151
|
Diabetes mellitus in an adolescent girl with intellectual disability caused by novel single base pair duplication in the PTRH2 gene: Expanding the clinical spectrum of IMNEPD. Brain Dev 2021; 43:314-319. [PMID: 33092935 DOI: 10.1016/j.braindev.2020.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/13/2020] [Accepted: 09/22/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND Infantile-onset multisystem neurologic, endocrine, and pancreatic disease (IMNEPD) is an extremely rare autosomal recessive disorder with variable expressivity, caused by biallelic mutations in the PTRH2 gene. Core features are global developmental delay or isolated speech delay, intellectual disability, sensorineural hearing loss, ataxia, and pancreatic insufficiency (both exocrine and endocrine). Additional features may include postnatal microcephaly, peripheral neuropathy, facial dysmorphism, and cerebellar atrophy. In literature, there are only a few anecdotal case reports and none of the previous cases presented with diabetic ketoacidosis. METHODS We are reporting a 12-year old adolescent girl with mild intellectual disability who presented with fever, pain abdomen for 2 days, and fast breathing for one day. RESULTS Her random blood sugar was 472 mg/dl and arterial blood gas revealed high anion gap metabolic acidosis. Urine examination showed ketonuria. On further evaluation, she was found to have demyelinating sensorimotor polyneuropathy and sensorineural hearing loss. Neuroimaging and other ancillary investigations were normal. Whole exome sequencing revealed a novel homozygous single base pair duplication in exon 1 of the PTRH2 gene (c.127dupA, p.Ser43LysfsTer11), confirming the diagnosis of IMNEPD. CONCLUSIONS Apart from describing a novel single base pair duplication causing protein truncation in the PTRH2 gene for the first time, our case also expanded the clinical spectrum of IMNEPD, as this is the first case with seemingly pure neurodevelopmental phenotype, who later developed diabetes mellitus, without any exocrine pancreatic abnormality. IMNEPD should be considered in children or adolescents with global developmental delay or intellectual disability when they develop diabetes mellitus.
Collapse
|
152
|
Rong T, Yao R, Deng Y, Lin Q, Wang G, Wang J, Jiang F, Jiang Y. Case Report: A Relatively Mild Phenotype Produced by Novel Mutations in the SEPSECS Gene. Front Pediatr 2021; 9:805575. [PMID: 35155316 PMCID: PMC8826681 DOI: 10.3389/fped.2021.805575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/20/2021] [Indexed: 12/05/2022] Open
Abstract
Mutations in the human O-phosphoseryl-tRNA:selenocysteinyl-tRNA synthase gene (SEPSECS) are associated with progressive cerebello-cerebral atrophy (PCCA), also known as pontocerebellar hypoplasia type 2D (PCH2D). Early-onset profound developmental delay, progressive microcephaly, and hypotonia that develops toward severe spasticity have been previously reported with SEPSECS mutations. Herein we report a case with severe global developmental delay, myogenic changes in the lower limbs, and insomnia, but without progressive microcephaly and brain atrophy during infancy and toddlerhood in a child harboring the SEPSECS missense variant c.194A>G (p. Asn65Ser) and a novel splicing mutation c.701+1G>A. With these findings we communicate the first Chinese SEPSECS mutant case, and our report indicates that SEPSECS mutations can give rise to a milder phenotype.
Collapse
Affiliation(s)
- Tingyu Rong
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China
| | - Ruen Yao
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yujiao Deng
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China
| | - Qingmin Lin
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China
| | - Guanghai Wang
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Jiang
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China
| | - Yanrui Jiang
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China
| |
Collapse
|
153
|
Wu J, Lu G. Multiple functions of TBCK protein in neurodevelopment disorders and tumors. Oncol Lett 2021; 21:17. [PMID: 33240423 PMCID: PMC7681195 DOI: 10.3892/ol.2020.12278] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
TBC1 domain containing kinase (TBCK) protein is composed of three conserved domains, including N-terminal Serine/Threonine kinase domain, central TBC domain and C-terminal rhodanese homology domain (RHOD). A total of 9 different transcripts (classified as long and short TBCK) generated by alternative splicing have been reported in different cell lines. Exogenous expression of long TBCK has been identified to function as a suppressor of cell growth in certain cell types. On the contrary, TBCK has also been reported to serve a tumor-promoting role in other cell lines, indicating that TBCK might function differentially, depending on the context in different cellular environments. Furthermore, deleterious homozygous or compound heterozygous mutations identified by whole-exome sequencing in the TBCK gene could ablate the function of TBCK, further impacting the mTOR signaling pathway and leading to neurogenetic disorders, such as hypotonia, global developmental delay, facial dysmorphic features and brain abnormalities. However, as a poorly explored protein, there are a lot of studies associated with the functions of TBCK that need to be performed in the future. The present review summarizes data regarding the structural features and potential roles of TBCK in developmental and neurological diseases and tumorigenesis. Future prospects of TBCK research lie in revealing numerous biological functions of TBCK.
Collapse
Affiliation(s)
- Jin Wu
- Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Guanting Lu
- Department of Pathology, People's Hospital of Deyang City, Deyang, Sichuan 618000, P.R. China
| |
Collapse
|
154
|
Maddirevula S, Shamseldin HE, Sirr A, AlAbdi L, Lo RS, Ewida N, Al-Qahtani M, Hashem M, Abdulwahab F, Aboyousef O, Kaya N, Monies D, Salem MH, Al Harbi N, Aldhalaan HM, Alzaidan H, Almanea HM, Alsalamah AK, Al Mutairi F, Ismail S, Abdel-Salam GMH, Alhashem A, Asery A, Faqeih E, AlQassmi A, Al-Hamoudi W, Algoufi T, Shagrani M, Dudley AM, Alkuraya FS. Exploiting the Autozygome to Support Previously Published Mendelian Gene-Disease Associations: An Update. Front Genet 2020; 11:580484. [PMID: 33456446 PMCID: PMC7806527 DOI: 10.3389/fgene.2020.580484] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/30/2020] [Indexed: 01/06/2023] Open
Abstract
There is a growing interest in standardizing gene-disease associations for the purpose of facilitating the proper classification of variants in the context of Mendelian diseases. One key line of evidence is the independent observation of pathogenic variants in unrelated individuals with similar phenotypes. Here, we expand on our previous effort to exploit the power of autozygosity to produce homozygous pathogenic variants that are otherwise very difficult to encounter in the homozygous state due to their rarity. The identification of such variants in genes with only tentative associations to Mendelian diseases can add to the existing evidence when observed in the context of compatible phenotypes. In this study, we report 20 homozygous variants in 18 genes (ADAMTS18, ARNT2, ASTN1, C3, DMBX1, DUT, GABRB3, GM2A, KIF12, LOXL3, NUP160, PTRHD1, RAP1GDS1, RHOBTB2, SIGMAR1, SPAST, TENM3, and WASHC5) that satisfy the ACMG classification for pathogenic/likely pathogenic if the involved genes had confirmed rather than tentative links to diseases. These variants were selected because they were truncating, founder with compelling segregation or supported by robust functional assays as with the DUT variant that we present its validation using yeast model. Our findings support the previously reported disease associations for these genes and represent a step toward their confirmation.
Collapse
Affiliation(s)
- Sateesh Maddirevula
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hanan E Shamseldin
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Amy Sirr
- Pacific Northwest Research Institute, Seattle, WA, United States
| | - Lama AlAbdi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Russell S Lo
- Pacific Northwest Research Institute, Seattle, WA, United States
| | - Nour Ewida
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mashael Al-Qahtani
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mais Hashem
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Firdous Abdulwahab
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Omar Aboyousef
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Namik Kaya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Dorota Monies
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - May H Salem
- Pediatric Nephrology Service, Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Naffaa Al Harbi
- Pediatric Nephrology Service, Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Hesham M Aldhalaan
- Department of Neuroscience, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hamad Alzaidan
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Hadeel M Almanea
- Anatomic Pathology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Abrar K Alsalamah
- Vitreoretinal and Uveitis Divisions, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Fuad Al Mutairi
- Medical Genetics Division, Department of Pediatrics, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Samira Ismail
- Human Genetics & Genome Research Division, Clinical Genetics Department, Center of Excellence of Human Genetics, National Research Centre, Cairo, Egypt
| | - Ghada M H Abdel-Salam
- Human Genetics & Genome Research Division, Clinical Genetics Department, Center of Excellence of Human Genetics, National Research Centre, Cairo, Egypt
| | - Amal Alhashem
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.,Department of Pediatric, Prince Sultan Medical Military City, Riyadh, Saudi Arabia
| | - Ali Asery
- Section of Pediatric Gastroenterology, Children's Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Eissa Faqeih
- Department of Pediatric Subspecialties, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Amal AlQassmi
- Pediatric Neurology, King Saud Medical City, Riyadh, Saudi Arabia
| | - Waleed Al-Hamoudi
- Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Talal Algoufi
- King Faisal Specialist Hospital and Research Center, Organ Transplant Centre, Riyadh, Saudi Arabia
| | - Mohammad Shagrani
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.,King Faisal Specialist Hospital and Research Center, Organ Transplant Centre, Riyadh, Saudi Arabia
| | - Aimée M Dudley
- Pacific Northwest Research Institute, Seattle, WA, United States
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
155
|
Nabais Sá MJ, Olson AN, Yoon G, Nimmo GAM, Gomez CM, Willemsen MA, Millan F, Schneider A, Pfundt R, de Brouwer APM, Dinman JD, de Vries BBA. De Novo variants in EEF2 cause a neurodevelopmental disorder with benign external hydrocephalus. Hum Mol Genet 2020; 29:3892-3899. [PMID: 33355653 DOI: 10.1093/hmg/ddaa270] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 11/15/2022] Open
Abstract
Eukaryotic translation elongation factor 2 (eEF2) is a key regulatory factor in gene expression that catalyzes the elongation stage of translation. A functionally impaired eEF2, due to a heterozygous missense variant in the EEF2 gene, was previously reported in one family with spinocerebellar ataxia-26 (SCA26), an autosomal dominant adult-onset pure cerebellar ataxia. Clinical exome sequencing identified de novo EEF2 variants in three unrelated children presenting with a neurodevelopmental disorder (NDD). Individuals shared a mild phenotype comprising motor delay and relative macrocephaly associated with ventriculomegaly. Populational data and bioinformatic analysis underscored the pathogenicity of all de novo missense variants. The eEF2 yeast model strains demonstrated that patient-derived variants affect cellular growth, sensitivity to translation inhibitors and translational fidelity. Consequently, we propose that pathogenic variants in the EEF2 gene, so far exclusively associated with late-onset SCA26, can cause a broader spectrum of neurologic disorders, including childhood-onset NDDs and benign external hydrocephalus.
Collapse
Affiliation(s)
- Maria J Nabais Sá
- Department of Human Genetics, Radboud University Medical Center and Donders Institute for Brain, Cognition and Behavior, 6525 GA Nijmegen, The Netherlands.,Unit for Multidisciplinary Research in Biomedicine, Instituto de Ciências Biomédicas Abel Salazar/Universidade do Porto, 4050-313 Porto, Portugal
| | - Alexandra N Olson
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Grace Yoon
- Division of Clinical and Metabolic Genetics and Division of Neurology, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Graeme A M Nimmo
- Fred A Litwin Family Centre for Genetic Medicine, University Health Network/Mount Sinai Hospital, Toronto, ON M5T 3L9, Canada
| | | | - Michèl A Willemsen
- Department of Pediatric Neurology, Radboud University Medical Center and Donders Institute for Brain, Cognition and Behavior, Amalia Children's Hospital, 6525 GA Nijmegen, The Netherlands
| | | | - Alexandra Schneider
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center and Donders Institute for Brain, Cognition and Behavior, 6525 GA Nijmegen, The Netherlands
| | - Arjan P M de Brouwer
- Department of Human Genetics, Radboud University Medical Center and Donders Institute for Brain, Cognition and Behavior, 6525 GA Nijmegen, The Netherlands
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Bert B A de Vries
- Department of Human Genetics, Radboud University Medical Center and Donders Institute for Brain, Cognition and Behavior, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
156
|
Corpuz AD, Ramos JW, Matter ML. PTRH2: an adhesion regulated molecular switch at the nexus of life, death, and differentiation. Cell Death Discov 2020; 6:124. [PMID: 33298880 PMCID: PMC7661711 DOI: 10.1038/s41420-020-00357-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/02/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Peptidyl-tRNA hydrolase 2 (PTRH2; Bit-1; Bit1) is an underappreciated regulator of adhesion signals and Bcl2 expression. Its key roles in muscle differentiation and integrin-mediated signaling are central to the pathology of a recently identified patient syndrome caused by a cluster of Ptrh2 gene mutations. These loss-of-function mutations were identified in patients presenting with severe deleterious phenotypes of the skeletal muscle, endocrine, and nervous systems resulting in a syndrome called Infantile-onset Multisystem Nervous, Endocrine, and Pancreatic Disease (IMNEPD). In contrast, in cancer PTRH2 is a potential oncogene that promotes malignancy and metastasis. PTRH2 modulates PI3K/AKT and ERK signaling in addition to Bcl2 expression and thereby regulates key cellular processes in response to adhesion including cell survival, growth, and differentiation. In this Review, we discuss the state of the science on this important cell survival, anoikis and differentiation regulator, and opportunities for further investigation and translation. We begin with a brief overview of the structure, regulation, and subcellular localization of PTRH2. We discuss the cluster of gene mutations thus far identified which cause developmental delays and multisystem disease. We then discuss the role of PTRH2 and adhesion in breast, lung, and esophageal cancers focusing on signaling pathways involved in cell survival, cell growth, and cell differentiation.
Collapse
Affiliation(s)
- Austin D Corpuz
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, 96813, HI, USA.,Cell and Molecular Biology Graduate Program, John A. Burns School of Medicine University of Hawaii at Mānoa, Honolulu, HI, 96813, USA
| | - Joe W Ramos
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, 96813, HI, USA
| | - Michelle L Matter
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, 96813, HI, USA.
| |
Collapse
|
157
|
Johnstone DL, Nguyen TTM, Zambonin J, Kernohan KD, St‐Denis A, Baratang NV, Hartley T, Geraghty MT, Richer J, Majewski J, Bareke E, Guerin A, Pendziwiat M, Pena LDM, Braakman HMH, Gripp KW, Edmondson AC, He M, Spillmann RC, Eklund EA, Bayat A, McMillan HJ, Boycott KM, Campeau PM. Early infantile epileptic encephalopathy due to biallelic pathogenic variants in PIGQ: Report of seven new subjects and review of the literature. J Inherit Metab Dis 2020; 43:1321-1332. [PMID: 32588908 PMCID: PMC7689772 DOI: 10.1002/jimd.12278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 01/18/2023]
Abstract
We investigated seven children from six families to expand the phenotypic spectrum associated with an early infantile epileptic encephalopathy caused by biallelic pathogenic variants in the phosphatidylinositol glycan anchor biosynthesis class Q (PIGQ) gene. The affected children were all identified by clinical or research exome sequencing. Clinical data, including EEGs and MRIs, was comprehensively reviewed and flow cytometry and transfection experiments were performed to investigate PIGQ function. Pathogenic biallelic PIGQ variants were associated with increased mortality. Epileptic seizures, axial hypotonia, developmental delay and multiple congenital anomalies were consistently observed. Seizure onset occurred between 2.5 months and 7 months of age and varied from treatable seizures to recurrent episodes of status epilepticus. Gastrointestinal issues were common and severe, two affected individuals had midgut volvulus requiring surgical correction. Cardiac anomalies including arrythmias were observed. Flow cytometry using granulocytes and fibroblasts from affected individuals showed reduced expression of glycosylphosphatidylinositol (GPI)-anchored proteins. Transfection of wildtype PIGQ cDNA into patient fibroblasts rescued this phenotype. We expand the phenotypic spectrum of PIGQ-related disease and provide the first functional evidence in human cells of defective GPI-anchoring due to pathogenic variants in PIGQ.
Collapse
Affiliation(s)
- Devon L. Johnstone
- Children's Hospital of Eastern Ontario Research InstituteOttawaOntarioCanada
| | | | - Jessica Zambonin
- Children's Hospital of Eastern Ontario Research InstituteOttawaOntarioCanada
- Department of GeneticsChildren's Hospital of Eastern OntarioOttawaOntarioCanada
| | - Kristin D. Kernohan
- Children's Hospital of Eastern Ontario Research InstituteOttawaOntarioCanada
- Division of Metabolics and Newborn Screening, Department of PediatricsChildren's Hospital of Eastern OntarioOttawaOntarioCanada
| | - Anik St‐Denis
- Research Center, CHU Sainte JustineUniversity of MontrealMontrealQuebecCanada
| | - Nissan V. Baratang
- Research Center, CHU Sainte JustineUniversity of MontrealMontrealQuebecCanada
| | - Taila Hartley
- Children's Hospital of Eastern Ontario Research InstituteOttawaOntarioCanada
| | - Michael T. Geraghty
- Division of Metabolics and Newborn Screening, Department of PediatricsChildren's Hospital of Eastern OntarioOttawaOntarioCanada
| | - Julie Richer
- Department of GeneticsChildren's Hospital of Eastern OntarioOttawaOntarioCanada
| | - Jacek Majewski
- Department of Human GeneticsMcGill UniversityMontrealQuebecCanada
- McGill University and Genome Quebec Innovation CentreMontrealQuebecCanada
| | - Eric Bareke
- Department of Human GeneticsMcGill UniversityMontrealQuebecCanada
- McGill University and Genome Quebec Innovation CentreMontrealQuebecCanada
| | - Andrea Guerin
- Division of Medical Genetics, Department of PediatricsQueen's UniversityKingstonOntarioCanada
| | - Manuela Pendziwiat
- Department of NeuropediatricsChristian‐Albrechts‐University of KielKielGermany
| | - Loren D. M. Pena
- Division of Human GeneticsCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Hilde M. H. Braakman
- Department of NeurologyAcademic Center for Epileptology Kempenhaeghe & Maastricht University Medical CenterHeezeThe Netherlands
- Department of Pediatric Neurology, Amalia Children's HospitalRadboud University Medical Center & Donders Institute for Brain, Cognition and Behaviour, Radboud UniversityNijmegenThe Netherlands
| | - Karen W. Gripp
- Division of Medical GeneticsA. I. DuPont Hospital for Children/NemoursWilmingtonDelawareUSA
| | - Andrew C. Edmondson
- Department of Pediatrics, Division of Human GeneticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Miao He
- Department of Pathology and Laboratory MedicineChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Rebecca C. Spillmann
- Division of Medical Genetics, Department of PediatricsDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Erik A. Eklund
- Department of Pediatric Neurology, Region Skåne and Clinical SciencesLund University Skåne University Hospital (SUS)LundSweden
| | - Allan Bayat
- Department of Genetics and Personalized MedicineDanish Epilepsy CentreDianalundDenmark
- Institute for Regional Health Services ResearchUniversity of Southern DenmarkOdenseDenmark
| | - Hugh J. McMillan
- Division of Neurology, Department of PediatricsChildren's Hospital of Eastern OntarioOttawaOntarioCanada
| | - Kym M. Boycott
- Children's Hospital of Eastern Ontario Research InstituteOttawaOntarioCanada
- Department of GeneticsChildren's Hospital of Eastern OntarioOttawaOntarioCanada
| | - Philippe M. Campeau
- Research Center, CHU Sainte JustineUniversity of MontrealMontrealQuebecCanada
- Department of Pediatrics, Sainte‐Justine HospitalUniversity of MontrealMontrealQuebecCanada
| |
Collapse
|
158
|
Hinarejos I, Machuca C, Sancho P, Espinós C. Mitochondrial Dysfunction, Oxidative Stress and Neuroinflammation in Neurodegeneration with Brain Iron Accumulation (NBIA). Antioxidants (Basel) 2020; 9:antiox9101020. [PMID: 33092153 PMCID: PMC7589120 DOI: 10.3390/antiox9101020] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022] Open
Abstract
The syndromes of neurodegeneration with brain iron accumulation (NBIA) encompass a group of invalidating and progressive rare diseases that share the abnormal accumulation of iron in the basal ganglia. The onset of NBIA disorders ranges from infancy to adulthood. Main clinical signs are related to extrapyramidal features (dystonia, parkinsonism and choreoathetosis), and neuropsychiatric abnormalities. Ten NBIA forms are widely accepted to be caused by mutations in the genes PANK2, PLA2G6, WDR45, C19ORF12, FA2H, ATP13A2, COASY, FTL1, CP, and DCAF17. Nonetheless, many patients remain without a conclusive genetic diagnosis, which shows that there must be additional as yet undiscovered NBIA genes. In line with this, isolated cases of known monogenic disorders, and also, new genetic diseases, which present with abnormal brain iron phenotypes compatible with NBIA, have been described. Several pathways are involved in NBIA syndromes: iron and lipid metabolism, mitochondrial dynamics, and autophagy. However, many neurodegenerative conditions share features such as mitochondrial dysfunction and oxidative stress, given the bioenergetics requirements of neurons. This review aims to describe the existing link between the classical ten NBIA forms by examining their connection with mitochondrial impairment as well as oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Isabel Hinarejos
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (I.H.); (C.M.); (P.S.)
- Rare Diseases Joint Units, CIPF-IIS La Fe & INCLIVA, 46012 Valencia, Spain
| | - Candela Machuca
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (I.H.); (C.M.); (P.S.)
- Rare Diseases Joint Units, CIPF-IIS La Fe & INCLIVA, 46012 Valencia, Spain
- Unit of Stem Cells Therapies in Neurodegenerative Diseases, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Paula Sancho
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (I.H.); (C.M.); (P.S.)
- Rare Diseases Joint Units, CIPF-IIS La Fe & INCLIVA, 46012 Valencia, Spain
| | - Carmen Espinós
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (I.H.); (C.M.); (P.S.)
- Rare Diseases Joint Units, CIPF-IIS La Fe & INCLIVA, 46012 Valencia, Spain
- Department of Genetics, University of Valencia, 46100 Valencia, Spain
- Correspondence: ; Tel.: +34-963-289-680
| |
Collapse
|
159
|
The mechanisms of action of chromatin remodelers and implications in development and disease. Biochem Pharmacol 2020; 180:114200. [DOI: 10.1016/j.bcp.2020.114200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/09/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
|
160
|
Qi X, Qi C, Qin B, Kang X, Hu Y, Han W. Immune-Stromal Score Signature: Novel Prognostic Tool of the Tumor Microenvironment in Lung Adenocarcinoma. Front Oncol 2020; 10:541330. [PMID: 33072571 PMCID: PMC7538811 DOI: 10.3389/fonc.2020.541330] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 08/14/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Immune and stromal cells in the tumor microenvironment (TME) significantly contribute to the prognosis of lung adenocarcinoma; however, the TME-related immune prognostic signature is unknown. The aim of this study was to develop a novel immune prognostic model of the TME in lung adenocarcinoma. Methods: First, the immune and stromal scores among lung adenocarcinoma patients were determined using the ESTIMATE algorithm in accordance with The Cancer Genome Atlas (TCGA) database. Differentially expressed immune-related genes (IRGs) between high and low immune/stromal score groups were analyzed, and a univariate Cox regression analysis was performed to identify IRGs significantly correlated with overall survival (OS) among patients with lung adenocarcinoma. Furthermore, a least absolute shrinkage and selection operator (LASSO) regression analysis was performed to generate TME-related immune prognostic signatures. Gene set enrichment analysis was performed to analyze the mechanisms underlying these immune prognostic signatures. Finally, the functions of hub IRGs were further analyzed to delineate the potential prognostic mechanisms in comprehensive TCGA datasets. Results: In total, 702 intersecting differentially expressed IRGs (589 upregulated and 113 downregulated) were screened. Univariate Cox regression analysis revealed that 58 significant differentially expressed IRGs were correlated with patient prognosis in the training cohort, of which three IRGs (CLEC17A, INHA, and XIRP1) were identified through LASSO regression analysis. A robust prognostic model was generated on the basis of this three-IRG signature. Furthermore, functional enrichment analysis of the high-risk-score group was performed primarily on the basis of metabolic pathways, whereas analysis of the low-risk-score group was performed primarily on the basis of immunoregulation and immune cell activation. Finally, hub IRGs CLEC17A, INHA, and XIRP1 were considered novel prognostic biomarkers for lung adenocarcinoma. These hub genes had different mutation frequencies and forms in lung adenocarcinoma and participated in different signaling pathways. More importantly, these hub genes were significantly correlated with the infiltration of CD4+ T cells, CD8+ T cells, macrophages, B cells, and neutrophils. Conclusions: The robust novel TME-related immune prognostic signature effectively predicted the prognosis of patients with lung adenocarcinoma. Further studies are required to further elucidate the regulatory mechanisms of these hub IRGs in the TME and to develop new treatment strategies.
Collapse
Affiliation(s)
- Xiaoguang Qi
- Department of Oncology, Chinese PLA General Hospital, Beijing, China
| | - Chunyan Qi
- Department of Health Management, Chinese PLA General Hospital, Beijing, China
| | - Boyu Qin
- Department of Oncology, Chinese PLA General Hospital, Beijing, China
| | - Xindan Kang
- Department of Oncology, Chinese PLA General Hospital, Beijing, China
| | - Yi Hu
- Department of Oncology, Chinese PLA General Hospital, Beijing, China
| | - Weidong Han
- Department of Bio-therapeutic, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
161
|
Almomani R, Marchi M, Sopacua M, Lindsey P, Salvi E, de Koning B, Santoro S, Magri S, Smeets HJM, Martinelli Boneschi F, Malik RR, Ziegler D, Hoeijmakers JGJ, Bönhof G, Dib-Hajj S, Waxman SG, Merkies ISJ, Lauria G, Faber CG, Gerrits MM, on behalf on the PROPANE Study Group. Evaluation of molecular inversion probe versus TruSeq® custom methods for targeted next-generation sequencing. PLoS One 2020; 15:e0238467. [PMID: 32877464 PMCID: PMC7467307 DOI: 10.1371/journal.pone.0238467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/16/2020] [Indexed: 11/18/2022] Open
Abstract
Resolving the genetic architecture of painful neuropathy will lead to better disease management strategies. We aimed to develop a reliable method to re-sequence multiple genes in a large cohort of painful neuropathy patients at low cost. In this study, we compared sensitivity, specificity, targeting efficiency, performance and cost effectiveness of Molecular Inversion Probes-Next generation sequencing (MIPs-NGS) and TruSeq® Custom Amplicon-Next generation sequencing (TSCA-NGS). Capture probes were designed to target nine sodium channel genes (SCN3A, SCN8A-SCN11A, and SCN1B-SCN4B). One hundred sixty-six patients with diabetic and idiopathic neuropathy were tested by both methods, 70 patients were validated by Sanger sequencing. Sensitivity, specificity and performance of both techniques were comparable, and in agreement with Sanger sequencing. The average targeted regions coverage for MIPs-NGS was 97.3% versus 93.9% for TSCA-NGS. MIPs-NGS has a more versatile assay design and is more flexible than TSCA-NGS. The cost of MIPs-NGS is >5 times cheaper than TSCA-NGS when 500 or more samples are tested. In conclusion, MIPs-NGS is a reliable, flexible, and relatively inexpensive method to detect genetic variations in a large cohort of patients. In our centers, MIPs-NGS is currently implemented as a routine diagnostic tool for screening of sodium channel genes in painful neuropathy patients.
Collapse
Affiliation(s)
- Rowida Almomani
- Department of Genetics and Cell Biology, Clinical Genomics Unit, Maastricht University, Maastricht, The Netherlands
- MHeNs school of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Margherita Marchi
- Neuroalgology Units, Fondazione IRCCS Istituto Neurologico “Carlo Besta” Milan, Milan, Italy
| | - Maurice Sopacua
- MHeNs school of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Neurology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Patrick Lindsey
- Department of Genetics and Cell Biology, Clinical Genomics Unit, Maastricht University, Maastricht, The Netherlands
| | - Erika Salvi
- Neuroalgology Units, Fondazione IRCCS Istituto Neurologico “Carlo Besta” Milan, Milan, Italy
| | - Bart de Koning
- Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Silvia Santoro
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Magri
- Neuroalgology Units, Fondazione IRCCS Istituto Neurologico “Carlo Besta” Milan, Milan, Italy
| | - Hubert J. M. Smeets
- Department of Genetics and Cell Biology, Clinical Genomics Unit, Maastricht University, Maastricht, The Netherlands
- MHeNs school of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Filippo Martinelli Boneschi
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Rayaz R. Malik
- Institute of Human Development, Centre for Endocrinology and Diabetes, University of Manchester and Central Manchester NHS Foundation Trust, Manchester Academic Health Science Center, Manchester, United Kingdom
- Department of Medicine, Weill Cornell Medicine, Doha, Qatar
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Janneke G. J. Hoeijmakers
- MHeNs school of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Neurology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Gidon Bönhof
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Düsseldorf, Germany
| | - Sulayman Dib-Hajj
- Department of Neurology, Yale University School of Medicine, Yale, New Haven, United States of America
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, Yale, New Haven, United States of America
- Center for Neuroscience and Regeneration Research, Veterans Affairs Medical Center, West Haven, Connecticut, United States of America
| | - Stephen G. Waxman
- Department of Neurology, Yale University School of Medicine, Yale, New Haven, United States of America
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, Yale, New Haven, United States of America
- Center for Neuroscience and Regeneration Research, Veterans Affairs Medical Center, West Haven, Connecticut, United States of America
| | - Ingemar S. J. Merkies
- Department of Neurology, Maastricht University Medical Center+, Maastricht, the Netherlands
- Department of Neurology, St Elisabeth Hospital, Willemstad, Curaçao
| | - Giuseppe Lauria
- Neuroalgology Units, Fondazione IRCCS Istituto Neurologico “Carlo Besta” Milan, Milan, Italy
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
| | - Catharina G. Faber
- MHeNs school of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Neurology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Monique M. Gerrits
- Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, the Netherlands
- * E-mail:
| | | |
Collapse
|
162
|
Schoenmakers E, Chatterjee K. Human Disorders Affecting the Selenocysteine Incorporation Pathway Cause Systemic Selenoprotein Deficiency. Antioxid Redox Signal 2020; 33:481-497. [PMID: 32295391 PMCID: PMC7409586 DOI: 10.1089/ars.2020.8097] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Significance: Generalized selenoprotein deficiency has been associated with mutations in SECISBP2, SEPSECS, and TRU-TCA1-1, 3 factors that are crucial for incorporation of the amino acid selenocysteine (Sec) into at least 25 human selenoproteins. SECISBP2 and TRU-TCA1-1 defects are characterized by a multisystem phenotype due to deficiencies of antioxidant and tissue-specific selenoproteins, together with abnormal thyroid hormone levels reflecting impaired hormone metabolism by deiodinase selenoenzymes. SEPSECS mutations are associated with a predominantly neurological phenotype with progressive cerebello-cerebral atrophy. Recent Advances: The recent identification of individuals with defects in genes encoding components of the selenocysteine insertion pathway has delineated complex and multisystem disorders, reflecting a lack of selenoproteins in specific tissues, oxidative damage due to lack of oxidoreductase-active selenoproteins and other pathways whose nature is unclear. Critical Issues: Abnormal thyroid hormone metabolism in patients can be corrected by triiodothyronine (T3) treatment. No specific therapies for other phenotypes (muscular dystrophy, male infertility, hearing loss, neurodegeneration) exist as yet, but their severity often requires supportive medical intervention. Future Directions: These disorders provide unique insights into the role of selenoproteins in humans. The long-term consequences of reduced cellular antioxidant capacity remain unknown, and future surveillance of patients may reveal time-dependent phenotypes (e.g., neoplasia, aging) or consequences of deficiency of selenoproteins whose function remains to be elucidated. The role of antioxidant therapies requires evaluation. Antioxid. Redox Signal. 33, 481-497.
Collapse
Affiliation(s)
- Erik Schoenmakers
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, United Kingdom
| | - Krishna Chatterjee
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, United Kingdom
| |
Collapse
|
163
|
Li L, Bayer AS, Cheung A, Lu L, Abdelhady W, Donegan NP, Hong JI, Yeaman MR, Xiong YQ. The Stringent Response Contributes to Persistent Methicillin-Resistant Staphylococcus aureus Endovascular Infection Through the Purine Biosynthetic Pathway. J Infect Dis 2020; 222:1188-1198. [PMID: 32333768 PMCID: PMC7459137 DOI: 10.1093/infdis/jiaa202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/21/2020] [Indexed: 02/02/2023] Open
Abstract
Persistent methicillin-resistant Staphylococcus aureus (MRSA) endovascular infections represent a significant clinical-therapeutic challenge. Of particular concern is antibiotic treatment failure in infections caused by MRSA that are "susceptible" to antibiotic in vitro. In the current study, we investigate specific purine biosynthetic pathways and stringent response mechanism(s) related to this life-threatening syndrome using genetic matched persistent and resolving MRSA clinical bacteremia isolates (PB and RB, respectively), and isogenic MRSA strain sets. We demonstrate that PB isolates (vs RB isolates) have significantly higher (p)ppGpp production, phenol-soluble-modulin expression, polymorphonuclear leukocyte lysis and survival, fibronectin/endothelial cell (EC) adherence, and EC damage. Importantly, an isogenic strain set, including JE2 parental, relP-mutant and relP-complemented strains, translated the above findings into significant outcome differences in an experimental endocarditis model. These observations indicate a significant regulation of purine biosynthesis on stringent response, and suggest the existence of a previously unknown adaptive genetic mechanism in persistent MRSA infection.
Collapse
Affiliation(s)
- Liang Li
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Arnold S Bayer
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
- Division of Infectious Diseases, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Ambrose Cheung
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Lou Lu
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
- Division of Infectious Diseases, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California, USA
- Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Wessam Abdelhady
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Niles P Donegan
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Jong-In Hong
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Michael R Yeaman
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
- Division of Infectious Diseases, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Yan Q Xiong
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
- Division of Infectious Diseases, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
164
|
Canchi S, Raao B, Masliah D, Rosenthal SB, Sasik R, Fisch KM, De Jager PL, Bennett DA, Rissman RA. Integrating Gene and Protein Expression Reveals Perturbed Functional Networks in Alzheimer's Disease. Cell Rep 2020; 28:1103-1116.e4. [PMID: 31340147 PMCID: PMC7503200 DOI: 10.1016/j.celrep.2019.06.073] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/20/2019] [Accepted: 06/19/2019] [Indexed: 12/23/2022] Open
Abstract
Asymptomatic and symptomatic Alzheimer’s disease (AD) subjects may present with equivalent neuropathological burdens but have significantly different antemortem cognitive decline rates. Using the transcriptome as a proxy for functional state, we selected 414 expression profiles of symptomatic AD subjects and age-matched non-demented controls from a community-based neuropathological study. By combining brain tissue-specific protein interactomes with gene networks, we identified functionally distinct composite clusters of genes that reveal extensive changes in expression levels in AD. Global expression for clusters broadly corresponding to synaptic transmission, metabolism, cell cycle, survival, and immune response were downregulated, while the upregulated cluster included largely uncharacterized processes. We propose that loss of EGR3 regulation mediates synaptic deficits by targeting the synaptic vesicle cycle. Our results highlight the utility of integrating protein interactions with gene perturbations to generate a comprehensive framework for characterizing alterations in the molecular network as applied to AD. Canchi et al. reveal the transcriptomic dynamics of clinically and neuropathologically confirmed Alzheimer’s disease subjects by integrating brain tissue-specific proteome data with gene network analysis. They identify perturbed biological processes and provide insights into the interactions between molecular mechanisms in symptomatic Alzheimer’s disease.
Collapse
Affiliation(s)
- Saranya Canchi
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Balaji Raao
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Deborah Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Sara Brin Rosenthal
- Center for Computational Biology & Bioinformatics, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Roman Sasik
- Center for Computational Biology & Bioinformatics, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kathleen M Fisch
- Center for Computational Biology & Bioinformatics, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
165
|
Timpano S, Picketts DJ. Neurodevelopmental Disorders Caused by Defective Chromatin Remodeling: Phenotypic Complexity Is Highlighted by a Review of ATRX Function. Front Genet 2020; 11:885. [PMID: 32849845 PMCID: PMC7432156 DOI: 10.3389/fgene.2020.00885] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 07/20/2020] [Indexed: 12/15/2022] Open
Abstract
The ability to determine the genetic etiology of intellectual disability (ID) and neurodevelopmental disorders (NDD) has improved immensely over the last decade. One prevailing metric from these studies is the large percentage of genes encoding epigenetic regulators, including many members of the ATP-dependent chromatin remodeling enzyme family. Chromatin remodeling proteins can be subdivided into five classes that include SWI/SNF, ISWI, CHD, INO80, and ATRX. These proteins utilize the energy from ATP hydrolysis to alter nucleosome positioning and are implicated in many cellular processes. As such, defining their precise roles and contributions to brain development and disease pathogenesis has proven to be complex. In this review, we illustrate that complexity by reviewing the roles of ATRX on genome stability, replication, and transcriptional regulation and how these mechanisms provide key insight into the phenotype of ATR-X patients.
Collapse
Affiliation(s)
- Sara Timpano
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - David J. Picketts
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
166
|
Schneeberger PE, Kortüm F, Korenke GC, Alawi M, Santer R, Woidy M, Buhas D, Fox S, Juusola J, Alfadhel M, Webb BD, Coci EG, Abou Jamra R, Siekmeyer M, Biskup S, Heller C, Maier EM, Javaher-Haghighi P, Bedeschi MF, Ajmone PF, Iascone M, Peeters H, Ballon K, Jaeken J, Rodríguez Alonso A, Palomares-Bralo M, Santos-Simarro F, Meuwissen MEC, Beysen D, Kooy RF, Houlden H, Murphy D, Doosti M, Karimiani EG, Mojarrad M, Maroofian R, Noskova L, Kmoch S, Honzik T, Cope H, Sanchez-Valle A, Gelb BD, Kurth I, Hempel M, Kutsche K. Biallelic MADD variants cause a phenotypic spectrum ranging from developmental delay to a multisystem disorder. Brain 2020; 143:2437-2453. [PMID: 32761064 PMCID: PMC7447524 DOI: 10.1093/brain/awaa204] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/22/2022] Open
Abstract
In pleiotropic diseases, multiple organ systems are affected causing a variety of clinical manifestations. Here, we report a pleiotropic disorder with a unique constellation of neurological, endocrine, exocrine, and haematological findings that is caused by biallelic MADD variants. MADD, the mitogen-activated protein kinase (MAPK) activating death domain protein, regulates various cellular functions, such as vesicle trafficking, activity of the Rab3 and Rab27 small GTPases, tumour necrosis factor-α (TNF-α)-induced signalling and prevention of cell death. Through national collaboration and GeneMatcher, we collected 23 patients with 21 different pathogenic MADD variants identified by next-generation sequencing. We clinically evaluated the series of patients and categorized the phenotypes in two groups. Group 1 consists of 14 patients with severe developmental delay, endo- and exocrine dysfunction, impairment of the sensory and autonomic nervous system, and haematological anomalies. The clinical course during the first years of life can be potentially fatal. The nine patients in Group 2 have a predominant neurological phenotype comprising mild-to-severe developmental delay, hypotonia, speech impairment, and seizures. Analysis of mRNA revealed multiple aberrant MADD transcripts in two patient-derived fibroblast cell lines. Relative quantification of MADD mRNA and protein in fibroblasts of five affected individuals showed a drastic reduction or loss of MADD. We conducted functional tests to determine the impact of the variants on different pathways. Treatment of patient-derived fibroblasts with TNF-α resulted in reduced phosphorylation of the extracellular signal-regulated kinases 1 and 2, enhanced activation of the pro-apoptotic enzymes caspase-3 and -7 and increased apoptosis compared to control cells. We analysed internalization of epidermal growth factor in patient cells and identified a defect in endocytosis of epidermal growth factor. We conclude that MADD deficiency underlies multiple cellular defects that can be attributed to alterations of TNF-α-dependent signalling pathways and defects in vesicular trafficking. Our data highlight the multifaceted role of MADD as a signalling molecule in different organs and reveal its physiological role in regulating the function of the sensory and autonomic nervous system and endo- and exocrine glands.
Collapse
Affiliation(s)
- Pauline E Schneeberger
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fanny Kortüm
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georg Christoph Korenke
- Klinik für Neuropädiatrie und angeborene Stoffwechselerkrankungen, Klinikum Oldenburg, Oldenburg, Germany
| | - Malik Alawi
- Bioinformatics Core Unit, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - René Santer
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mathias Woidy
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniela Buhas
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, Montreal, Canada
- Human Genetics Department, McGill University, Montreal, Canada
| | - Stephanie Fox
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, Montreal, Canada
- Human Genetics Department, McGill University, Montreal, Canada
| | | | - Majid Alfadhel
- Division of Genetics, Department of Pediatrics, King Abdullah specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Bryn D Webb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Emanuele G Coci
- Department for Neuropediatrics, University Children's Hospital, Ruhr University Bochum, Bochum, Germany
- Department of Pediatrics, Prignitz Hospital, Brandenburg Medical School, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University Medical Center Leipzig, Leipzig, Germany
| | - Manuela Siekmeyer
- Universitätsklinikum Leipzig - AöR, University of Leipzig, Hospital for Children and Adolescents, Leipzig, Germany
| | - Saskia Biskup
- CeGaT GmbH and Praxis für Humangenetik Tübingen, Tübingen, Germany
| | - Corina Heller
- CeGaT GmbH and Praxis für Humangenetik Tübingen, Tübingen, Germany
| | - Esther M Maier
- Dr. von Hauner Children's Hospital, University of Munich, Munich, Germany
| | | | - Maria F Bedeschi
- Medical Genetic Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola F Ajmone
- Child and Adolescent Neuropsychiatric Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Iascone
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Hilde Peeters
- Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Katleen Ballon
- Centre for Developmental Disabilities, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Jaak Jaeken
- Center for Metabolic Diseases, KU Leuven, Leuven, Belgium
| | - Aroa Rodríguez Alonso
- Unidad de Patología Compleja, Servicio de Pediatría, Hospital Universitario La Paz, Madrid, Spain
| | - María Palomares-Bralo
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz, IdiPAZ, CIBERER, ISCIII, Madrid, Spain
| | - Fernando Santos-Simarro
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz, IdiPAZ, CIBERER, ISCIII, Madrid, Spain
| | | | - Diane Beysen
- Department of Pediatric Neurology, University Hospital Antwerp, Antwerp, Belgium
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - David Murphy
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | | | - Ehsan G Karimiani
- Next Generation Genetic Polyclinic, Mashhad, Iran
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St. George's, University, London, UK
| | - Majid Mojarrad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Genetic Center of Khorasan Razavi, Mashhad, Iran
| | - Reza Maroofian
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Lenka Noskova
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Stanislav Kmoch
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tomas Honzik
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Heidi Cope
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Amarilis Sanchez-Valle
- Division of Genetics and Metabolism, College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Bruce D Gelb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
167
|
Symmetric neural progenitor divisions require chromatin-mediated homologous recombination DNA repair by Ino80. Nat Commun 2020; 11:3839. [PMID: 32737294 PMCID: PMC7395731 DOI: 10.1038/s41467-020-17551-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
Chromatin regulates spatiotemporal gene expression during neurodevelopment, but it also mediates DNA damage repair essential to proliferating neural progenitor cells (NPCs). Here, we uncover molecularly dissociable roles for nucleosome remodeler Ino80 in chromatin-mediated transcriptional regulation and genome maintenance in corticogenesis. We find that conditional Ino80 deletion from cortical NPCs impairs DNA double-strand break (DSB) repair, triggering p53-dependent apoptosis and microcephaly. Using an in vivo DSB repair pathway assay, we find that Ino80 is selectively required for homologous recombination (HR) DNA repair, which is mechanistically distinct from Ino80 function in YY1-associated transcription. Unexpectedly, sensitivity to loss of Ino80-mediated HR is dependent on NPC division mode: Ino80 deletion leads to unrepaired DNA breaks and apoptosis in symmetric NPC-NPC divisions, but not in asymmetric neurogenic divisions. This division mode dependence is phenocopied following conditional deletion of HR gene Brca2. Thus, distinct modes of NPC division have divergent requirements for Ino80-dependent HR DNA repair.
Collapse
|
168
|
Two novel pathogenic variants in KIAA1109 causing Alkuraya-Kučinskas syndrome in two Czech Roma brothers. Clin Dysmorphol 2020; 29:197-201. [PMID: 32657846 DOI: 10.1097/mcd.0000000000000335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recently described Alkuraya-Kučinskas syndrome (ALKKUCS) clinically presented with severe congenital hydrocephalus, severe brain hypoplasia and other multiple malformations has been described in only few families worldwide to date. ALKKUCS is caused by biallelic pathogenic variants in the KIAA1109 gene with autosomal recessive inheritance. We describe two brothers of Roma origin born with severe congenital hydrocephalus, brain hypoplasia and other clinical findings corresponding with ALKKUCS. Using WES two novel pathogenic variants c.359-1G>A and c.14564_14565del in compound heterozygous status in the KIAA1109 gene were found in both brothers. We consider that the number of healthy heterozygous carriers of pathogenic variants in KIAA1109 could be higher than it is known and pathogenic variants in KIAA1109 could be more frequent cause of congenital hydrocephalus and severe brain dysplasias.
Collapse
|
169
|
KIAA1109 gene mutation in surviving patients with Alkuraya-Kučinskas syndrome: a review of literature. BMC MEDICAL GENETICS 2020; 21:136. [PMID: 32590954 PMCID: PMC7318400 DOI: 10.1186/s12881-020-01074-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/19/2020] [Indexed: 12/16/2022]
Abstract
Background Alkuraya-Kučinskas syndrome is an autosomal recessive disorder characterized by brain abnormalities associated with cerebral parenchymal underdevelopment, arthrogryposis, club foot and global developmental delay. KIAA1109, a functionally uncharacterized gene is identified as the molecular cause for Alkuraya-Kučinskas syndrome. Most of the reported mutations in KIAA1109 gene result in premature termination of pregnancies or neonatal deaths while a few mutations have been reported in surviving patients with global developmental delay and intellectual disability. To our knowledge, only three surviving patients from two families have been reported with missense variants in KIAA1109. In this study, we describe four surviving patients from two related families (a multiplex family) with global developmental delay and mild to severe intellectual disability with no other systemic manifestations. There were no miscarriages or neonatal deaths reported in these families. Methods X-chromosome exome panel sequencing was carried out in one patient and whole exome sequencing was carried out on the remaining three affected individuals and the unaffected father of the index family. Data analysis was carried out followed by variant filtering and segregation analysis. Sanger sequencing was carried out to validate the segregation of mutation in all four affected siblings and unaffected parents from both families. Results A novel homozygous missense mutation in a conserved region of KIAA1109 protein was identified. Sanger sequencing confirmed the segregation of mutation in both families in an autosomal recessive fashion. Conclusion Our study is the second study reporting a KIAA1109 variant in surviving patients with Alkuraya-Kučinskas syndrome. Our study expands the spectrum of phenotypic features and mutations associated with Alkuraya-Kučinskas syndrome.
Collapse
|
170
|
Kessi M, Chen B, Peng J, Tang Y, Olatoutou E, He F, Yang L, Yin F. Intellectual Disability and Potassium Channelopathies: A Systematic Review. Front Genet 2020; 11:614. [PMID: 32655623 PMCID: PMC7324798 DOI: 10.3389/fgene.2020.00614] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/20/2020] [Indexed: 01/15/2023] Open
Abstract
Intellectual disability (ID) manifests prior to adulthood as severe limitations to intellectual function and adaptive behavior. The role of potassium channelopathies in ID is poorly understood. Therefore, we aimed to evaluate the relationship between ID and potassium channelopathies. We hypothesized that potassium channelopathies are strongly associated with ID initiation, and that both gain- and loss-of-function mutations lead to ID. This systematic review explores the burden of potassium channelopathies, possible mechanisms, advancements using animal models, therapies, and existing gaps. The literature search encompassed both PubMed and Embase up to October 2019. A total of 75 articles describing 338 cases were included in this review. Nineteen channelopathies were identified, affecting the following genes: KCNMA1, KCNN3, KCNT1, KCNT2, KCNJ10, KCNJ6, KCNJ11, KCNA2, KCNA4, KCND3, KCNH1, KCNQ2, KCNAB1, KCNQ3, KCNQ5, KCNC1, KCNB1, KCNC3, and KCTD3. Twelve of these genes presented both gain- and loss-of-function properties, three displayed gain-of-function only, three exhibited loss-of-function only, and one had unknown function. How gain- and loss-of-function mutations can both lead to ID remains largely unknown. We identified only a few animal studies that focused on the mechanisms of ID in relation to potassium channelopathies and some of the few available therapeutic options (channel openers or blockers) appear to offer limited efficacy. In conclusion, potassium channelopathies contribute to the initiation of ID in several instances and this review provides a comprehensive overview of which molecular players are involved in some of the most prominent disease phenotypes.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China.,Kilimanjaro Christian Medical University College, Moshi, Tanzania.,Mawenzi Regional Referral Hospital, Moshi, Tanzania
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Yulin Tang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Eleonore Olatoutou
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| |
Collapse
|
171
|
Khoshaeen A, Najafi M, Mahdavi MR, Jalali H, Mahdavi M. A novel missense mutation (c.1006C>T) of SPG20 gene associated with Troyer syndrome. J Genet 2020. [DOI: 10.1007/s12041-020-01210-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
172
|
Okai H, Ikema R, Nakamura H, Kato M, Araki M, Mizuno A, Ikeda A, Renbaum P, Segel R, Funato K. Cold‐sensitive phenotypes of a yeast null mutant of ARV1 support its role as a GPI flippase. FEBS Lett 2020; 594:2431-2439. [DOI: 10.1002/1873-3468.13843] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Haruka Okai
- School of Applied Biological Science Hiroshima University Higashi‐Hiroshima Japan
| | - Ryoko Ikema
- Graduate School of Integrated Sciences for Life Hiroshima University Higashi‐Hiroshima Japan
| | - Hiroki Nakamura
- Graduate School of Biosphere Science Hiroshima University Higashi‐Hiroshima Japan
| | - Mei Kato
- Graduate School of Integrated Sciences for Life Hiroshima University Higashi‐Hiroshima Japan
| | - Misako Araki
- Graduate School of Integrated Sciences for Life Hiroshima University Higashi‐Hiroshima Japan
| | - Ayumi Mizuno
- School of Applied Biological Science Hiroshima University Higashi‐Hiroshima Japan
| | - Atsuko Ikeda
- Graduate School of Biosphere Science Hiroshima University Higashi‐Hiroshima Japan
| | - Paul Renbaum
- Medical Genetics Institute Shaare Zedek Medical Center Jerusalem Israel
| | - Reeval Segel
- Medical Genetics Institute Shaare Zedek Medical Center Jerusalem Israel
| | - Kouichi Funato
- School of Applied Biological Science Hiroshima University Higashi‐Hiroshima Japan
- Graduate School of Integrated Sciences for Life Hiroshima University Higashi‐Hiroshima Japan
- Graduate School of Biosphere Science Hiroshima University Higashi‐Hiroshima Japan
| |
Collapse
|
173
|
Palombo F, Graziano C, Al Wardy N, Nouri N, Marconi C, Magini P, Severi G, La Morgia C, Cantalupo G, Cordelli DM, Gangarossa S, Al Kindi MN, Al Khabouri M, Salehi M, Giorgio E, Brusco A, Pisani F, Romeo G, Carelli V, Pippucci T, Seri M. Autozygosity-driven genetic diagnosis in consanguineous families from Italy and the Greater Middle East. Hum Genet 2020; 139:1429-1441. [PMID: 32488467 DOI: 10.1007/s00439-020-02187-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/25/2020] [Indexed: 12/12/2022]
Abstract
Autozygosity-driven exome analysis has been shown effective for identification of genes underlying recessive diseases especially in countries of the so-called Greater Middle East (GME), where high consanguinity unravels the phenotypic effects of recessive alleles and large family sizes facilitate homozygosity mapping. In Italy, as in most European countries, consanguinity is estimated low. Nonetheless, consanguineous Italian families are not uncommon in publications of genetic findings and are often key to new associations of genes with rare diseases. We collected 52 patients from 47 consanguineous families with suspected recessive diseases, 29 originated in GME countries and 18 of Italian descent. We performed autozygosity-driven exome analysis by detecting long runs of homozygosity (ROHs > 1.5 Mb) and by prioritizing candidate clinical variants within. We identified a pathogenic synonymous variant that had been previously missed in NARS2 and we increased an initial high diagnostic rate (47%) to 55% by matchmaking our candidate genes and including in the analysis shorter ROHs that may also happen to be autozygous. GME and Italian families contributed to diagnostic yield comparably. We found no significant difference either in the extension of the autozygous genome, or in the distribution of candidate clinical variants between GME and Italian families, while we showed that the average autozygous genome was larger and the mean number of candidate clinical variants was significantly higher (p = 0.003) in mutation-positive than in mutation-negative individuals, suggesting that these features influence the likelihood that the disease is autozygosity-related. We highlight the utility of autozygosity-driven genomic analysis also in countries and/or communities, where consanguinity is not widespread cultural tradition.
Collapse
Affiliation(s)
- Flavia Palombo
- Medical Genetics Sant'Orsola, Malpighi University Hospital of Bologna, Via Massarenti 9, 40138, Bologna, Italy.,IRCCS Istituto Delle Scienze Neurologiche Di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Claudio Graziano
- Medical Genetics Sant'Orsola, Malpighi University Hospital of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Nadia Al Wardy
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Nayereh Nouri
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.,Craniofacial and Cleft Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Caterina Marconi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Pamela Magini
- Medical Genetics Sant'Orsola, Malpighi University Hospital of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Giulia Severi
- Medical Genetics Sant'Orsola, Malpighi University Hospital of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Chiara La Morgia
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, UOC Clinica Neurologica, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Gaetano Cantalupo
- Child Neuropsychiatry, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy.,UOC Neuropsichiatria Infantile, DAI Materno-Infantile, AOUI Verona, Verona, Italy
| | - Duccio Maria Cordelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.,Neuropsychiatry Sant'Orsola-Malpighi University Hospital of Bologna, Bologna, Italy
| | | | - Mohammed Nasser Al Kindi
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Mazin Al Khabouri
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,Department of ENT, Al Nahdha Hospital, Ministry of Health, Muscat, Oman
| | - Mansoor Salehi
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elisa Giorgio
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Francesco Pisani
- Child Neuropsychiatry Unit, Department of Medicine & Surgery, University of Parma, Parma, Italy
| | - Giovanni Romeo
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Valerio Carelli
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, UOC Clinica Neurologica, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Tommaso Pippucci
- Medical Genetics Sant'Orsola, Malpighi University Hospital of Bologna, Via Massarenti 9, 40138, Bologna, Italy.
| | - Marco Seri
- Medical Genetics Sant'Orsola, Malpighi University Hospital of Bologna, Via Massarenti 9, 40138, Bologna, Italy.,Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| |
Collapse
|
174
|
Parayil Sankaran B, Nagappa M, Chiplunkar S, Kothari S, Govindaraj P, Sinha S, Taly AB. Leukodystrophies and Genetic Leukoencephalopathies in Children Specified by Exome Sequencing in an Expanded Gene Panel. J Child Neurol 2020; 35:433-441. [PMID: 32180488 DOI: 10.1177/0883073820904294] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The overlapping clinical and neuroimaging phenotypes of leukodystrophies pose a diagnostic challenge to both clinicians and researchers alike. Studies on the application of exome sequencing in the diagnosis of leukodystrophies are emerging. We used targeted gene panel sequencing of 6440 genes to investigate the genetic etiology in a cohort of 50 children with neuroimaging diagnosis of leukodystrophy/genetic leukoencephalopathy of unknown etiology. These 50 patients without a definite biochemical or genetic diagnosis were derived from a cohort of 88 patients seen during a 2.5-year period (2015 January-2017 June). Patients who had diagnosis by biochemical or biopsy confirmation (n = 17) and patients with incomplete data or lack of follow-up (n = 21) were excluded. Exome sequencing identified variants in 30 (60%) patients, which included pathogenic or likely pathogenic variants in 28 and variants of unknown significance in 2. Among the patients with pathogenic or likely pathogenic variants, classic leukodystrophies constituted 13 (26%) and genetic leukoencephalopathies 15 (30%). The clinical and magnetic resonance imaging (MRI) findings and genetic features of the identified disorders are discussed.
Collapse
Affiliation(s)
- Bindu Parayil Sankaran
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, India
- Neuromuscular Lab, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Madhu Nagappa
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, India
- Neuromuscular Lab, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Shwetha Chiplunkar
- Neuromuscular Lab, National Institute of Mental Health and Neurosciences, Bangalore, India
- Department of Clinical Neurosciences, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Sonam Kothari
- Neuromuscular Lab, National Institute of Mental Health and Neurosciences, Bangalore, India
- Department of Clinical Neurosciences, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Periyasamy Govindaraj
- Neuromuscular Lab, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Sanjib Sinha
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Arun B Taly
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, India
- Neuromuscular Lab, National Institute of Mental Health and Neurosciences, Bangalore, India
| |
Collapse
|
175
|
Kalmár T, Szakszon K, Maróti Z, Zimmermann A, Máté A, Zombor M, Bereczki C, Sztriha L. A Novel Homozygous Frameshift WDR81 Mutation associated with Microlissencephaly, Corpus Callosum Agenesis, and Pontocerebellar Hypoplasia. J Pediatr Genet 2020; 10:159-163. [PMID: 33996189 DOI: 10.1055/s-0040-1712916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
Microlissencephaly is a brain malformation characterized by microcephaly and extremely simplified gyral pattern. It may be associated with corpus callosum agenesis and pontocerebellar hypoplasia. In this case report, we described two siblings, a boy and a girl, with this complex brain malformation and lack of any development. In the girl, exome sequencing of a gene set representing 4,813 genes revealed a homozygous AG deletion in exon 7 of the WDR81 gene, leading to a frameshift (c.4668_4669delAG, p.Gly1557AspfsTer16). The parents were heterozygous for this mutation. The boy died without proper genetic testing. Our findings expand the phenotypic and genotypic spectrum of WDR81 gene mutations.
Collapse
Affiliation(s)
- Tibor Kalmár
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Katalin Szakszon
- Department of Pediatrics, University of Debrecen, Debrecen, Hungary
| | - Zoltán Maróti
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Alíz Zimmermann
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Adrienn Máté
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Melinda Zombor
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Csaba Bereczki
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - László Sztriha
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| |
Collapse
|
176
|
Saredi S, Cauley ES, Ruggieri A, Spivey TM, Ardissone A, Mora M, Moroni I, Manzini MC. Myopathic changes associated with psychomotor delay and seizures caused by a novel homozygous mutation in TBCK. Muscle Nerve 2020; 62:266-271. [PMID: 32363625 DOI: 10.1002/mus.26907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 04/16/2020] [Accepted: 04/25/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Biallelic mutations in TBC1-domain containing kinase (TBCK) lead to hypotonia, global developmental delay with severe cognitive and motor deficits, and variable presentation of dysmorphic facial features and brain malformations. It remains unclear whether hypotonia in these individuals is purely neurogenic, or also caused by progressive muscle disease. METHODS Whole exome sequencing was performed on a family diagnosed with nonspecific myopathic changes by means of histological analysis and immunohistochemistry of muscle biopsy samples. RESULTS A novel homozygous truncation in TBCK was found in two sisters diagnosed with muscle disease and severe psychomotor delay. TBCK was completely absent in these patients. CONCLUSIONS Our findings identify a novel early truncating variant in TBCK associated with a severe presentation and add muscle disease to the variability of phenotypes associated with TBCK mutations. Inconsistent genotype/phenotype correlation could be ascribed to the multiple roles of TBCK in intracellular signaling and endolysosomal function in different tissues.
Collapse
Affiliation(s)
- Simona Saredi
- Neuromuscular Disease and Immunology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Edmund S Cauley
- Institute for Neuroscience and Department of Pharmacology and Physiology, George Washington University, Washington, DC
| | - Alessandra Ruggieri
- Neuromuscular Disease and Immunology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy.,Biology and Genetic Division, Molecular and Translational Medicine Department, University of Brescia, Brescia, Italy
| | - Tyler M Spivey
- Institute for Neuroscience and Department of Pharmacology and Physiology, George Washington University, Washington, DC
| | - Anna Ardissone
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marina Mora
- Neuromuscular Disease and Immunology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Isabella Moroni
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - M Chiara Manzini
- Institute for Neuroscience and Department of Pharmacology and Physiology, George Washington University, Washington, DC.,Child Health Institute of New Jersey and Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| |
Collapse
|
177
|
A defect in GPI synthesis as a suggested mechanism for the role of ARV1 in intellectual disability and seizures. Neurogenetics 2020; 21:259-267. [DOI: 10.1007/s10048-020-00615-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/05/2020] [Indexed: 01/05/2023]
|
178
|
Hartman TG, Yosovich K, Michaeli HG, Blumkin L, Ben-Sira L, Lev D, Lerman-Sagie T, Zerem A. Expanding the genotype-phenotype spectrum of ISCA2-related multiple mitochondrial dysfunction syndrome-cavitating leukoencephalopathy and prolonged survival. Neurogenetics 2020; 21:243-249. [PMID: 32424628 DOI: 10.1007/s10048-020-00611-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022]
Abstract
Iron-sulfur cluster assembly 2 (ISCA2)-related multiple mitochondrial dysfunction syndrome 4 (MMDS4) is a fatal autosomal recessive mitochondrial leukoencephalopathy. The disease typically manifests with rapid neurodevelopmental deterioration during the first months of life leading to a vegetative state and early death. MRI demonstrates a demyelinating leukodystrophy. We describe an eleven-year-old boy with a milder phenotype of ISCA2 related disorder manifesting as: normal early development, acute infantile neurologic deterioration leading to stable spastic quadriparesis, optic atrophy and mild cognitive impairment. The first MRI demonstrated a diffuse demyelinating leukodystrophy. A sequential MRI revealed white matter rarefaction with well-delineated cysts. The patient harbors two novel bi-allelic variants (p.Ala2Asp and p.Pro138Arg) in ISCA2 inherited from heterozygous carrier parents. This report expands the clinical spectrum of ISCA2-related disorders to include a milder phenotype with a longer life span and better psychomotor function and cavitating leukodystrophy on MRI. We discuss the possible genetic explanation for the different presentation.
Collapse
Affiliation(s)
- Tamar Gur Hartman
- Pediatric Neurology Unit, Wolfson Medical Center, Holon, Israel
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Keren Yosovich
- Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel
| | - Hila Gur Michaeli
- Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel
| | - Lubov Blumkin
- Pediatric Neurology Unit, Wolfson Medical Center, Holon, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liat Ben-Sira
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Radiology Unit, TASMC, Tel Aviv, Israel
| | - Dorit Lev
- Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tally Lerman-Sagie
- Pediatric Neurology Unit, Wolfson Medical Center, Holon, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ayelet Zerem
- Pediatric Neurology Unit, Wolfson Medical Center, Holon, Israel.
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Pediatric Neurology Unit, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
| |
Collapse
|
179
|
|
180
|
Davids M, Menezes M, Guo Y, McLean SD, Hakonarson H, Collins F, Worgan L, Billington CJ, Maric I, Littlejohn RO, Onyekweli T, Adams DR, Tifft CJ, Gahl WA, Wolfe LA, Christodoulou J, Malicdan MCV. Homozygous splice-variants in human ARV1 cause GPI-anchor synthesis deficiency. Mol Genet Metab 2020; 130:49-57. [PMID: 32165008 PMCID: PMC7303973 DOI: 10.1016/j.ymgme.2020.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/15/2020] [Accepted: 02/07/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND Mutations in the ARV1 Homolog, Fatty Acid Homeostasis Modulator (ARV1), have recently been described in association with early infantile epileptic encephalopathy 38. Affected individuals presented with epilepsy, ataxia, profound intellectual disability, visual impairment, and central hypotonia. In S. cerevisiae, Arv1 is thought to be involved in sphingolipid metabolism and glycophosphatidylinositol (GPI)-anchor synthesis. The function of ARV1 in human cells, however, has not been elucidated. METHODS Mutations were discovered through whole exome sequencing and alternate splicing was validated on the cDNA level. Expression of the variants was determined by qPCR and Western blot. Expression of GPI-anchored proteins on neutrophils and fibroblasts was analyzed by FACS and immunofluorescence microscopy, respectively. RESULTS Here we describe seven patients from two unrelated families with biallelic splice mutations in ARV1. The patients presented with early onset epilepsy, global developmental delays, profound hypotonia, delayed speech development, cortical visual impairment, and severe generalized cerebral and cerebellar atrophy. The splice variants resulted in decreased ARV1 expression and significant decreases in GPI-anchored protein on the membranes of neutrophils and fibroblasts, indicating that the loss of ARV1 results in impaired GPI-anchor synthesis. CONCLUSION Loss of GPI-anchored proteins on our patients' cells confirms that the yeast Arv1 function of GPI-anchor synthesis is conserved in humans. Overlap between the phenotypes in our patients and those reported for other GPI-anchor disorders suggests that ARV1-deficiency is a GPI-anchor synthesis disorder.
Collapse
Affiliation(s)
- Mariska Davids
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Minal Menezes
- Genetic Metabolic Disorders Research Unit, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Child and Adolescent Health and Genomic Medicine, Sydney Medical School, Sydney University, Sydney, NSW, Australia
| | - Yiran Guo
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Scott D McLean
- Department of Clinical Genetics, The Children's Hospital of San Antonio, San Antonio, TX, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Felicity Collins
- Discipline of Child and Adolescent Health and Genomic Medicine, Sydney Medical School, Sydney University, Sydney, NSW, Australia; Department of Clinical Genetics, Western Sydney Genetics Program, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Lisa Worgan
- Department of Clinical Genetics, Liverpool Hospital, Liverpool, NSW, Australia
| | - Charles J Billington
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Irina Maric
- Hematology Service, Clinical Center, NIH, Bethesda, MD, USA
| | | | - Tito Onyekweli
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - David R Adams
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cynthia J Tifft
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - William A Gahl
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lynne A Wolfe
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - John Christodoulou
- Genetic Metabolic Disorders Research Unit, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Child and Adolescent Health and Genomic Medicine, Sydney Medical School, Sydney University, Sydney, NSW, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Pediatrics, Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia.
| | - May Christine V Malicdan
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
181
|
Pontocerebellar hypoplasia type 11: Does the genetic defect determine timing of cerebellar pathology? Eur J Med Genet 2020; 63:103938. [PMID: 32360255 DOI: 10.1016/j.ejmg.2020.103938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/17/2020] [Accepted: 04/23/2020] [Indexed: 11/24/2022]
Abstract
Pontocerebellar hypoplasia (PCH) comprises a clinically and genetically heterogeneous group of disorders characterized by hypoplasia and degeneration of the cerebellum and ventral pons. To date at least 18 different clinical subtypes of PCH associated with pathogenic variants in 19 different genes have been described. Only recently, bi-allelic variants in TBC1D23 have been reported as the underlying molecular defect in seven index cases with a suspected non-degenerative form of PCH, PCH type 11 (PCH11). We used exome sequencing to investigate an individual with global developmental delay, ataxia, seizures, and progressive PCH. Brain volume was evaluated over a disease course of 14 years using volumetric magnetic resonance imaging (MRI). Volume alterations were compared to age-matched controls as well as data from children with PCH2. We identified a homozygous frameshift variant in exon 9 of 18 of TBC1D23 predicting a loss of protein function. Brain morphometry revealed a pattern of pontine, brain stem, and supratentorial volume loss similar to PCH2 patients although less pronounced. Intriguingly, cerebral MRI findings at the age of 1 and 15 years clearly showed progressive atrophy of the cerebellum, especially the hemispheres. In four of the cases reported in the literature cerebellar hemispheres could be evaluated on the MRIs displayed, they also showed atrophic foliae. While pontine hypoplasia and pronounced microcephaly are in line with previous reports on PCH11, our observations of clearly postnatal atrophy of the cerebellum argues for a different pathomechanism than in the other forms of PCH and supports the hypothesis that TBC1D23 deficiency predominantly interferes with postnatal rather than with prenatal cerebellar development.
Collapse
|
182
|
Poot M. Mutated NUP188 and Other Nucleoporins as Gateways to Developmental Syndromes. Mol Syndromol 2020; 11:1-3. [PMID: 32256295 DOI: 10.1159/000506410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2020] [Indexed: 11/19/2022] Open
|
183
|
Budzinska MI, Villarroel-Campos D, Golding M, Weston A, Collinson L, Snijders AP, Schiavo G. PTPN23 binds the dynein adaptor BICD1 and is required for endocytic sorting of neurotrophin receptors. J Cell Sci 2020; 133:jcs242412. [PMID: 32079660 PMCID: PMC7132798 DOI: 10.1242/jcs.242412] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/04/2020] [Indexed: 12/16/2022] Open
Abstract
Signalling by target-derived neurotrophins is essential for the correct development of the nervous system and its maintenance throughout life. Several aspects concerning the lifecycle of neurotrophins and their receptors have been characterised over the years, including the formation, endocytosis and trafficking of signalling-competent ligand-receptor complexes. However, the molecular mechanisms directing the sorting of activated neurotrophin receptors are still elusive. Previously, our laboratory identified Bicaudal-D1 (BICD1), a dynein motor adaptor, as a key factor for lysosomal degradation of brain-derived neurotrophic factor (BDNF)-activated TrkB (also known as NTRK2) and p75NTR (also known as NGFR) in motor neurons. Here, using a proteomics approach, we identified protein tyrosine phosphatase, non-receptor type 23 (PTPN23), a member of the endosomal sorting complexes required for transport (ESCRT) machinery, in the BICD1 interactome. Molecular mapping revealed that PTPN23 is not a canonical BICD1 cargo; instead, PTPN23 binds the N-terminus of BICD1, which is also essential for the recruitment of cytoplasmic dynein. In line with the BICD1-knockdown phenotype, loss of PTPN23 leads to increased accumulation of BDNF-activated p75NTR and TrkB in swollen vacuole-like compartments, suggesting that neuronal PTPN23 is a novel regulator of the endocytic sorting of neurotrophin receptors.
Collapse
Affiliation(s)
- Marta I Budzinska
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - David Villarroel-Campos
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Matthew Golding
- William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Anne Weston
- Electron Microscopy, The Francis Crick Institute, 1 Midland Road, London NW1 1ST, UK
| | - Lucy Collinson
- Electron Microscopy, The Francis Crick Institute, 1 Midland Road, London NW1 1ST, UK
| | - Ambrosius P Snijders
- Proteomics Science Technology Platforms, The Francis Crick Institute, 1 Midland Road, London NW1 1ST, UK
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
- Discoveries Centre for Regenerative and Precision Medicine, University College London Campus, London WC1N 3BG, UK
| |
Collapse
|
184
|
Abstract
At least 150 human proteins are glycosylphosphatidylinositol-anchored proteins (GPI-APs). The protein moiety of GPI-APs lacking transmembrane domains is anchored to the plasma membrane with GPI covalently attached to the C-terminus. The GPI consists of the conserved core glycan, phosphatidylinositol and glycan side chains. The entire GPI-AP is anchored to the outer leaflet of the lipid bilayer by insertion of fatty chains of phosphatidylinositol. Because of GPI-dependent membrane anchoring, GPI-APs have some unique characteristics. The most prominent feature of GPI-APs is their association with membrane microdomains or membrane rafts. In the polarized cells such as epithelial cells, many GPI-APs are exclusively expressed in the apical surfaces, whereas some GPI-APs are preferentially expressed in the basolateral surfaces. Several GPI-APs act as transcytotic transporters carrying their ligands from one compartment to another. Some GPI-APs are shed from the membrane after cleavage within the GPI by a GPI-specific phospholipase or a glycosidase. In this review, I will summarize the current understanding of GPI-AP biosynthesis in mammalian cells and discuss examples of GPI-dependent functions of mammalian GPI-APs.
Collapse
Affiliation(s)
- Taroh Kinoshita
- Yabumoto Department of Intractable Disease Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, Japan
| |
Collapse
|
185
|
Ansar M, Paracha SA, Serretti A, Sarwar MT, Khan J, Ranza E, Falconnet E, Iwaszkiewicz J, Shah SF, Qaisar AA, Santoni FA, Zoete V, Megarbane A, Ahmed J, Colombo R, Makrythanasis P, Antonarakis SE. Biallelic variants in FBXL3 cause intellectual disability, delayed motor development and short stature. Hum Mol Genet 2020; 28:972-979. [PMID: 30481285 DOI: 10.1093/hmg/ddy406] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 12/20/2022] Open
Abstract
FBXL3 (F-Box and Leucine Rich Repeat Protein 3) encodes a protein that contains an F-box and several tandem leucine-rich repeats (LRR) domains. FBXL3 is part of the SCF (Skp1-Cullin-F box protein) ubiquitin ligase complex that binds and leads to phosphorylation-dependent degradation of the central clock protein cryptochromes (CRY1 and CRY2) by the proteasome and its absence causes circadian phenotypes in mice and behavioral problems. No FBXL3-related phenotypes have been described in humans. By a combination of exome sequencing and homozygosity mapping, we analyzed two consanguineous families with intellectual disability and identified homozygous loss-of-function (LoF) variants in FBXL3. In the first family, from Pakistan, an FBXL3 frameshift variant [NM_012158.2:c.885delT:p.(Leu295Phefs*25)] was the onlysegregating variant in five affected individuals in two family loops (LOD score: 3.12). In the second family, from Lebanon, we identified a nonsense variant [NM_012158.2:c.445C>T:p.(Arg149*)]. In a third patient from Italy, a likely deleterious non-synonymous variant [NM_012158.2:c.1072T>C:p.(Cys358Arg)] was identified in homozygosity. Protein 3D modeling predicted that the Cys358Arg change influences the binding with CRY2 by destabilizing the structure of the FBXL3, suggesting that this variant is also likely to be LoF. The eight affected individuals from the three families presented with a similar phenotype that included intellectual disability, developmental delay, short stature and mild facial dysmorphism, mainly large nose with a bulbous tip. The phenotypic similarity and the segregation analysis suggest that FBXL3 biallelic, LoF variants link this gene with syndromic autosomal recessive developmental delay/intellectual disability.
Collapse
Affiliation(s)
- Muhammad Ansar
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Sohail Aziz Paracha
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Muhammad T Sarwar
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Jamshed Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Emmanuelle Ranza
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,Service of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - Emilie Falconnet
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Justyna Iwaszkiewicz
- Swiss Institute of Bioinformatics, Molecular Modeling Group, Batiment Genopode, Unil Sorge, Lausanne, Switzerland
| | - Sayyed Fahim Shah
- Department of Medicine, KMU Institute of Medical Sciences, Kohat, Pakistan
| | | | - Federico A Santoni
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,Department of Endocrinology Diabetes and Metabolism, University Hospital of Lausanne, Lausanne, Switzerland
| | - Vincent Zoete
- Swiss Institute of Bioinformatics, Molecular Modeling Group, Batiment Genopode, Unil Sorge, Lausanne, Switzerland.,Department of Fundamental Oncology, Lausanne University, Ludwig Institute for Cancer Research, Route de la Corniche 9A, Epalinges, Switzerland
| | | | - Jawad Ahmed
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Roberto Colombo
- Institute of Clinical Biochemistry, Faculty of Medicine, Catholic University IRCCS Policlinico Gemelli, Rome, Italy.,Center for the Study of Rare Hereditary Diseases, Niguarda Ca' Granda Metropolitan Hospital, Milan, Italy
| | - Periklis Makrythanasis
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,Service of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland.,iGE3 Institute of Genetics and Genomics of Geneva, Geneva, Switzerland
| |
Collapse
|
186
|
Casamassa A, Ferrari D, Gelati M, Carella M, Vescovi AL, Rosati J. A Link between Genetic Disorders and Cellular Impairment, Using Human Induced Pluripotent Stem Cells to Reveal the Functional Consequences of Copy Number Variations in the Central Nervous System-A Close Look at Chromosome 15. Int J Mol Sci 2020; 21:ijms21051860. [PMID: 32182809 PMCID: PMC7084702 DOI: 10.3390/ijms21051860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 12/28/2022] Open
Abstract
Recent cutting-edge human genetics technology has allowed us to identify copy number variations (CNVs) and has provided new insights for understanding causative mechanisms of human diseases. A growing number of studies show that CNVs could be associated with physiological mechanisms linked to evolutionary trigger, as well as to the pathogenesis of various diseases, including cancer, autoimmune disease and mental disorders such as autism spectrum disorders, schizophrenia, intellectual disabilities or attention-deficit/hyperactivity disorder. Their incomplete penetrance and variable expressivity make diagnosis difficult and hinder comprehension of the mechanistic bases of these disorders. Additional elements such as co-presence of other CNVs, genomic background and environmental factors are involved in determining the final phenotype associated with a CNV. Genetically engineered animal models are helpful tools for understanding the behavioral consequences of CNVs. However, the genetic background and the biology of these animal model systems have sometimes led to confusing results. New cellular models obtained through somatic cellular reprogramming technology that produce induced pluripotent stem cells (iPSCs) from human subjects are being used to explore the mechanisms involved in the pathogenic consequences of CNVs. Considering the vast quantity of CNVs found in the human genome, we intend to focus on reviewing the current literature on the use of iPSCs carrying CNVs on chromosome 15, highlighting advantages and limits of this system with respect to mouse model systems.
Collapse
Affiliation(s)
- Alessia Casamassa
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Foggia, Italy;
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Viale Abramo Lincoln 5, 81100 Caserta, Italy
| | - Daniela Ferrari
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy;
| | - Maurizio Gelati
- Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Foggia, Italy; (M.G.); (M.C.)
| | - Massimo Carella
- Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Foggia, Italy; (M.G.); (M.C.)
| | - Angelo Luigi Vescovi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy;
- Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Foggia, Italy; (M.G.); (M.C.)
- Correspondence: (A.L.V.); (J.R.)
| | - Jessica Rosati
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Foggia, Italy;
- Correspondence: (A.L.V.); (J.R.)
| |
Collapse
|
187
|
CNP deficiency causes severe hypomyelinating leukodystrophy in humans. Hum Genet 2020; 139:615-622. [PMID: 32128616 DOI: 10.1007/s00439-020-02144-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/21/2020] [Indexed: 12/15/2022]
Abstract
Myelin pathologies are an important cause of multifactorial, e.g., multiple sclerosis, and Mendelian, e.g., leukodystrophy, neurological disorders. CNP encodes a major component of myelin and its CNS expression is exclusive to myelin-forming oligodendrocytes. Deficiency of CNP in mouse causes a lethal white matter neurodegenerative phenotype. However, a corresponding human phenotype has not been described to date. Here, we describe a multiplex consanguineous family from Oman in which multiple affected members display a remarkably consistent phenotype of neuroregression with profound brain white matter loss. A novel homozygous missense variant in CNP was identified by combined autozygome/exome analysis. Immunoblot analysis suggests that this is a null allele in patient fibroblasts, which display abnormal F-actin organization. Our results suggest the establishment of a novel CNP-related hypomyelinating leukodystrophy in humans.
Collapse
|
188
|
Coste de Bagneaux P, von Elsner L, Bierhals T, Campiglio M, Johannsen J, Obermair GJ, Hempel M, Flucher BE, Kutsche K. A homozygous missense variant in CACNB4 encoding the auxiliary calcium channel beta4 subunit causes a severe neurodevelopmental disorder and impairs channel and non-channel functions. PLoS Genet 2020; 16:e1008625. [PMID: 32176688 PMCID: PMC7176149 DOI: 10.1371/journal.pgen.1008625] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 04/22/2020] [Accepted: 01/23/2020] [Indexed: 12/27/2022] Open
Abstract
P/Q-type channels are the principal presynaptic calcium channels in brain functioning in neurotransmitter release. They are composed of the pore-forming CaV2.1 α1 subunit and the auxiliary α2δ-2 and β4 subunits. β4 is encoded by CACNB4, and its multiple splice variants serve isoform-specific functions as channel subunits and transcriptional regulators in the nucleus. In two siblings with intellectual disability, psychomotor retardation, blindness, epilepsy, movement disorder and cerebellar atrophy we identified rare homozygous variants in the genes LTBP1, EMILIN1, CACNB4, MINAR1, DHX38 and MYO15 by whole-exome sequencing. In silico tools, animal model, clinical, and genetic data suggest the p.(Leu126Pro) CACNB4 variant to be likely pathogenic. To investigate the functional consequences of the CACNB4 variant, we introduced the corresponding mutation L125P into rat β4b cDNA. Heterologously expressed wild-type β4b associated with GFP-CaV1.2 and accumulated in presynaptic boutons of cultured hippocampal neurons. In contrast, the β4b-L125P mutant failed to incorporate into calcium channel complexes and to cluster presynaptically. When co-expressed with CaV2.1 in tsA201 cells, β4b and β4b-L125P augmented the calcium current amplitudes, however, β4b-L125P failed to stably complex with α1 subunits. These results indicate that p.Leu125Pro disrupts the stable association of β4b with native calcium channel complexes, whereas membrane incorporation, modulation of current density and activation properties of heterologously expressed channels remained intact. Wildtype β4b was specifically targeted to the nuclei of quiescent excitatory cells. Importantly, the p.Leu125Pro mutation abolished nuclear targeting of β4b in cultured myotubes and hippocampal neurons. While binding of β4b to the known interaction partner PPP2R5D (B56δ) was not affected by the mutation, complex formation between β4b-L125P and the neuronal TRAF2 and NCK interacting kinase (TNIK) seemed to be disturbed. In summary, our data suggest that the homozygous CACNB4 p.(Leu126Pro) variant underlies the severe neurological phenotype in the two siblings, most likely by impairing both channel and non-channel functions of β4b.
Collapse
Affiliation(s)
| | - Leonie von Elsner
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tatjana Bierhals
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marta Campiglio
- Department of Physiology and Medical Physics, Medical University Innsbruck, Innsbruck, Austria
| | - Jessika Johannsen
- Childrens Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerald J. Obermair
- Department of Physiology and Medical Physics, Medical University Innsbruck, Innsbruck, Austria
- Division Physiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bernhard E. Flucher
- Department of Physiology and Medical Physics, Medical University Innsbruck, Innsbruck, Austria
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
189
|
Tuc E, Bengur FB, Aykut A, Sahin O, Alanay Y. The third family with TAF6-related phenotype: Alazami-Yuan syndrome. Clin Genet 2020; 97:795-796. [PMID: 32030742 DOI: 10.1111/cge.13711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Ecenur Tuc
- Department of Pediatrics, Pediatric Genetics Unit, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| | - Fuat Baris Bengur
- Department of Pediatrics, Pediatric Genetics Unit, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| | - Aslan Aykut
- Department of Ophthalmology, Marmara University School of Medicine, Istanbul, Turkey
| | - Ozlem Sahin
- Department of Ophthalmology, Marmara University School of Medicine, Istanbul, Turkey
| | - Yasemin Alanay
- Department of Pediatrics, Pediatric Genetics Unit, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| |
Collapse
|
190
|
Janakiraman U, Yu J, Moutal A, Chinnasamy D, Boinon L, Batchelor SN, Anandhan A, Khanna R, Nelson MA. TAF1-gene editing alters the morphology and function of the cerebellum and cerebral cortex. Neurobiol Dis 2019; 132:104539. [PMID: 31344492 PMCID: PMC7197880 DOI: 10.1016/j.nbd.2019.104539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/20/2019] [Accepted: 07/19/2019] [Indexed: 10/26/2022] Open
Abstract
TAF1/MRSX33 intellectual disability syndrome is an X-linked disorder caused by loss-of-function mutations in the TAF1 gene. How these mutations cause dysmorphology, hypotonia, intellectual and motor defects is unknown. Mouse models which have embryonically targeted TAF1 have failed, possibly due to TAF1 being essential for viability, preferentially expressed in early brain development, and intolerant of mutation. Novel animal models are valuable tools for understanding neuronal pathology. Here, we report the development and characterization of a novel animal model for TAF1 ID syndrome in which the TAF1 gene is deleted in embryonic rats using clustered regularly interspaced short palindromic repeats (CRISPR) associated protein 9 (Cas9) technology and somatic brain transgenesis mediated by lentiviral transduction. Rat pups, post-natal day 3, were subjected to intracerebroventricular (ICV) injection of either gRNA-control or gRNA-TAF1 vectors. Rats were subjected to a battery of behavioral tests followed by histopathological analyses of brains at post-natal day 14 and day 35. TAF1-edited rats exhibited behavioral deficits at both the neonatal and juvenile stages of development. Deletion of TAF1 lead to a hypoplasia and loss of the Purkinje cells. We also observed a decreased in GFAP positive astrocytes and an increase in Iba1 positive microglia within the granular layer of the cerebellum in TAF1-edited animals. Immunostaining revealed a reduction in the expression of the CaV3.1 T-type calcium channel. Abnormal motor symptoms in TAF1-edited rats were associated with irregular cerebellar output caused by changes in the intrinsic activity of the Purkinje cells due to loss of pre-synaptic CaV3.1. This animal model provides a powerful new tool for studies of neuronal dysfunction in conditions associated with TAF1 abnormalities and should prove useful for developing therapeutic strategies to treat TAF1 ID syndrome.
Collapse
Affiliation(s)
- Udaiyappan Janakiraman
- Department of Pathology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA
| | - Jie Yu
- Department of Pharmacology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA; College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China
| | - Aubin Moutal
- Department of Pharmacology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA
| | - Dhanalakshmi Chinnasamy
- Department of Pathology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA
| | - Lisa Boinon
- Department of Pharmacology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA
| | - Shelby N Batchelor
- Department of Pathology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA
| | - Annaduri Anandhan
- Department of Pharmacology and Toxicology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA
| | - Rajesh Khanna
- Department of Pathology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA; Department of Pharmacology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA; The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, AZ, United States of America; The BIO5 Institute, University of Arizona, United States of America
| | - Mark A Nelson
- Department of Pathology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA.
| |
Collapse
|
191
|
Caspar SM, Dubacher N, Kopps AM, Meienberg J, Henggeler C, Matyas G. Clinical sequencing: From raw data to diagnosis with lifetime value. Clin Genet 2019; 93:508-519. [PMID: 29206278 DOI: 10.1111/cge.13190] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 12/22/2022]
Abstract
High-throughput sequencing (HTS) has revolutionized genetics by enabling the detection of sequence variants at hitherto unprecedented large scale. Despite these advances, however, there are still remaining challenges in the complete coverage of targeted regions (genes, exome or genome) as well as in HTS data analysis and interpretation. Moreover, it is easy to get overwhelmed by the plethora of available methods and tools for HTS. Here, we review the step-by-step process from the generation of sequence data to molecular diagnosis of Mendelian diseases. Highlighting advantages and limitations, this review addresses the current state of (1) HTS technologies, considering targeted, whole-exome, and whole-genome sequencing on short- and long-read platforms; (2) read alignment, variant calling and interpretation; as well as (3) regulatory issues related to genetic counseling, reimbursement, and data storage.
Collapse
Affiliation(s)
- S M Caspar
- Center for Cardiovascular Genetics and Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland
| | - N Dubacher
- Center for Cardiovascular Genetics and Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland
| | - A M Kopps
- Center for Cardiovascular Genetics and Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland
| | - J Meienberg
- Center for Cardiovascular Genetics and Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland
| | - C Henggeler
- Center for Cardiovascular Genetics and Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland
| | - G Matyas
- Center for Cardiovascular Genetics and Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
192
|
In vivo epigenetic editing of Sema6a promoter reverses transcallosal dysconnectivity caused by C11orf46/Arl14ep risk gene. Nat Commun 2019; 10:4112. [PMID: 31511512 PMCID: PMC6739341 DOI: 10.1038/s41467-019-12013-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 08/12/2019] [Indexed: 12/15/2022] Open
Abstract
Many neuropsychiatric risk genes contribute to epigenetic regulation but little is known about specific chromatin-associated mechanisms governing the formation of neuronal connectivity. Here we show that transcallosal connectivity is critically dependent on C11orf46, a nuclear protein encoded in the chromosome 11p13 WAGR risk locus. C11orf46 haploinsufficiency was associated with hypoplasia of the corpus callosum. C11orf46 knockdown disrupted transcallosal projections and was rescued by wild type C11orf46 but not the C11orf46R236H mutant associated with intellectual disability. Multiple genes encoding key regulators of axonal development, including Sema6a, were hyperexpressed in C11orf46-knockdown neurons. RNA-guided epigenetic editing of Sema6a gene promoters via a dCas9-SunTag system with C11orf46 binding normalized SEMA6A expression and rescued transcallosal dysconnectivity via repressive chromatin remodeling by the SETDB1 repressor complex. Our study demonstrates that interhemispheric communication is sensitive to locus-specific remodeling of neuronal chromatin, revealing the therapeutic potential for shaping the brain's connectome via gene-targeted designer activators and repressor proteins.
Collapse
|
193
|
Boonsawat P, Joset P, Steindl K, Oneda B, Gogoll L, Azzarello-Burri S, Sheth F, Datar C, Verma IC, Puri RD, Zollino M, Bachmann-Gagescu R, Niedrist D, Papik M, Figueiro-Silva J, Masood R, Zweier M, Kraemer D, Lincoln S, Rodan L, Passemard S, Drunat S, Verloes A, Horn AHC, Sticht H, Steinfeld R, Plecko B, Latal B, Jenni O, Asadollahi R, Rauch A. Elucidation of the phenotypic spectrum and genetic landscape in primary and secondary microcephaly. Genet Med 2019; 21:2043-2058. [PMID: 30842647 PMCID: PMC6752480 DOI: 10.1038/s41436-019-0464-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/11/2019] [Indexed: 01/28/2023] Open
Abstract
PURPOSE Microcephaly is a sign of many genetic conditions but has been rarely systematically evaluated. We therefore comprehensively studied the clinical and genetic landscape of an unselected cohort of patients with microcephaly. METHODS We performed clinical assessment, high-resolution chromosomal microarray analysis, exome sequencing, and functional studies in 62 patients (58% with primary microcephaly [PM], 27% with secondary microcephaly [SM], and 15% of unknown onset). RESULTS We found severity of developmental delay/intellectual disability correlating with severity of microcephaly in PM, but not SM. We detected causative variants in 48.4% of patients and found divergent inheritance and variant pattern for PM (mainly recessive and likely gene-disrupting [LGD]) versus SM (all dominant de novo and evenly LGD or missense). While centrosome-related pathways were solely identified in PM, transcriptional regulation was the most frequently affected pathway in both SM and PM. Unexpectedly, we found causative variants in different mitochondria-related genes accounting for ~5% of patients, which emphasizes their role even in syndromic PM. Additionally, we delineated novel candidate genes involved in centrosome-related pathway (SPAG5, TEDC1), Wnt signaling (VPS26A, ZNRF3), and RNA trafficking (DDX1). CONCLUSION Our findings enable improved evaluation and genetic counseling of PM and SM patients and further elucidate microcephaly pathways.
Collapse
Affiliation(s)
- Paranchai Boonsawat
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Pascal Joset
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Beatrice Oneda
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Laura Gogoll
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | | | - Frenny Sheth
- FRIGE's Institute of Human Genetics, FRIGE House, Satellite, Ahmedabad, India
| | - Chaitanya Datar
- Sahyadri Medical Genetics and Tissue Engineering Facility, Kothrud, Pune and Bharati Hospital and Research Center Dhankawadi, Pune, India
| | - Ishwar C Verma
- Institute of Medical Genetics & Genomics, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, India
| | - Ratna Dua Puri
- Institute of Medical Genetics & Genomics, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, India
| | - Marcella Zollino
- Unità Operativa Complessa di Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, and Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Dunja Niedrist
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Michael Papik
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Joana Figueiro-Silva
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Rahim Masood
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Markus Zweier
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Dennis Kraemer
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Sharyn Lincoln
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Lance Rodan
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Sandrine Passemard
- Service de Neuropédiatrie, Hôpital Universitaire Robert Debré, APHP, Paris, France
- Département de Génétique, Hôpital Universitaire Robert Debré, APHP, Paris, France
| | - Séverine Drunat
- Département de Génétique, Hôpital Universitaire Robert Debré, APHP, Paris, France
| | - Alain Verloes
- Département de Génétique, Hôpital Universitaire Robert Debré, APHP, Paris, France
| | - Anselm H C Horn
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Robert Steinfeld
- Division of Pediatric Neurology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Barbara Plecko
- Division of Pediatric Neurology, University Children's Hospital Zurich, Zurich, Switzerland
- Department of Pediatrics and Adolescent Medicine, Division of General Pediatrics, Medical University of Graz, Graz, Austria
| | - Beatrice Latal
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Oskar Jenni
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Reza Asadollahi
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland.
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland.
- Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
194
|
Rahman MM, Uddin KF, Al Jezawi NK, Karuvantevida N, Akter H, Dity NJ, Rahaman MA, Begum M, Rahaman MA, Baqui MA, Salwa Z, Islam S, Woodbury-Smith M, Basiruzzaman M, Uddin M. Gonadal mosaicism of large terminal de novo duplication and deletion in siblings with variable intellectual disability phenotypes. Mol Genet Genomic Med 2019; 7:e00954. [PMID: 31475484 PMCID: PMC6785528 DOI: 10.1002/mgg3.954] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/15/2022] Open
Abstract
Background Intellectual disability (ID) is a complex condition that can impact multiple domains of development. The genetic contribution to ID’s etiology is significant, with more than 100 implicated genes and loci currently identified. The majority of such variants are rare and de novo genetic mutations. Methods We have applied whole‐genome microarray to identify large, rare, clinically relevant copy number variants (CNVs). We have applied well‐established algorithms for variants call. Quantitative polymerase chain reaction (qPCR) was applied to validate the variants using three technical replicates for each family member. To assess whether the copy number variation was due to balanced translocation or mosaicism, we further conducted droplet digital PCR (ddPCR) on the whole family. We have, as well, applied “critical‐exon” mapping, human developmental brain transcriptome, and a database of known associated neurodevelopmental disorder variants to identify candidate genes. Results Here we present two siblings who are both impacted by a large terminal duplication and a deletion. Whole‐genome microarray revealed an 18.82 megabase (MB) duplication at terminal locus (7q34‐q36.3) of chromosome 7 and a 3.90 MB deletion impacting the terminal locus (15q26.3) of chromosome 15. qPCR and ddPCR experiments confirmed the de novo origin of the variants and the co‐occurrence of these two de novo events among the siblings, but their absence in both parents, implicates an unbalanced translocation that could have mal‐segregated among the siblings or a possible germline mosaicism. These terminal events impact IGF1R, CNTNAP2, and DPP6, shown to be strongly associated with neurodevelopmental disorders. Detailed clinical examination of the siblings revealed the presence of both shared and distinct phenotypic features. Conclusions This study identified two large rare terminal de novo events impacting two siblings. Further phenotypic investigation highlights that even in the presence of identical large high penetrant variants, spectrum of clinical features can be different between the siblings.
Collapse
Affiliation(s)
| | - Km Furkan Uddin
- NeuroGen Technologies Ltd., Dhaka, Bangladesh.,Holy Family Red Crescent Medical College, Dhaka, Bangladesh
| | - Nesreen K Al Jezawi
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Noushad Karuvantevida
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.,Department of Biotechnology, Bharathidasan University, Tiruchirappalli, India
| | | | | | | | | | | | - Md Abdul Baqui
- NeuroGen Technologies Ltd., Dhaka, Bangladesh.,Holy Family Red Crescent Medical College, Dhaka, Bangladesh
| | | | | | - Marc Woodbury-Smith
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.,The Centre for Applied Genomics, Department of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mohammed Basiruzzaman
- NeuroGen Technologies Ltd., Dhaka, Bangladesh.,Department of Neurology, Dhaka Medical College Hospital, Dhaka, Bangladesh
| | - Mohammed Uddin
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.,The Centre for Applied Genomics, Department of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
195
|
Schneeberger PE, Bierhals T, Neu A, Hempel M, Kutsche K. de novo MEPCE nonsense variant associated with a neurodevelopmental disorder causes disintegration of 7SK snRNP and enhanced RNA polymerase II activation. Sci Rep 2019; 9:12516. [PMID: 31467394 PMCID: PMC6715695 DOI: 10.1038/s41598-019-49032-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023] Open
Abstract
In eukaryotes, the elongation phase of transcription by RNA polymerase II (RNAP II) is regulated by the transcription elongation factor b (P-TEFb), composed of Cyclin-T1 and cyclin-dependent kinase 9. The release of RNAP II is mediated by phosphorylation through P-TEFb that in turn is under control by the inhibitory 7SK small nuclear ribonucleoprotein (snRNP) complex. The 7SK snRNP consists of the 7SK non-coding RNA and the proteins MEPCE, LARP7, and HEXIM1/2. Biallelic LARP7 loss-of-function variants underlie Alazami syndrome characterized by growth retardation and intellectual disability. We report a boy with global developmental delay and seizures carrying the de novo MEPCE nonsense variant c.1552 C > T/p.(Arg518*). mRNA and protein analyses identified nonsense-mediated mRNA decay to underlie the decreased amount of MEPCE in patient fibroblasts followed by LARP7 and 7SK snRNA downregulation and HEXIM1 upregulation. Reduced binding of HEXIM1 to Cyclin-T1, hyperphosphorylation of the RNAP II C-terminal domain, and upregulated expression of ID2, ID3, MRPL11 and snRNAs U1, U2 and U4 in patient cells are suggestive of enhanced activation of P-TEFb. Flavopiridol treatment and ectopic MEPCE protein expression in patient fibroblasts rescued increased expression of six RNAP II-sensitive genes and suggested a possible repressive effect of MEPCE on P-TEFb-dependent transcription of specific genes.
Collapse
Affiliation(s)
- Pauline E Schneeberger
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tatjana Bierhals
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Axel Neu
- Childrens Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
196
|
Fujita A, Tsukaguchi H, Koshimizu E, Nakazato H, Itoh K, Kuraoka S, Komohara Y, Shiina M, Nakamura S, Kitajima M, Tsurusaki Y, Miyatake S, Ogata K, Iijima K, Matsumoto N, Miyake N. Homozygous splicing mutation in NUP133 causes Galloway-Mowat syndrome. Ann Neurol 2019; 84:814-828. [PMID: 30427554 DOI: 10.1002/ana.25370] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Galloway-Mowat syndrome (GAMOS) is a neural and renal disorder, characterized by microcephaly, brain anomalies, and early onset nephrotic syndrome. Biallelic mutations in WDR73 and the 4 subunit genes of the KEOPS complex are reported to cause GAMOS. Furthermore, an identical homozygous NUP107 (nucleoporin 107kDa) mutation was identified in 4 GAMOS-like families, although biallelic NUP107 mutations were originally identified in steroid-resistant nephrotic syndrome. NUP107 and NUP133 (nucleoporin 133kDa) are interacting subunits of the nuclear pore complex in the nuclear envelope during interphase, and these proteins are also involved in centrosome positioning and spindle assembly during mitosis. METHODS Linkage analysis and whole exome sequencing were performed in a previously reported GAMOS family with brain atrophy and steroid-resistant nephrotic syndrome. RESULTS We identified a homozygous NUP133 mutation, c.3335-11T>A, which results in the insertion of 9bp of intronic sequence between exons 25 and 26 in the mutant transcript. NUP133 and NUP107 interaction was impaired by the NUP133 mutation based on an immunoprecipitation assay. Importantly, focal cortical dysplasia type IIa was recognized in the brain of an autopsied patient and focal segmental glomerulosclerosis was confirmed in the kidneys of the 3 examined patients. A nup133-knockdown zebrafish model exhibited microcephaly, fewer neuronal cells, underdeveloped glomeruli, and fusion of the foot processes of the podocytes, which mimicked human GAMOS features. nup133 morphants could be rescued by human wild-type NUP133 mRNA but not by mutant mRNA. INTERPRETATION These data indicate that the biallelic NUP133 loss-of-function mutation causes GAMOS. Ann Neurol 2018;84:814-828.
Collapse
Affiliation(s)
- Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama
| | | | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama
| | - Hitoshi Nakazato
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto
| | - Kyoko Itoh
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto
| | - Shohei Kuraoka
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto
| | - Masaaki Shiina
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama
| | - Shohei Nakamura
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama
| | - Mika Kitajima
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Kumamoto
| | | | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama
| | - Kazuhiro Ogata
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama
| |
Collapse
|
197
|
Phenotype and mutation expansion of the PTPN23 associated disorder characterized by neurodevelopmental delay and structural brain abnormalities. Eur J Hum Genet 2019; 28:76-87. [PMID: 31395947 PMCID: PMC6906308 DOI: 10.1038/s41431-019-0487-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 06/25/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022] Open
Abstract
PTPN23 is a His-domain protein-tyrosine phosphatase implicated in ciliogenesis, the endosomal sorting complex required for transport (ESCRT) pathway, and RNA splicing. Until recently, no defined human phenotype had been associated with alterations in this gene. We identified and report a cohort of seven patients with either homozygous or compound heterozygous rare deleterious variants in PTPN23. Combined with four patients previously reported, a total of 11 patients with this disorder have now been identified. We expand the phenotypic and variation spectrum associated with defects in this gene. Patients have strong phenotypic overlap, suggesting a defined autosomal recessive syndrome caused by reduced function of PTPN23. Shared characteristics of affected individuals include developmental delay, brain abnormalities (mainly ventriculomegaly and/or brain atrophy), intellectual disability, spasticity, language disorder, microcephaly, optic atrophy, and seizures. We observe a broad range of variants across patients that are likely strongly reducing the expression or disrupting the function of the protein. However, we do not observe any patients with an allele combination predicted to result in complete loss of function of PTPN23, as this is likely incompatible with life, consistent with reported embryonic lethality in the mouse. None of the observed or reported variants are recurrent, although some have been identified in homozygosis in patients from consanguineous populations. This study expands the phenotypic and molecular spectrum of PTPN23 associated disease and identifies major shared features among patients affected with this disorder, while providing additional support to the important role of PTPN23 in human nervous and visual system development and function.
Collapse
|
198
|
Diquigiovanni C, Bergamini C, Diaz R, Liparulo I, Bianco F, Masin L, Baldassarro VA, Rizzardi N, Tranchina A, Buscherini F, Wischmeijer A, Pippucci T, Scarano E, Cordelli DM, Fato R, Seri M, Paracchini S, Bonora E. A novel mutation in SPART gene causes a severe neurodevelopmental delay due to mitochondrial dysfunction with complex I impairments and altered pyruvate metabolism. FASEB J 2019; 33:11284-11302. [PMID: 31314595 DOI: 10.1096/fj.201802722r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Loss-of-function mutations in the SPART gene cause Troyer syndrome, a recessive form of spastic paraplegia resulting in muscle weakness, short stature, and cognitive defects. SPART encodes for Spartin, a protein linked to endosomal trafficking and mitochondrial membrane potential maintenance. Here, we identified with whole exome sequencing (WES) a novel frameshift mutation in the SPART gene in 2 brothers presenting an uncharacterized developmental delay and short stature. Functional characterization in an SH-SY5Y cell model shows that this mutation is associated with increased neurite outgrowth. These cells also show a marked decrease in mitochondrial complex I (NADH dehydrogenase) activity, coupled to decreased ATP synthesis and defective mitochondrial membrane potential. The cells also presented an increase in reactive oxygen species, extracellular pyruvate, and NADH levels, consistent with impaired complex I activity. In concordance with a severe mitochondrial failure, Spartin loss also led to an altered intracellular Ca2+ homeostasis that was restored after transient expression of wild-type Spartin. Our data provide for the first time a thorough assessment of Spartin loss effects, including impaired complex I activity coupled to increased extracellular pyruvate. In summary, through a WES study we assign a diagnosis of Troyer syndrome to otherwise undiagnosed patients, and by functional characterization we show that the novel mutation in SPART leads to a profound bioenergetic imbalance.-Diquigiovanni, C., Bergamini, C., Diaz, R., Liparulo, I., Bianco, F., Masin, L., Baldassarro, V. A., Rizzardi, N., Tranchina, A., Buscherini, F., Wischmeijer, A., Pippucci, T., Scarano, E., Cordelli, D. M., Fato, R., Seri, M., Paracchini, S., Bonora, E. A novel mutation in SPART gene causes a severe neurodevelopmental delay due to mitochondrial dysfunction with complex I impairments and altered pyruvate metabolism.
Collapse
Affiliation(s)
- Chiara Diquigiovanni
- Department of Medical and Surgical Sciences (DIMEC), St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Christian Bergamini
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| | - Rebeca Diaz
- School of Medicine, University of St. Andrews, St. Andrews, United Kingdom
| | - Irene Liparulo
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| | - Francesca Bianco
- Department of Medical and Surgical Sciences (DIMEC), St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Luca Masin
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| | | | - Nicola Rizzardi
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| | - Antonia Tranchina
- Department of Medical and Surgical Sciences (DIMEC), St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Francesco Buscherini
- Department of Medical and Surgical Sciences (DIMEC), St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Anita Wischmeijer
- Department of Pediatrics, Clinical Genetics Service, Regional Hospital of South Tyrol, Bolzano, Italy
| | - Tommaso Pippucci
- Department of Medical and Surgical Sciences (DIMEC), St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Emanuela Scarano
- Rare Disease Unit, Department of Pediatrics, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Duccio Maria Cordelli
- Child Neurology and Psychiatry Unit, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Romana Fato
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| | - Marco Seri
- Department of Medical and Surgical Sciences (DIMEC), St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Silvia Paracchini
- School of Medicine, University of St. Andrews, St. Andrews, United Kingdom
| | - Elena Bonora
- Department of Medical and Surgical Sciences (DIMEC), St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
199
|
Hancarova M, Babikyan D, Bendova S, Midyan S, Prchalova D, Shahsuvaryan G, Stranecky V, Sarkisian T, Sedlacek Z. A novel variant of C12orf4 in a consanguineous Armenian family confirms the etiology of autosomal recessive intellectual disability type 66 with delineation of the phenotype. Mol Genet Genomic Med 2019; 7:e865. [PMID: 31334606 PMCID: PMC6732288 DOI: 10.1002/mgg3.865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/01/2019] [Accepted: 07/05/2019] [Indexed: 01/07/2023] Open
Abstract
Background Intellectual disability (ID) is a feature of many rare diseases caused by thousands of genes. This genetic heterogeneity implies that pathogenic variants in a specific gene are found only in a small number of patients, and difficulties arise in the definition of prevailing genotype and characteristic phenotype associated with that gene. One of such very rare disorders is autosomal recessive ID type 66 (OMIM #618221) caused by defects in C12orf4. Up to now, six families have been reported with mostly truncating variants. The spectrum of the clinical phenotype was not emphasized in previous reports, and detailed phenotype was not always available from previous patients, especially from large cohort studies. Methods Exome sequencing was performed in a consanguineous Armenian family with two affected adult brothers. Results The patients carry a novel homozygous nonsense C12orf4 variant. The integration of previous data and phenotyping of the brothers indicate that the clinical picture of C12orf4 defects involves hypotonia in infancy, rather severe ID, speech impairment, and behavioral problems such as aggressiveness, unstable mood, and autistic features. Several other symptoms are more variable and less consistent. Conclusion This rather nonsyndromic and nonspecific clinical picture implies that additional patients with C12orf4 defects will likely continue to be identified using the “genotype‐first” approach, rather than based on clinical assessment. The phenotype needs further delineation in future reports.
Collapse
Affiliation(s)
- Miroslava Hancarova
- Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Davit Babikyan
- Department of Medical Genetics, Yerevan State Medical University after Mkhitar Heratsi, and Center of Medical Genetics and Primary Health Care, Yerevan, Armenia
| | - Sarka Bendova
- Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Susanna Midyan
- Department of Medical Genetics, Yerevan State Medical University after Mkhitar Heratsi, and Center of Medical Genetics and Primary Health Care, Yerevan, Armenia
| | - Darina Prchalova
- Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Gohar Shahsuvaryan
- Department of Medical Genetics, Yerevan State Medical University after Mkhitar Heratsi, and Center of Medical Genetics and Primary Health Care, Yerevan, Armenia
| | - Viktor Stranecky
- Department of Pediatrics and Adolescent Medicine, Charles University 1st Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Tamara Sarkisian
- Department of Medical Genetics, Yerevan State Medical University after Mkhitar Heratsi, and Center of Medical Genetics and Primary Health Care, Yerevan, Armenia
| | - Zdenek Sedlacek
- Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
200
|
Gudmundsson S, Wilbe M, Filipek-Górniok B, Molin AM, Ekvall S, Johansson J, Allalou A, Gylje H, Kalscheuer VM, Ledin J, Annerén G, Bondeson ML. TAF1, associated with intellectual disability in humans, is essential for embryogenesis and regulates neurodevelopmental processes in zebrafish. Sci Rep 2019; 9:10730. [PMID: 31341187 PMCID: PMC6656882 DOI: 10.1038/s41598-019-46632-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 07/01/2019] [Indexed: 11/22/2022] Open
Abstract
The TATA-box binding protein associated factor 1 (TAF1) protein is a key unit of the transcription factor II D complex that serves a vital function during transcription initiation. Variants of TAF1 have been associated with neurodevelopmental disorders, but TAF1's molecular functions remain elusive. In this study, we present a five-generation family affected with X-linked intellectual disability that co-segregated with a TAF1 c.3568C>T, p.(Arg1190Cys) variant. All affected males presented with intellectual disability and dysmorphic features, while heterozygous females were asymptomatic and had completely skewed X-chromosome inactivation. We investigated the role of TAF1 and its association to neurodevelopment by creating the first complete knockout model of the TAF1 orthologue in zebrafish. A crucial function of human TAF1 during embryogenesis can be inferred from the model, demonstrating that intact taf1 is essential for embryonic development. Transcriptome analysis of taf1 zebrafish knockout revealed enrichment for genes associated with neurodevelopmental processes. In conclusion, we propose that functional TAF1 is essential for embryonic development and specifically neurodevelopmental processes.
Collapse
Affiliation(s)
- Sanna Gudmundsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Science for Life Laboratory, Uppsala, 751 08, Sweden.
| | - Maria Wilbe
- Department of Immunology, Genetics and Pathology, Uppsala University, Science for Life Laboratory, Uppsala, 751 08, Sweden
| | - Beata Filipek-Górniok
- Department of Organismal Biology, Genome Engineering Zebrafish, Science for Life Laboratory, Uppsala University, Uppsala, 752 36, Sweden
| | - Anna-Maja Molin
- Department of Immunology, Genetics and Pathology, Uppsala University, Science for Life Laboratory, Uppsala, 751 08, Sweden
| | - Sara Ekvall
- Department of Immunology, Genetics and Pathology, Uppsala University, Science for Life Laboratory, Uppsala, 751 08, Sweden
| | - Josefin Johansson
- Department of Immunology, Genetics and Pathology, Uppsala University, Science for Life Laboratory, Uppsala, 751 08, Sweden
| | - Amin Allalou
- Department of Information Technology, Uppsala University, Sweden and Science for Life Laboratory, Uppsala, 751 05, Sweden
| | - Hans Gylje
- Department of Paediatrics, Central Hospital, Västerås, 721 89, Sweden
| | - Vera M Kalscheuer
- Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, 141 95, Germany
| | - Johan Ledin
- Department of Organismal Biology, Genome Engineering Zebrafish, Science for Life Laboratory, Uppsala University, Uppsala, 752 36, Sweden
| | - Göran Annerén
- Department of Immunology, Genetics and Pathology, Uppsala University, Science for Life Laboratory, Uppsala, 751 08, Sweden.
| | - Marie-Louise Bondeson
- Department of Immunology, Genetics and Pathology, Uppsala University, Science for Life Laboratory, Uppsala, 751 08, Sweden.
| |
Collapse
|