and University of Montpellier, 141 Rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Bernd Schuettengruber
- Institute of Human Genetics, CNRS UPR1142 and University of Montpellier, 141 Rue de la Cardonille, 34396, Montpellier Cedex 5, France.
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS UPR1142 and University of Montpellier, 141 Rue de la Cardonille, 34396, Montpellier Cedex 5, France.
| |
Collapse
|
161
|
Chromosome conformation capture technologies and their impact in understanding genome function. Chromosoma 2016; 126:33-44. [DOI: 10.1007/s00412-016-0593-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 04/10/2016] [Accepted: 04/12/2016] [Indexed: 12/17/2022]
|
162
|
Joyce EF, Erceg J, Wu CT. Pairing and anti-pairing: a balancing act in the diploid genome. Curr Opin Genet Dev 2016; 37:119-128. [PMID: 27065367 DOI: 10.1016/j.gde.2016.03.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/02/2016] [Accepted: 03/05/2016] [Indexed: 12/22/2022]
Abstract
The presence of maternal and paternal homologs appears to be much more than just a doubling of genetic material. We know this because genomes have evolved elaborate mechanisms that permit homologous regions to sense and then respond to each other. One way in which homologs communicate is to come into contact and, in fact, Dipteran insects such as Drosophila excel at this task, aligning all pairs of maternal and paternal chromosomes, end-to-end, in essentially all somatic tissues throughout development. Here, we reexamine the widely held tenet that extensive somatic pairing of homologous sequences cannot occur in mammals and suggest, instead, that pairing may be a widespread and significant potential that has gone unnoticed in mammals because they expend considerable effort to prevent it. We then extend this discussion to interchromosomal interactions, in general, and speculate about the potential of nuclear organization and pairing to impact inheritance.
Collapse
Affiliation(s)
- Eric F Joyce
- Department of Genetics, Harvard Medical School, Boston, MA 02115, United States.
| | - Jelena Erceg
- Department of Genetics, Harvard Medical School, Boston, MA 02115, United States
| | - C-Ting Wu
- Department of Genetics, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
163
|
Ito K, Sanosaka T, Igarashi K, Ideta-Otsuka M, Aizawa A, Uosaki Y, Noguchi A, Arakawa H, Nakashima K, Takizawa T. Identification of genes associated with the astrocyte-specific gene Gfap during astrocyte differentiation. Sci Rep 2016; 6:23903. [PMID: 27041678 PMCID: PMC4819225 DOI: 10.1038/srep23903] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/16/2016] [Indexed: 01/15/2023] Open
Abstract
Chromosomes and genes are non-randomly arranged within the mammalian cell nucleus, and gene clustering is of great significance in transcriptional regulation. However, the relevance of gene clustering and their expression during the differentiation of neural precursor cells (NPCs) into astrocytes remains unclear. We performed a genome-wide enhanced circular chromosomal conformation capture (e4C) to screen for genes associated with the astrocyte-specific gene glial fibrillary acidic protein (Gfap) during astrocyte differentiation. We identified 18 genes that were specifically associated with Gfap and expressed in NPC-derived astrocytes. Our results provide additional evidence for the functional significance of gene clustering in transcriptional regulation during NPC differentiation.
Collapse
Affiliation(s)
- Kenji Ito
- Department of Pediatrics, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Tsukasa Sanosaka
- Stem Cell Biology and Medicine, Department of Stem cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Katsuhide Igarashi
- Life Science Tokyo Advanced Research Center (L-StaR), Pharmacy and Pharmaceutical Science, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-5801, Japan
| | - Maky Ideta-Otsuka
- Life Science Tokyo Advanced Research Center (L-StaR), Pharmacy and Pharmaceutical Science, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-5801, Japan
| | - Akira Aizawa
- Department of Pediatrics, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Yuichi Uosaki
- Department of Pediatrics, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Azumi Noguchi
- Department of Pediatrics, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Hirokazu Arakawa
- Department of Pediatrics, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Kinichi Nakashima
- Stem Cell Biology and Medicine, Department of Stem cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takumi Takizawa
- Department of Pediatrics, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
164
|
A positive role for polycomb in transcriptional regulation via H4K20me1. Cell Res 2016; 26:529-42. [PMID: 27002220 PMCID: PMC4856762 DOI: 10.1038/cr.2016.33] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 12/24/2022] Open
Abstract
The highly conserved polycomb group (PcG) proteins maintain heritable transcription repression of the genes essential for development from fly to mammals. However, sporadic reports imply a potential role of PcGs in positive regulation of gene transcription, although systematic investigation of such function and the underlying mechanism has rarely been reported. Here, we report a Pc-mediated, H3K27me3-dependent positive transcriptional regulation of Senseless (Sens), a key transcription factor required for development. Mechanistic studies show that Pc regulates Sens expression by promoting H4K20me1 at the Sens locus. Further bioinformatic analysis at genome-wide level indicates that the existence of H4K20me1 acts as a selective mark for positive transcriptional regulation by Pc/H3K27me3. Both the intensities and specific patterns of Pc and H3K27me3 are important for the fates of target gene transcription. Moreover, binding of transcription factor Broad (Br), which physically interacts with Pc and positively regulates the transcription of Sens, is observed in Pc+H3K27me3+H4K20me1+ genes, but not in Pc+H3K27me3+H4K20me1− genes. Taken together, our study reveals that, coupling with the transcription factor Br, Pc positively regulates transcription of Pc+H3K27me3+H4K20me1+ genes in developing Drosophila wing disc.
Collapse
|
165
|
Yu N, Nützmann HW, MacDonald JT, Moore B, Field B, Berriri S, Trick M, Rosser SJ, Kumar SV, Freemont PS, Osbourn A. Delineation of metabolic gene clusters in plant genomes by chromatin signatures. Nucleic Acids Res 2016; 44:2255-65. [PMID: 26895889 PMCID: PMC4797310 DOI: 10.1093/nar/gkw100] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/20/2016] [Accepted: 02/09/2016] [Indexed: 12/26/2022] Open
Abstract
Plants are a tremendous source of diverse chemicals, including many natural product-derived drugs. It has recently become apparent that the genes for the biosynthesis of numerous different types of plant natural products are organized as metabolic gene clusters, thereby unveiling a highly unusual form of plant genome architecture and offering novel avenues for discovery and exploitation of plant specialized metabolism. Here we show that these clustered pathways are characterized by distinct chromatin signatures of histone 3 lysine trimethylation (H3K27me3) and histone 2 variant H2A.Z, associated with cluster repression and activation, respectively, and represent discrete windows of co-regulation in the genome. We further demonstrate that knowledge of these chromatin signatures along with chromatin mutants can be used to mine genomes for cluster discovery. The roles of H3K27me3 and H2A.Z in repression and activation of single genes in plants are well known. However, our discovery of highly localized operon-like co-regulated regions of chromatin modification is unprecedented in plants. Our findings raise intriguing parallels with groups of physically linked multi-gene complexes in animals and with clustered pathways for specialized metabolism in filamentous fungi.
Collapse
Affiliation(s)
- Nan Yu
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | - James T MacDonald
- Centre for Synthetic Biology and Innovation, Imperial College, South Kensington Campus, London, SW7 2AZ, UK
| | - Ben Moore
- Centre for Synthetic Biology and Innovation, Imperial College, South Kensington Campus, London, SW7 2AZ, UK
| | - Ben Field
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Souha Berriri
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Martin Trick
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Susan J Rosser
- School of Biological Sciences, University of Edinburgh, King's Building, Edinburgh, EH9 3JR, UK
| | - S Vinod Kumar
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Paul S Freemont
- Centre for Synthetic Biology and Innovation, Imperial College, South Kensington Campus, London, SW7 2AZ, UK
| | - Anne Osbourn
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
166
|
Marullo F, Cesarini E, Antonelli L, Gregoretti F, Oliva G, Lanzuolo C. Nucleoplasmic Lamin A/C and Polycomb group of proteins: An evolutionarily conserved interplay. Nucleus 2016; 7:103-11. [PMID: 26930442 PMCID: PMC4916880 DOI: 10.1080/19491034.2016.1157675] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Nuclear lamins are the main components of the nuclear lamina at the nuclear periphery, providing mechanical support to the nucleus. However, recent findings suggest that lamins also reside in the nuclear interior, as a distinct and dynamic pool with critical roles in transcriptional regulation. In our work we found a functional and evolutionary conserved crosstalk between Lamin A/C and the Polycomb group (PcG) of proteins, this being required for the maintenance of the PcG repressive functions. Indeed, Lamin A/C knock-down causes PcG foci dispersion and defects in PcG-mediated higher order structures, thereby leading to impaired PcG mediated transcriptional repression. By using ad-hoc algorithms for image analysis and PLA approaches we hereby show that PcG proteins are preferentially located in the nuclear interior where they interact with nucleoplasmic Lamin A/C. Taken together, our findings suggest that nuclear components, such as Lamin A/C, functionally interact with epigenetic factors to ensure the correct transcriptional program maintenance.
Collapse
Affiliation(s)
- F Marullo
- a CNR Institute of Cell Biology and Neurobiology, IRCCS Santa Lucia Foundation , Rome , Italy
| | - E Cesarini
- a CNR Institute of Cell Biology and Neurobiology, IRCCS Santa Lucia Foundation , Rome , Italy
| | - L Antonelli
- b CNR Institute for High Performance Computing and Networking (ICAR) , Naples, Italy
| | - F Gregoretti
- b CNR Institute for High Performance Computing and Networking (ICAR) , Naples, Italy
| | - G Oliva
- b CNR Institute for High Performance Computing and Networking (ICAR) , Naples, Italy
| | - C Lanzuolo
- a CNR Institute of Cell Biology and Neurobiology, IRCCS Santa Lucia Foundation , Rome , Italy.,c Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi , Milan , Italy
| |
Collapse
|
167
|
Cesarini E, Mozzetta C, Marullo F, Gregoretti F, Gargiulo A, Columbaro M, Cortesi A, Antonelli L, Di Pelino S, Squarzoni S, Palacios D, Zippo A, Bodega B, Oliva G, Lanzuolo C. Lamin A/C sustains PcG protein architecture, maintaining transcriptional repression at target genes. J Cell Biol 2016; 211:533-51. [PMID: 26553927 PMCID: PMC4639869 DOI: 10.1083/jcb.201504035] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Reduction of lamin A/C, which is evolutionarily required for the modulation of Polycomb group (PcG) protein–dependent transcriptional repression by sustaining PcG protein nuclear architecture, leads to PcG protein diffusion and to muscle differentiation. Beyond its role in providing structure to the nuclear envelope, lamin A/C is involved in transcriptional regulation. However, its cross talk with epigenetic factors—and how this cross talk influences physiological processes—is still unexplored. Key epigenetic regulators of development and differentiation are the Polycomb group (PcG) of proteins, organized in the nucleus as microscopically visible foci. Here, we show that lamin A/C is evolutionarily required for correct PcG protein nuclear compartmentalization. Confocal microscopy supported by new algorithms for image analysis reveals that lamin A/C knock-down leads to PcG protein foci disassembly and PcG protein dispersion. This causes detachment from chromatin and defects in PcG protein–mediated higher-order structures, thereby leading to impaired PcG protein repressive functions. Using myogenic differentiation as a model, we found that reduced levels of lamin A/C at the onset of differentiation led to an anticipation of the myogenic program because of an alteration of PcG protein–mediated transcriptional repression. Collectively, our results indicate that lamin A/C can modulate transcription through the regulation of PcG protein epigenetic factors.
Collapse
Affiliation(s)
- Elisa Cesarini
- Consiglio Nazionale delle Ricerche Institute of Cellular Biology and Neurobiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 00143 Rome, Italy
| | - Chiara Mozzetta
- Consiglio Nazionale delle Ricerche Institute of Cellular Biology and Neurobiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 00143 Rome, Italy
| | - Fabrizia Marullo
- Consiglio Nazionale delle Ricerche Institute of Cellular Biology and Neurobiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 00143 Rome, Italy
| | - Francesco Gregoretti
- Consiglio Nazionale delle Ricerche Institute for High Performance Computing and Networking, 80131 Naples, Italy
| | - Annagiusi Gargiulo
- Consiglio Nazionale delle Ricerche Institute of Cellular Biology and Neurobiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 00143 Rome, Italy
| | - Marta Columbaro
- Struttura Complessa Laboratorio Biologia Cellulare Muscoloscheletrica, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Alice Cortesi
- Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, 20122 Milan, Italy
| | - Laura Antonelli
- Consiglio Nazionale delle Ricerche Institute for High Performance Computing and Networking, 80131 Naples, Italy
| | - Simona Di Pelino
- Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, 20122 Milan, Italy
| | - Stefano Squarzoni
- Struttura Complessa Laboratorio Biologia Cellulare Muscoloscheletrica, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy Consiglio Nazionale delle Ricerche Institute of Molecular Genetics, 40136 Bologna, Italy
| | - Daniela Palacios
- Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 00143 Rome, Italy
| | - Alessio Zippo
- Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, 20122 Milan, Italy
| | - Beatrice Bodega
- Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, 20122 Milan, Italy
| | - Gennaro Oliva
- Consiglio Nazionale delle Ricerche Institute for High Performance Computing and Networking, 80131 Naples, Italy
| | - Chiara Lanzuolo
- Consiglio Nazionale delle Ricerche Institute of Cellular Biology and Neurobiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 00143 Rome, Italy
| |
Collapse
|
168
|
Wijchers PJ, Krijger PHL, Geeven G, Zhu Y, Denker A, Verstegen MJAM, Valdes-Quezada C, Vermeulen C, Janssen M, Teunissen H, Anink-Groenen LCM, Verschure PJ, de Laat W. Cause and Consequence of Tethering a SubTAD to Different Nuclear Compartments. Mol Cell 2016; 61:461-473. [PMID: 26833089 PMCID: PMC4747903 DOI: 10.1016/j.molcel.2016.01.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 10/30/2015] [Accepted: 12/22/2015] [Indexed: 12/11/2022]
Abstract
Detailed genomic contact maps have revealed that chromosomes are structurally organized in megabase-sized topologically associated domains (TADs) that encompass smaller subTADs. These domains segregate in the nuclear space to form active and inactive nuclear compartments, but cause and consequence of compartmentalization are largely unknown. Here, we combined lacO/lacR binding platforms with allele-specific 4C technologies to track their precise position in the three-dimensional genome upon recruitment of NANOG, SUV39H1, or EZH2. We observed locked genomic loci resistant to spatial repositioning and unlocked loci that could be repositioned to different nuclear subcompartments with distinct chromatin signatures. Focal protein recruitment caused the entire subTAD, but not surrounding regions, to engage in new genomic contacts. Compartment switching was found uncoupled from transcription changes, and the enzymatic modification of histones per se was insufficient for repositioning. Collectively, this suggests that trans-associated factors influence three-dimensional compartmentalization independent of their cis effect on local chromatin composition and activity.
Collapse
Affiliation(s)
- Patrick J Wijchers
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Peter H L Krijger
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Geert Geeven
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Yun Zhu
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Annette Denker
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Marjon J A M Verstegen
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Christian Valdes-Quezada
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Carlo Vermeulen
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Mark Janssen
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Hans Teunissen
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Lisette C M Anink-Groenen
- Synthetic Systems Biology and Nuclear Organization Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, the Netherlands
| | - Pernette J Verschure
- Synthetic Systems Biology and Nuclear Organization Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, the Netherlands
| | - Wouter de Laat
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
169
|
Wani AH, Boettiger AN, Schorderet P, Ergun A, Münger C, Sadreyev RI, Zhuang X, Kingston RE, Francis NJ. Chromatin topology is coupled to Polycomb group protein subnuclear organization. Nat Commun 2016; 7:10291. [PMID: 26759081 PMCID: PMC4735512 DOI: 10.1038/ncomms10291] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/26/2015] [Indexed: 12/21/2022] Open
Abstract
The genomes of metazoa are organized at multiple scales. Many proteins that regulate genome architecture, including Polycomb group (PcG) proteins, form subnuclear structures. Deciphering mechanistic links between protein organization and chromatin architecture requires precise description and mechanistic perturbations of both. Using super-resolution microscopy, here we show that PcG proteins are organized into hundreds of nanoscale protein clusters. We manipulated PcG clusters by disrupting the polymerization activity of the sterile alpha motif (SAM) of the PcG protein Polyhomeotic (Ph) or by increasing Ph levels. Ph with mutant SAM disrupts clustering of endogenous PcG complexes and chromatin interactions while elevating Ph level increases cluster number and chromatin interactions. These effects can be captured by molecular simulations based on a previously described chromatin polymer model. Both perturbations also alter gene expression. Organization of PcG proteins into small, abundant clusters on chromatin through Ph SAM polymerization activity may shape genome architecture through chromatin interactions.
Collapse
Affiliation(s)
- Ajazul H. Wani
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Alistair N. Boettiger
- Howard Hughes Medical Institute, Harvard University Cambridge, Cambridge, Massachusetts 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Patrick Schorderet
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Ayla Ergun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Christine Münger
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Ruslan I. Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Harvard University Cambridge, Cambridge, Massachusetts 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Robert E. Kingston
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Nicole J. Francis
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Département de biochimie et medécine moléculaire, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
170
|
Determination of Polycomb Group of Protein Compartmentalization Through Chromatin Fractionation Procedure. Methods Mol Biol 2016; 1480:167-80. [PMID: 27659984 DOI: 10.1007/978-1-4939-6380-5_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Epigenetic mechanisms modulate and maintain the transcriptional state of the genome acting at various levels on chromatin. Emerging findings suggest that the position in the nuclear space and the cross talk between components of the nuclear architecture play a role in the regulation of epigenetic signatures. We recently described a cross talk between the Polycomb group of proteins (PcG) epigenetic repressors and the nuclear lamina. This interplay is important for the maintenance of transcriptional repression at muscle-specific genes and for the correct timing of muscle differentiation. To investigate the synergism between PcG factors and nuclear architecture we improved a chromatin fractionation protocol with the aim to analyze the PcG nuclear compartmentalization. We thus separated PcG proteins in different fractions depending on their solubility. We surprisingly found a consistent amount of PcG proteins in the matrix-associated fraction. In this chapter we describe the chromatin fractionation procedure, a method that can be used to study the nuclear compartmentalization of Polycomb group of proteins and/or PcG targets in murine and Drosophila cells.
Collapse
|
171
|
Matelot M, Noordermeer D. Determination of High-Resolution 3D Chromatin Organization Using Circular Chromosome Conformation Capture (4C-seq). Methods Mol Biol 2016; 1480:223-41. [PMID: 27659989 DOI: 10.1007/978-1-4939-6380-5_20] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
3D chromatin organization is essential for many aspects of transcriptional regulation. Circular Chromosome Conformation Capture followed by Illumina sequencing (4C-seq) is among the most powerful techniques to determine 3D chromatin organization. 4C-seq, like other modifications of the original 3C technique, uses the principle of "proximity ligation" to identify and quantify ten thousands of genomic interactions at a kilobase scale in a single experiment for predefined loci in the genome.In this chapter we focus on the experimental steps in the 4C-seq protocol, providing detailed descriptions on the preparation of cells, the construction of the circularized 3C library and the generation of the Illumina high throughput sequencing library. This protocol is particularly suited for the use of mammalian tissue samples, but can be used with minimal changes on circulating cells and cell lines from other sources as well. In the final section of this chapter, we provide a brief overview of data analysis approaches, accompanied by links to publicly available analysis tools.
Collapse
Affiliation(s)
- Mélody Matelot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, University Paris-Saclay, 1 Avenue de la terrasse, 91198, Gif sur Yvette, France
| | - Daan Noordermeer
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, University Paris-Saclay, 1 Avenue de la terrasse, 91198, Gif sur Yvette, France.
| |
Collapse
|
172
|
Kondo T, Ito S, Koseki H. Polycomb in Transcriptional Phase Transition of Developmental Genes. Trends Biochem Sci 2016; 41:9-19. [DOI: 10.1016/j.tibs.2015.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/09/2015] [Accepted: 11/10/2015] [Indexed: 11/28/2022]
|
173
|
Affiliation(s)
- Victoria H. Meller
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202; , ,
| | - Sonal S. Joshi
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202; , ,
| | - Nikita Deshpande
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202; , ,
| |
Collapse
|
174
|
Lanzuolo C. Impairment of Lamin A/C-Polycomb crosstalk as a possible epigenetic cause of Emery Dreifuss Muscular Dystrophy (EDMD). Orphanet J Rare Dis 2015. [PMCID: PMC4652450 DOI: 10.1186/1750-1172-10-s2-o10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
175
|
Singh NP, Mishra RK. Specific combinations of boundary element and Polycomb response element are required for the regulation of the Hox genes in Drosophila melanogaster. Mech Dev 2015; 138 Pt 2:141-150. [DOI: 10.1016/j.mod.2015.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 10/23/2022]
|
176
|
Schoenfelder S, Sugar R, Dimond A, Javierre BM, Armstrong H, Mifsud B, Dimitrova E, Matheson L, Tavares-Cadete F, Furlan-Magaril M, Segonds-Pichon A, Jurkowski W, Wingett SW, Tabbada K, Andrews S, Herman B, LeProust E, Osborne CS, Koseki H, Fraser P, Luscombe NM, Elderkin S. Polycomb repressive complex PRC1 spatially constrains the mouse embryonic stem cell genome. Nat Genet 2015; 47:1179-1186. [PMID: 26323060 PMCID: PMC4847639 DOI: 10.1038/ng.3393] [Citation(s) in RCA: 277] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 08/05/2015] [Indexed: 02/08/2023]
Abstract
The Polycomb repressive complexes PRC1 and PRC2 maintain embryonic stem cell (ESC) pluripotency by silencing lineage-specifying developmental regulator genes. Emerging evidence suggests that Polycomb complexes act through controlling spatial genome organization. We show that PRC1 functions as a master regulator of mouse ESC genome architecture by organizing genes in three-dimensional interaction networks. The strongest spatial network is composed of the four Hox gene clusters and early developmental transcription factor genes, the majority of which contact poised enhancers. Removal of Polycomb repression leads to disruption of promoter-promoter contacts in the Hox gene network. In contrast, promoter-enhancer contacts are maintained in the absence of Polycomb repression, with accompanying widespread acquisition of active chromatin signatures at network enhancers and pronounced transcriptional upregulation of network genes. Thus, PRC1 physically constrains developmental transcription factor genes and their enhancers in a silenced but poised spatial network. We propose that the selective release of genes from this spatial network underlies cell fate specification during early embryonic development.
Collapse
Affiliation(s)
| | - Robert Sugar
- EMBL European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Andrew Dimond
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, UK
| | | | - Harry Armstrong
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, UK
| | - Borbala Mifsud
- Cancer Research UK London Research Institute, London, UK
- Department of Genetics, Evolution & Environment, University College London, London, UK
| | - Emilia Dimitrova
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, UK
- Department of Biochemistry, Oxford University, Oxford, UK
| | - Louise Matheson
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, UK
| | - Filipe Tavares-Cadete
- Cancer Research UK London Research Institute, London, UK
- present address: Okinawa Institute for Science and Technology Graduate University, Okinawa, Japan
| | | | | | - Wiktor Jurkowski
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, UK
| | - Steven W Wingett
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, UK
- Bioinformatics, The Babraham Institute, Cambridge, UK
| | - Kristina Tabbada
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, UK
| | - Simon Andrews
- Bioinformatics, The Babraham Institute, Cambridge, UK
| | - Bram Herman
- Agilent Technologies Inc., Santa Clara, California, USA
| | | | | | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Peter Fraser
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, UK
| | - Nicholas M Luscombe
- EMBL European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
- Cancer Research UK London Research Institute, London, UK
- Department of Genetics, Evolution & Environment, University College London, London, UK
- Okinawa Institute for Science and Technology Graduate University, Okinawa, Japan
| | - Sarah Elderkin
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, UK
| |
Collapse
|
177
|
Abstract
To accommodate genomes in the limited space of the cell nucleus and ensure the correct execution of gene expression programs, genomes are packaged in complex fashion in the three-dimensional cell nucleus. As a consequence of the extensive higher-order organization of chromosomes, distantly located genomic regions on the same or distinct chromosomes undergo long-range interactions. This article discusses the nature of long interactions, mechanisms of their formation, and their emerging functional roles in gene regulation and genome maintenance.
Collapse
Affiliation(s)
- Job Dekker
- University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Tom Misteli
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
178
|
|
179
|
Sequeira-Mendes J, Gutierrez C. Genome architecture: from linear organisation of chromatin to the 3D assembly in the nucleus. Chromosoma 2015; 125:455-69. [PMID: 26330112 DOI: 10.1007/s00412-015-0538-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 08/09/2015] [Accepted: 08/12/2015] [Indexed: 12/13/2022]
Abstract
The genetic information is stored in the eukaryotic nucleus in the form of chromatin. This is a macromolecular entity that includes genomic DNA and histone proteins that form nucleosomes, plus a large variety of chromatin-associated non-histone proteins. Chromatin is structurally and functionally organised at various levels. One reveals the linear topography of DNA, histones and their post-translational modifications and non-histone proteins along each chromosome. This level provides regulatory information about the association of genomic elements with particular signatures that have been used to define chromatin states. Importantly, these chromatin states correlate with structural and functional genomic features. Another regulatory layer is established at the level of the 3D organisation of chromatin within the nucleus, which has been revealed clearly as non-random. Instead, a variety of intra- and inter-chromosomal genomic domains with specific epigenetic and functional properties has been identified. In this review, we discuss how the recent advances in genomic approaches have contributed to our understanding of these two levels of genome architecture. We have emphasised our analysis with the aim of integrating information available for yeast, Arabidopsis, Drosophila, and mammalian cells. We consider that this comparative study helps define common and unique features in each system, providing a basis to better understand the complexity of genome organisation.
Collapse
Affiliation(s)
- Joana Sequeira-Mendes
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain.
| | - Crisanto Gutierrez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
180
|
Bouwman BAM, de Laat W. Getting the genome in shape: the formation of loops, domains and compartments. Genome Biol 2015; 16:154. [PMID: 26257189 PMCID: PMC4536798 DOI: 10.1186/s13059-015-0730-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The hierarchical levels of genome architecture exert transcriptional control by tuning the accessibility and proximity of genes and regulatory elements. Here, we review current insights into the trans-acting factors that enable the genome to flexibly adopt different functionally relevant conformations.
Collapse
Affiliation(s)
- Britta A M Bouwman
- Hubrecht Institute - KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Wouter de Laat
- Hubrecht Institute - KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.
| |
Collapse
|
181
|
Srivastava S, Dhawan J, Mishra RK. Epigenetic mechanisms and boundaries in the regulation of mammalian Hox clusters. Mech Dev 2015; 138 Pt 2:160-169. [PMID: 26254900 DOI: 10.1016/j.mod.2015.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 01/07/2023]
Abstract
Hox gene expression imparts segment identity to body structures along the anterior-posterior axis and is tightly governed by higher order chromatin mechanisms. Chromatin regulatory features of the homeotic complex are best defined in Drosophila melanogaster, where multiple cis-regulatory elements have been identified that ensure collinear Hox gene expression patterns in accordance with their genomic organization. Recent studies focused on delineating the epigenetic features of the vertebrate Hox clusters have helped reveal their dynamic chromatin organization and its impact on gene expression. Enrichment for the 'activating' H3K4me3 and 'repressive' H3K27me3 histone modifications is a particularly strong read-out for transcriptional status and correlates well with the evidence for chromatin loop domain structures and stage specific topological changes at these loci. However, it is not clear how such distinct domains are imposed and regulated independent of each other. Comparative analysis of the chromatin structure and organization of the homeotic gene clusters in fly and mammals is increasingly revealing the functional conservation of chromatin mediated mechanisms. Here we discuss the case for interspersed boundary elements existing within mammalian Hox clusters along with their possible roles and mechanisms of action. Recent studies suggest a role for factors other than the well characterized vertebrate boundary factor CTCF, such as the GAGA binding factor (GAF), in maintaining chromatin domains at the Hox loci. We also present data demonstrating how such regulatory elements may be involved in organizing higher order structure and demarcating active domains of gene expression at the mammalian Hox clusters.
Collapse
Affiliation(s)
- Surabhi Srivastava
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India.
| | - Jyotsna Dhawan
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Rakesh K Mishra
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| |
Collapse
|
182
|
Chromosome dynamics and folding in eukaryotes: Insights from live cell microscopy. FEBS Lett 2015; 589:3014-22. [PMID: 26188544 DOI: 10.1016/j.febslet.2015.07.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/08/2015] [Accepted: 07/11/2015] [Indexed: 11/24/2022]
Abstract
How chromosomes are folded and how this folding relates to function remain fundamental questions. Answering them is rendered difficult by the stochasticity of chromatin fiber motion which inevitably results in heterogeneity of the populations analyzed. Even if single cell analyses are beginning to yield precious insights, how can we determine whether a snapshot of position is related to function of the probed locus or cell-type? Fluorescence labeling of DNA at single or multiple loci allows determination of their position relative to nuclear landmarks and to each other, enabling us to derive physical parameters of the underlying chromatin fiber. Here I review the contribution of quantitative spatial and temporal analysis of labeled DNA to our understanding of chromosome conformation in different cell types, highlighting live cell imaging techniques and large scale geometrical analysis of multiple loci in 3D.
Collapse
|
183
|
One, Two, Three: Polycomb Proteins Hit All Dimensions of Gene Regulation. Genes (Basel) 2015; 6:520-42. [PMID: 26184319 PMCID: PMC4584315 DOI: 10.3390/genes6030520] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/30/2015] [Indexed: 12/16/2022] Open
Abstract
Polycomb group (PcG) proteins contribute to the formation and maintenance of a specific repressive chromatin state that prevents the expression of genes in a particular space and time. Polycomb repressive complexes (PRCs) consist of several PcG proteins with specific regulatory or catalytic properties. PRCs are recruited to thousands of target genes, and various recruitment factors, including DNA-binding proteins and non-coding RNAs, are involved in the targeting. PcG proteins contribute to a multitude of biological processes by altering chromatin features at different scales. PcG proteins mediate both biochemical modifications of histone tails and biophysical modifications (e.g., chromatin fiber compaction and three-dimensional (3D) chromatin conformation). Here, we review the role of PcG proteins in nuclear architecture, describing their impact on the structure of the chromatin fiber, on chromatin interactions, and on the spatial organization of the genome in nuclei. Although little is known about the role of plant PcG proteins in nuclear organization, much is known in the animal field, and we highlight similarities and differences in the roles of PcG proteins in 3D gene regulation in plants and animals.
Collapse
|
184
|
Cattoni DI, Valeri A, Le Gall A, Nollmann M. A matter of scale: how emerging technologies are redefining our view of chromosome architecture. Trends Genet 2015; 31:454-64. [PMID: 26113398 DOI: 10.1016/j.tig.2015.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/21/2015] [Accepted: 05/22/2015] [Indexed: 11/25/2022]
Abstract
The 3D folding of the genome and its relation to fundamental processes such as gene regulation, replication, and segregation remains one of the most puzzling and exciting questions in genetics. In this review, we describe how the use of new technologies is starting to revolutionize the field of chromosome organization, and to shed light on the mechanisms of transcription, replication, and repair. In particular, we concentrate on recent studies using genome-wide methods, single-molecule technologies, and super-resolution microscopy (SRM). We summarize some of the main concerns when employing these techniques, and discuss potential new and exciting perspectives that illuminate the connection between 3D genomic organization and gene regulation.
Collapse
Affiliation(s)
- Diego I Cattoni
- Centre de Biochimie Structurale, CNRS UMR5048, INSERM U1054, Université de Montpellier, 29 rue de Navacelles, 34090 Montpellier, France
| | - Alessandro Valeri
- Centre de Biochimie Structurale, CNRS UMR5048, INSERM U1054, Université de Montpellier, 29 rue de Navacelles, 34090 Montpellier, France
| | - Antoine Le Gall
- Centre de Biochimie Structurale, CNRS UMR5048, INSERM U1054, Université de Montpellier, 29 rue de Navacelles, 34090 Montpellier, France
| | - Marcelo Nollmann
- Centre de Biochimie Structurale, CNRS UMR5048, INSERM U1054, Université de Montpellier, 29 rue de Navacelles, 34090 Montpellier, France.
| |
Collapse
|
185
|
Javeed N, Tardi NJ, Maher M, Singari S, Edwards KA. Controlled expression of Drosophila homeobox loci using the Hostile takeover system. Dev Dyn 2015; 244:808-25. [PMID: 25820349 PMCID: PMC4449281 DOI: 10.1002/dvdy.24279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 03/12/2015] [Accepted: 03/16/2015] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Hostile takeover (Hto) is a Drosophila protein trapping system that allows the investigator to both induce a gene and tag its product. The Hto transposon carries a GAL4-regulated promoter expressing an exon encoding a FLAG-mCherry tag. Upon expression, the Hto exon can splice to a downstream genomic exon, generating a fusion transcript and tagged protein. RESULTS Using rough-eye phenotypic screens, Hto inserts were recovered at eight homeobox or Pax loci: cut, Drgx/CG34340, Pox neuro, araucan, shaven/D-Pax2, Zn finger homeodomain 2, Sex combs reduced (Scr), and the abdominal-A region. The collection yields diverse misexpression phenotypes. Ectopic Drgx was found to alter the cytoskeleton and cell adhesion in ovary follicle cells. Hto expression of cut, araucan, or shaven gives phenotypes similar to those of the corresponding UAS-cDNA constructs. The cut and Pox neuro phenotypes are suppressed by the corresponding RNAi constructs. The Scr and abdominal-A inserts do not make fusion proteins, but may act by chromatin- or RNA-based mechanisms. CONCLUSIONS Hto can effectively express tagged homeodomain proteins from their endogenous loci; the Minos vector allows inserts to be obtained even in transposon cold-spots. Hto screens may recover homeobox genes at high rates because they are particularly sensitive to misexpression.
Collapse
Affiliation(s)
- Naureen Javeed
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Nicholas J. Tardi
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Maggie Maher
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Swetha Singari
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Kevin A. Edwards
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| |
Collapse
|
186
|
Mozzetta C, Pontis J, Ait-Si-Ali S. Functional Crosstalk Between Lysine Methyltransferases on Histone Substrates: The Case of G9A/GLP and Polycomb Repressive Complex 2. Antioxid Redox Signal 2015; 22:1365-81. [PMID: 25365549 PMCID: PMC4432786 DOI: 10.1089/ars.2014.6116] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE Methylation of histone H3 on lysine 9 and 27 (H3K9 and H3K27) are two epigenetic modifications that have been linked to several crucial biological processes, among which are transcriptional silencing and cell differentiation. RECENT ADVANCES Deposition of these marks is catalyzed by H3K9 lysine methyltransferases (KMTs) and polycomb repressive complex 2, respectively. Increasing evidence is emerging in favor of a functional crosstalk between these two major KMT families. CRITICAL ISSUES Here, we review the current knowledge on the mechanisms of action and function of these enzymes, with particular emphasis on their interplay in the regulation of chromatin states and biological processes. We outline their crucial roles played in tissue homeostasis, by controlling the fate of embryonic and tissue-specific stem cells, highlighting how their deregulation is often linked to the emergence of a number of malignancies and neurological disorders. FUTURE DIRECTIONS Histone methyltransferases are starting to be tested as drug targets. A new generation of highly selective chemical inhibitors is starting to emerge. These hold great promise for a rapid translation of targeting epigenetic drugs into clinical practice for a number of aggressive cancers and neurological disorders.
Collapse
Affiliation(s)
- Chiara Mozzetta
- Laboratoire Epigénétique et Destin Cellulaire, UMR7216, Centre National de la Recherche Scientifique CNRS, Université Paris Diderot , Sorbonne Paris Cité, Paris, France
| | | | | |
Collapse
|
187
|
Role of HOXA9 in leukemia: dysregulation, cofactors and essential targets. Oncogene 2015; 35:1090-8. [PMID: 26028034 DOI: 10.1038/onc.2015.174] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/24/2015] [Accepted: 04/14/2015] [Indexed: 02/08/2023]
Abstract
HOXA9 is a homeodomain-containing transcription factor that has an important role in hematopoietic stem cell expansion and is commonly deregulated in acute leukemias. A variety of upstream genetic alterations in acute myeloid leukemia lead to overexpression of HOXA9, which is a strong predictor of poor prognosis. In many cases, HOXA9 has been shown to be necessary for maintaining leukemic transformation; however, the molecular mechanisms through which it promotes leukemogenesis remain elusive. Recent work has established that HOXA9 regulates downstream gene expression through binding at promoter distal enhancers along with a subset of cell-specific cofactor and collaborator proteins. Increasing efforts are being made to identify both the critical cofactors and target genes required for maintaining transformation in HOXA9-overexpressing leukemias. With continued advances in understanding HOXA9-mediated transformation, there is a wealth of opportunity for developing novel therapeutics that would be applicable for greater than 50% of AML with overexpression of HOXA9.
Collapse
|
188
|
Probing long-range interactions by extracting free energies from genome-wide chromosome conformation capture data. BMC Bioinformatics 2015; 16:171. [PMID: 26001583 PMCID: PMC4492175 DOI: 10.1186/s12859-015-0584-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 04/22/2015] [Indexed: 11/17/2022] Open
Abstract
Background A variety of DNA binding proteins are involved in regulating and shaping the packing of chromatin. They aid the formation of loops in the DNA that function to isolate different structural domains. A recent experimental technique, Hi-C, provides a method for determining the frequency of such looping between all distant parts of the genome. Given that the binding locations of many chromatin associated proteins have also been measured, it has been possible to make estimates for their influence on the long-range interactions as measured by Hi-C. However, a challenge in this analysis is the predominance of non-specific contacts that mask out the specific interactions of interest. Results We show that transforming the Hi-C contact frequencies into free energies gives a natural method for separating out the distance dependent non-specific interactions. In particular we apply Principal Component Analysis (PCA) to the transformed free energy matrix to identify the dominant modes of interaction. PCA identifies systematic effects as well as high frequency spatial noise in the Hi-C data which can be filtered out. Thus it can be used as a data driven approach for normalizing Hi-C data. We assess this PCA based normalization approach, along with several other normalization schemes, by fitting the transformed Hi-C data using a pairwise interaction model that takes as input the known locations of bound chromatin factors. The result of fitting is a set of predictions for the coupling energies between the various chromatin factors and their effect on the energetics of looping. We show that the quality of the fit can be used as a means to determine how much PCA filtering should be applied to the Hi-C data. Conclusions We find that the different normalizations of the Hi-C data vary in the quality of fit to the pairwise interaction model. PCA filtering can improve the fit, and the predicted coupling energies lead to biologically meaningful insights for how various chromatin bound factors influence the stability of DNA loops in chromatin. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0584-2) contains supplementary material, which is available to authorized users.
Collapse
|
189
|
Sexton T, Cavalli G. The role of chromosome domains in shaping the functional genome. Cell 2015; 160:1049-59. [PMID: 25768903 DOI: 10.1016/j.cell.2015.02.040] [Citation(s) in RCA: 284] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Indexed: 10/23/2022]
Abstract
The genome must be highly compacted to fit within eukaryotic nuclei but must be accessible to the transcriptional machinery to allow appropriate expression of genes in different cell types and throughout developmental pathways. A growing body of work has shown that the genome, analogously to proteins, forms an ordered, hierarchical structure that closely correlates and may even be causally linked with regulation of functions such as transcription. This review describes our current understanding of how these functional genomic "secondary and tertiary structures" form a blueprint for global nuclear architecture and the potential they hold for understanding and manipulating genomic regulation.
Collapse
Affiliation(s)
- Tom Sexton
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, 67404 Illkirch, France.
| | - Giacomo Cavalli
- Institute of Human Genetics (IGH), 141 rue de la Cardonille, 34396 Montpellier, France.
| |
Collapse
|
190
|
Abstract
The chromatin environment is essential for the correct specification and preservation of cell identity through modulation and maintenance of transcription patterns. Many chromatin regulators are required for development, stem cell maintenance, and differentiation. Here, we review the roles of the polycomb repressive complexes, PRC1 and PRC2, and the HDAC1- and HDAC2-containing complexes, NuRD, Sin3, and CoREST, in stem cells, development, and cancer, as well as the ongoing efforts to develop therapies targeting these complexes in human cancer. Furthermore, we discuss the role of repressive complexes in modulating thresholds for gene activation and their importance for specification and maintenance of cell fate.
Collapse
Affiliation(s)
- Anne Laugesen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark; Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark; The Danish Stem Cell Center (DanStem), University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Kristian Helin
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark; Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark; The Danish Stem Cell Center (DanStem), University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| |
Collapse
|
191
|
Vieux-Rochas M, Fabre PJ, Leleu M, Duboule D, Noordermeer D. Clustering of mammalian Hox genes with other H3K27me3 targets within an active nuclear domain. Proc Natl Acad Sci U S A 2015; 112:4672-7. [PMID: 25825760 PMCID: PMC4403207 DOI: 10.1073/pnas.1504783112] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Embryogenesis requires the precise activation and repression of many transcriptional regulators. The Polycomb group proteins and the associated H3K27me3 histone mark are essential to maintain the inactive state of many of these genes. Mammalian Hox genes are targets of Polycomb proteins and form local 3D clusters centered on the H3K27me3 mark. More distal contacts have also been described, yet their selectivity, dynamics, and relation to other layers of chromatin organization remained elusive. We report that repressed Hox genes form mutual intra- and interchromosomal interactions with other genes located in strong domains labeled by H3K27me3. These interactions occur in a central and active nuclear environment that consists of the HiC compartment A, away from peripheral lamina-associated domains. Interactions are independent of nearby H3K27me3-marked loci and determined by chromosomal distance and cell-type-specific scaling factors, thus inducing a moderate reorganization during embryogenesis. These results provide a simplified view of nuclear organization whereby Polycomb proteins may have evolved to repress genes located in gene-dense regions whose position is restricted to central, active, nuclear environments.
Collapse
Affiliation(s)
- Maxence Vieux-Rochas
- School of Life Sciences, Swiss Federal Institute of Technology - Lausanne (EPFL), 1015 Lausanne, Switzerland; and
| | - Pierre J Fabre
- School of Life Sciences, Swiss Federal Institute of Technology - Lausanne (EPFL), 1015 Lausanne, Switzerland; and
| | - Marion Leleu
- School of Life Sciences, Swiss Federal Institute of Technology - Lausanne (EPFL), 1015 Lausanne, Switzerland; and
| | - Denis Duboule
- School of Life Sciences, Swiss Federal Institute of Technology - Lausanne (EPFL), 1015 Lausanne, Switzerland; and Department of Genetics and Evolution, University of Geneva, 1205 Geneva, Switzerland
| | - Daan Noordermeer
- School of Life Sciences, Swiss Federal Institute of Technology - Lausanne (EPFL), 1015 Lausanne, Switzerland; and
| |
Collapse
|
192
|
Schoenfelder S, Furlan-Magaril M, Mifsud B, Tavares-Cadete F, Sugar R, Javierre BM, Nagano T, Katsman Y, Sakthidevi M, Wingett SW, Dimitrova E, Dimond A, Edelman LB, Elderkin S, Tabbada K, Darbo E, Andrews S, Herman B, Higgs A, LeProust E, Osborne CS, Mitchell JA, Luscombe NM, Fraser P. The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements. Genome Res 2015; 25:582-97. [PMID: 25752748 PMCID: PMC4381529 DOI: 10.1101/gr.185272.114] [Citation(s) in RCA: 321] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 02/11/2015] [Indexed: 12/17/2022]
Abstract
The mammalian genome harbors up to one million regulatory elements often located at great distances from their target genes. Long-range elements control genes through physical contact with promoters and can be recognized by the presence of specific histone modifications and transcription factor binding. Linking regulatory elements to specific promoters genome-wide is currently impeded by the limited resolution of high-throughput chromatin interaction assays. Here we apply a sequence capture approach to enrich Hi-C libraries for >22,000 annotated mouse promoters to identify statistically significant, long-range interactions at restriction fragment resolution, assigning long-range interacting elements to their target genes genome-wide in embryonic stem cells and fetal liver cells. The distal sites contacting active genes are enriched in active histone modifications and transcription factor occupancy, whereas inactive genes contact distal sites with repressive histone marks, demonstrating the regulatory potential of the distal elements identified. Furthermore, we find that coregulated genes cluster nonrandomly in spatial interaction networks correlated with their biological function and expression level. Interestingly, we find the strongest gene clustering in ES cells between transcription factor genes that control key developmental processes in embryogenesis. The results provide the first genome-wide catalog linking gene promoters to their long-range interacting elements and highlight the complex spatial regulatory circuitry controlling mammalian gene expression.
Collapse
Affiliation(s)
- Stefan Schoenfelder
- Nuclear Dynamics Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Mayra Furlan-Magaril
- Nuclear Dynamics Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Borbala Mifsud
- University College London, UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom; Cancer Research UK London Research Institute, London WC2A 3LY, United Kingdom
| | - Filipe Tavares-Cadete
- University College London, UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom; Cancer Research UK London Research Institute, London WC2A 3LY, United Kingdom
| | - Robert Sugar
- Cancer Research UK London Research Institute, London WC2A 3LY, United Kingdom; EMBL European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Biola-Maria Javierre
- Nuclear Dynamics Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Takashi Nagano
- Nuclear Dynamics Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Yulia Katsman
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Moorthy Sakthidevi
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Steven W Wingett
- Nuclear Dynamics Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom; Bioinformatics Group, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Emilia Dimitrova
- Nuclear Dynamics Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Andrew Dimond
- Nuclear Dynamics Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Lucas B Edelman
- Nuclear Dynamics Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Sarah Elderkin
- Nuclear Dynamics Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Kristina Tabbada
- Nuclear Dynamics Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Elodie Darbo
- University College London, UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom; Cancer Research UK London Research Institute, London WC2A 3LY, United Kingdom
| | - Simon Andrews
- Bioinformatics Group, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Bram Herman
- Agilent Technologies, Inc., Santa Clara, California 95051, USA
| | - Andy Higgs
- Agilent Technologies, Inc., Santa Clara, California 95051, USA
| | - Emily LeProust
- Agilent Technologies, Inc., Santa Clara, California 95051, USA
| | - Cameron S Osborne
- Nuclear Dynamics Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Jennifer A Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Nicholas M Luscombe
- University College London, UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom; Cancer Research UK London Research Institute, London WC2A 3LY, United Kingdom; Okinawa Institute for Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Peter Fraser
- Nuclear Dynamics Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom;
| |
Collapse
|
193
|
Chan C, Jayasekera S, Kao B, Páramo M, von Grotthuss M, Ranz JM. Remodelling of a homeobox gene cluster by multiple independent gene reunions in Drosophila. Nat Commun 2015; 6:6509. [DOI: 10.1038/ncomms7509] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 02/04/2015] [Indexed: 11/09/2022] Open
|
194
|
Hogan MS, Parfitt DE, Zepeda-Mendoza CJ, Shen MM, Spector DL. Transient pairing of homologous Oct4 alleles accompanies the onset of embryonic stem cell differentiation. Cell Stem Cell 2015; 16:275-288. [PMID: 25748933 PMCID: PMC4355581 DOI: 10.1016/j.stem.2015.02.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/03/2014] [Accepted: 02/02/2015] [Indexed: 12/21/2022]
Abstract
The relationship between chromatin organization and transcriptional regulation is an area of intense investigation. We characterized the spatial relationships between alleles of the Oct4, Sox2, and Nanog genes in single cells during the earliest stages of mouse embryonic stem cell (ESC) differentiation and during embryonic development. We describe homologous pairing of the Oct4 alleles during ESC differentiation and embryogenesis, and we present evidence that pairing is correlated with the kinetics of ESC differentiation. Importantly, we identify critical DNA elements within the Oct4 promoter/enhancer region that mediate pairing of Oct4 alleles. Finally, we show that mutation of OCT4/SOX2 binding sites within this region abolishes inter-chromosomal interactions and affects accumulation of the repressive H3K9me2 modification at the Oct4 enhancer. Our findings demonstrate that chromatin organization and transcriptional programs are intimately connected in ESCs and that the dynamic positioning of the Oct4 alleles is associated with the transition from pluripotency to lineage specification.
Collapse
Affiliation(s)
- Megan S Hogan
- Cold Spring Harbor Laboratory, Watson School of Biological Sciences, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - David-Emlyn Parfitt
- Departments of Medicine and Genetics & Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Cinthya J Zepeda-Mendoza
- Cold Spring Harbor Laboratory, Watson School of Biological Sciences, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Michael M Shen
- Departments of Medicine and Genetics & Development, Columbia University Medical Center, New York, NY 10032, USA
| | - David L Spector
- Cold Spring Harbor Laboratory, Watson School of Biological Sciences, One Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
195
|
Arthur RK, Ma L, Slattery M, Spokony RF, Ostapenko A, Nègre N, White KP. Evolution of H3K27me3-marked chromatin is linked to gene expression evolution and to patterns of gene duplication and diversification. Genome Res 2015; 24:1115-24. [PMID: 24985914 PMCID: PMC4079967 DOI: 10.1101/gr.162008.113] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Histone modifications are critical for the regulation of gene expression, cell type specification, and differentiation. However, evolutionary patterns of key modifications that regulate gene expression in differentiating organisms have not been examined. Here we mapped the genomic locations of the repressive mark histone 3 lysine 27 trimethylation (H3K27me3) in four species of Drosophila, and compared these patterns to those in C. elegans. We found that patterns of H3K27me3 are highly conserved across species, but conservation is substantially weaker among duplicated genes. We further discovered that retropositions are associated with greater evolutionary changes in H3K27me3 and gene expression than tandem duplications, indicating that local chromatin constraints influence duplicated gene evolution. These changes are also associated with concomitant evolution of gene expression. Our findings reveal the strong conservation of genomic architecture governed by an epigenetic mark across distantly related species and the importance of gene duplication in generating novel H3K27me3 profiles.
Collapse
Affiliation(s)
- Robert K Arthur
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA; Institute for Genomics and Systems Biology, University of Chicago and Argonne National Laboratory, Chicago, Illinois 60637, USA
| | - Lijia Ma
- Institute for Genomics and Systems Biology, University of Chicago and Argonne National Laboratory, Chicago, Illinois 60637, USA; Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | - Matthew Slattery
- Institute for Genomics and Systems Biology, University of Chicago and Argonne National Laboratory, Chicago, Illinois 60637, USA; Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA; Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota 55455, USA
| | - Rebecca F Spokony
- Institute for Genomics and Systems Biology, University of Chicago and Argonne National Laboratory, Chicago, Illinois 60637, USA; Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA; Department of Natural Sciences, Baruch College, City University of New York, New York 10010, USA
| | - Alexander Ostapenko
- Institute for Genomics and Systems Biology, University of Chicago and Argonne National Laboratory, Chicago, Illinois 60637, USA; Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | - Nicolas Nègre
- Institute for Genomics and Systems Biology, University of Chicago and Argonne National Laboratory, Chicago, Illinois 60637, USA; Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA; Université de Montpellier 2 and INRA, UMR1333 DGIMI, F-34095 Montpellier, France
| | - Kevin P White
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA; Institute for Genomics and Systems Biology, University of Chicago and Argonne National Laboratory, Chicago, Illinois 60637, USA; Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
196
|
Gavrilov AA, Razin SV. Compartmentalization of the cell nucleus and spatial organization of the genome. Mol Biol 2015. [DOI: 10.1134/s0026893315010033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
197
|
Chromatin-Driven Behavior of Topologically Associating Domains. J Mol Biol 2015; 427:608-25. [DOI: 10.1016/j.jmb.2014.09.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/17/2014] [Accepted: 09/23/2014] [Indexed: 12/19/2022]
|
198
|
Ulianov SV, Gavrilov AA, Razin SV. Nuclear Compartments, Genome Folding, and Enhancer-Promoter Communication. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 315:183-244. [DOI: 10.1016/bs.ircmb.2014.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
199
|
Bianchi A, Lanzuolo C. Into the chromatin world: Role of nuclear architecture in epigenome regulation. AIMS BIOPHYSICS 2015. [DOI: 10.3934/biophy.2015.4.585] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
200
|
Scelfo A, Piunti A, Pasini D. The controversial role of the Polycomb group proteins in transcription and cancer: how much do we not understand Polycomb proteins? FEBS J 2014; 282:1703-22. [PMID: 25315766 DOI: 10.1111/febs.13112] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/03/2014] [Accepted: 10/14/2014] [Indexed: 12/21/2022]
Abstract
Polycomb group proteins (PcGs) are a large protein family that includes diverse biochemical features assembled together in two large multiprotein complexes. These complexes maintain gene transcriptional repression in a cell type specific manner by modifying the surrounding chromatin to control development, differentiation and cell proliferation. PcGs are also involved in several diseases. PcGs are often directly or indirectly implicated in cancer development for which they have been proposed as potential targets for cancer therapeutic strategies. However, in the last few years a series of discoveries about the basic properties of PcGs and the identification of specific genetic alterations affecting specific Polycomb proteins in different tumours have converged to challenge old dogmas about PcG biological and molecular functions. In this review, we analyse these new data in the context of the old knowledge, highlighting the controversies and providing new models of interpretation and ideas that will perhaps bring some order among apparently contradicting observations.
Collapse
Affiliation(s)
- Andrea Scelfo
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | | | | |
Collapse
|