151
|
Yang J, Zhou W, Li D, Niu T, Wang W. BCMA-targeting chimeric antigen receptor T-cell therapy for multiple myeloma. Cancer Lett 2023; 553:215949. [PMID: 36216149 DOI: 10.1016/j.canlet.2022.215949] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/24/2022]
Abstract
Multiple myeloma (MM) remains an incurable hematologic malignancy, despite the development of numerous innovative therapies during the past two decades. Immunotherapies are changing the treatment paradigm of MM and have improved the overall response and survival of patients with relapsed/refractory (RR) MM. B cell maturation antigen (BCMA), selectively expressed in normal and malignant plasma cells, has been targeted by several immunotherapeutic modalities. Chimeric antigen receptor (CAR) T cells, the breakthrough in cancer immunotherapy, have revolutionized the treatment of B cell malignancies and remarkably improved the prognosis of RRMM. BCMA-targeting CAR T cell therapy is the most developed CAR T cell therapy for MM, and the US Food and Drug Administration has already approved idecabtagene vicleucel (Ide-cel) and ciltacabtagene autoleucel (Cilta-cel) for MM. However, the development of novel BCMA-targeting CAR T cell therapies remains in progress. This review focuses on BCMA-targeting CAR T cell therapy, covering all stages of investigational progress, including the innovative preclinical studies, the initial phase I clinical trials, and the more developed phase II clinical trials. It also discusses possible measures to improve the efficacy and safety of this therapy.
Collapse
Affiliation(s)
- Jinrong Yang
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041, China
| | - Weilin Zhou
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041, China
| | - Dan Li
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041, China
| | - Ting Niu
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041, China.
| | - Wei Wang
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041, China.
| |
Collapse
|
152
|
Murad V, Kulanthaivelu R, Ortega C, Veit-Haibach P, Metser U. Standardized classification schemes in reporting oncologic PET/CT. Front Med (Lausanne) 2023; 9:1051309. [PMID: 36777163 PMCID: PMC9909469 DOI: 10.3389/fmed.2022.1051309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/19/2022] [Indexed: 01/27/2023] Open
Abstract
The imaging report is essential for the communication between physicians in patient care. The information it contains must be clear, concise with evidence-based conclusions and sufficient to support clinical decision-making. In recent years, several classification schemes and/or reporting guidelines for PET have been introduced. In this manuscript, we will review the classifications most frequently used in oncology for interpreting and reporting 18F-FDG PET imaging in lymphoma, multiple myeloma, melanoma and head and neck cancers, PSMA-ligand PET imaging for prostate cancer, and 68Ga-DOTA-peptide PET in neuroendocrine tumors (NET).
Collapse
Affiliation(s)
- Vanessa Murad
- Molecular Imaging Division, Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women’s College Hospital, University of Toronto, Toronto, ON, Canada
- University Medical Imaging Toronto, University of Toronto, Toronto, ON, Canada
| | - Roshini Kulanthaivelu
- Molecular Imaging Division, Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women’s College Hospital, University of Toronto, Toronto, ON, Canada
- University Medical Imaging Toronto, University of Toronto, Toronto, ON, Canada
| | - Claudia Ortega
- Molecular Imaging Division, Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women’s College Hospital, University of Toronto, Toronto, ON, Canada
- University Medical Imaging Toronto, University of Toronto, Toronto, ON, Canada
| | - Patrick Veit-Haibach
- Molecular Imaging Division, Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women’s College Hospital, University of Toronto, Toronto, ON, Canada
- University Medical Imaging Toronto, University of Toronto, Toronto, ON, Canada
| | - Ur Metser
- Molecular Imaging Division, Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women’s College Hospital, University of Toronto, Toronto, ON, Canada
- University Medical Imaging Toronto, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
153
|
Schmitz RL, Tweed KE, Rehani P, Samimi K, Riendeau J, Jones I, Maly EM, Guzman EC, Forsberg MH, Shahi A, Capitini CM, Walsh AJ, Skala MC. Autofluorescence lifetime imaging classifies human lymphocyte activation and subtype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.23.525260. [PMID: 36747690 PMCID: PMC9900834 DOI: 10.1101/2023.01.23.525260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
New non-destructive tools are needed to reliably assess lymphocyte function for immune profiling and adoptive cell therapy. Optical metabolic imaging (OMI) is a label-free method that measures the autofluorescence intensity and lifetime of metabolic cofactors NAD(P)H and FAD to quantify metabolism at a single-cell level. Here, we investigate whether OMI can resolve metabolic changes between human quiescent versus IL4/CD40 activated B cells and IL12/IL15/IL18 activated memory-like NK cells. We found that quiescent B and NK cells were more oxidized compared to activated cells. Additionally, the NAD(P)H mean fluorescence lifetime decreased and the fraction of unbound NAD(P)H increased in the activated B and NK cells compared to quiescent cells. Machine learning classified B cells and NK cells according to activation state (CD69+) based on OMI parameters with up to 93.4% and 92.6% accuracy, respectively. Leveraging our previously published OMI data from activated and quiescent T cells, we found that the NAD(P)H mean fluorescence lifetime increased in NK cells compared to T cells, and further increased in B cells compared to NK cells. Random forest models based on OMI classified lymphocytes according to subtype (B, NK, T cell) with 97.8% accuracy, and according to activation state (quiescent or activated) and subtype (B, NK, T cell) with 90.0% accuracy. Our results show that autofluorescence lifetime imaging can accurately assess lymphocyte activation and subtype in a label-free, non-destructive manner.
Collapse
Affiliation(s)
| | - Kelsey E. Tweed
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | - Peter Rehani
- Morgridge Institute for Research, Madison, WI, USA
| | | | | | - Isabel Jones
- Morgridge Institute for Research, Madison, WI, USA
| | | | | | - Matthew H. Forsberg
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Ankita Shahi
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Christian M. Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | - Melissa C. Skala
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
154
|
Revamping the innate or innate-like immune cell-based therapy for hepatocellular carcinoma: new mechanistic insights and advanced opportunities. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2023; 40:84. [PMID: 36680649 DOI: 10.1007/s12032-023-01948-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/02/2023] [Indexed: 01/22/2023]
Abstract
A cancerous tumour termed hepatocellular carcinoma (HCC) is characterized by inflammation and subsequently followed by end-stage liver disease and necrosis of the liver. The liver's continuous exposure to microorganisms and toxic molecules affects the immune response because normal tissue requires some immune tolerance to be safeguarded from damage. Several innate immune cells are involved in this process of immune system activation which includes dendritic cells, macrophages, and natural killer cells. The liver is an immunologic organ with vast quantities of innate and innate-like immune cells subjected to several antigens (bacteria, fungal or viral) through the gut-liver axis. Tumour-induced immune system engagement may be encouraged or suppressed through innate immunological systems, which are recognized promoters of liver disease development in pre-HCC conditions such as fibrosis or cirrhosis, ultimately resulting in HCC. Immune-based treatments containing several classes of drugs have transformed the treatment of several types of cancers in recent times. The effectiveness of such immunotherapies relies on intricate interactions between lymphocytes, tumour cells, and neighbouring cells. Even though immunotherapy therapy has already reported to possess potential effect to treat HCC, a clear understanding of the crosstalk between innate and adaptive immune cell pathways still need to be clearly understood for better exploitation of the same. The identification of predictive biomarkers, understanding the progression of the disease, and the invention of more efficient combinational treatments are the major challenges in HCC immunotherapy. The functions and therapeutic significance of innate immune cells, which have been widely implicated in HCC, in addition to the interplay between innate and adaptive immune responses during the pathogenesis, have been explored in the current review.
Collapse
|
155
|
Collins L, Ponnazhagan S, Curiel DT. Synthetic Biology Design as a Paradigm Shift toward Manufacturing Affordable Adeno-Associated Virus Gene Therapies. ACS Synth Biol 2023; 12:17-26. [PMID: 36627108 PMCID: PMC9872172 DOI: 10.1021/acssynbio.2c00589] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Indexed: 01/12/2023]
Abstract
Gene therapy has demonstrated enormous potential for changing how we combat disease. By directly engineering the genetic composition of cells, it provides a broad range of options for improving human health. Adeno-associated viruses (AAVs) represent a leading gene therapy vector and are expected to address a wide range of conditions in the coming decade. Three AAV therapies have already been approved by the FDA to treat Leber's congenital amaurosis, spinal muscular atrophy, and hemophilia B. Yet these therapies cost around $850,000, $2,100,000, and $3,500,000, respectively. Such prices limit the broad applicability of AAV gene therapy and make it inaccessible to most patients. Much of this problem arises from the high manufacturing costs of AAVs. At the same time, the field of synthetic biology has grown rapidly and has displayed a special aptitude for addressing biomanufacturing problems. Here, we discuss emerging efforts to apply synthetic biology design to decrease the price of AAV production, and we propose that such efforts could play a major role in making gene therapy much more widely accessible.
Collapse
Affiliation(s)
- Logan
Thrasher Collins
- Department
of Biomedical Engineering, Washington University
in St. Louis, 4950 Childrens Place, St. Louis, Missouri 63110, United
States
| | - Selvarangan Ponnazhagan
- Department
of Pathology, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, Alabama 35233, United States
| | - David T. Curiel
- Department
of Biomedical Engineering, Washington University
in St. Louis, 4950 Childrens Place, St. Louis, Missouri 63110, United
States
- Department
of Radiation Oncology, Washington University
in St. Louis, 4950 Childrens
Place, St. Louis, Missouri 63110, United States
| |
Collapse
|
156
|
Kalinin RS, Shipunova VO, Rubtsov YP, Ukrainskay VM, Schulga A, Konovalova EV, Volkov DV, Yaroshevich IA, Moysenovich AM, Belogurov AA, Telegin GB, Chernov AS, Maschan MA, Terekhov SS, Knorre VD, Khurs E, Gnuchev NV, Gabibov AG, Deyev SM. Barnase-barstar Specific Interaction Regulates Car-T Cells Cytotoxic Activity toward Malignancy. DOKL BIOCHEM BIOPHYS 2023; 508:17-20. [PMID: 36653580 PMCID: PMC10042900 DOI: 10.1134/s1607672922700041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 01/19/2023]
Abstract
The development of CAR-T specific therapy made a revolution in modern oncology. Despite the pronounced therapeutic effects, this novel approach displayed several crucial limitations caused by the complications in pharmacokinetics and pharmacodynamics controls. The presence of the several severe medical complications of CAR-T therapy initiated a set of attempts aimed to regulate their activity in vivo. We propose to apply the barnase-barstar system to control the cytotoxic antitumor activity of CAR-T cells. To menage the regulation targeting effect of the system we propose to use barstar-modified CAR-T cells together with barnase-based molecules. Barnase was fused with designed ankyrin repeat proteins (DARPins) specific to tumor antigens HER2 (human epidermal growth factor receptor 2) The application of the system demonstrates the pronounced regulatory effects of CAR-T targeting.
Collapse
Affiliation(s)
- R S Kalinin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| | - V O Shipunova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Y P Rubtsov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - V M Ukrainskay
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia
| | - A Schulga
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - E V Konovalova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - D V Volkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | | - A A Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Moscow State University, Moscow, Russia
| | - G B Telegin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - A S Chernov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - M A Maschan
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia
| | - S S Terekhov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Moscow State University, Moscow, Russia
| | - V D Knorre
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - E Khurs
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - N V Gnuchev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - A G Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Moscow State University, Moscow, Russia
| | - S M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,National Research University Higher School of Economics, Moscow, Russia
| |
Collapse
|
157
|
Smutova V, Pará C, Foret MK, Bennamoune N, Hung S, Spickler C, Riffon R, Rowe J, Festin S, Authier S. Non-Clinical Cell Therapy Development Using the NCG Mouse Model as a Test System. Int J Toxicol 2023; 42:232-253. [PMID: 36630195 DOI: 10.1177/10915818221150790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The NCG triple immunodeficient mice on a NOD/Nju background lack functional/mature T, B, and NK cells, and have reduced macrophage and dendritic cell function. This study characterized the NCG mouse model for toxicity, engraftment and tumorigenicity assessments of cell therapies, using CD34+ hHSPC adult mobilized cells with two myeloablation regimens.Mice received sub-lethal irradiation or busulfan and were then injected intravenously with CD34+ hHSPCs (1.0 x 106 cells/mouse) or PBS (control), while positive control animals received 2 x 106 HL-60 cells/mouse. hCD34+ cell donors were treated with the mobilizing agent G-CSF prior to leukapheresis. Following injections, mouse blood samples were collected to assess engraftment rates by flow cytometry with body weights recorded periodically up to 20 weeks post-cell injection. No significant clinical signs or body weight changes were observed. At week 10 post-cell injection, the peripheral blood chimerism of hCD45+ cells was above 20%. While mCD45+ concentration was constant between week 10 and 17 in whole blood samples, hCD45+ concentration and chimerism slightly decreased at week 17. However, chimerism remained above 10%, with busulfan-treated mice presenting higher values. Chimerism was further assessed by quantifying human Alu sequences in blood and multiple organs using qPCR. Alu sequences were most abundant in the spleen and bone marrow, while lowest in the testes. In the positive control group, expected mortalities due to tumorigenesis were observed between days 27 and 40 post-cell injection. Overall, study results may be used to inform study design and potential toxicological endpoints relevant to non-clinical cell therapy development.
Collapse
Affiliation(s)
| | - Camila Pará
- Charles River Laboratories, Laval, QC, Canada
| | | | | | - Selly Hung
- Charles River Laboratories, Laval, QC, Canada
| | | | | | - Jenny Rowe
- Charles River Laboratories, Wilmington, MA, USA
| | | | - Simon Authier
- Charles River Laboratories, Laval, QC, Canada.,Faculty of Veterinary Medicine, University of Montreal, Laval, QC, Canada
| |
Collapse
|
158
|
Xu L, Wang X, Wang R, Liu S, Xu M. Engineered Macrophages: A Safe-by-Design Approach for the Tumor Targeting Delivery of Sub-5 nm Gold Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205474. [PMID: 36372550 DOI: 10.1002/smll.202205474] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Ultrasmall nanoparticles (NPs) are a promising platform for the diagnosis and therapy of cancer, but the particles in sizes as small as several nanometers have an ability to translocate across biological barriers, which may bring unpredictable health risks. Therefore, it is essential to develop workable cell-based tools that can deliver ultrasmall NPs to the tumor in a safer manner. Here, this work uses macrophages as a shuttle to deliver sub-5 nm PEGylated gold (Au) NPs to tumors actively or passively, while reducing the accumulation of Au NPs in the brain. This work demonstrates that sub-5 nm Au NPs can be rapidly exocytosed from live macrophages, reaching 45.6% within 24 h, resulting in a labile Au NP-macrophage system that may release free Au NPs into the blood circulation in vivo. To overcome this shortcoming, two straightforward methods are used to engineer macrophages to obtain "half-dead" and "dead" macrophages. Although the efficiency of engineered macrophages for delivering sub-5 nm Au NPs to tumors is 2.2-3.8% lower than that of free Au NPs via the passive enhanced permeability and retention effect, this safe-by-design approach can dramatically reduce the accumulation of Au NPs in the brain by more than one order of magnitude. These promising approaches offer an opportunity to expand the immune cell- or stem cell-mediated delivery of ultrasmall NPs for the diagnosis and therapy of diseases in a safer way in the future.
Collapse
Affiliation(s)
- Lining Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xudong Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Ruixia Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
159
|
Wakao R, Fukaya-Shiba A. In vivo CAR T cells and targeted gene delivery: A theme for the Pharmaceuticals and Medical Devices Agency Science Board to address. Front Med (Lausanne) 2023; 10:1141880. [PMID: 37138754 PMCID: PMC10150382 DOI: 10.3389/fmed.2023.1141880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/16/2023] [Indexed: 05/05/2023] Open
|
160
|
Wu Q, Liu Z, Gao Z, Luo Y, Li F, Yang C, Wang T, Meng X, Chen H, Li J, Kong Y, Dong C, Sun S, Chen C. KLF5 inhibition potentiates anti-PD1 efficacy by enhancing CD8 + T-cell-dependent antitumor immunity. Theranostics 2023; 13:1381-1400. [PMID: 36923542 PMCID: PMC10008740 DOI: 10.7150/thno.82182] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/07/2023] [Indexed: 03/14/2023] Open
Abstract
Background: Immune checkpoint blockers (ICBs) are revolutionized therapeutic strategies for cancer, but most patients with solid neoplasms remain resistant to ICBs, partly because of the difficulty in reversing the highly immunosuppressive tumor microenvironment (TME). Exploring the strategies for tumor immunotherapy is highly dependent on the discovery of molecular mechanisms of tumor immune escape and potential therapeutic target. Krüppel-like Factor 5 (KLF5) is a cell-intrinsic oncogene to promote tumorigenesis. However, the cell-extrinsic effects of KLF5 on suppressing the immune response to cancer remain unclear. Methods: We analyzed the immunosuppressive role of KLF5 in mice models transplanted with KLF5-deleted/overexpressing tumor cells. We performed RNA sequencing, immunohistochemistry, western blotting, real time-PCR, ELISA, luciferase assay, chromatin immunoprecipitation (ChIP), and flow cytometry to demonstrate the effects of KLF5 on CD8+ T cell infiltration and related molecular mechanism. Single-cell RNA sequencing and spatial transcriptomics analysis were applied to further decipher the association between KLF5 expression and infiltrating immune cells. The efficacy of KLF5/COX2 inhibitors combined with anti-programmed cell death protein 1 (anti-PD1) therapy were explored in pre-clinical models. Finally, a gene-expression signature depending on KLF5/COX2 axis and associated immune markers was created to predict patient survival. Results: KLF5 inactivation decelerated basal-like breast tumor growth in a CD8+ T-cell-dependent manner. Transcriptomic profiling revealed that KLF5 loss in tumors increases the number and activated function of T lymphocytes. Mechanistically, KLF5 binds to the promoter of the COX2 gene and promotes COX2 transcription; subsequently, KLF5 deficiency decreases prostaglandin E2 (PGE2) release from tumor cells by reducing COX2 expression. Inhibition of the KLF5/COX2 axis increases the number and functionality of intratumoral antitumor T cells to synergize the antitumorigenic effects of anti-PD1 therapy. Analysis of patient datasets at single-cell and spatial resolution shows that low expression of KLF5 is associated with an immune-supportive TME. Finally, we generate a KLF5/COX2-associated immune score (KC-IS) to predict patient survival. Conclusions: Our results identified a novel mechanism responsible for KLF5-mediated immunosuppression in TME, and targeting the KLF5/COX2/PGE2 axis is a critical immunotherapy sensitizer.
Collapse
Affiliation(s)
- Qi Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Tongji University Cancer Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhou Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhijie Gao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yao Luo
- Medical Faculty of Kunming University of Science and Technology, Kunming, China
| | - Fubing Li
- Academy of Biomedical Engineering, Kunming Medical University, Kunming 650500, China
| | - ChuanYu Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Tiantian Wang
- School of Life Science, University of Science & Technology of China, Hefei, 230027, Anhui, China
| | - Xiangyu Meng
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Haijun Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yanjie Kong
- Pathology department, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China
| | - Chao Dong
- Department of Medical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Academy of Biomedical Engineering, Kunming Medical University, Kunming 650500, China.,The Third Affiliated Hospital, Kunming Medical University, Kunming 650118, China
| |
Collapse
|
161
|
Xiao Q, Su X. Imaging CAR-T Synapse as a Quality Control for CAR Engineering. Methods Mol Biol 2023; 2654:503-512. [PMID: 37106204 PMCID: PMC11131089 DOI: 10.1007/978-1-0716-3135-5_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The chimeric antigen receptor (CAR) evolves as a powerful tool to reprogram T cells for targeted killing. CAR-T therapy succeeded in treating certain types of blood cancers, and its application is now expanding towards solid tumors, autoimmune diseases, viral infection, and fibrosis. These require the design of a large number of new CARs that target a variety of antigens. Here we described two methods as a quality control for validating newly developed CARs: (1) the cell-cell conjugation assay as a reflection of efficient binding of CAR to antigen in the cellular context and (2) CD45 exclusion in the synapse as an indication of CAR signaling potential. These assays examine prerequisites for a functional CAR-T and reveal causes for ineffective CAR-T activation.
Collapse
Affiliation(s)
- Qian Xiao
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
- Duncan and Nancy MacMillan Cancer Immunology and Metabolism Center of Excellence, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Xiaolei Su
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA.
- Yale Cancer Center, Yale University, New Haven, CT, USA.
| |
Collapse
|
162
|
Welty NE, Gill SI. Cancer Immunotherapy Beyond Checkpoint Blockade: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2022; 4:563-578. [PMID: 36636439 PMCID: PMC9830230 DOI: 10.1016/j.jaccao.2022.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 12/24/2022] Open
Abstract
Avoidance of immune destruction is recognized as one of the hallmarks of cancer development. Although first predicted as a potential antitumor treatment modality more than 50 years ago, the widespread clinical use of cancer immunotherapies has only recently become a reality. Cancer immunotherapy works by reactivation of a stalled pre-existing immune response or by eliciting a de novo immune response, and its toolkit comprises antibodies, vaccines, cytokines, and cell-based therapies. The treatment paradigm in some malignancies has completely changed over the past 10 to 15 years. Massive efforts in preclinical development have led to a surge of clinical trials testing innovative therapeutic approaches as monotherapy and, increasingly, in combination. Here we provide an overview of approved and emerging antitumor immune therapies, focusing on the rich landscape of therapeutic approaches beyond those that block the canonical PD-1/PD-L1 and CTLA-4 axes and placing them in the context of the latest understanding of tumor immunology.
Collapse
Key Words
- BiTE, bispecific T cell engager
- CAR, chimeric antigen receptor
- CRS, cytokine-release syndrome
- FDA, U.S. Food and Drug Administration
- HLA, human leukocyte antigen
- ICI, immune checkpoint inhibitor
- IL, interleukin
- NK, natural killer
- NSCLC, non–small cell lung cancer
- TIL, tumor-infiltrating lymphocyte
- alloHCT, allogeneic hematopoietic stem cell transplantation
- cancer
- immune therapy
- immunotherapy
- innovation
- mAb, monoclonal antibody
- treatment
Collapse
Affiliation(s)
- Nathan E. Welty
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Saar I. Gill
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Address for correspondence: Dr Saar I. Gill, Smilow Center for Translational Research, Room 8-101, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
163
|
Modelling the spatial dynamics of oncolytic virotherapy in the presence of virus-resistant tumour cells. PLoS Comput Biol 2022; 18:e1010076. [DOI: 10.1371/journal.pcbi.1010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 12/20/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Oncolytic virotherapy is a promising form of cancer treatment that uses native or genetically engineered viruses to target, infect and kill cancer cells. Unfortunately, this form of therapy is not effective in a substantial proportion of cancer patients, partly due to the occurrence of infection-resistant tumour cells. To shed new light on the mechanisms underlying therapeutic failure and to discover strategies that improve therapeutic efficacy we designed a cell-based model of viral infection. The model allows us to investigate the dynamics of infection-sensitive and infection-resistant cells in tumour tissue in presence of the virus. To reflect the importance of the spatial configuration of the tumour on the efficacy of virotherapy, we compare three variants of the model: two 2D models of a monolayer of tumour cells and a 3D model. In all model variants, we systematically investigate how the therapeutic outcome is affected by the properties of the virus (e.g. the rate of viral spread), the tumour (e.g. production rate of resistant cells, cost of resistance), the healthy stromal cells (e.g. degree of resistance to the virus) and the timing of treatment. We find that various therapeutic outcomes are possible when resistant cancer cells arise at low frequency in the tumour. These outcomes depend in an intricate but predictable way on the death rate of infected cells, where faster death leads to rapid virus clearance and cancer persistence. Our simulations reveal three different causes of therapy failure: rapid clearance of the virus, rapid selection of resistant cancer cells, and a low rate of viral spread due to the presence of infection-resistant healthy cells. Our models suggest that improved therapeutic efficacy can be achieved by sensitizing healthy stromal cells to infection, although this remedy has to be weighed against the toxicity induced in the healthy tissue.
Collapse
|
164
|
Chen Q, Lu L, Ma W. Efficacy, Safety, and Challenges of CAR T-Cells in the Treatment of Solid Tumors. Cancers (Basel) 2022; 14:cancers14235983. [PMID: 36497465 PMCID: PMC9739567 DOI: 10.3390/cancers14235983] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/18/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy has been the fifth pillar of cancer treatment in the past decade. Chimeric antigen receptor (CAR) T-cell therapy is a newly designed adoptive immunotherapy that is able to target and further eliminate cancer cells by engaging with MHC-independent tumor-antigens. CAR T-cell therapy has exhibited conspicuous clinical efficacy in hematological malignancies, but more than half of patients will relapse. Of note, the efficacy of CAR T-cell therapy has been even more disappointing in solid tumors. These challenges mainly include (1) the failures of CAR T-cells to treat highly heterogeneous solid tumors due to the difficulty in identifying unique tumor antigen targets, (2) the expression of target antigens in non-cancer cells, (3) the inability of CAR T-cells to effectively infiltrate solid tumors, (4) the short lifespan and lack of persistence of CAR T-cells, and (5) cytokine release syndrome and neurotoxicity. In combination with these characteristics, the ideal CAR T-cell therapy for solid tumors should maintain adequate T-cell response over a long term while sparing healthy tissues. This article reviewed the status, clinical application, efficacy, safety, and challenges of CAR T-cell therapies, as well as the latest progress of CAR T-cell therapies for solid tumors. In addition, the potential strategies to improve the efficacy of CAR T-cells and prevent side effects in solid tumors were also explored.
Collapse
Affiliation(s)
- Qiuqiang Chen
- Key Laboratory for Translational Medicine, The First Affiliated Hospital, Huzhou University School of Medicine, Huzhou 313000, China
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, School of Medicine, Yale School of Public Health, New Haven, CT 06520, USA
- Yale Cancer Center and Center for Biomedical Data Science, Yale University, 60 College Street, New Haven, CT 06520, USA
| | - Wenxue Ma
- Sanford Stem Cell Clinical Center, Moores Cancer Center, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Correspondence: ; Tel.: +1-858-246-1477
| |
Collapse
|
165
|
Nahmad A, Reuveni E, Goldschmidt E, Tenne T, Liberman M, Horovitz-Fried M, Khosravi R, Kobo H, Reinstein E, Madi A, Ben-David U, Barzel A. Frequent aneuploidy in primary human T cells after CRISPR-Cas9 cleavage. Nat Biotechnol 2022; 40:1807-1813. [PMID: 35773341 PMCID: PMC7613940 DOI: 10.1038/s41587-022-01377-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 05/31/2022] [Indexed: 01/14/2023]
Abstract
Multiple clinical trials of allogeneic T cell therapy use site-specific nucleases to disrupt T cell receptor (TCR) and other genes1-6. In this study, using single-cell RNA sequencing, we investigated genome editing outcomes in primary human T cells transfected with CRISPR-Cas9 and guide RNAs targeting genes for TCR chains and programmed cell death protein 1. Four days after transfection, we found a loss of chromosome 14, harboring the TCRα locus, in up to 9% of the cells and a chromosome 14 gain in up to 1.4% of the cells. Chromosome 7, harboring the TCRβ locus, was truncated in 9.9% of the cells. Aberrations were validated using fluorescence in situ hybridization and digital droplet PCR. Aneuploidy was associated with reduced proliferation, induced p53 activation and cell death. However, at 11 days after transfection, 0.9% of T cells still had a chromosome 14 loss. Aneuploidy and chromosomal truncations are, thus, frequent outcomes of CRISPR-Cas9 cleavage that should be monitored and minimized in clinical protocols.
Collapse
Affiliation(s)
- A.D. Nahmad
- The School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel,The Varda and Boaz Dotan Center for Advanced Therapies, Tel Aviv Sourasky Medical Center and Tel Aviv University, Tel Aviv
| | - E. Reuveni
- Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - E. Goldschmidt
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Israel
| | - T. Tenne
- Medical Genetics Institute, Meir Medical Center, Kfar-Saba, Israel
| | - M. Liberman
- Medical Genetics Institute, Meir Medical Center, Kfar-Saba, Israel
| | - M. Horovitz-Fried
- The School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel,The Varda and Boaz Dotan Center for Advanced Therapies, Tel Aviv Sourasky Medical Center and Tel Aviv University, Tel Aviv
| | - R. Khosravi
- Single-Cell Genomics Core, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - H. Kobo
- Genomics Research Unit, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - E. Reinstein
- Medical Genetics Institute, Meir Medical Center, Kfar-Saba, Israel,Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - A. Madi
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Israel
| | - U. Ben-David
- Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - A. Barzel
- The School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel,The Varda and Boaz Dotan Center for Advanced Therapies, Tel Aviv Sourasky Medical Center and Tel Aviv University, Tel Aviv
| |
Collapse
|
166
|
Zhou W, Lei S, Liu M, Li D, Huang Y, Hu X, Yang J, Li J, Fu M, Zhang M, Wang F, Li J, Men K, Wang W. Injectable and photocurable CAR-T cell formulation enhances the anti-tumor activity to melanoma in mice. Biomaterials 2022; 291:121872. [DOI: 10.1016/j.biomaterials.2022.121872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/05/2022] [Accepted: 10/20/2022] [Indexed: 11/02/2022]
|
167
|
Lim WA. The emerging era of cell engineering: Harnessing the modularity of cells to program complex biological function. Science 2022; 378:848-852. [DOI: 10.1126/science.add9665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A new era of biological engineering is emerging in which living cells are used as building blocks to address therapeutic challenges. These efforts are distinct from traditional molecular engineering—their focus is not on optimizing individual genes and proteins as therapeutics, but rather on using molecular components as modules to reprogram how cells make decisions and communicate to achieve higher-order physiological functions in vivo. This cell-centric approach is enabled by a growing tool kit of components that can synthetically control core cell-level functional outputs, such as where in the body a cell should go, what other cells it should interact with, and what messages it should transmit or receive. The power of cell engineering has been clinically validated by the development of immune cells designed to kill cancer. This same tool kit for rewiring cell connectivity is beginning to be used to engineer cell therapies for a host of other diseases and to program the self-organization of tissues and organs. By forcing the conceptual distillation of complex biological functions into a finite set of instructions that operate at the cell level, these efforts also shed light on the fundamental hierarchical logic that links molecular components to higher-order physiological function.
Collapse
Affiliation(s)
- Wendell A. Lim
- Cell Design Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| |
Collapse
|
168
|
Abstract
Immune cells are being engineered to recognize and respond to disease states, acting as a "living drug" when transferred into patients. Therapies based on engineered immune cells are now a clinical reality, with multiple engineered T cell therapies approved for treatment of hematologic malignancies. Ongoing preclinical and clinical studies are testing diverse strategies to modify the fate and function of immune cells for applications in cancer, infectious disease, and beyond. Here, we discuss current progress in treating human disease with immune cell therapeutics, emerging strategies for immune cell engineering, and challenges facing the field, with a particular emphasis on the treatment of cancer, where the most effort has been applied to date.
Collapse
Affiliation(s)
- Darrell J. Irvine
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Marcela V. Maus
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.,Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Boston, MA, USA,Harvard Medical School, Boston MA, USA
| | - David J. Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, U.S.A.,Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, U.S.A
| | - Wilson W. Wong
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA
| |
Collapse
|
169
|
Stepanov AV, Kalinin RS, Shipunova VO, Zhang D, Xie J, Rubtsov YP, Ukrainskaya VM, Schulga A, Konovalova EV, Volkov DV, Yaroshevich IA, Moysenovich AM, Belogurov AA, Zhang H, Telegin GB, Chernov AS, Maschan MA, Terekhov SS, Wu P, Deyev SM, Lerner RA, Gabibov AG, Altman S. Switchable targeting of solid tumors by BsCAR T cells. Proc Natl Acad Sci U S A 2022; 119:e2210562119. [PMID: 36343224 PMCID: PMC9674235 DOI: 10.1073/pnas.2210562119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/09/2022] [Indexed: 08/01/2023] Open
Abstract
The development of chimeric antigen receptor (CAR) T cell therapy has become a critical milestone in modern oncotherapy. Despite the remarkable in vitro effectiveness, the problem of safety and efficacy of CAR T cell therapy against solid tumors is challenged by the lack of tumor-specific antigens required to avoid on-target off-tumor effects. Spatially separating the cytotoxic function of CAR T cells from tumor antigen recognition provided by protein mediators allows for the precise control of CAR T cell cytotoxicity. Here, the high affinity and capability of the bacterial toxin-antitoxin barnase-barstar system were adopted to guide CAR T cells to solid tumors. The complementary modules based on (1) ankyrin repeat (DARPin)-barnase proteins and (2) barstar-based CAR (BsCAR) were designed to provide switchable targeting to tumor cells. The alteration of the DARPin-barnase switches enabled the targeting of different tumor antigens with a single BsCAR. A gradual increase in cytokine release and tunable BsCAR T cell cytotoxicity was achieved by varying DARPin-barnase loads. Switchable BsCAR T cell therapy was able to eradicate the HER2+ ductal carcinoma in vivo. Guiding BsCAR T cells by DARPin-barnase switches provides a universal approach for a controlled multitargeted adoptive immunotherapy.
Collapse
Affiliation(s)
- Alexey V. Stepanov
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Roman S. Kalinin
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Victoria O. Shipunova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Ding Zhang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Jia Xie
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Yuri P. Rubtsov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Valeria M. Ukrainskaya
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Alexey Schulga
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Elena V. Konovalova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Dmitry V. Volkov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Igor A. Yaroshevich
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Anastasiia M. Moysenovich
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Alexey A. Belogurov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Hongkai Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Georgij B. Telegin
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Alexandr S. Chernov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Mikhail A. Maschan
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow 117997, Russia
| | - Stanislav S. Terekhov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Peng Wu
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Sergey M. Deyev
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Richard A. Lerner
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Alexander G. Gabibov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Sidney Altman
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520
- School of Life Sciences, Arizona State University, Tempe, AZ 85287
| |
Collapse
|
170
|
Zhang Y, Dai X, Li Z. Molecular subtypes of cuproptosis regulators and their correlation with clinical prognosis and immune response in glioma. Am J Transl Res 2022; 14:8085-8102. [PMID: 36505293 PMCID: PMC9730092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/26/2022] [Indexed: 12/15/2022]
Abstract
Cuproptosis is a newly described form of cell death. However, nothing is known about the roles of cuproptosis regulators in glioma. First, we explored the characteristics of cuproptosis molecular subtypes and relevant tumor microenvironment (TME) immune cell infiltration patterns in glioma. Using unsupervised clustering analysis, we identified two cuproptosis subtypes and three gene clusters that exhibited different clinical characteristics and TME cell infiltration patterns. Then, we developed and validated a cuproptosis-related prognostic model for predicting the overall survival of glioma patients. We established a risk score tool based on a nomogram to assess the clinical applicability of the cuproptosis model. A high cuproptosis risk score with high immune cell infiltration level, tumor mutation burden, gene alterations, and immunity activation had an unfavorable overall survival. Next, we identified possible competing endogenous ribonucleic acid regulatory networks based on significantly differentially expressed genes between high-risk and low-risk groups and screened several candidate small molecular compounds that may improve chemotherapy. Data from IMvigor and GSE78200 showed that the cuproptosis score affected the prognosis of patients who received immunotherapy. Our study indicated that cuproptosis regulators are involved in TME immune infiltration and impact the clinical prognosis in glioma. It is necessary for clinical practice to develop different therapeutic strategies according to the different phenotypes associated with immune response. The present findings provide new insight for improving immunotherapy strategies and individualized treatment in glioma.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Pathology, The Second Affiliated Hospital of Zhengzhou UniversityZhengzhou, Henan Province, China
| | - Xuehui Dai
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou, Henan Province, China
| | - Zhanzhan Li
- Department of Oncology, Xiangya Hospital, Central South UniversityChangsha, Hunan Province, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangsha, Hunan Province, China
| |
Collapse
|
171
|
Kirchhammer N, Trefny MP, Auf der Maur P, Läubli H, Zippelius A. Combination cancer immunotherapies: Emerging treatment strategies adapted to the tumor microenvironment. Sci Transl Med 2022; 14:eabo3605. [DOI: 10.1126/scitranslmed.abo3605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Immune checkpoint blockade (ICB) has revolutionized cancer treatment. However, resistance to ICB occurs frequently due to tumor-intrinsic alterations or extrinsic factors in the tumor microenvironment. This Viewpoint aims to give an update on recent developments in immunotherapy for solid tumors and highlights progress in translational research and clinical practice.
Collapse
Affiliation(s)
- Nicole Kirchhammer
- Cancer Immunology, Department of Biomedicine, University and University Hospital Basel, Basel 4031, Switzerland
| | - Marcel P. Trefny
- Cancer Immunology, Department of Biomedicine, University and University Hospital Basel, Basel 4031, Switzerland
| | - Priska Auf der Maur
- Tumor Heterogeneity, Metastasis and Resistance, Department of Biomedicine, University and University Hospital of Basel, Basel 4031, Switzerland
| | - Heinz Läubli
- Cancer Immunotherapy, Department of Biomedicine, University and University Hospital Basel, Basel 4031, Switzerland
- Medical Oncology, University Hospital Basel, Basel 4031, Switzerland
| | - Alfred Zippelius
- Cancer Immunology, Department of Biomedicine, University and University Hospital Basel, Basel 4031, Switzerland
- Medical Oncology, University Hospital Basel, Basel 4031, Switzerland
| |
Collapse
|
172
|
Shukla GS, Pero SC, Mei L, Sun YJ, Krag DN. Targeting of palpable B16-F10 melanoma tumors with polyclonal antibodies on white blood cells. J Immunol Methods 2022; 510:113362. [PMID: 36174735 DOI: 10.1016/j.jim.2022.113362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Antibodies and other recognition molecules direct cancer cell death by multiple types of immune cells. Therapy directed at only one target typically results in tumor regrowth because of tumor heterogeneity. Our goal is to direct therapy to multiple targets simultaneously. Our previous studies showed that multiple antibodies targeting mutated tumor proteins inhibited tumor growth when injected subcutaneously near the time of cancer cell implantation. METHODS A cocktail of rabbit antibodies against B16-F10 cell surface related mutated proteins were generated. Implanted B16-F10 cells were allowed to grow to palpable size before treatment. Antibodies were administered using different routes of exposure. Free antibody was compared to antibody armed on mouse splenic white blood cells (WBCs). Binding of the antibody cocktail was determined for mouse and human WBCs. RESULTS The antibody cocktail inhibited tumor growth and prolonged survival when administered as free antibody or armed on WBCs. The antibody cocktail armed on WBCs achieved similar tumor inhibition as free antibody but at a dose 1000-fold less. Armed WBCs achieved tumor inhibition by intravenous and subcutaneous administration. The antibody cocktail bound well to human WBCs and saturation dose was defined. Binding was stable under simulated in vivo condition in human plasma at 37 °C. CONCLUSIONS Antibodies targeting multiple tumor mutated proteins inhibited tumor growth and prolonged survival. Effective antibody dose was reduced 1000-fold by arming WBCs. Rabbit antibodies saturated human WBCs using <1 mg per billion cells. A phase I trial in cancer patients using this strategy has been approved by the FDA.
Collapse
Affiliation(s)
- Girja S Shukla
- Department of Surgery, University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, USA.
| | - Stephanie C Pero
- Department of Surgery, University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, USA.
| | - Linda Mei
- Department of Surgery, University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, USA.
| | - Yu-Jing Sun
- Department of Surgery, University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, USA.
| | - David N Krag
- Department of Surgery, University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, USA.
| |
Collapse
|
173
|
Weißert K, Ammann S, Kögl T, Dettmer‐Monaco V, Schell C, Cathomen T, Ehl S, Aichele P. Adoptive T cell therapy cures mice from active hemophagocytic lymphohistiocytosis (HLH). EMBO Mol Med 2022; 14:e16085. [PMID: 36278424 PMCID: PMC9728053 DOI: 10.15252/emmm.202216085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 12/14/2022] Open
Abstract
Primary hemophagocytic lymphohistiocytosis (HLH) is a hyperinflammatory syndrome caused by impaired lymphocyte cytotoxicity. First-line therapeutic regimens directed against activated immune cells or secreted cytokines show limited efficacy since they do not target the underlying immunological problem: defective lymphocyte cytotoxicity causing prolonged immune stimulation. A potential rescue strategy would be the adoptive transfer of ex vivo gene-corrected autologous T cells. However, transfusion of cytotoxicity-competent T cells under conditions of hyperinflammation may cause more harm than benefit. As a proof-of-concept for adoptive T cell therapy (ATCT) under hyperinflammatory conditions, we transferred syngeneic, cytotoxicity-competent T cells into mice with virally triggered active primary HLH. ATCT with functional syngeneic trigger-specific T cells cured Jinx mice from active HLH without life-threatening side effects and protected Perforin-deficient mice from lethal HLH progression by reconstituting cytotoxicity. Cured mice were protected long-term from HLH relapses. A threshold frequency of transferred T cells with functional differentiation was identified as a predictive biomarker for long-term survival. This study is the first proof-of-concept for ATCT in active HLH.
Collapse
Affiliation(s)
- Kristoffer Weißert
- Institute for Immunodeficiency, Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Center for Chronic Immunodeficiency (CCI), Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Faculty of BiologyAlbert‐Ludwigs‐University of FreiburgFreiburgGermany
| | - Sandra Ammann
- Institute for Immunodeficiency, Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Center for Chronic Immunodeficiency (CCI), Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Tamara Kögl
- Center for Chronic Immunodeficiency (CCI), Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Institute for Immunology, Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Viviane Dettmer‐Monaco
- Center for Chronic Immunodeficiency (CCI), Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Institute for Transfusion Medicine and Gene Therapy, Medical CenterUniversity of FreiburgFreiburgGermany
| | - Christoph Schell
- Institute of Surgical Pathology, Medical CenterUniversity of FreiburgFreiburgGermany
| | - Toni Cathomen
- Center for Chronic Immunodeficiency (CCI), Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Institute for Transfusion Medicine and Gene Therapy, Medical CenterUniversity of FreiburgFreiburgGermany
| | - Stephan Ehl
- Institute for Immunodeficiency, Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Center for Chronic Immunodeficiency (CCI), Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Center for Integrative Biological Signalling StudiesAlbert‐Ludwigs‐University of FreiburgFreiburgGermany
| | - Peter Aichele
- Institute for Immunodeficiency, Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Center for Chronic Immunodeficiency (CCI), Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| |
Collapse
|
174
|
Du Y, Wang H, Yang Y, Zhang J, Huang Y, Fan S, Gu C, Shangguan L, Lin X. Extracellular Vesicle Mimetics: Preparation from Top-Down Approaches and Biological Functions. Adv Healthc Mater 2022; 11:e2200142. [PMID: 35899756 DOI: 10.1002/adhm.202200142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/15/2022] [Indexed: 01/27/2023]
Abstract
Extracellular vesicles (EVs) have attracted attention as delivery vehicles due to their structure, composition, and unique properties in regeneration and immunomodulation. However, difficulties during production and isolation processes of EVs limit their large-scale clinical applications. EV mimetics (EVMs), prepared via top-down strategies that improve the yield of nanoparticles while retaining biological properties similar to those of EVs have been used to address these limitations. Herein, the preparation of EVMs is reviewed and their characteristics in terms of structure, composition, targeting ability, cellular uptake mechanism, and immunogenicity, as well as their strengths, limitations, and future clinical application prospects as EV alternatives are summarized.
Collapse
Affiliation(s)
- Yuan Du
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China.,Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Hongyi Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China.,Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yang Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China.,Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jianfeng Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China
| | - Yue Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China.,Hangzhou OrigO Biotechnology Co. Ltd., Hangzhou, 311200, China
| | - Chenhui Gu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China.,Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.,Hangzhou OrigO Biotechnology Co. Ltd., Hangzhou, 311200, China
| | - Liqing Shangguan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China.,Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xianfeng Lin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China.,Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.,Hangzhou OrigO Biotechnology Co. Ltd., Hangzhou, 311200, China
| |
Collapse
|
175
|
Zhang Y, Zhuang Q, Wang F, Zhang C, Xu C, Gu A, Zhong WH, Hu Y, Zhong X. Co-expression IL-15 receptor alpha with IL-15 reduces toxicity via limiting IL-15 systemic exposure during CAR-T immunotherapy. J Transl Med 2022; 20:432. [PMID: 36167591 PMCID: PMC9516829 DOI: 10.1186/s12967-022-03626-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022] Open
Abstract
Background Chimeric antigen receptor (CAR)-T cell therapy is a powerful adoptive immunotherapy against both B-cell malignancies and some types of solid tumors. Interleukin (IL) -15 is an important immune stimulator that may provide ideal long-term persistent CAR-T cells. However, higher base line or peak serum IL-15 levels are also related to severe toxicity, such as cytokine release syndrome (CRS), graft-versus-host disease (GVHD), and neurotoxicity. Methods We successfully constructed CD19 specific armored CAR-T cells overexpressing IL-I5 and IL-15 receptor alpha (IL-15Ra). In vitro cell differentiation and viability were monitored by flow cytometry, and an in vivo xenograft mouse models was used to evaluate the anti-tumor efficiency and liver damage of CAR-T cells. Results CAR-T cells overexpressing IL-15 alone demonstrated enhanced viability, retarded exhaustion in vitro and superior tumor-inhibitory effects in vivo. However, these tumor-free mice had lower survival rates, with serious liver injuries, as a possible result of toxicity. As expected, CAR-T cells overexpressing IL-15 combined with IL-15Ra had reduced CD132 expression and released fewer cytokines (IFNγ, IL-2 and IL-15) in vitro, as well as had the tendency to improve mouse survival via repressing the growth of tumor cells and keeping livers healthier compared to CAR-IL-15 T cells. Conclusions These results indicated the importance of IL-15 in enhancing T cells persistence and IL-15Ra in reducing the adverse effects of IL-15, with superior tumor retardation during CAR-T therapy. This study paves the way for the rapid exploitation of IL-15 in adoptive cell therapy in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03626-x.
Collapse
Affiliation(s)
- Ying Zhang
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Haidian District, No. 10, Iron Medicine Road, Yang Fang Dian, Beijing, 100038, China
| | - Qinghui Zhuang
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Haidian District, No. 10, Iron Medicine Road, Yang Fang Dian, Beijing, 100038, China
| | - Fang Wang
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Haidian District, No. 10, Iron Medicine Road, Yang Fang Dian, Beijing, 100038, China
| | - Can Zhang
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Haidian District, No. 10, Iron Medicine Road, Yang Fang Dian, Beijing, 100038, China
| | - Chang Xu
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Haidian District, No. 10, Iron Medicine Road, Yang Fang Dian, Beijing, 100038, China
| | - Aiqin Gu
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Haidian District, No. 10, Iron Medicine Road, Yang Fang Dian, Beijing, 100038, China
| | | | - Yi Hu
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Haidian District, No. 10, Iron Medicine Road, Yang Fang Dian, Beijing, 100038, China
| | - Xiaosong Zhong
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Haidian District, No. 10, Iron Medicine Road, Yang Fang Dian, Beijing, 100038, China. .,Carriage Therapeutics for Affiliation, Beijing, China.
| |
Collapse
|
176
|
Therapeutic targets and biomarkers of tumor immunotherapy: response versus non-response. Signal Transduct Target Ther 2022; 7:331. [PMID: 36123348 PMCID: PMC9485144 DOI: 10.1038/s41392-022-01136-2] [Citation(s) in RCA: 223] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/25/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023] Open
Abstract
Cancers are highly complex diseases that are characterized by not only the overgrowth of malignant cells but also an altered immune response. The inhibition and reprogramming of the immune system play critical roles in tumor initiation and progression. Immunotherapy aims to reactivate antitumor immune cells and overcome the immune escape mechanisms of tumors. Represented by immune checkpoint blockade and adoptive cell transfer, tumor immunotherapy has seen tremendous success in the clinic, with the capability to induce long-term regression of some tumors that are refractory to all other treatments. Among them, immune checkpoint blocking therapy, represented by PD-1/PD-L1 inhibitors (nivolumab) and CTLA-4 inhibitors (ipilimumab), has shown encouraging therapeutic effects in the treatment of various malignant tumors, such as non-small cell lung cancer (NSCLC) and melanoma. In addition, with the advent of CAR-T, CAR-M and other novel immunotherapy methods, immunotherapy has entered a new era. At present, evidence indicates that the combination of multiple immunotherapy methods may be one way to improve the therapeutic effect. However, the overall clinical response rate of tumor immunotherapy still needs improvement, which warrants the development of novel therapeutic designs as well as the discovery of biomarkers that can guide the prescription of these agents. Learning from the past success and failure of both clinical and basic research is critical for the rational design of studies in the future. In this article, we describe the efforts to manipulate the immune system against cancer and discuss different targets and cell types that can be exploited to promote the antitumor immune response.
Collapse
|
177
|
Jin Y, Lorvik KB, Jin Y, Beck C, Sike A, Persiconi I, Kvaløy E, Saatcioglu F, Dunn C, Kyte JA. Development of STEAP1 targeting chimeric antigen receptor for adoptive cell therapy against cancer. Mol Ther Oncolytics 2022; 26:189-206. [PMID: 35860008 PMCID: PMC9278049 DOI: 10.1016/j.omto.2022.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 06/17/2022] [Indexed: 10/29/2022] Open
Abstract
Chimeric antigen receptors (CARs) that retarget T cells against CD19 show clinical efficacy against B cell malignancies. Here, we describe the development of a CAR against the six-transmembrane epithelial antigen of prostate-1 (STEAP1), which is expressed in ∼90% of prostate cancers, and subgroups of other malignancies. STEAP1 is an attractive target, as it is associated with tumor invasiveness and progression and only expressed at low levels in normal tissues, apart from the non-vital prostate gland. We identified the antibody coding sequences from a hybridoma and designed a CAR that is efficiently expressed in primary T cells. The T cells acquired the desired anti-STEAP1 specificity, with a polyfunctional response including production of multiple cytokines, proliferation, and the killing of cancer cells. The response was observed for both CD4+ and CD8+ T cells, and against all STEAP1+ target cell lines tested. We evaluated the in vivo CAR T activity in both subcutaneous and metastatic xenograft mouse models of prostate cancer. Here, the CAR T cells infiltrated tumors and significantly inhibited tumor growth and extended survival in a STEAP1-dependent manner. We conclude that the STEAP1 CAR exhibits potent in vitro and in vivo functionality and can be further developed toward potential clinical use.
Collapse
Affiliation(s)
- Yixin Jin
- Department of Cancer Immunology, Institute for Cancer Research, Radiumhospitalet, Oslo University Hospital, Mail Box 4950 Nydalen, 0424 Oslo, Norway
| | - Kristina Berg Lorvik
- Department of Cancer Immunology, Institute for Cancer Research, Radiumhospitalet, Oslo University Hospital, Mail Box 4950 Nydalen, 0424 Oslo, Norway
| | - Yang Jin
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Carole Beck
- Department of Cancer Immunology, Institute for Cancer Research, Radiumhospitalet, Oslo University Hospital, Mail Box 4950 Nydalen, 0424 Oslo, Norway
| | - Adam Sike
- Department of Cancer Immunology, Institute for Cancer Research, Radiumhospitalet, Oslo University Hospital, Mail Box 4950 Nydalen, 0424 Oslo, Norway
| | - Irene Persiconi
- Department of Cancer Immunology, Institute for Cancer Research, Radiumhospitalet, Oslo University Hospital, Mail Box 4950 Nydalen, 0424 Oslo, Norway
| | - Emilie Kvaløy
- Department of Cancer Immunology, Institute for Cancer Research, Radiumhospitalet, Oslo University Hospital, Mail Box 4950 Nydalen, 0424 Oslo, Norway
| | - Fahri Saatcioglu
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Claire Dunn
- Department of Cancer Immunology, Institute for Cancer Research, Radiumhospitalet, Oslo University Hospital, Mail Box 4950 Nydalen, 0424 Oslo, Norway
| | - Jon Amund Kyte
- Department of Cancer Immunology, Institute for Cancer Research, Radiumhospitalet, Oslo University Hospital, Mail Box 4950 Nydalen, 0424 Oslo, Norway.,Department of Clinical Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
178
|
Panda M, Kalita E, Singh S, Kumar K, Rao A, Prajapati VK. MiRNA-SARS-CoV-2 dialogue and prospective anti-COVID-19 therapies. Life Sci 2022; 305:120761. [PMID: 35787998 PMCID: PMC9249409 DOI: 10.1016/j.lfs.2022.120761] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 02/08/2023]
Abstract
COVID-19 is a highly transmissible disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), affects 226 countries and continents, and has resulted in >6.2 million deaths worldwide. Despite the efforts of all scientific institutions worldwide to identify potential therapeutics, no specific drug has been approved by the FDA to treat the COVID-19 patient. SARS-CoV-2 variants of concerns make the potential of publicly known therapeutics to respond to and detect disease onset highly improbable. The quest for universal therapeutics pointed to the ability of RNA-based molecules to shield and detect the adverse effects of the COVID-19 illness. One such candidate, miRNA (microRNA), works on regulating the differential expression of the target gene post-transcriptionally. The prime focus of this review is to report the critical miRNA molecule and their regular expression in patients with COVID-19 infection and associated comorbidities. Viral and host miRNAs control the etiology of COVID-19 infection throughout the life cycle and host inflammatory response, where host miRNAs are identified as a double-edged showing as a proviral and antiviral response. The review also covered the role of viral miRNAs in mediating host cell signaling expression during disease pathology. Studying molecular interactions between the host and the SARS-CoV-2 virus during COVID-19 pathogenesis offers the chance to use miRNA-based therapeutics to reduce the severity of the illness. By utilizing an appropriate delivery vehicle, these small non-coding RNA could be envisioned as a promising biomarker in designing a practical RNAi-based treatment approach of clinical significance.
Collapse
Affiliation(s)
- Mamta Panda
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Elora Kalita
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Satyendra Singh
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Ketan Kumar
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Abhishek Rao
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer 305817, Rajasthan, India.
| |
Collapse
|
179
|
Lian J, Liang Y, Zhang H, Lan M, Ye Z, Lin B, Qiu X, Zeng J. The role of polyamine metabolism in remodeling immune responses and blocking therapy within the tumor immune microenvironment. Front Immunol 2022; 13:912279. [PMID: 36119047 PMCID: PMC9479087 DOI: 10.3389/fimmu.2022.912279] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
The study of metabolism provides important information for understanding the biological basis of cancer cells and the defects of cancer treatment. Disorders of polyamine metabolism is a common metabolic change in cancer. With the deepening of understanding of polyamine metabolism, including molecular functions and changes in cancer, polyamine metabolism as a new anti-cancer strategy has become the focus of attention. There are many kinds of polyamine biosynthesis inhibitors and transport inhibitors, but not many drugs have been put into clinical application. Recent evidence shows that polyamine metabolism plays essential roles in remodeling the tumor immune microenvironment (TIME), particularly treatment of DFMO, an inhibitor of ODC, alters the immune cell population in the tumor microenvironment. Tumor immunosuppression is a major problem in cancer treatment. More and more studies have shown that the immunosuppressive effect of polyamines can help cancer cells to evade immune surveillance and promote tumor development and progression. Therefore, targeting polyamine metabolic pathways is expected to become a new avenue for immunotherapy for cancer.
Collapse
Affiliation(s)
- Jiachun Lian
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yanfang Liang
- Department of Pathology, Dongguan Hospital Affiliated to Jinan University, Binhaiwan Central Hospital of Dongguan, Dongguan, China
| | - Hailiang Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Minsheng Lan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Ziyu Ye
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Department of Pathology, Dongguan Hospital Affiliated to Jinan University, Binhaiwan Central Hospital of Dongguan, Dongguan, China
- Dongguan Metabolite Analysis Engineering Technology Center of Cells for Medical Use, Guangdong Xinghai Institute of Cell, Dongguan, China
| | - Bihua Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Key Laboratory of Medical Bioactive Molecular Research for Department of Education of Guangdong Province, Collaborative Innovation Center for Antitumor Active Substance Research and Development, Zhanjiang, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangdong Medical University, Zhanjiang, China
| | - Xianxiu Qiu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Key Laboratory of Medical Bioactive Molecular Research for Department of Education of Guangdong Province, Collaborative Innovation Center for Antitumor Active Substance Research and Development, Zhanjiang, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangdong Medical University, Zhanjiang, China
| | - Jincheng Zeng
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Dongguan Metabolite Analysis Engineering Technology Center of Cells for Medical Use, Guangdong Xinghai Institute of Cell, Dongguan, China
- Key Laboratory of Medical Bioactive Molecular Research for Department of Education of Guangdong Province, Collaborative Innovation Center for Antitumor Active Substance Research and Development, Zhanjiang, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
180
|
Zhou W, Yang J, Zhang Y, Hu X, Wang W. Current landscape of gene-editing technology in biomedicine: Applications, advantages, challenges, and perspectives. MedComm (Beijing) 2022; 3:e155. [PMID: 35845351 PMCID: PMC9283854 DOI: 10.1002/mco2.155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 02/05/2023] Open
Abstract
The expanding genome editing toolbox has revolutionized life science research ranging from the bench to the bedside. These "molecular scissors" have offered us unprecedented abilities to manipulate nucleic acid sequences precisely in living cells from diverse species. Continued advances in genome editing exponentially broaden our knowledge of human genetics, epigenetics, molecular biology, and pathology. Currently, gene editing-mediated therapies have led to impressive responses in patients with hematological diseases, including sickle cell disease and thalassemia. With the discovery of more efficient, precise and sophisticated gene-editing tools, more therapeutic gene-editing approaches will enter the clinic to treat various diseases, such as acquired immunodeficiency sydrome (AIDS), hematologic malignancies, and even severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. These initial successes have spurred the further innovation and development of gene-editing technology. In this review, we will introduce the architecture and mechanism of the current gene-editing tools, including clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated nuclease-based tools and other protein-based DNA targeting systems, and we summarize the meaningful applications of diverse technologies in preclinical studies, focusing on the establishment of disease models and diagnostic techniques. Finally, we provide a comprehensive overview of clinical information using gene-editing therapeutics for treating various human diseases and emphasize the opportunities and challenges.
Collapse
Affiliation(s)
- Weilin Zhou
- Department of BiotherapyyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduPeople's Republic of China
| | - Jinrong Yang
- Department of BiotherapyyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduPeople's Republic of China
- Department of HematologyHematology Research LaboratoryState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanP. R. China
| | - Yalan Zhang
- Department of BiotherapyyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduPeople's Republic of China
| | - Xiaoyi Hu
- Department of BiotherapyyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduPeople's Republic of China
- Department of Gynecology and ObstetricsDevelopment and Related Disease of Women and Children Key Laboratory of Sichuan ProvinceKey Laboratory of Birth Defects and Related Diseases of Women and ChildrenMinistry of EducationWest China Second HospitalSichuan UniversityChengduP. R. China
| | - Wei Wang
- Department of BiotherapyyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduPeople's Republic of China
| |
Collapse
|
181
|
Bucktrout SL, Banovich NE, Butterfield LH, Cimen-Bozkus C, Giles JR, Good Z, Goodman D, Jonsson VD, Lareau C, Marson A, Maurer DM, Munson PV, Stubbington M, Taylor S, Cutchin A. Advancing T cell-based cancer therapy with single-cell technologies. Nat Med 2022; 28:1761-1764. [PMID: 36127419 DOI: 10.1038/s41591-022-01986-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Nicholas E Banovich
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | | | - Cansu Cimen-Bozkus
- Parker Institute of Cancer Immunotherapy, San Francisco, CA, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Josephine R Giles
- Parker Institute of Cancer Immunotherapy, San Francisco, CA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zinaida Good
- Parker Institute of Cancer Immunotherapy, San Francisco, CA, USA
- Stanford Cancer Institute and Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Goodman
- Parker Institute of Cancer Immunotherapy, San Francisco, CA, USA
- Microbiology and Immunology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Vanessa D Jonsson
- Department of Applied Mathematics, University of California, Santa Cruz, Santa Cruz, CA, USA
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Caleb Lareau
- Parker Institute of Cancer Immunotherapy, San Francisco, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexander Marson
- Parker Institute of Cancer Immunotherapy, San Francisco, CA, USA
- Gladstone-UCSF Institute for Genomic Immunology, San Francisco, CA, USA
| | - Deena M Maurer
- Parker Institute of Cancer Immunotherapy, San Francisco, CA, USA
| | - Paul V Munson
- Parker Institute of Cancer Immunotherapy, San Francisco, CA, USA
| | | | | | | |
Collapse
|
182
|
Mao Z, Lin X, Wang P, Yan H. Iron oxide nanoparticles for biomedical applications: an updated patent review (2015-2021). Expert Opin Ther Pat 2022; 32:939-952. [PMID: 35929879 DOI: 10.1080/13543776.2022.2109413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Iron oxide nanoparticles (IONPs) hold the edges of great magnetic properties and fine nanoparticle characteristics, making them an attractive therapeutic agent. In the past seven years, more in-depth investigations were devoted to the intrinsic structure, magnetic properties, and biological effects of IONPs, expanding the range of their therapeutic application scenes. AREAS COVERED This review focuses on the development of IONPs for biomedical applications from the angle of the patent literature reported during the period 2015-2021. EXPERT OPINION While the magnetic properties of IONPs have been extensively explored, the precise control of IONP behavior through external magnetic fields remains a challenge. Further digging into the biological effects of IONPs will facilitate the development of IONP-based immune therapies. Long-term reliable safety evaluations are of necessity and significance to promote the process of clinical translation.
Collapse
Affiliation(s)
- Zeyuan Mao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, People's Republic of China
| | - Xin Lin
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, People's Republic of China
| | - Pengfei Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, People's Republic of China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, People's Republic of China
| |
Collapse
|
183
|
Sun H, Ai Y, Qi H, Guan L, Hu W, Huang H, Li Y, Wang Y, Liang Q. Pt/Ag‐PEG‐Ce6 Nanosystem with Enhanced Near‐Infrared Absorption and Peroxidase‐Like Activity for Synergistic Photodynamic/Photothermal Therapy. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hua Sun
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Beijing 100084 China
- Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology Tsinghua University Beijing 100084 China
| | - Yongjian Ai
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Beijing 100084 China
- Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology Tsinghua University Beijing 100084 China
| | - Huibo Qi
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Beijing 100084 China
- Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology Tsinghua University Beijing 100084 China
| | - Liandi Guan
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Beijing 100084 China
- Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology Tsinghua University Beijing 100084 China
| | - Wanting Hu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Beijing 100084 China
- Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology Tsinghua University Beijing 100084 China
| | - Hongye Huang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Beijing 100084 China
- Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology Tsinghua University Beijing 100084 China
| | - Yujie Li
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Beijing 100084 China
- Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology Tsinghua University Beijing 100084 China
| | - Yu Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Beijing 100084 China
- Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology Tsinghua University Beijing 100084 China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Beijing 100084 China
- Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology Tsinghua University Beijing 100084 China
| |
Collapse
|
184
|
Cancer immune therapy using engineered ‛tail-flipping' nanoliposomes targeting alternatively activated macrophages. Nat Commun 2022; 13:4548. [PMID: 35927238 PMCID: PMC9352736 DOI: 10.1038/s41467-022-32091-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/13/2022] [Indexed: 11/08/2022] Open
Abstract
Alternatively-activated, M2-like tumor-associated macrophages (TAM) strongly contribute to tumor growth, invasiveness and metastasis. Technologies to disable the pro-tumorigenic function of these TAMs are of high interest to immunotherapy research. Here we show that by designing engineered nanoliposomes bio-mimicking peroxidated phospholipids that are recognised and internalised by scavenger receptors, TAMs can be targeted. Incorporation of phospholipids possessing a terminal carboxylate group at the sn-2 position into nanoliposome bilayers drives their uptake by M2 macrophages with high specificity. Molecular dynamics simulation of the lipid bilayer predicts flipping of the sn-2 tail towards the aqueous phase, while molecular docking data indicates interaction of the tail with Scavenger Receptor Class B type 1 (SR-B1). In vivo, the engineered nanoliposomes are distributed specifically to M2-like macrophages and, upon delivery of the STAT6 inhibitor (AS1517499), zoledronic acid or muramyl tripeptide, these cells promote reduction of the premetastatic niche and/or tumor growth. Altogether, we demonstrate the efficiency and versatility of our engineered “tail-flipping” nanoliposomes in a pre-clinical model, which paves the way to their development as cancer immunotherapeutics in humans. Tumor-associated macrophages are mostly pro-tumorigenic, due to their re-programming by the tumor microenvironment. Here authors show that nanoliposomes, incorporating phospholipids with a flipping-tail chain, are engulfed specifically by intratumoral, alternatively activated macrophages, while delivering a cargo that converts these cells into anti-tumor macrophages.
Collapse
|
185
|
Qin Y, Lu F, Lyu K, Chang AE, Li Q. Emerging concepts regarding pro- and anti tumor properties of B cells in tumor immunity. Front Immunol 2022; 13:881427. [PMID: 35967441 PMCID: PMC9366002 DOI: 10.3389/fimmu.2022.881427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/07/2022] [Indexed: 12/26/2022] Open
Abstract
Controversial views regarding the roles of B cells in tumor immunity have existed for several decades. However, more recent studies have focused on its positive properties in antitumor immunity. Many studies have demonstrated a close association of the higher density of intratumoral B cells with favorable outcomes in cancer patients. B cells can interact with T cells as well as follicular dendritic cells within tertiary lymphoid structures, where they undergo a series of biological events, including clonal expansion, somatic hypermutation, class switching, and tumor-specific antibody production, which may trigger antitumor humoral responses. After activation, B cells can function as effector cells via direct tumor-killing, antigen-presenting activity, and production of tumor-specific antibodies. At the other extreme, B cells can obtain inhibitory functions by relevant stimuli, converting to regulatory B cells, which serve as an immunosuppressive arm to tumor immunity. Here we summarize our current understanding of the bipolar properties of B cells within the tumor immune microenvironment and propose potential B cell-based immunotherapeutic strategies, which may help promote cancer immunotherapy.
Collapse
Affiliation(s)
- You Qin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Furong Lu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Kexing Lyu
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Alfred E. Chang
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Qiao Li, ; Alfred E. Chang,
| | - Qiao Li
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Qiao Li, ; Alfred E. Chang,
| |
Collapse
|
186
|
Ding H, Chen Z, Kollipara PS, Liu Y, Kim Y, Huang S, Zheng Y. Programmable Multimodal Optothermal Manipulation of Synthetic Particles and Biological Cells. ACS NANO 2022; 16:10878-10889. [PMID: 35816157 PMCID: PMC9901196 DOI: 10.1021/acsnano.2c03111] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Optical manipulation of tiny objects has benefited many research areas ranging from physics to biology to micro/nanorobotics. However, limited manipulation modes, intense lasers with complex optics, and applicability to limited materials and geometries of objects restrict the broader uses of conventional optical tweezers. Herein, we develop an optothermal platform that enables the versatile manipulation of synthetic micro/nanoparticles and live cells using an ultralow-power laser beam and a simple optical setup. Five working modes (i.e., printing, tweezing, rotating, rolling, and shooting) have been achieved and can be switched on demand through computer programming. By incorporating a feedback control system into the platform, we realize programmable multimodal control of micro/nanoparticles, enabling autonomous micro/nanorobots in complex environments. Moreover, we demonstrate in situ three-dimensional single-cell surface characterizations through the multimodal optothermal manipulation of live cells. This programmable multimodal optothermal platform will contribute to diverse fundamental studies and applications in cellular biology, nanotechnology, robotics, and photonics.
Collapse
Affiliation(s)
- Hongru Ding
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhihan Chen
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Pavana Siddhartha Kollipara
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yaoran Liu
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Youngsun Kim
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Suichu Huang
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education and School of Mechatronics Engineering, Harbin Institute of Technology, 92 Xidazhijie St., Harbin 15001, China
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
187
|
Miwa H, Dimatteo R, de Rutte J, Ghosh R, Di Carlo D. Single-cell sorting based on secreted products for functionally defined cell therapies. MICROSYSTEMS & NANOENGINEERING 2022; 8:84. [PMID: 35874174 PMCID: PMC9303846 DOI: 10.1038/s41378-022-00422-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 05/13/2023]
Abstract
Cell therapies have emerged as a promising new class of "living" therapeutics over the last decade and have been particularly successful for treating hematological malignancies. Increasingly, cellular therapeutics are being developed with the aim of treating almost any disease, from solid tumors and autoimmune disorders to fibrosis, neurodegenerative disorders and even aging itself. However, their therapeutic potential has remained limited due to the fundamental differences in how molecular and cellular therapies function. While the structure of a molecular therapeutic is directly linked to biological function, cells with the same genetic blueprint can have vastly different functional properties (e.g., secretion, proliferation, cell killing, migration). Although there exists a vast array of analytical and preparative separation approaches for molecules, the functional differences among cells are exacerbated by a lack of functional potency-based sorting approaches. In this context, we describe the need for next-generation single-cell profiling microtechnologies that allow the direct evaluation and sorting of single cells based on functional properties, with a focus on secreted molecules, which are critical for the in vivo efficacy of current cell therapies. We first define three critical processes for single-cell secretion-based profiling technology: (1) partitioning individual cells into uniform compartments; (2) accumulating secretions and labeling via reporter molecules; and (3) measuring the signal associated with the reporter and, if sorting, triggering a sorting event based on these reporter signals. We summarize recent academic and commercial technologies for functional single-cell analysis in addition to sorting and industrial applications of these technologies. These approaches fall into three categories: microchamber, microfluidic droplet, and lab-on-a-particle technologies. Finally, we outline a number of unmet needs in terms of the discovery, design and manufacturing of cellular therapeutics and how the next generation of single-cell functional screening technologies could allow the realization of robust cellular therapeutics for all patients.
Collapse
Affiliation(s)
- Hiromi Miwa
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095 USA
| | - Robert Dimatteo
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA 90095 USA
| | - Joseph de Rutte
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095 USA
- Partillion Bioscience, Los Angeles, CA 90095 USA
| | - Rajesh Ghosh
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095 USA
| | - Dino Di Carlo
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095 USA
- Department of Mechanical and Aerospace Engineering, University of California - Los Angeles, Los Angeles, CA 90095 USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, CA 90095 USA
| |
Collapse
|
188
|
Steffin DHM, Muhsen IN, Hill LC, Ramos CA, Ahmed N, Hegde M, Wang T, Wu M, Gottschalk S, Whittle SB, Lulla PD, Mamonkin M, Omer B, Rouce RH, Heczey A, Metelitsa LS, Grilley BJ, Robertson C, Torrano V, Lapteva N, Gee AP, Rooney CM, Brenner MK, Heslop HE. Long-term follow-up for the development of subsequent malignancies in patients treated with genetically modified IECs. Blood 2022; 140:16-24. [PMID: 35325065 PMCID: PMC9346960 DOI: 10.1182/blood.2022015728] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/11/2022] [Indexed: 11/20/2022] Open
Abstract
Subsequent malignancies are well-documented complications in long-term follow-up of cancer patients. Recently, genetically modified immune effector (IE) cells have shown benefit in hematologic malignancies and are being evaluated in clinical trials for solid tumors. Although the short-term complications of IE cells are well described, there is limited literature summarizing long-term follow-up, including subsequent malignancies. We retrospectively reviewed data from 340 patients treated across 27 investigator-initiated pediatric and adult clinical trials at our center. All patients received IE cells genetically modified with γ-retroviral vectors to treat relapsed and/or refractory hematologic or solid malignancies. In a cumulative 1027 years of long-term follow-up, 13 patients (3.8%) developed another cancer with a total of 16 events (4 hematologic malignancies and 12 solid tumors). The 5-year cumulative incidence of a first subsequent malignancy in the recipients of genetically modified IE cells was 3.6% (95% confidence interval, 1.8% to 6.4%). For 11 of the 16 subsequent tumors, biopsies were available, and no sample was transgene positive by polymerase chain reaction. Replication-competent retrovirus testing of peripheral blood mononuclear cells was negative in the 13 patients with subsequent malignancies tested. Rates of subsequent malignancy were low and comparable to standard chemotherapy. These results suggest that the administration of IE cells genetically modified with γ retroviral vectors does not increase the risk for subsequent malignancy.
Collapse
Affiliation(s)
- David H M Steffin
- Center for Cell and Gene Therapy, Baylor College of Medicine-Texas Children's Hospital, Houston, TX
| | | | - LaQuisa C Hill
- Center for Cell and Gene Therapy, Baylor College of Medicine-Texas Children's Hospital, Houston, TX
| | - Carlos A Ramos
- Center for Cell and Gene Therapy, Baylor College of Medicine-Texas Children's Hospital, Houston, TX
| | - Nabil Ahmed
- Center for Cell and Gene Therapy, Baylor College of Medicine-Texas Children's Hospital, Houston, TX
| | - Meenakshi Hegde
- Center for Cell and Gene Therapy, Baylor College of Medicine-Texas Children's Hospital, Houston, TX
| | - Tao Wang
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX; and
| | - Mengfen Wu
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX; and
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN
| | - Sarah B Whittle
- Center for Cell and Gene Therapy, Baylor College of Medicine-Texas Children's Hospital, Houston, TX
| | - Premal D Lulla
- Center for Cell and Gene Therapy, Baylor College of Medicine-Texas Children's Hospital, Houston, TX
| | - Maksim Mamonkin
- Center for Cell and Gene Therapy, Baylor College of Medicine-Texas Children's Hospital, Houston, TX
| | - Bilal Omer
- Center for Cell and Gene Therapy, Baylor College of Medicine-Texas Children's Hospital, Houston, TX
| | - Rayne H Rouce
- Center for Cell and Gene Therapy, Baylor College of Medicine-Texas Children's Hospital, Houston, TX
| | - Andras Heczey
- Center for Cell and Gene Therapy, Baylor College of Medicine-Texas Children's Hospital, Houston, TX
| | - Leonid S Metelitsa
- Center for Cell and Gene Therapy, Baylor College of Medicine-Texas Children's Hospital, Houston, TX
| | - Bambi J Grilley
- Center for Cell and Gene Therapy, Baylor College of Medicine-Texas Children's Hospital, Houston, TX
| | - Catherine Robertson
- Center for Cell and Gene Therapy, Baylor College of Medicine-Texas Children's Hospital, Houston, TX
| | - Virginia Torrano
- Center for Cell and Gene Therapy, Baylor College of Medicine-Texas Children's Hospital, Houston, TX
| | - Natalia Lapteva
- Center for Cell and Gene Therapy, Baylor College of Medicine-Texas Children's Hospital, Houston, TX
| | - Adrian P Gee
- Center for Cell and Gene Therapy, Baylor College of Medicine-Texas Children's Hospital, Houston, TX
| | - Cliona M Rooney
- Center for Cell and Gene Therapy, Baylor College of Medicine-Texas Children's Hospital, Houston, TX
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine-Texas Children's Hospital, Houston, TX
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine-Texas Children's Hospital, Houston, TX
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX; and
| |
Collapse
|
189
|
Li Q, Zhang X, Ke R. Spatial Transcriptomics for Tumor Heterogeneity Analysis. Front Genet 2022; 13:906158. [PMID: 35899203 PMCID: PMC9309247 DOI: 10.3389/fgene.2022.906158] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022] Open
Abstract
The molecular heterogeneity of cancer is one of the major causes of drug resistance that leads to treatment failure. Thus, better understanding the heterogeneity of cancer will contribute to more precise diagnosis and improved patient outcomes. Although single-cell sequencing has become an important tool for investigating tumor heterogeneity recently, it lacks the spatial information of analyzed cells. In this regard, spatial transcriptomics holds great promise in deciphering the complex heterogeneity of cancer by providing localization-indexed gene expression information. This study reviews the applications of spatial transcriptomics in the study of tumor heterogeneity, discovery of novel spatial-dependent mechanisms, tumor immune microenvironment, and matrix microenvironment, as well as the pathological classification and prognosis of cancer. Finally, future challenges and opportunities for spatial transcriptomics technology’s applications in cancer are also discussed.
Collapse
|
190
|
Aboelella NS, Brandle C, Okoko O, Gazi MY, Ding ZC, Xu H, Gorman G, Bollag R, Davila ML, Bryan LJ, Munn DH, Piazza GA, Zhou G. Indomethacin-induced oxidative stress enhances death receptor 5 signaling and sensitizes tumor cells to adoptive T-cell therapy. J Immunother Cancer 2022; 10:e004938. [PMID: 35882449 PMCID: PMC9330341 DOI: 10.1136/jitc-2022-004938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Adoptive cell therapy (ACT) using genetically modified T cells has evolved into a promising treatment option for patients with cancer. However, even for the best-studied and clinically validated CD19-targeted chimeric antigen receptor (CAR) T-cell therapy, many patients face the challenge of lack of response or occurrence of relapse. There is increasing need to improve the efficacy of ACT so that durable, curative outcomes can be achieved in a broad patient population. METHODS Here, we investigated the impact of indomethacin (indo), a non-steroidal anti-inflammatory drug (NSAID), on the efficacy of ACT in multiple preclinical models. Mice with established B-cell lymphoma received various combinations of preconditioning chemotherapy, infusion of suboptimal dose of tumor-reactive T cells, and indo administration. Donor T cells used in the ACT models included CD4+ T cells expressing a tumor-specific T cell receptor (TCR) and T cells engineered to express CD19CAR. Mice were monitored for tumor growth and survival. The effects of indo on donor T cell phenotype and function were evaluated. The molecular mechanisms by which indo may influence the outcome of ACT were investigated. RESULTS ACT coupled with indo administration led to improved tumor growth control and prolonged mouse survival. Indo did not affect the activation status and tumor infiltration of the donor T cells. Moreover, the beneficial effect of indo in ACT did not rely on its inhibitory effect on the immunosuppressive cyclooxygenase 2 (COX2)/prostaglandin E2 (PGE2) axis. Instead, indo-induced oxidative stress boosted the expression of death receptor 5 (DR5) in tumor cells, rendering them susceptible to donor T cells expressing TNF-related apoptosis-inducing ligand (TRAIL). Furthermore, the ACT-potentiating effect of indo was diminished against DR5-deficient tumors, but was amplified by donor T cells engineered to overexpress TRAIL. CONCLUSION Our results demonstrate that the pro-oxidative property of indo can be exploited to enhance death receptor signaling in cancer cells, providing rationale for combining indo with genetically modified T cells to intensify tumor cell killing through the TRAIL-DR5 axis. These findings implicate indo administration, and potentially similar use of other NSAIDs, as a readily applicable and cost-effective approach to augment the efficacy of ACT.
Collapse
Affiliation(s)
- Nada S Aboelella
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Caitlin Brandle
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Ogacheko Okoko
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Md Yeashin Gazi
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Zhi-Chun Ding
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Hongyan Xu
- Division of Biostatistics & Data Science, Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Gregory Gorman
- McWhorter School of Pharmacy, Samford University, Birmingham, Alabama, USA
| | - Roni Bollag
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Marco L Davila
- Blood and Marrow Transplant & Cellular Immunotherapy Department, H Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Locke J Bryan
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - David H Munn
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
- Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Gary A Piazza
- Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA
| | - Gang Zhou
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
191
|
Nguyen PH, Le AH, Pek JSQ, Pham TT, Jayasinghe MK, Do DV, Phung CD, Le MT. Extracellular vesicles and lipoproteins - Smart messengers of blood cells in the circulation. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e49. [PMID: 38938581 PMCID: PMC11080875 DOI: 10.1002/jex2.49] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/12/2022] [Accepted: 06/19/2022] [Indexed: 06/29/2024]
Abstract
Blood cell-derived extracellular vesicles (BCEVs) and lipoproteins are the major circulating nanoparticles in blood that play an important role in intercellular communication. They have attracted significant interest for clinical applications, given their endogenous characteristics which make them stable, biocompatible, well tolerated, and capable of permeating biological barriers efficiently. In this review, we describe the basic characteristics of BCEVs and lipoproteins and summarize their implications in both physiological and pathological processes. We also outline well accepted workflows for the isolation and characterization of these circulating nanoparticles. Importantly, we highlight the latest progress and challenges associated with the use of circulating nanoparticles as diagnostic biomarkers and therapeutic interventions in multiple diseases. We spotlight novel engineering approaches and designs to facilitate the development of these nanoparticles by enhancing their stability, targeting capability, and delivery efficiency. Therefore, the present work provides a comprehensive overview of composition, biogenesis, functions, and clinical translation of circulating nanoparticles from the bench to the bedside.
Collapse
Affiliation(s)
- Phuong H.D. Nguyen
- Department of Pharmacology and Institute for Digital MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Anh Hong Le
- Department of Pharmacology and Institute for Digital MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Jonetta Shi Qi Pek
- Department of Pharmacology and Institute for Digital MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Thach Tuan Pham
- Department of Pharmacology and Institute for Digital MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Migara Kavishka Jayasinghe
- Department of Pharmacology and Institute for Digital MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Immunology ProgrammeCancer Programme and Nanomedicine Translational ProgrammeYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of SurgeryYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Dang Vinh Do
- Department of Pharmacology and Institute for Digital MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Cao Dai Phung
- Department of Pharmacology and Institute for Digital MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Minh T.N. Le
- Department of Pharmacology and Institute for Digital MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Immunology ProgrammeCancer Programme and Nanomedicine Translational ProgrammeYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of SurgeryYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| |
Collapse
|
192
|
Zhang Y, Liu Z, Wei W, Li Y. TCR engineered T cells for solid tumor immunotherapy. Exp Hematol Oncol 2022; 11:38. [PMID: 35725570 PMCID: PMC9210724 DOI: 10.1186/s40164-022-00291-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022] Open
Abstract
T cell immunotherapy remains an attractive approach for cancer immunotherapy. T cell immunotherapy mainly employs chimeric antigen receptor (CAR)- and T cell receptor (TCR)-engineered T cells. CAR-T cell therapy has been an essential breakthrough in treating hematological malignancies. TCR-T cells can recognize antigens expressed both on cell surfaces and in intracellular compartments. Although TCR-T cells have not been approved for clinical application, a number of clinical trials have been performed, particularly for solid tumors. In this article, we summarized current TCR-T cell advances and their potential advantages for solid tumor immunotherapy.
Collapse
Affiliation(s)
- Yikai Zhang
- Guangzhou Municipality Tianhe Nuoya Bio-engineering Co. Ltd, Guangzhou, 510663, China.,Guangdong Cord blood bank, Guangzhou, 510663, China.,Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, 601 Huang Pu Da Dao Xi, Guangzhou, 510632, China
| | - Zhipeng Liu
- Guangzhou Municipality Tianhe Nuoya Bio-engineering Co. Ltd, Guangzhou, 510663, China.,Guangdong Cord blood bank, Guangzhou, 510663, China
| | - Wei Wei
- Guangzhou Municipality Tianhe Nuoya Bio-engineering Co. Ltd, Guangzhou, 510663, China. .,Guangdong Cord blood bank, Guangzhou, 510663, China.
| | - Yangqiu Li
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, China. .,Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, 601 Huang Pu Da Dao Xi, Guangzhou, 510632, China.
| |
Collapse
|
193
|
Yu G, Wang W, He X, Xu J, Xu R, Wan T, Wu Y. Synergistic Therapeutic Effects of Low Dose Decitabine and NY-ESO-1 Specific TCR-T Cells for the Colorectal Cancer With Microsatellite Stability. Front Oncol 2022; 12:895103. [PMID: 35774131 PMCID: PMC9239344 DOI: 10.3389/fonc.2022.895103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/17/2022] [Indexed: 12/26/2022] Open
Abstract
Patients of colorectal cancer (CRC) with microsatellite stability (MSS) show poor clinical response and little beneficial result from the immune-checkpoint inhibitors, due to the ‘cold’ tumor microenvironment. Meanwhile, decitabine can drive the ‘cold’ microenvironment towards ‘hot’ in multiple ways, such as upregulating the tumor associated antigen (TAA) and human leukocyte antigen (HLA) molecular. NY-ESO-1, one of the most important TAAs, can be observably induced in tumors by low dose decitabine, and present itself as ideal targets for antigen specific T cell receptor engineered T (TCR-T) cells. We innovatively used a synergistic tactic, combining decitabine and NY-ESO-1 specific TCR-T cells, for fighting the MSS CRC. Firstly, we confirmed the lysing effect of the NY-ESO-1 TCR-T cells on the NY-ESO-1+ and HLA-A2+ cells in vitro and in vivo. In A375 tumor-bearing mice, the results showed that NY-ESO-1 TCR-T cell therapy could inhibit A375 tumor growth and prolonged the survival time. Furthermore, the synergistic effect of decitabine and NY-ESO-1 TCR-T cells was shown to induce an even higher percentage of tumor cells being lysed in vitro than other control groups, and more potent tumor inhibition and longer survival time were observed in vivo. The innovative synergistic therapeutic strategy of decitabine and TCR-T cells for the CRC with MSS may be also effective in the treatment of other epithelial malignancies. Decitabine may likewise be adopted in combination with other cellular immunotherapies.
Collapse
Affiliation(s)
| | | | | | | | | | - Tao Wan
- *Correspondence: Tao Wan, ; Yanfeng Wu,
| | | |
Collapse
|
194
|
Xu S, Ye C, Chen R, Li Q, Ruan J. The Landscape and Clinical Application of the Tumor Microenvironment in Gastroenteropancreatic Neuroendocrine Neoplasms. Cancers (Basel) 2022; 14:cancers14122911. [PMID: 35740577 PMCID: PMC9221445 DOI: 10.3390/cancers14122911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 02/08/2023] Open
Abstract
Simple Summary The tumor microenvironment (TME) plays a role in promoting tumor progression. Elucidating the relationship between the TME and tumor cells will benefit current therapies. Therefore, this review summarizes the most recent relationship between the TME and tumor characteristics, discusses the differences in the TME at various sites along the digestive tract, and compares the TMEs of neuroendocrine tumors and neuroendocrine carcinomas. Microbial ecological changes in the TME were reviewed. The clinical application of the TME was summarized from bench to bedside. The TME can be used as a tumor drug target for diagnostic value, prognosis prediction, and efficacy evaluation, further revealing the potential of immune checkpoints combined with antiangiogenic drugs. The clinical application prospects of adoptive cell therapy and oncolytic viruses were described. The potential therapeutic approaches and strategies for gastrointestinal neuroendocrine neoplasms are considered. Abstract Gastroenteropancreatic neuroendocrine neoplasms feature high heterogeneity. Neuroendocrine tumor cells are closely associated with the tumor microenvironment. Tumor-infiltrating immune cells are mutually educated by each other and by tumor cells. Immune cells have dual protumorigenic and antitumorigenic effects. The immune environment is conducive to the invasion and metastasis of the tumor; in turn, tumor cells can change the immune environment. These cells also form cytokines, immune checkpoint systems, and tertiary lymphoid structures to participate in the process of mutual adaptation. Additionally, the fibroblasts, vascular structure, and microbiota exhibit interactions with tumor cells. From bench to bedside, clinical practice related to the tumor microenvironment is also regarded as promising. Targeting immune components and angiogenic regulatory molecules has been shown to be effective. The clinical efficacy of immune checkpoint inhibitors, adoptive cell therapy, and oncolytic viruses remains to be further discussed in clinical trials. Moreover, combination therapy is feasible for advanced high-grade tumors. The regulation of the tumor microenvironment based on multiple omics results can suggest innovative therapeutic strategies to prevent tumors from succeeding in immune escape and to support antitumoral effects.
Collapse
Affiliation(s)
- Shuaishuai Xu
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (S.X.); (C.Y.); (R.C.); (Q.L.)
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou 310000, China
| | - Chanqi Ye
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (S.X.); (C.Y.); (R.C.); (Q.L.)
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou 310000, China
| | - Ruyin Chen
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (S.X.); (C.Y.); (R.C.); (Q.L.)
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou 310000, China
| | - Qiong Li
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (S.X.); (C.Y.); (R.C.); (Q.L.)
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou 310000, China
| | - Jian Ruan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (S.X.); (C.Y.); (R.C.); (Q.L.)
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou 310000, China
- Correspondence:
| |
Collapse
|
195
|
Sanmamed MF, Berraondo P, Rodriguez-Ruiz ME, Melero I. Charting roadmaps towards novel and safe synergistic immunotherapy combinations. NATURE CANCER 2022; 3:665-680. [PMID: 35764745 DOI: 10.1038/s43018-022-00401-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Checkpoint inhibitor-based cancer immunotherapy is often combined in the clinic with other immunotherapy strategies, targeted therapies, chemotherapy or standard-of-care treatments to achieve superior therapeutic efficacy. The large number of immunotherapy combinations that are currently undergoing clinical testing necessitate the establishment of faithful criteria to prioritize optimal combinations with evidence of synergy, to determine their safety and optimal sequence of administration and to identify biomarkers of therapy resistance and response. In this review, we focus on recent developments in immunotherapy combinations and reflect on how combinations should be optimized to maximize the impact of immunotherapy in clinical oncology.
Collapse
Affiliation(s)
- Miguel F Sanmamed
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Departments of Oncology and Immunology, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
| | - Maria E Rodriguez-Ruiz
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Departments of Oncology and Immunology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.
- Departments of Oncology and Immunology, Clínica Universidad de Navarra, Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain.
| |
Collapse
|
196
|
Abstract
With the outstanding achievement of chimeric antigen receptor (CAR)-T cell therapy in the clinic, cell-based medicines have attracted considerable attention for biomedical applications and thus generated encouraging progress. As the basic construction unit of organisms, cells harbor low immunogenicity, desirable compatibility, and a strong capability of crossing various biological barriers. However, there is still a long way to go to fix significant bottlenecks for their clinical translation, such as facile preparation, strict stability requirements, scale-up manufacturing, off-target toxicity, and affordability. The rapid development of biotechnology and engineering approaches in materials sciences has provided an ideal platform to assist cell-based therapeutics for wide application in disease treatments by overcoming these issues. Herein, we survey the most recent advances of various cells as bioactive ingredients and outline the roles of biomaterials in developing cell-based therapeutics. Besides, a perspective of cell therapies is offered with a particular focus on biomaterial-involved development of cell-based biopharmaceuticals.
Collapse
Affiliation(s)
- Yu Chen
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA. .,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Samira Pal
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA. .,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
197
|
Tatar G, Alçin G, Sengul Samanci N, Erol Fenercioglu Ö, Beyhan E, Cermik TF. Diagnostic impact of 18F-FDG PET/CT imaging on the detection of immune-related adverse events in patients treated with immunotherapy. Clin Transl Oncol 2022; 24:1903-1913. [PMID: 35594002 DOI: 10.1007/s12094-022-02840-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/11/2022] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Immunotherapy is an effective treatment method for cancer cells with humoral and cellular immune mechanisms of action but triggers an inflammatory response and disrupts standard protective immune tolerance. Early detection of immune-related adverse events (irAEs) on PET/CT is crucial for patient management and subsequent therapy decisions. In this study, we aimed to evaluate the impact of 18F-FDG PET/CT on detecting of irAEs in patients receiving immunotherapy. PATIENTS AND METHODS Forty-six patients with advanced RCC (n: 32), malign melanoma (n: 9), lung cancer (n: 4), and laryngeal carcinoma (n: 1), who underwent 18F-FDG PET/CT imaging for response assessment after immunotherapy, were enrolled in the study. Newly detected findings associated with irAEs on posttreatment PET/CT images were compared with the pretreatment PET/CT, both qualitatively and semi-quantitatively. RESULTS Twenty-eight (61%) patients developed irAEs as observed on PET/CT. Enteritis/colitis was the most frequent irAE visualized on PET/CT with 13 patients (28.2%), followed by gastritis (17.3%), thyroiditis (13%), and myositis/arthritis (13%). Hepatitis (6.5%), pneumonitis (6.5%), sarcoid-like reaction (4.3%), and hypophysitis (4.3%) were observed to a lesser extent. The median time between the appearance of irAEs on PET/CT and the initiation of immunotherapy was 4.3 months. There were no significant differences in age, sex, and treatment response status of patients with and without irAEs. CONCLUSION 18F-FDG PET/CT plays a fundamental role in cancer immunotherapy with the potential to show significant irAEs both in the diagnosis and in follow-up of irAEs. IrAEs were present on PET/CT images of more than half of the patients who received immunotherapy in our study.
Collapse
Affiliation(s)
- Gamze Tatar
- Department of Nuclear Medicine, Istanbul Bagcılar Training and Research Hospital, University of Health Sciences, 34200, Bagcılar, Istanbul, Turkey.
| | - Göksel Alçin
- Department of Nuclear Medicine, Istanbul Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Nilay Sengul Samanci
- Division of Medical Oncology, Istanbul Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Özge Erol Fenercioglu
- Department of Nuclear Medicine, Istanbul Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Ediz Beyhan
- Department of Nuclear Medicine, Istanbul Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Tevfik Fikret Cermik
- Department of Nuclear Medicine, Istanbul Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
198
|
Advances in Chimeric Antigen Receptor (CAR) T-Cell Therapies for the Treatment of Primary Brain Tumors. Antibodies (Basel) 2022; 11:antib11020031. [PMID: 35645204 PMCID: PMC9149956 DOI: 10.3390/antib11020031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/19/2022] Open
Abstract
Immunotherapy has revolutionized the care of cancer patients. A diverse set of strategies to overcome cancer immunosuppression and enhance the tumor-directed immune response are in clinical use, but have not achieved transformative benefits for brain tumor patients. Adoptive cell therapies, which employ a patient’s own immune cells to generate directed anti-tumor activity, are emerging technologies that hold promise to improve the treatment of primary brain tumors in children and adults. Here, we review recent advances in chimeric antigen receptor (CAR) T-cell therapies for the treatment of aggressive primary brain tumors, including glioblastoma and diffuse midline glioma, H3 K27M-mutant. We highlight current approaches, discuss encouraging investigational data, and describe key challenges in the development and implementation of these types of therapies in the neuro-oncology setting.
Collapse
|
199
|
Drumheller B, Gebre K, Lockhart B, Margolskee E, Obstfeld A, Paessler M, Pillai V. Haematology laboratory parameters to assess efficacy of CD19-, CD22-, CD33-, and CD123-directed chimeric antigen receptor T-cell therapy in haematological malignancies. Int J Lab Hematol 2022; 44:750-758. [PMID: 35419923 DOI: 10.1111/ijlh.13850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/01/2022] [Accepted: 03/27/2022] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Chimeric antigen receptor (CAR) T cell products are available to treat relapsed/refractory B-lymphoblastic leukaemia/lymphoma (B-ALL), diffuse large B-cell lymphoma, mantle-cell lymphoma, and myeloma. CAR products vary by their target epitope and constituent molecules. Hence, there are no common laboratory assays to assess CAR T cell expansion in the clinical setting. We investigated the utility of common haematology laboratory parameters to measure CAR T cell expansion and response. METHODS Archived CellaVision images, absolute lymphocyte counts, and Sysmex CPD parameters spanning 1 month after CD19-CAR, UCAR19, CD22-CAR, CD33-CAR, and UCAR123 therapy were compared against donor lymphocyte infused control patients. Additionally, CellaVision images gathered during acute EBV infection were analysed. RESULTS CellaVision images revealed a distinct sequence of three lymphocyte morphologies, common among CD19-CAR, CD22-CAR and UCAR19. This lymphocyte sequence was notably absent in CAR T cell non-responders and stem-cell transplantation controls, but shared some features seen during acute EBV infection. CD19-CAR engraftment kinetics monitored by quantitative PCR show an expansion and persistence phase and mirror CD19-CAR ALC kinetics. We show other novel CAR T cell therapies (UCAR19, CD22-CAR, CD33-CAR and UCAR123) display similar ALC expansion in responders and diminished ALC expansion in non-responders. Furthermore, the CPD parameter LY_WY fluorescence increased within the first week after CD19-CAR infusion, preceding the peak absolute lymphocyte count (ALC) by 3.7 days. CONCLUSION Autologous and allogeneic CAR T cell therapy produce unique changes in common haematology laboratory parameters and could be a useful surrogate to follow CAR T-cell expansion after infusion.
Collapse
Affiliation(s)
- Bradley Drumheller
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kirubel Gebre
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Brian Lockhart
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Elizabeth Margolskee
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Amrom Obstfeld
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Michele Paessler
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Vinodh Pillai
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
200
|
Tian Y, Xie D, Yang L. Engineering strategies to enhance oncolytic viruses in cancer immunotherapy. Signal Transduct Target Ther 2022; 7:117. [PMID: 35387984 PMCID: PMC8987060 DOI: 10.1038/s41392-022-00951-x] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
Oncolytic viruses (OVs) are emerging as potentially useful platforms in treatment methods for patients with tumors. They preferentially target and kill tumor cells, leaving healthy cells unharmed. In addition to direct oncolysis, the essential and attractive aspect of oncolytic virotherapy is based on the intrinsic induction of both innate and adaptive immune responses. To further augment this efficacious response, OVs have been genetically engineered to express immune regulators that enhance or restore antitumor immunity. Recently, combinations of OVs with other immunotherapies, such as immune checkpoint inhibitors (ICIs), chimeric antigen receptors (CARs), antigen-specific T-cell receptors (TCRs) and autologous tumor-infiltrating lymphocytes (TILs), have led to promising progress in cancer treatment. This review summarizes the intrinsic mechanisms of OVs, describes the optimization strategies for using armed OVs to enhance the effects of antitumor immunity and highlights rational combinations of OVs with other immunotherapies in recent preclinical and clinical studies.
Collapse
Affiliation(s)
- Yaomei Tian
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No. 17, Section 3, South Renmin Road, 610041, Chengdu, Sichuan, People's Republic of China
- College of Bioengineering, Sichuan University of Science & Engineering, No. 519, Huixing Road, 643000, Zigong, Sichuan, People's Republic of China
| | - Daoyuan Xie
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No. 17, Section 3, South Renmin Road, 610041, Chengdu, Sichuan, People's Republic of China
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No. 17, Section 3, South Renmin Road, 610041, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|