151
|
C/EBPα creates elite cells for iPSC reprogramming by upregulating Klf4 and increasing the levels of Lsd1 and Brd4. Nat Cell Biol 2016; 18:371-81. [PMID: 26974661 DOI: 10.1038/ncb3326] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 02/08/2016] [Indexed: 12/13/2022]
Abstract
Reprogramming somatic cells into induced pluripotent stem cells (iPSCs) is typically inefficient and has been explained by elite-cell and stochastic models. We recently reported that B cells exposed to a pulse of C/EBPα (Bα' cells) behave as elite cells, in that they can be rapidly and efficiently reprogrammed into iPSCs by the Yamanaka factors OSKM. Here we show that C/EBPα post-transcriptionally increases the abundance of several hundred proteins, including Lsd1, Hdac1, Brd4, Med1 and Cdk9, components of chromatin-modifying complexes present at super-enhancers. Lsd1 was found to be required for B cell gene silencing and Brd4 for the activation of the pluripotency program. C/EBPα also promotes chromatin accessibility in pluripotent cells and upregulates Klf4 by binding to two haematopoietic enhancers. Bα' cells share many properties with granulocyte/macrophage progenitors, naturally occurring elite cells that are obligate targets for leukaemic transformation, whose formation strictly requires C/EBPα.
Collapse
|
152
|
Goupille O, Penglong T, Kadri Z, Granger-Locatelli M, Fucharoen S, Maouche-Chrétien L, Prost S, Leboulch P, Chrétien S. Inhibition of the acetyl lysine-binding pocket of bromodomain and extraterminal domain proteins interferes with adipogenesis. Biochem Biophys Res Commun 2016; 472:624-30. [PMID: 26972250 DOI: 10.1016/j.bbrc.2016.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 03/06/2016] [Indexed: 11/26/2022]
Abstract
The bromodomain and extraterminal (BET) domain family proteins are epigenetic modulators involved in the reading of acetylated lysine residues. The first BET protein inhibitor to be identified, (+)-JQ1, a thienotriazolo-1, 4-diazapine, binds selectively to the acetyl lysine-binding pocket of BET proteins. We evaluated the impact on adipogenesis of this druggable targeting of chromatin epigenetic readers, by investigating the physiological consequences of epigenetic modifications through targeting proteins binding to chromatin. JQ1 significantly inhibited the differentiation of 3T3-L1 preadipocytes into white and brown adipocytes by down-regulating the expression of genes involved in adipogenesis, particularly those encoding the peroxisome proliferator-activated receptor (PPAR-γ), the CCAAT/enhancer-binding protein (C/EBPα) and, STAT5A and B. The expression of a constitutively activated STAT5B mutant did not prevent inhibition by JQ1. Thus, the association of BET/STAT5 is required for adipogenesis but STAT5 transcription activity is not the only target of JQ1. Treatment with JQ1 did not lead to the conversion of white adipose tissue into brown adipose tissue (BAT). BET protein inhibition thus interferes with generation of adipose tissue from progenitors, confirming the importance of the connections between epigenetic mechanisms and specific adipogenic transcription factors.
Collapse
Affiliation(s)
- Olivier Goupille
- CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007, France
| | - Tipparat Penglong
- CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007, France; Thalassemia Research Center, Mahidol University, Thailand
| | - Zahra Kadri
- CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007, France
| | - Marine Granger-Locatelli
- CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007, France
| | | | - Leila Maouche-Chrétien
- CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007, France; INSERM, Paris, France
| | - Stéphane Prost
- CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007, France
| | - Philippe Leboulch
- CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007, France; Thalassemia Research Center, Mahidol University, Thailand
| | - Stany Chrétien
- CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007, France; INSERM, Paris, France.
| |
Collapse
|
153
|
The acetyllysine reader BRD3R promotes human nuclear reprogramming and regulates mitosis. Nat Commun 2016; 7:10869. [PMID: 26947130 PMCID: PMC4786677 DOI: 10.1038/ncomms10869] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 01/28/2016] [Indexed: 12/22/2022] Open
Abstract
It is well known that both recipient cells and donor nuclei demonstrate a mitotic advantage as observed in the traditional reprogramming with somatic cell nuclear transfer (SCNT). However, it is not known whether a specific mitotic factor plays a critical role in reprogramming. Here we identify an isoform of human bromodomain-containing 3 (BRD3), BRD3R (BRD3 with Reprogramming activity), as a reprogramming factor. BRD3R positively regulates mitosis during reprogramming, upregulates a large set of mitotic genes at early stages of reprogramming, and associates with mitotic chromatin. Interestingly, a set of the mitotic genes upregulated by BRD3R constitutes a pluripotent molecular signature. The two BRD3 isoforms display differential binding to acetylated histones. Our results suggest a molecular interpretation for the mitotic advantage in reprogramming and show that mitosis may be a driving force of reprogramming. The reprogramming of fibroblasts to pluripotent stem cells has been well documented but there is interest in identifying additional factors involved. Here, the authors perform a screen of human kinases and show that the bromodomain protein, BRD3R, can promote reprogramming and suggest a role for this factor in regulating mitosis.
Collapse
|
154
|
Histone H4 acetylation and the epigenetic reader Brd4 are critical regulators of pluripotency in embryonic stem cells. BMC Genomics 2016; 17:95. [PMID: 26847871 PMCID: PMC4740988 DOI: 10.1186/s12864-016-2414-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/26/2016] [Indexed: 12/14/2022] Open
Abstract
Background Pluripotent cells can be differentiated into many different cell types in vitro. Successful differentiation is guided in large part by epigenetic reprogramming and regulation of critical gene expression patterns. Recent genome-wide studies have identified the distribution of different histone-post-translational modifications (PTMs) in various conditions and during cellular differentiation. However, our understanding of the abundance of histone PTMs and their regulatory mechanisms still remain unknown. Results Here, we present a quantitative and comprehensive study of the abundance levels of histone PTMs during the differentiation of mouse embryonic stem cells (ESCs) using mass spectrometry (MS). We observed dynamic changes of histone PTMs including increased H3K9 methylation levels in agreement with previously reported results. More importantly, we found a global decrease of multiply acetylated histone H4 peptides. Brd4 targets acetylated H4 with a strong affinity to multiply modified H4 acetylation sites. We observed that the protein levels of Brd4 decreased upon differentiation together with global histone H4 acetylation. Inhibition of Brd4:histone H4 interaction by the BET domain inhibitor (+)-JQ1 in ESCs results in enhanced differentiation to the endodermal lineage, by disrupting the protein abundance dynamics. Genome-wide ChIP-seq mapping showed that Brd4 and H4 acetylation are co-occupied in the genome, upstream of core pluripotency genes such as Oct4 and Nanog in ESCs and lineage-specific genes in embryoid bodies (EBs). Conclusions Together, our data demonstrate the fundamental role of Brd4 in monitoring cell differentiation through its interaction with acetylated histone marks and disruption of Brd4 may cause aberrant differentiation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2414-y) contains supplementary material, which is available to authorized users.
Collapse
|
155
|
H2A.Z.1 Monoubiquitylation Antagonizes BRD2 to Maintain Poised Chromatin in ESCs. Cell Rep 2016; 14:1142-1155. [PMID: 26804911 DOI: 10.1016/j.celrep.2015.12.100] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 10/16/2015] [Accepted: 12/22/2015] [Indexed: 12/13/2022] Open
Abstract
Histone variant H2A.Z occupies the promoters of active and poised, bivalent genes in embryonic stem cells (ESCs) to regulate developmental programs, yet how it contributes to these contrasting states is poorly understood. Here, we investigate the function of H2A.Z.1 monoubiquitylation (H2A.Z.1ub) by mutation of the PRC1 target residues (H2A.Z.1(K3R3)). We show that H2A.Z.1(K3R3) is properly incorporated at target promoters in murine ESCs (mESCs), but loss of monoubiquitylation leads to de-repression of bivalent genes, loss of Polycomb binding, and faulty lineage commitment. Using quantitative proteomics, we find that tandem bromodomain proteins, including the BET family member BRD2, are enriched in H2A.Z.1 chromatin. We further show that BRD2 is gained at de-repressed promoters in H2A.Z.1(K3R3) mESCs, whereas BRD2 inhibition restores gene silencing at these sites. Together, our study reveals an antagonistic relationship between H2A.Z.1ub and BRD2 to regulate the transcriptional balance at bivalent genes to enable proper execution of developmental programs.
Collapse
|
156
|
Schulz D, Mugnier MR, Paulsen EM, Kim HS, Chung CWW, Tough DF, Rioja I, Prinjha RK, Papavasiliou FN, Debler EW. Bromodomain Proteins Contribute to Maintenance of Bloodstream Form Stage Identity in the African Trypanosome. PLoS Biol 2015; 13:e1002316. [PMID: 26646171 PMCID: PMC4672894 DOI: 10.1371/journal.pbio.1002316] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 10/30/2015] [Indexed: 01/01/2023] Open
Abstract
Trypanosoma brucei, the causative agent of African sleeping sickness, is transmitted to its mammalian host by the tsetse. In the fly, the parasite's surface is covered with invariant procyclin, while in the mammal it resides extracellularly in its bloodstream form (BF) and is densely covered with highly immunogenic Variant Surface Glycoprotein (VSG). In the BF, the parasite varies this highly immunogenic surface VSG using a repertoire of ~2500 distinct VSG genes. Recent reports in mammalian systems point to a role for histone acetyl-lysine recognizing bromodomain proteins in the maintenance of stem cell fate, leading us to hypothesize that bromodomain proteins may maintain the BF cell fate in trypanosomes. Using small-molecule inhibitors and genetic mutants for individual bromodomain proteins, we performed RNA-seq experiments that revealed changes in the transcriptome similar to those seen in cells differentiating from the BF to the insect stage. This was recapitulated at the protein level by the appearance of insect-stage proteins on the cell surface. Furthermore, bromodomain inhibition disrupts two major BF-specific immune evasion mechanisms that trypanosomes harness to evade mammalian host antibody responses. First, monoallelic expression of the antigenically varied VSG is disrupted. Second, rapid internalization of antibodies bound to VSG on the surface of the trypanosome is blocked. Thus, our studies reveal a role for trypanosome bromodomain proteins in maintaining bloodstream stage identity and immune evasion. Importantly, bromodomain inhibition leads to a decrease in virulence in a mouse model of infection, establishing these proteins as potential therapeutic drug targets for trypanosomiasis. Our 1.25Å resolution crystal structure of a trypanosome bromodomain in complex with I-BET151 reveals a novel binding mode of the inhibitor, which serves as a promising starting point for rational drug design.
Collapse
Affiliation(s)
- Danae Schulz
- Laboratory of Lymphocyte Biology, The Rockefeller University, New York, New York, United States of America
| | - Monica R. Mugnier
- Laboratory of Lymphocyte Biology, The Rockefeller University, New York, New York, United States of America
| | - Eda-Margaret Paulsen
- Laboratory of Cell Biology, The Rockefeller University, New York, New York, United States of America
| | - Hee-Sook Kim
- Laboratory of Lymphocyte Biology, The Rockefeller University, New York, New York, United States of America
| | - Chun-wa W. Chung
- Computational and Structural Chemistry, GlaxoSmithKline R&D, Medicines Research Centre, Stevenage, United Kingdom
| | - David F. Tough
- Epinova DPU, Immuno-Inflammation Therapy Area, GlaxoSmithKline, Medicines Research Centre, Stevenage, United Kingdom
| | - Inmaculada Rioja
- Epinova DPU, Immuno-Inflammation Therapy Area, GlaxoSmithKline, Medicines Research Centre, Stevenage, United Kingdom
| | - Rab K. Prinjha
- Epinova DPU, Immuno-Inflammation Therapy Area, GlaxoSmithKline, Medicines Research Centre, Stevenage, United Kingdom
| | - F. Nina Papavasiliou
- Laboratory of Lymphocyte Biology, The Rockefeller University, New York, New York, United States of America
- * E-mail:
| | - Erik W. Debler
- Laboratory of Cell Biology, The Rockefeller University, New York, New York, United States of America
| |
Collapse
|
157
|
Ounzain S, Pedrazzini T. Super-enhancer lncs to cardiovascular development and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1953-60. [PMID: 26620798 DOI: 10.1016/j.bbamcr.2015.11.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 01/12/2023]
Abstract
Cardiac development, function and pathological remodelling in response to stress depend on the dynamic control of tissue specific gene expression by distant acting transcriptional enhancers. Recently, super-enhancers (SEs), also known as stretch or large enhancer clusters, are emerging as sentinel regulators within the gene regulatory networks that underpin cellular functions. It is becoming increasingly evident that long noncoding RNAs (lncRNAs) associated with these sequences play fundamental roles for enhancer activity and the regulation of the gene programs hardwired by them. Here, we review this emerging landscape, focusing on the roles of SEs and their derived lncRNAs in cardiovascular development and disease. We propose that exploration of this genomic landscape could provide novel therapeutic targets and approaches for the amelioration of cardiovascular disease. Ultimately we envisage a future of ncRNA therapeutics targeting the SE landscape to alleviate cardiovascular disease. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Samir Ounzain
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Switzerland.
| | - Thierry Pedrazzini
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Switzerland.
| |
Collapse
|
158
|
Wei Y, Zhang S, Shang S, Zhang B, Li S, Wang X, Wang F, Su J, Wu Q, Liu H, Zhang Y. SEA: a super-enhancer archive. Nucleic Acids Res 2015; 44:D172-9. [PMID: 26578594 PMCID: PMC4702879 DOI: 10.1093/nar/gkv1243] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/30/2015] [Indexed: 11/13/2022] Open
Abstract
Super-enhancers are large clusters of transcriptional enhancers regarded as having essential roles in driving the expression of genes that control cell identity during development and tumorigenesis. The construction of a genome-wide super-enhancer database is urgently needed to better understand super-enhancer-directed gene expression regulation for a given biology process. Here, we present a specifically designed web-accessible database, Super-Enhancer Archive (SEA, http://sea.edbc.org). SEA focuses on integrating super-enhancers in multiple species and annotating their potential roles in the regulation of cell identity gene expression. The current release of SEA incorporates 83 996 super-enhancers computationally or experimentally identified in 134 cell types/tissues/diseases, including human (75 439, three of which were experimentally identified), mouse (5879, five of which were experimentally identified), Drosophila melanogaster (1774) and Caenorhabditis elegans (904). To facilitate data extraction, SEA supports multiple search options, including species, genome location, gene name, cell type/tissue and super-enhancer name. The response provides detailed (epi)genetic information, incorporating cell type specificity, nearby genes, transcriptional factor binding sites, CRISPR/Cas9 target sites, evolutionary conservation, SNPs, H3K27ac, DNA methylation, gene expression and TF ChIP-seq data. Moreover, analytical tools and a genome browser were developed for users to explore super-enhancers and their roles in defining cell identity and disease processes in depth.
Collapse
Affiliation(s)
- Yanjun Wei
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Shumei Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Shipeng Shang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Bin Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Song Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xinyu Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Fang Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Jianzhong Su
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Qiong Wu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Hongbo Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
159
|
Affiliation(s)
- Guangtao Zhang
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai , 1425 Madison Avenue, New York, New York 10029, United States
| | - Steven G Smith
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai , 1425 Madison Avenue, New York, New York 10029, United States
| | - Ming-Ming Zhou
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai , 1425 Madison Avenue, New York, New York 10029, United States
| |
Collapse
|
160
|
Alekseyenko AA, Walsh EM, Wang X, Grayson AR, Hsi PT, Kharchenko PV, Kuroda MI, French CA. The oncogenic BRD4-NUT chromatin regulator drives aberrant transcription within large topological domains. Genes Dev 2015. [PMID: 26220994 PMCID: PMC4526735 DOI: 10.1101/gad.267583.115] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
NUT midline carcinoma (NMC), a subtype of squamous cell cancer, is one of the most aggressive human solid malignancies known. NMC is driven by the creation of a translocation oncoprotein, BRD4-NUT, which blocks differentiation and drives growth of NMC cells. BRD4-NUT forms distinctive nuclear foci in patient tumors, which we found correlate with ∼100 unprecedented, hyperacetylated expanses of chromatin that reach up to 2 Mb in size. These "megadomains" appear to be the result of aberrant, feed-forward loops of acetylation and binding of acetylated histones that drive transcription of underlying DNA in NMC patient cells and naïve cells induced to express BRD4-NUT. Megadomain locations are typically cell lineage-specific; however, the cMYC and TP63 regions are targeted in all NMCs tested and play functional roles in tumor growth. Megadomains appear to originate from select pre-existing enhancers that progressively broaden but are ultimately delimited by topologically associating domain (TAD) boundaries. Therefore, our findings establish a basis for understanding the powerful role played by large-scale chromatin organization in normal and aberrant lineage-specific gene transcription.
Collapse
Affiliation(s)
- Artyom A Alekseyenko
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Erica M Walsh
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Xin Wang
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Adlai R Grayson
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Peter T Hsi
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Peter V Kharchenko
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA; Hematology/Oncology Program, Children's Hospital, Boston, Massachusetts 02115, USA; Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| | - Mitzi I Kuroda
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Christopher A French
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
161
|
Wang B, Zhang M, Takayama T, Shi X, Roenneburg DA, Kent KC, Guo LW. BET Bromodomain Blockade Mitigates Intimal Hyperplasia in Rat Carotid Arteries. EBioMedicine 2015; 2:1650-61. [PMID: 26870791 PMCID: PMC4740308 DOI: 10.1016/j.ebiom.2015.09.045] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 01/13/2023] Open
Abstract
Background Intimal hyperplasia is a common cause of many vasculopathies. There has been a recent surge of interest in the bromo and extra-terminal (BET) epigenetic “readers” including BRD4 since the serendipitous discovery of JQ1(+), an inhibitor specific to the seemingly undruggable BET bromodomains. The role of the BET family in the development of intimal hyperplasia is not known. Methods We investigated the effect of BET inhibition on intimal hyperplasia using a rat balloon angioplasty model. Results While BRD4 was dramatically up-regulated in the rat and human hyperplastic neointima, blocking BET bromodomains with JQ1(+) diminished neointima in rats. Knocking down BRD4 with siRNA, or treatment with JQ1(+) but not the inactive enantiomer JQ1(−), abrogated platelet-derived growth factor (PDGF-BB)-stimulated proliferation and migration of primary rat aortic smooth muscle cells. This inhibitory effect of JQ1(+) was reproducible in primary human aortic smooth muscle cells. In human aortic endothelial cells, JQ1(+) prevented cytokine-induced apoptosis and impairment of cell migration. Furthermore, either BRD4 siRNA or JQ1(+) but not JQ1(−), substantially down-regulated PDGF receptor-α which, in JQ1(+)-treated arteries versus vehicle control, was also reduced. Conclusions Blocking BET bromodomains mitigates neointima formation, suggesting an epigenetic approach for effective prevention of intimal hyperplasia and associated vascular diseases. Blocking BET epigenetic readers with JQ1(+) mitigates neointimal proliferation in balloon-injured rat carotid arteries. JQ1(+) or BRD4 knockdown inhibits vascular smooth muscle cell proliferation, migration, and PDGF receptor expression. JQ1(+) prevents inflammatory dysfunction of vascular endothelial cells.
The transition of vascular smooth muscle cells to a migratory proliferative state produces a new thick layer of tissue on the inner vessel wall obstructing blood flow. Epigenetic control of this transition is poorly understood. We find that inhibiting a family of epigenetic regulators called “readers” halts this disease-prone process. Our study may open fresh opportunities for epigenetic interventions to prevent smooth muscle cell instability and associated occlusive vascular diseases that pose a great threat to public health.
Collapse
Affiliation(s)
- Bowen Wang
- Department of Surgery, Wisconsin Institute for Medical Research, Madison, WI 53705, USA
| | - Mengxue Zhang
- Department of Surgery, Wisconsin Institute for Medical Research, Madison, WI 53705, USA
| | - Toshio Takayama
- Department of Surgery, Wisconsin Institute for Medical Research, Madison, WI 53705, USA; University of Wisconsin Hospital and Clinics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Xudong Shi
- Department of Surgery, Wisconsin Institute for Medical Research, Madison, WI 53705, USA
| | - Drew Alan Roenneburg
- Department of Surgery, Wisconsin Institute for Medical Research, Madison, WI 53705, USA
| | - K Craig Kent
- Department of Surgery, Wisconsin Institute for Medical Research, Madison, WI 53705, USA; University of Wisconsin Hospital and Clinics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Lian-Wang Guo
- Department of Surgery, Wisconsin Institute for Medical Research, Madison, WI 53705, USA
| |
Collapse
|
162
|
Gaillochet C, Lohmann JU. The never-ending story: from pluripotency to plant developmental plasticity. Development 2015; 142:2237-49. [PMID: 26130755 PMCID: PMC4510588 DOI: 10.1242/dev.117614] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Plants are sessile organisms, some of which can live for over a thousand years. Unlike most animals, plants employ a post-embryonic mode of development driven by the continuous activity of pluripotent stem cells. Consequently, plants are able to initiate new organs over extended periods of time, and many species can readily replace lost body structures by de novo organogenesis. Classical studies have also shown that plant tissues have a remarkable capacity to undergo de-differentiation and proliferation in vitro, highlighting the fact that plant cell fate is highly plastic. This suggests that the mechanisms regulating fate transitions must be continuously active in most plant cells and that the control of cellular pluripotency lies at the core of diverse developmental programs. Here, we review how pluripotency is established in plant stem cell systems, how it is maintained during development and growth and re-initiated during regeneration, and how these mechanisms eventually contribute to the amazing developmental plasticity of plants.
Collapse
Affiliation(s)
- Christophe Gaillochet
- Department of Stem Cell Biology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, 69120, Germany
| | - Jan U Lohmann
- Department of Stem Cell Biology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, 69120, Germany
| |
Collapse
|
163
|
Gingold JA, Coakley ES, Su J, Lee DF, Lau Z, Zhou H, Felsenfeld DP, Schaniel C, Lemischka IR. Distribution Analyzer, a methodology for identifying and clustering outlier conditions from single-cell distributions, and its application to a Nanog reporter RNAi screen. BMC Bioinformatics 2015. [PMID: 26198214 PMCID: PMC4511455 DOI: 10.1186/s12859-015-0636-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Chemical or small interfering (si) RNA screens measure the effects of many independent experimental conditions, each applied to a population of cells (e.g., all of the cells in a well). High-content screens permit a readout (e.g., fluorescence, luminescence, cell morphology) from each cell in the population. Most analysis approaches compare the average effect on each population, precluding identification of outliers that affect the distribution of the reporter in the population but not its average. Other approaches only measure changes to the distribution with a single parameter, precluding accurate distinction and clustering of interesting outlier distributions. Results We describe a methodology to identify outlier conditions by considering the cell-level measurements from each condition as a sample of an underlying distribution. With appropriate selection of a distance metric, all effects can be embedded in a fixed-dimensionality Euclidean basis, facilitating identification and clustering of biologically interesting outliers. We demonstrate that measurement of distances with the Hellinger distance metric offers substantial computational efficiencies over alternative metrics. We validate this methodology using an RNA interference (RNAi) screen in mouse embryonic stem cells (ESC) with a Nanog reporter. The methodology clusters effects of multiple control siRNAs into their true identities better than conventional approaches describing the median cell fluorescence or the commonly used Kolmogorov-Smirnov distance between the observed fluorescence distribution and the null distribution. It identifies outlier genes with effects on the reporter distribution that would have been missed by other methods. Among them, siRNA targeting Chek1 leads to a wider Nanog reporter fluorescence distribution. Similarly, siRNA targeting Med14 or Med27 leads to a narrower Nanog reporter fluorescence distribution. We confirm the roles of these three genes in regulating pluripotency by mRNA expression and alkaline phosphatase staining using independent short hairpin (sh) RNAs. Conclusions Using our methodology, we describe each experimental condition by a probability distribution. Measuring distances between probability distributions permits a multivariate rather than univariate readout. Clustering points derived from these distances allows us to obtain greater biological insight than methods based solely on single parameters. We find several outliers from a mouse ESC RNAi screen that we confirm to be pluripotency regulators. Many of these outliers would have been missed by other analysis methods. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0636-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julian A Gingold
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Ed S Coakley
- Program in Applied Mathematics, Yale University, New Haven, CT, 06511, USA.
| | - Jie Su
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Dung-Fang Lee
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Zerlina Lau
- Integrated Screening Core, Experimental Therapeutics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Hongwei Zhou
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Dan P Felsenfeld
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Integrated Screening Core, Experimental Therapeutics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Christoph Schaniel
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Ihor R Lemischka
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
164
|
Wang CY, Filippakopoulos P. Beating the odds: BETs in disease. Trends Biochem Sci 2015; 40:468-79. [PMID: 26145250 DOI: 10.1016/j.tibs.2015.06.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/01/2015] [Accepted: 06/04/2015] [Indexed: 01/16/2023]
Abstract
Bromodomains (BRDs) are evolutionarily conserved protein interaction modules that specifically recognise acetyl-lysine on histones and other proteins, facilitating roles in regulating gene transcription. BRD-containing proteins bound to chromatin loci such as enhancers are often deregulated in disease leading to aberrant expression of proinflammatory cytokines and growth-promoting genes. Recent developments targeting the bromo and extraterminal (BET) subset of BRD proteins demonstrated remarkable efficacy in murine models providing a compelling rationale for drug development and translation to the clinic. Here we summarise recent advances in our understanding of the roles of BETs in regulating gene transcription in normal and diseased tissue as well as the current status of their clinical translation.
Collapse
Affiliation(s)
- Chen-Yi Wang
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Panagis Filippakopoulos
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK; Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK.
| |
Collapse
|
165
|
Wu T, Donohoe ME. The converging roles of BRD4 and gene transcription in pluripotency and oncogenesis. RNA & DISEASE 2015; 2:e894. [PMID: 26405693 PMCID: PMC4578175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023] Open
Affiliation(s)
- Tao Wu
- Burke Medical Research Institute, White Plains, NY 10605, U.S.A, Department of Neuroscience Brain Mind Research Institute, Department of Cell & Development, Weill Cornell Medical College, New York, NY 10065, U.S.A
| | - Mary E Donohoe
- Burke Medical Research Institute, White Plains, NY 10605, U.S.A, Department of Neuroscience Brain Mind Research Institute, Department of Cell & Development, Weill Cornell Medical College, New York, NY 10065, U.S.A
| |
Collapse
|
166
|
Bishop JL, Davies A, Ketola K, Zoubeidi A. Regulation of tumor cell plasticity by the androgen receptor in prostate cancer. Endocr Relat Cancer 2015; 22:R165-82. [PMID: 25934687 DOI: 10.1530/erc-15-0137] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/27/2015] [Indexed: 12/19/2022]
Abstract
Prostate cancer (PCa) has become the most common form of cancer in men in the developed world, and it ranks second in cancer-related deaths. Men that succumb to PCa have a disease that is resistant to hormonal therapies that suppress androgen receptor (AR) signaling, which plays a central role in tumor development and progression. Although AR continues to be a clinically relevant therapeutic target in PCa, selection pressures imposed by androgen-deprivation therapies promote the emergence of heterogeneous cell populations within tumors that dictate the severity of disease. This cellular plasticity, which is induced by androgen deprivation, is the focus of this review. More specifically, we address the emergence of cancer stem-like cells, epithelial-mesenchymal or myeloid plasticity, and neuroendocrine transdifferentiation as well as evidence that demonstrates how each is regulated by the AR. Importantly, because all of these cell phenotypes are associated with aggressive PCa, we examine novel therapeutic approaches for targeting therapy-induced cellular plasticity as a way of preventing PCa progression.
Collapse
Affiliation(s)
- Jennifer L Bishop
- The Vancouver Prostate Centre2660 Oak Street, Vancouver, British Columbia, Canada V6H-3Z6Department of Urologic SciencesUniversity of British Columbia, Vancouver, British Columbia, Canada The Vancouver Prostate Centre2660 Oak Street, Vancouver, British Columbia, Canada V6H-3Z6Department of Urologic SciencesUniversity of British Columbia, Vancouver, British Columbia, Canada
| | - Alastair Davies
- The Vancouver Prostate Centre2660 Oak Street, Vancouver, British Columbia, Canada V6H-3Z6Department of Urologic SciencesUniversity of British Columbia, Vancouver, British Columbia, Canada The Vancouver Prostate Centre2660 Oak Street, Vancouver, British Columbia, Canada V6H-3Z6Department of Urologic SciencesUniversity of British Columbia, Vancouver, British Columbia, Canada
| | - Kirsi Ketola
- The Vancouver Prostate Centre2660 Oak Street, Vancouver, British Columbia, Canada V6H-3Z6Department of Urologic SciencesUniversity of British Columbia, Vancouver, British Columbia, Canada The Vancouver Prostate Centre2660 Oak Street, Vancouver, British Columbia, Canada V6H-3Z6Department of Urologic SciencesUniversity of British Columbia, Vancouver, British Columbia, Canada
| | - Amina Zoubeidi
- The Vancouver Prostate Centre2660 Oak Street, Vancouver, British Columbia, Canada V6H-3Z6Department of Urologic SciencesUniversity of British Columbia, Vancouver, British Columbia, Canada The Vancouver Prostate Centre2660 Oak Street, Vancouver, British Columbia, Canada V6H-3Z6Department of Urologic SciencesUniversity of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
167
|
Sengupta D, Kannan A, Kern M, Moreno MA, Vural E, Stack B, Suen JY, Tackett AJ, Gao L. Disruption of BRD4 at H3K27Ac-enriched enhancer region correlates with decreased c-Myc expression in Merkel cell carcinoma. Epigenetics 2015; 10:460-6. [PMID: 25941994 PMCID: PMC4622756 DOI: 10.1080/15592294.2015.1034416] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Pathologic c-Myc expression is frequently detected in human cancers, including Merkel cell carcinoma (MCC), an aggressive skin cancer with no cure for metastatic disease. Bromodomain protein 4 (BRD4) regulates gene transcription by binding to acetylated histone H3 lysine 27 (H3K27Ac) on the chromatin. Super-enhancers of transcription are identified by enrichment of H3K27Ac. BET inhibitor JQ1 disrupts BRD4 association with super-enhancers, downregulates proto-oncogenes, such as c-Myc, and displays antitumor activity in preclinical animal models of human cancers. Here we show that an enhancer proximal to the c-Myc promoter is enriched in H3K27Ac and associated with high occupancy of BRD4, and coincides with a putative c-Myc super-enhancer in MCC cells. This observation is mirrored in tumors from MCC patients. Importantly, depleted BRD4 occupancy at the putative c-Myc super-enhancer region by JQ1 correlates with decreased c-Myc expression. Thus, our study provides initial evidence that super-enhancers regulate c-Myc expression in MCC.
Collapse
Affiliation(s)
- Deepanwita Sengupta
- a Department of Biochemistry and Molecular Biology; University of Arkansas for Medical Sciences ; Little Rock , AR , USA
| | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Wu T, Pinto HB, Kamikawa YF, Donohoe ME. The BET family member BRD4 interacts with OCT4 and regulates pluripotency gene expression. Stem Cell Reports 2015; 4:390-403. [PMID: 25684227 PMCID: PMC4375790 DOI: 10.1016/j.stemcr.2015.01.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 01/09/2015] [Accepted: 01/12/2015] [Indexed: 12/16/2022] Open
Abstract
Embryonic stem cell (ESC) pluripotency is controlled by defined transcription factors. During cellular differentiation, ESCs undergo a global epigenetic reprogramming. Female ESCs exemplify this process as one of the two X-chromosomes is globally silenced during X chromosome inactivation (XCI) to balance the X-linked gene disparity with XY males. The pluripotent factor OCT4 regulates XCI by triggering X chromosome pairing and counting. OCT4 directly binds Xite and Tsix, which encode two long noncoding RNAs (lncRNAs) that suppress the silencer lncRNA, Xist. To control its activity as a master regulator in pluripotency and XCI, OCT4 must have chromatin protein partners. Here we show that BRD4, a member of the BET protein subfamily, interacts with OCT4. BRD4 occupies the regulatory regions of pluripotent genes and the lncRNAs of XCI. BET inhibition or depletion of BRD4 reduces the expression of many pluripotent genes and shifts cellular fate showing that BRD4 is pivotal for transcription in ESCs. OCT4 interacts with BRD4 in embryonic stem cells (ESCs) BRD4 occupies the regulatory regions of pluripotent genes BRD4 occupies and controls the lncRNAs in X chromosome inactivation BET inhibition or depletion of BRD4 in ESCs shifts cell fate away from pluripotency
Collapse
Affiliation(s)
- Tao Wu
- Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, USA; Departments of Neuroscience and Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Hugo Borges Pinto
- Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, USA; Departments of Neuroscience and Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Yasunao F Kamikawa
- Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, USA; Departments of Neuroscience and Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Mary E Donohoe
- Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, USA; Departments of Neuroscience and Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|