151
|
Albulym O, Kaygili O, Hussien MSA, Zahran HY, Kilany M, Darwish R, Bulut N, Alshahrie A, Yahia IS. Synthesis and Characterization of Yttrium-Doped Hydroxyapatite Nanoparticles and Their Potential Antimicrobial Activity. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study reports a detailed analysis of the yttrium doping effects into hydroxyapatite (HAp) nano-structures at different amounts (e.g., 0, 1, 2.5, 5, 7.5, 10, and 15%) on the structural, spectroscopic, dielectric, and antimicrobial properties. For this purpose, seven HAp samples
having the Y-contents mentioned above were prepared using the microwave-assisted sol-gel precipitation technique. The structure of synthesized samples was fully described via X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transforms infrared (FTIR). Raman spectroscopy
and dielectric measurements were used to characterize the spectroscopic properties. Furthermore, the samples’ antimicrobial features have been assisted through the agar disk diffusion technique. This study showed that the crystallinity decreased with the adding of Y-ions inside the HAp
matrix. The Y-contents have influenced the crystallite size, lattice parameters, dislocation density, lattice strain, and unit cell volume. The surface morphology is composed of the agglomerated smaller particles. Remarkable changes in the dielectric properties were observed with the adding
of Y-ions. The alternating current conductivity obeys the Jonscher’s relation. Y-doped hydroxyapatite nanoparticles have a considerable inhibitory effect against bacteria and fungi (Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans).
The Y-doped hydroxyapatite nanoparticles are a promising material for bone cement engineering with a potential bio-activity
Collapse
Affiliation(s)
- Obaid Albulym
- Department of Biology, Faculty of Science, King Khalid University, Abha, 61421, Saudi Arabia
| | - Omer Kaygili
- Department of Physics, Faculty of Science, Firat University, 23119, Elazig, Turkey
| | - Mai S. A. Hussien
- Department of Chemistry, Faculty of Education, Ain Shams University, Roxy, 11757, Cairo, Egypt
| | - H. Y. Zahran
- Nanoscience Laboratory for Environmental and Bio-Medical Applications (NLEBA), Semiconductor Lab., Metallurgical Lab. 1, Department of Physics, Faculty of Education, Ain Shams University, Roxy, 11757, Cairo, Egypt
| | - Mona Kilany
- Department of Biology, Faculty of Science, King Khalid University, Abha, 61421, Saudi Arabia
| | - R. Darwish
- Physics Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Niyazi Bulut
- Department of Physics, Faculty of Science, Firat University, 23119, Elazig, Turkey
| | - Ahmed Alshahrie
- Physics Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - I. S. Yahia
- Nanoscience Laboratory for Environmental and Bio-Medical Applications (NLEBA), Semiconductor Lab., Metallurgical Lab. 1, Department of Physics, Faculty of Education, Ain Shams University, Roxy, 11757, Cairo, Egypt
| |
Collapse
|
152
|
Wang L, Zeng X, Yan G, Chen X, Luo K, Zhou S, Zhang P, Li J, Wong TW. Biomimetic scaffolds with programmable pore structures for minimum invasive bone repair. NANOSCALE 2021; 13:16680-16689. [PMID: 34590639 DOI: 10.1039/d1nr04124j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Due to the complexity of surgery for large-area bone injuries, implanting a large volume of materials into the injury site remains a big challenge in orthopedics. To solve this difficulty, in this study, a series of biomimetic hydroxyapatite/shape-memory composite scaffolds were designed and synthesized with programmable pore structures, based on poly(ε-caprolactone) (PCL), polytetrahydrofuran (PTMG) and the osteoconductive hydroxyapatite (HA). The obtained scaffolds presented various pore structures, high connectivity, tunable mechanical properties, and excellent shape memory performance. Moreover, the mineralization activity of the developed scaffolds could enhance the formation of hydroxyapatite and they showed good biocompatibility in vitro. The in vivo experiments show that scaffolds could promote the formation of new bone in critical size cranial defects. The programmable porous scaffold biomaterials exhibited potential application promise in bone regeneration.
Collapse
Affiliation(s)
- Li Wang
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, P. R. China.
- College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, P. R. China
| | - Xiyang Zeng
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, P. R. China.
| | - Guilong Yan
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, P. R. China.
| | - Xiaohu Chen
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, P. R. China.
| | - Kun Luo
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, P. R. China.
| | - Shiyi Zhou
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, P. R. China.
| | - Peicong Zhang
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, P. R. China.
| | - Junfeng Li
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, P. R. China.
| | - Tuck-Whye Wong
- Advanced Membrane Technology Centre, Universiti Teknologi Malaysia, Johor 81310, Malaysia
| |
Collapse
|
153
|
DileepKumar VG, Sridhar MS, Aramwit P, Krut'ko VK, Musskaya ON, Glazov IE, Reddy N. A review on the synthesis and properties of hydroxyapatite for biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 33:229-261. [PMID: 34521315 DOI: 10.1080/09205063.2021.1980985] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hydroxyapatite (HA or HAp) is one of the most preferred biomaterials, specifically for bone tissue engineering. HAp is available naturally and is also chemically synthesized. The properties, shape, size and crystalline structure and applications of HAp vary widely depending on the source and extraction methods used. In addition to conventional chemical approaches such as precipitation or sol-gel techniques, newer methods such as microwave synthesis and atomic-layer deposition provide an opportunity to generate HAp with desirable structure and properties. Various methods used for the synthesis of HAp have their own pros and cons. Hence, it is essential to understand the role of specific methods and conditions on the properties and structure of HAps in order to obtain HAp with properties suitable for specific applications. In addition to pure HAp, substantial efforts have been made to dope HAp with various minerals or bioentities to enhance their suitability for medical, environmental remediation and other approaches. In this review, we provide an overview of the various chemical methods used to produce HAp, properties of the HAp produced and its potential applications. Particular focus of this paper is on the co-relation between properties and processes used to synthesis HAp. This review will enable readers to quickly understand the importance of synthesis methods and conditions on the properties of HAp and choose appropriate means to generate HAp with desired properties for specific applications.
Collapse
Affiliation(s)
- V G DileepKumar
- Center for Incubation, Innovation, Research and Consultancy, Jyothy Institute of Technology, Bangalore, Karnataka, India
| | - Mysore Santosh Sridhar
- Coal and Mineral Processing Division, CSIR - Central Institute of Mining and Fuel Research (CIMFR), Dhanbad, Jharkhand, India
| | - Pornanong Aramwit
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok, Thailand.,The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Valentina K Krut'ko
- Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Olga N Musskaya
- Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Ilya E Glazov
- Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Narendra Reddy
- Center for Incubation, Innovation, Research and Consultancy, Jyothy Institute of Technology, Bangalore, Karnataka, India
| |
Collapse
|
154
|
Chen L, Zhang C, Gao A, Cui J, Yan Y. Nanofiltration membrane embedded with hydroxyapatite nanowires as interlayer towards enhanced separation performance. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
155
|
Hajji H, Abdellaoui M, Maurizi L, Nasr S, Millot N, Ben Salem E. Kinematic modelisation and parametric study of mechanosynthesis of hydroxyfluorapatite. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
156
|
Fiume E, Magnaterra G, Rahdar A, Verné E, Baino F. Hydroxyapatite for Biomedical Applications: A Short Overview. CERAMICS 2021; 4:542-563. [DOI: 10.3390/ceramics4040039] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Calcium phosphates (CaPs) are biocompatible and biodegradable materials showing a great promise in bone regeneration as good alternative to the use of auto- and allografts to guide and support tissue regeneration in critically-sized bone defects. This can be certainly attributed to their similarity to the mineral phase of natural bone. Among CaPs, hydroxyapatite (HA) deserves a special attention as it, actually is the main inorganic component of bone tissue. This review offers a comprehensive overview of past and current trends in the use of HA as grafting material, with a focus on manufacturing strategies and their effect on the mechanical properties of the final products. Recent advances in materials processing allowed the production of HA-based grafts in different forms, thus meeting the requirements for a range of clinical applications and achieving enthusiastic results both in vitro and in vivo. Furthermore, the growing interest in the optimization of three-dimensional (3D) porous grafts, mimicking the trabecular architecture of human bone, has opened up new challenges in the development of bone-like scaffolds showing suitable mechanical performances for potential use in load bearing anatomical sites.
Collapse
Affiliation(s)
- Elisa Fiume
- Department of Applied Science and Technology (DISAT), Institute of Materials Physics and Engineering, Politecnico di Torino, 10129 Turin, Italy
| | - Giulia Magnaterra
- Department of Applied Science and Technology (DISAT), Institute of Materials Physics and Engineering, Politecnico di Torino, 10129 Turin, Italy
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
| | - Enrica Verné
- Department of Applied Science and Technology (DISAT), Institute of Materials Physics and Engineering, Politecnico di Torino, 10129 Turin, Italy
| | - Francesco Baino
- Department of Applied Science and Technology (DISAT), Institute of Materials Physics and Engineering, Politecnico di Torino, 10129 Turin, Italy
| |
Collapse
|
157
|
Qi J, Yu T, Hu B, Wu H, Ouyang H. Current Biomaterial-Based Bone Tissue Engineering and Translational Medicine. Int J Mol Sci 2021; 22:10233. [PMID: 34638571 PMCID: PMC8508818 DOI: 10.3390/ijms221910233] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/14/2021] [Accepted: 09/19/2021] [Indexed: 11/16/2022] Open
Abstract
Bone defects cause significant socio-economic costs worldwide, while the clinical "gold standard" of bone repair, the autologous bone graft, has limitations including limited graft supply, secondary injury, chronic pain and infection. Therefore, to reduce surgical complexity and speed up bone healing, innovative therapies are needed. Bone tissue engineering (BTE), a new cross-disciplinary science arisen in the 21st century, creates artificial environments specially constructed to facilitate bone regeneration and growth. By combining stem cells, scaffolds and growth factors, BTE fabricates biological substitutes to restore the functions of injured bone. Although BTE has made many valuable achievements, there remain some unsolved challenges. In this review, the latest research and application of stem cells, scaffolds, and growth factors in BTE are summarized with the aim of providing references for the clinical application of BTE.
Collapse
Affiliation(s)
- Jingqi Qi
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
- Zhejiang University-University of Edinburgh Institute, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Tianqi Yu
- Department of Mechanical Engineering, Zhejiang University-University of Illinois at Urbana-Champaign Institute, Zhejiang University, Haining 314400, China;
| | - Bangyan Hu
- Section of Molecular and Cell Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA;
| | - Hongwei Wu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
- Zhejiang University-University of Edinburgh Institute, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
- Zhejiang University-University of Edinburgh Institute, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310003, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310003, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou 310003, China
| |
Collapse
|
158
|
Djošić M, Janković A, Mišković-Stanković V. Electrophoretic Deposition of Biocompatible and Bioactive Hydroxyapatite-Based Coatings on Titanium. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5391. [PMID: 34576615 PMCID: PMC8472014 DOI: 10.3390/ma14185391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 01/18/2023]
Abstract
Current trends in biomaterials science address the issue of integrating artificial materials as orthopedic or dental implants with biological materials, e.g., patients' bone tissue. Problems arise due to the simple fact that any surface that promotes biointegration and facilitates osteointegration may also provide a good platform for the rapid growth of bacterial colonies. Infected implant surfaces easily lead to biofilm formation that poses a major healthcare concern since it could have destructive effects and ultimately endanger the patients' life. As of late, research has centered on designing coatings that would eliminate possible infection but neglected to aid bone mineralization. Other strategies yielded surfaces that could promote osseointegration but failed to prevent microbial susceptibility. Needless to say, in order to assure prolonged implant functionality, both coating functions are indispensable and should be addressed simultaneously. This review summarizes progress in designing multifunctional implant coatings that serve as carriers of antibacterial agents with the primary intention of inhibiting bacterial growth on the implant-tissue interface, while still promoting osseointegration.
Collapse
Affiliation(s)
- Marija Djošić
- Institute for Technology of Nuclear and Other Mineral Raw Materials, Bulevar Franš d’Eperea 86, 11000 Belgrade, Serbia;
| | - Ana Janković
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| | - Vesna Mišković-Stanković
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| |
Collapse
|
159
|
Marincaș L, Turdean GL, Toșa M, Kovács Z, Kovács B, Barabás R, Farkas NI, Bizo L. Hydroxyapatite and Silicon-Modified Hydroxyapatite as Drug Carriers for 4-Aminopyridine. CRYSTALS 2021; 11:1124. [DOI: 10.3390/cryst11091124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Adsorption and desorption properties of nano-hydroxyapatite (HAP) and silicon-modified hydroxyapatite (Si–HAP) were investigated with 4-aminopyridine (fampridine-4AP). The novelty of this research is the investigation of the suitability of the previously mentioned carriers for drug-delivery of 4AP. UV-VIS spectrophotometric results showed that the presence of silicon in the carrier did not significantly affect its adsorption capacity. The success of the adsorption was confirmed by thermal analysis (TG/DTA), scanning electron microscopy (SEM)/energy dispersive X-ray (EDX), Fourier transform infrared (FTIR) spectroscopy, and X-ray powder diffraction (XRPD). Drug release experiments, performed in simulated body fluid (SBF), revealed a drug release from Si–HAP that was five times slower than HAP, explained by the good chemical bonding between the silanol groups of the carrier and the 4AP functional groups. The electrochemical measurements showed a value of the polarization resistance of the charge transfer (Rct) more than five times smaller in the case of Si–HAP coating loaded with 4AP, so the charge transfer process was hindered. The electrochemical impedance results revealed that electron transfer was inhibited in the presence of 4AP, in concordance with the previously mentioned strong bonds. The silicon substitution in HAP leads to good chemical bonding with the drug and a slow release, respectively.
Collapse
Affiliation(s)
- Laura Marincaș
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 11 Arany János Street, 400028 Cluj-Napoca, Romania
| | - Graziella Liana Turdean
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 11 Arany János Street, 400028 Cluj-Napoca, Romania
| | - Monica Toșa
- Enzymology and Applied Biocatalysis Research Centre, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany János Street, 400028 Cluj-Napoca, Romania
| | - Zsolt Kovács
- Department of Biochemistry and Environmental Chemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Gheorghe Marinescu 38 Street, 540142 Târgu Mureș, Romania
| | - Béla Kovács
- Department of Biochemistry and Environmental Chemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Gheorghe Marinescu 38 Street, 540142 Târgu Mureș, Romania
| | - Réka Barabás
- Department of Chemistry and Chemical Engineering of Hungarian Line of Study, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 11 Arany János Street, 400028 Cluj-Napoca, Romania
| | - Noémi-Izabella Farkas
- Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 11 Arany János Street, 400028 Cluj-Napoca, Romania
| | - Liliana Bizo
- Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 11 Arany János Street, 400028 Cluj-Napoca, Romania
| |
Collapse
|
160
|
Hossain MS, Mahmud M, Sultana S, Bin Mobarak M, Islam MS, Ahmed S. Coupled effect of particle size of the source materials and calcination temperature on the direct synthesis of hydroxyapatite. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210684. [PMID: 34527274 PMCID: PMC8424352 DOI: 10.1098/rsos.210684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/11/2021] [Indexed: 05/05/2023]
Abstract
We report the effect of controlled particle size (obtained by using 80, 100, 120, 140 and 200 mesh) of the source materials on the synthesis of a well-known biomaterial, hydroxyapatite (Hap). In addition to this, we have also mapped the consequence of applied temperature (700°C, 800°C and 900°C) on the crystallographic properties and phase composition of the obtained Hap. Nevertheless, although with Hap, in each case, β-tricalcium phosphate (β-TCP) was registered as the secondary phase the ANOVA test revealed that the results of the crystallographic parameters are significantly different for the applied sintering temperature 700°C and 800°C (p < 0.05), while the data obtained for calcination temperature 800°C are not significantly different from that acquired at 900°C (p > 0.05). Fourier transform infrared spectrophotometer data ensured that, irrespective of mesh size and calcination temperature, the synthesized Hap samples were of carbonated apatite with B-type substitution. Interestingly, for all cases, the % of carbonate content was below the maximum limit (8%) of theCO 3 2 - ion present in bone tissue hydroxyapatite.
Collapse
Affiliation(s)
- Md. Sahadat Hossain
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-i-Khuda Road, Dhanmondi, Dhaka-1205, Bangladesh
| | - Monika Mahmud
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-i-Khuda Road, Dhanmondi, Dhaka-1205, Bangladesh
| | - Sazia Sultana
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-i-Khuda Road, Dhanmondi, Dhaka-1205, Bangladesh
| | - Mashrafi Bin Mobarak
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-i-Khuda Road, Dhanmondi, Dhaka-1205, Bangladesh
| | - M. Saiful Islam
- BCSIR Laboratories, Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-i-Khuda Road, Dhanmondi, Dhaka-1205, Bangladesh
| | - Samina Ahmed
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-i-Khuda Road, Dhanmondi, Dhaka-1205, Bangladesh
- BCSIR Laboratories, Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-i-Khuda Road, Dhanmondi, Dhaka-1205, Bangladesh
| |
Collapse
|
161
|
Liu X, Wu Y, Zhao X, Wang Z. Fabrication and applications of bioactive chitosan-based organic-inorganic hybrid materials: A review. Carbohydr Polym 2021; 267:118179. [PMID: 34119147 DOI: 10.1016/j.carbpol.2021.118179] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/03/2021] [Accepted: 04/30/2021] [Indexed: 01/16/2023]
Abstract
Organic-inorganic hybrid materials like bone, shells, and teeth can be found in nature, which are usually composed of biomacromolecules and nanoscale inorganic ingredients. Synergy of organic-inorganic components in hybrid materials render them outstanding and versatile performance. Chitosan is commonly used organic materials in bionic hybrid materials since its bioactive properties and could be controllable tailored by various means to meet complex conditions in different applications. Among these fabrication means, hybridization was favored for its convenience and efficiency. This review discusses three kinds of chitosan-based hybrid materials: hybridized with hydroxyapatite, calcium carbonate, and clay respectively, which are the representative of phosphate, carbonate, and hydrous aluminosilicates. Here, we reported the latest developments of the preparation methods, composition, structure and applications of these bioactive hybrid materials, especially in the biomedical field. Despite the great progress was made in bioactive organic-inorganic hybrid materials based on chitosan, some challenges and specific directions are still proposed for future development in this review.
Collapse
Affiliation(s)
- Xiaoyang Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuxuan Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xinchen Zhao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
162
|
Swain S, Bhaskar R, Gupta MK, Sharma S, Dasgupta S, Kumar A, Kumar P. Mechanical, Electrical, and Biological Properties of Mechanochemically Processed Hydroxyapatite Ceramics. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2216. [PMID: 34578532 PMCID: PMC8466523 DOI: 10.3390/nano11092216] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 01/28/2023]
Abstract
The effect of the sintering temperature on densification and the resultant mechanical, electrical, and biological properties of mechanochemically processed hydroxyapatite (HAp) samples was investigated. HAp samples were sintered at 1200, 1250, and 1300 °C for 4 h, respectively. HAp samples sintered at 1250 °C showed better mechanical properties, which was attributed to their smaller grain size compared to HAp samples at higher sintering temperatures. The nearly identical value of the dielectric constant (εr) and better cell proliferation was exhibited by HAp samples sintered at 1250 and 1300 °C, respectively. At ~210 °C, in all the samples sintered at different temperatures, a dielectric anomaly was obtained, which was attributed to the phase transition temperature of the HAp system. Dielectric properties near the phase transition temperature showed a dielectric relaxation-type of behavior, which was attributed to the re-orientational motion of OH- ions in the HAp system. Higher cell proliferation and viability were exhibited by the HAp1300 samples, whereas comparatively equivalent cell growth and higher mechanical strength were observed in the HAp1250 samples.
Collapse
Affiliation(s)
- Sujata Swain
- Department of Physics and Astronomy, NIT Rourkela, Rourkela 769008, India;
| | - Rakesh Bhaskar
- Department of Biotechnology and Medical Engineering, NIT Rourkela, Rourkela 769008, India; (R.B.); (M.K.G.)
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Mukesh Kumar Gupta
- Department of Biotechnology and Medical Engineering, NIT Rourkela, Rourkela 769008, India; (R.B.); (M.K.G.)
| | - Sonia Sharma
- Department of Chemistry, Govt. Autonomous College, Rourkela 769008, India;
| | - Sudip Dasgupta
- Department of Ceramic Engineering, NIT Rourkela, Rourkela 769008, India;
| | - Anuj Kumar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Pawan Kumar
- Department of Physics and Astronomy, NIT Rourkela, Rourkela 769008, India;
| |
Collapse
|
163
|
Soriente A, Fasolino I, Gomez-Sánchez A, Prokhorov E, Buonocore GG, Luna-Barcenas G, Ambrosio L, Raucci MG. Chitosan/hydroxyapatite nanocomposite scaffolds to modulate osteogenic and inflammatory response. J Biomed Mater Res A 2021; 110:266-272. [PMID: 34331513 PMCID: PMC9291049 DOI: 10.1002/jbm.a.37283] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 11/29/2022]
Abstract
Considerable attention has been given to the use of chitosan (CS)‐based materials reinforced with inorganic bioactive signals such as hydroxyapatite (HA) to treat bone defects and tissue loss. It is well known that CS/HA based materials possess minimal foreign body reactions, good biocompatibility, controlled biodegradability and antibacterial property. Herein, the bioactivity of these composite systems was analyzed on in vitro bone cell models for their applications in the field of bone tissue engineering (BTE). The combination of sol–gel approach and freeze‐drying technology was used to obtain CS/HA scaffolds with three‐dimensional (3D) porous structure suitable for cell in‐growth. Specifically, our aim was to investigate the influence of bioactive composite scaffolds on cellular behavior in terms of osteoinductivity and anti‐inflammatory effects for treating bone defects. The results obtained have demonstrated that by increasing inorganic component concentration, CS/HA (60 and 70% v/v) scaffolds induced a good biological response in terms of osteogenic differentiation of human mesenchymal stem cells (hMSC) towards osteoblast phenotype. Furthermore, the scaffolds with higher concentration of inorganic fillers are able to modulate the production of pro‐inflammatory (TGF‐β) and anti‐inflammatory (IL‐4, IL‐10) cytokines. Our results highlight the possibility of achieving smart CS/HA based composites able to promote a great osteogenic differentiation of hMSC by increasing the amount of HA nanoparticles used as bioactive inorganic signal. Contemporarily, these materials allow avoiding the induction of a pro‐inflammatory response in bone implant site.
Collapse
Affiliation(s)
- Alessandra Soriente
- Institute of Polymers, Composites and Biomaterials-National Research Council of Italy (IPCB-CNR), Naples, Italy
| | - Ines Fasolino
- Institute of Polymers, Composites and Biomaterials-National Research Council of Italy (IPCB-CNR), Naples, Italy
| | - Alejandro Gomez-Sánchez
- Cinvestav-Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Querétaro, Querétaro, Mexico
| | - Evgen Prokhorov
- Cinvestav-Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Querétaro, Querétaro, Mexico
| | - Giovanna Giuliana Buonocore
- Institute of Polymers, Composites and Biomaterials-National Research Council of Italy (IPCB-CNR), Naples, Italy
| | - Gabriel Luna-Barcenas
- Cinvestav-Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Querétaro, Querétaro, Mexico
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials-National Research Council of Italy (IPCB-CNR), Naples, Italy
| | - Maria Grazia Raucci
- Institute of Polymers, Composites and Biomaterials-National Research Council of Italy (IPCB-CNR), Naples, Italy
| |
Collapse
|
164
|
Wang B, Liu J, Niu D, Wu N, Yun W, Wang W, Zhang K, Li G, Yan S, Xu G, Yin J. Mussel-Inspired Bisphosphonated Injectable Nanocomposite Hydrogels with Adhesive, Self-Healing, and Osteogenic Properties for Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32673-32689. [PMID: 34227792 DOI: 10.1021/acsami.1c06058] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Injectable hydrogels have received much attention because of the advantages of simulation of the natural extracellular matrix, microinvasive implantation, and filling and repairing of complex shape defects. Yet, for bone repair, the current injectable hydrogels have shown significant limitations such as the lack of tissue adhesion, deficiency of self-healing ability, and absence of osteogenic activity. Herein, a strategy to construct mussel-inspired bisphosphonated injectable nanocomposite hydrogels with adhesive, self-healing, and osteogenic properties is developed. The nano-hydroxyapatite/poly(l-glutamic acid)-dextran (nHA/PLGA-Dex) dually cross-linked (DC) injectable hydrogels are fabricated via Schiff base cross-linking and noncovalent nHA-BP chelation. The chelation between bisphosphonate ligands (alendronate sodium, BP) and nHA favors the uniform dispersion of the latter. Moreover, multiple adhesion ligands based on catechol motifs, BP, and aldehyde groups endow the hydrogels with good tissue adhesion. The hydrogels possess excellent biocompatibility and the introduction of BP and nHA both can effectively promote viability, proliferation, migration, and osteogenesis differentiation of MC3T3-E1 cells. The incorporation of BP groups and HA nanoparticles could also facilitate the angiogenic property of endothelial cells. The nHA/PLGA-Dex DC hydrogels exhibited considerable biocompatibility despite the presence of a certain degree of inflammatory response in the early stage. The successful healing of a rat cranial defect further proves the bone regeneration ability of nHA/PLGA-Dex DC injectable hydrogels. The developed tissue adhesive osteogenic injectable nHA/PLGA-Dex hydrogels show significant potential for bone regeneration application.
Collapse
Affiliation(s)
- Bo Wang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Jia Liu
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai 200003, PR China
| | - Dongyang Niu
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai 200003, PR China
| | - Nianqi Wu
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Wentao Yun
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Weidong Wang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Kunxi Zhang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Guifei Li
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Shifeng Yan
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Guohua Xu
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai 200003, PR China
| | - Jingbo Yin
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| |
Collapse
|
165
|
Yuan SJ, Qi XY, Zhang H, Yuan L, Huang J. Doping gadolinium versus lanthanum into hydroxyapatite particles for better biocompatibility in bone marrow stem cells. Chem Biol Interact 2021; 346:109579. [PMID: 34274335 DOI: 10.1016/j.cbi.2021.109579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/05/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
Lanthanide ions (Ln3+) doped hydroxyapatite (HAP) particles are well established in biomedical areas. Although Ln elements are closely located in the periodic table and have plenty of similar characteristics, the minor differences in the effective ionic radii could cause alterations in the physicochemical and biological properties of HAP substitutes. The present study synthesized lanthanum-(La-) and gadolinium-(Gd-) doped HAP particles (La-HAP and Gd-HAP). And the effects of two types of particles on bone marrow stem cells (BMSCs) viability were also measured and compared in vitro. The results indicated that the Gd-HAP adsorbed more serum proteins from culture media and inhibited the new layer of apatite formation on its surface when comparing to La-HAP with a similar crystalline structure, particle size, and Zeta potential. These surface modifications can significantly reduce the cell adhesion of Gd-HAP, simultaneously decreasing the Gd-HAP particle uptake efficiency. Moreover, the cell viability of Gd-HAP remained higher than that of La-HAP in culture periods. We concluded that a slight variation in the effective ionic radii between Gd3+ and La3+ could alter the adsorption of serum proteins on the particles' surface, modulating subsequent cellular responses. The present work provides an interesting view that Gd-HAP is endowed with better cellular biocompatibility than La-HAP.
Collapse
Affiliation(s)
- Shuai-Jun Yuan
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, PR China
| | - Xin-Yi Qi
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, PR China
| | - He Zhang
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, PR China
| | - Lan Yuan
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, PR China
| | - Jian Huang
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, PR China.
| |
Collapse
|
166
|
Fabrication of Biocompatible Polycaprolactone–Hydroxyapatite Composite Filaments for the FDM 3D Printing of Bone Scaffolds. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11146351] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recently, three-dimensional printing (3DP) technology has been widely adopted in biology and biomedical applications, thanks to its capacity to readily construct complex 3D features. Using hot-melt extrusion 3DP, scaffolds for bone tissue engineering were fabricated using a composite of biodegradable polycaprolactone (PCL) and hydroxyapatite (HA). However, there are hardly any published reports on the application of the fused deposition modeling (FDM) method using feed filaments, which is the most common 3D printing method. In this study, we report on the fabrication and characterization of biocompatible filaments made of polycaprolactone (PCL)/hydroxyapatite (HA), a raw material mainly used for bone scaffolds, using FDM 3D printing. A series of filaments with varying HA content, from 5 to 25 wt.%, were fabricated. The mechanical and electrical properties of the various structures, printed using a commercially available 3D printer, were examined. Specifically, mechanical tensile tests were performed on the 3D-printed filaments and specimens. In addition, the electrical dielectric properties of the 3D-printed structures were investigated. Our method facilitates the fabrication of biocompatible structures using FDM-type 3DP, creating not only bone scaffolds but also testbeds for mimicking bone structure that may be useful in various fields of study.
Collapse
|
167
|
Naderi A, Zhang B, Belgodere JA, Sunder K, Palardy G. Improved Biocompatible, Flexible Mesh Composites for Implant Applications via Hydroxyapatite Coating with Potential for 3-Dimensional Extracellular Matrix Network and Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26824-26840. [PMID: 34097380 PMCID: PMC8289173 DOI: 10.1021/acsami.1c09034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 06/02/2023]
Abstract
Hydroxyapatite (HA)-coated metals are biocompatible composites, which have potential for various applications for bone replacement and regeneration in the human body. In this study, we proposed the design of biocompatible, flexible composite implants by using a metal mesh as substrate and HA coating as bone regenerative stimulant derived from a simple sol-gel method. Experiments were performed to understand the effect of coating method (dip-coating and drop casting), substrate material (titanium and stainless steel) and substrate mesh characteristics (mesh size, weave pattern) on implant's performance. HA-coated samples were characterized by X-ray diffractometer, transmission electron microscope, field-emission scanning electron microscope, nanoindenter, polarization and electrochemical impedance spectroscopy, and biocompatibility test. Pure or biphasic nanorod HA coating was obtained on mesh substrates with thicknesses varying from 4.0 to 7.9 μm. Different coating procedures and number of layers did not affect crystal structure, shape, or most intense plane reflections of the HA coating. Moduli of elasticity below 18.5 GPa were reported for HA-coated samples, falling within the range of natural skull bone. Coated samples led to at least 90% cell viability and up to 99.5% extracellular matrix coverage into a 3-dimensional network (16.4% to 76.5% higher than bare substrates). Fluorescent imaging showed no antagonistic effect of the coatings on osteogenic differentiation. Finer mesh size enhanced coating coverage and adhesion, but a low number of HA layers was preferable to maintain open mesh areas promoting extracellular matrix formation. Finally, electrochemical behavior studies revealed that, although corrosion protection for HA-coated samples was generally higher than bare samples, galvanic corrosion occurred on some samples. Overall, the results indicated that while HA-coated titanium grade 1 showed the best performance as a potential implant, HA-coated stainless steel 316 with the finest mesh size constitutes an adequate, lower cost alternative.
Collapse
Affiliation(s)
- Armaghan Naderi
- Department
of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Bin Zhang
- Department
of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Jorge A. Belgodere
- Department
of Biological & Agricultural Engineering, Louisiana State University and Agricultural Center, Baton Rouge, Louisiana 70803, United States
| | - Kaushik Sunder
- Department
of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Genevieve Palardy
- Department
of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
168
|
Dental Applications of Systems Based on Hydroxyapatite Nanoparticles—An Evidence-Based Update. CRYSTALS 2021. [DOI: 10.3390/cryst11060674] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydroxyapatite is one of the most studied biomaterials in the medical and dental field, because of its biocompatibility; it is the main constituent of the mineral part of teeth and bones. In dental science, hydroxyapatite nanoparticles (HAnps) or nano-hydroxyapatite (nano-HA) have been studied, over the last decade, in terms of oral implantology and bone reconstruction, as well in restorative and preventive dentistry. Hydroxyapatite nanoparticles have significant remineralizing effects on initial enamel lesions, and they have also been used as an additive material in order to improve existing and widely used dental materials, mainly in preventive fields, but also in restorative and regenerative fields. This paper investigates the role of HAnps in dentistry, including recent advances in the field of its use, as well as their advantages of using it as a component in other dental materials, whether experimental or commercially available. Based on the literature, HAnps have outstanding physical, chemical, mechanical and biological properties that make them suitable for multiple interventions, in different domains of dental science. Further well-designed randomized controlled trials should be conducted in order to confirm all the achievements revealed by the in vitro or in vivo studies published until now.
Collapse
|
169
|
A Comparative Evaluation of Nanohydroxyapatite-Enriched Hydrogen Peroxide Home Bleaching System on Color, Hardness and Microstructure of Dental Enamel. MATERIALS 2021; 14:ma14113072. [PMID: 34199770 PMCID: PMC8199990 DOI: 10.3390/ma14113072] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 02/03/2023]
Abstract
This study aimed to evaluate two hydrogen peroxide (HP)-based at-home bleaching systems in order to analyze whether nano-hydroxyapatite (nHA) addition may represent a reliable and safe solution for tooth whitening without altering dental microstructure and hardness. Human third molars (N = 15) were treated with two bleaching agents, one containing 6%HP (6HP) and the other 6% HP nHA-enriched (6HP-nHA) with average particle diameter ranging from 5-20 nm. Their effects on enamel were assessed using a spectrophotometer, Vickers microhardness (VMH) test and Scanning Electron Microscopy (SEM), comparing the treated groups with the non-treated control group (CTR). Color analysis revealed improvement in whiteness in both groups compared to CTR. VMH test results showed no differences among the groups. SEM analysis highlighted no evident changes in the enamel microstructure of tested groups compared to CTR. At high magnification, in 6HP group, a slight increase in irregularities of enamel surface morphology was observed, while 6HP-nHA group displayed removal of the aprismatic layer but preservation of the intact prismatic structure. These results suggest that the 6HP-nHA agent may be recommended to provide reliable whitening treatment, without damaging the enamel micromorphology and hardness.
Collapse
|
170
|
Nanocomposite of cosubstituted carbonated hydroxyapatite fabricated inside Poly(sodium hyaluronate-acrylamide) hydrogel template prepared by gamma radiation for osteoblast cell regeneration. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109408] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
171
|
Zhou H, Yang L, Gbureck U, Bhaduri SB, Sikder P. Monetite, an important calcium phosphate compound-Its synthesis, properties and applications in orthopedics. Acta Biomater 2021; 127:41-55. [PMID: 33812072 DOI: 10.1016/j.actbio.2021.03.050] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022]
Abstract
This review recognizes a unique calcium phosphate (CaP) phase known as monetite or dicalcium phosphate anhydrous (DCPA, CaHPO4), and presents an overview of its properties, processing, and applications in orthopedics. The motivation for the present effort is to highlight the state-of-the-art research and development of monetite and propel the research community to explore more of its potentials in orthopedics. After a brief introduction of monetite, we provide a summary of its various synthesis routes like dehydration, solvent-based, energy-assisted processes and also discuss the formation of different crystal structures with respect to the synthesis conditions. Subsequently, we discuss the material's noteworthy physico-chemical properties including the crystal structure, vibrational spectra, solubility, thermal decomposition, and conversion to other phases. Of note, we focus on the biological (in vitro and in vivo) properties of monetite, given its ever-increasing popularity as a biomaterial for medical implants. Appropriately, we discuss various orthopedic applications of monetite as bone cement, implant coatings, granules for defect fillers, and scaffolds. Many in vitro and in vivo studies confirmed the favorable osteointegration and osteoconduction properties of monetite products, along with a better balance between implant resorption and new bone formation as compared to other CaP phases. The review ends with translational aspects of monetite and presents thoughts about its possible future research directions. Further research may explore but not limited to improvements in mechanical strength of monetite-based scaffolds, using monetite particles as a therapeutic agent delivery, and tissue engineering strategies where monetite serves as the biomaterial. STATEMENT OF SIGNIFICANCE: This is the first review that focusses on the favorable potential of monetite for hard tissue repair and regeneration. The article accurately covers the "Synthesis-Structure-Property-Applications" correlations elaborating on monetite's diverse material properties. Special focus is put on the in vitro and in vivo properties of the material highlighting monetite as an orthopedic material-of-choice. The synthesis techniques are discussed which provide important information about the different fabrication routes for monetite. Most importantly, the review provides comprehensive knowledge about the diverse biomedical applications of monetite as granules, defect--specific scaffolds, bone cements and implant coatings. This review will help to highlight monetite's potential as an effective regenerative medicine and catalyze the continuing translation of this bioceramic from the laboratory to clinics.
Collapse
Affiliation(s)
- H Zhou
- Center for Health Science and Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, China; International Research Center for Translational Orthopaedics (IRCTO), Jiangsu, China
| | - L Yang
- Center for Health Science and Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, China; International Research Center for Translational Orthopaedics (IRCTO), Jiangsu, China
| | - U Gbureck
- Department for Functional Materials in Medicine and Dentistry, University Hospital of Würzburg, Würzburg, Germany
| | - S B Bhaduri
- Department of Mechanical, Industrial & Manufacturing Engineering, The University of Toledo, Toledo, OH, USA; ENG-EEC Division, The National Science Foundation (NSF), Alexandria, VA, USA
| | - P Sikder
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, USA.
| |
Collapse
|
172
|
Forero-Sossa PA, Salazar-Martínez JD, Giraldo-Betancur AL, Segura-Giraldo B, Restrepo-Parra E. Temperature effect in physicochemical and bioactive behavior of biogenic hydroxyapatite obtained from porcine bones. Sci Rep 2021; 11:11069. [PMID: 34040024 PMCID: PMC8154992 DOI: 10.1038/s41598-021-89776-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/19/2021] [Indexed: 12/02/2022] Open
Abstract
Biogenic hydroxyapatite (BHAp) is a widely used material in the biomedical area due to its similarities with the bone tissue mineral phase. Several works have been spotlighted on the thermal behavior of bone. However, little research has focused on determining the influence of calcination temperature in the physicochemical and bioactive properties of BHAp. In this work, a study of the physicochemical properties’ changes and bioactive response of BHAp produced from porcine femur bones using calcination temperatures between 900 to 1200 °C was conducted. The samples’ structural, morphological, and compositional changes were determined using XRD, SEM, and FTIR techniques. XRD results identified three temperature ranges, in which there are structural changes in BHAp samples and the presence of additional phases. Moreover, FTIR results corroborated that B-type substitution is promoted by increasing the heat treatment temperature. Likewise, samples were immersed in a simulated biological fluid (SBF), following the methodology described by Kokubo and using ISO 23317:2014 standard, for 3 and 7 days. FTIR and SEM results determined that the highest reaction velocity was reached for samples above 1000 °C, due to intensity increasing of phosphate and carbonate bands and bone-like apatite morphologies, compared to other temperatures evaluated.
Collapse
Affiliation(s)
- P A Forero-Sossa
- Laboratorio de Física del Plasma, Universidad Nacional de Colombia- Manizales, Km 9 vía al aeropuerto, Campus La Nubia, Manizales, Colombia.,Centro de Investigación y de Estudios Avanzados del IPN, Lib. Norponiente 2000, Fracc. Real de Juriquilla, 76230, Querétaro, Qro, México
| | - J D Salazar-Martínez
- Laboratorio de Física del Plasma, Universidad Nacional de Colombia- Manizales, Km 9 vía al aeropuerto, Campus La Nubia, Manizales, Colombia
| | - A L Giraldo-Betancur
- CONACYT-Centro de Investigación y de Estudios Avanzados del IPN, Lib. Norponiente 2000, Fracc. Real de Juriquilla, 76230, Querétaro, Qro, México
| | - B Segura-Giraldo
- Laboratorio de Física del Plasma, Universidad Nacional de Colombia- Manizales, Km 9 vía al aeropuerto, Campus La Nubia, Manizales, Colombia
| | - E Restrepo-Parra
- Laboratorio de Física del Plasma, Universidad Nacional de Colombia- Manizales, Km 9 vía al aeropuerto, Campus La Nubia, Manizales, Colombia. .,PCM Computational Applications, Universidad Nacional de Colombia - Sede Manizales, km. 9 vía al aeropuerto, Campus La Nubia, Manizales, Colombia.
| |
Collapse
|
173
|
Trubitsyn MA, Hung HV, Furda LV, Hong NTT. Effect of Molar Ratios in the Crystallochemical Structure of Biomimetic Nanostructured Hydroxyapatite on the Characteristics of the Product. RUSS J INORG CHEM+ 2021. [DOI: 10.1134/s0036023621050211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
174
|
Wang W, Xue Z, Wang R, Wang X, Xu D. Molecular Dynamics Exploration of the Growth Mechanism of Hydroxyapatite Nanoparticles Regulated by Glutamic Acid. J Phys Chem B 2021; 125:5078-5088. [PMID: 33974433 DOI: 10.1021/acs.jpcb.1c02447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Morphological control can enhance the performance of materials like hydroxyapatite (HAP), a well-known bioceramic with various morphologies, including spheres, rods, whiskers, needles, and plates. To obtain certain HAP morphologies, the crystal growth mechanisms at different planes should be investigated. Here, molecular dynamics was employed to understand the mechanism of HAP nanoparticle growth regulated by glutamic acid (Glu). Long-time dynamics simulations and free energy calculations were performed to explore the effect of Glu on calcium and phosphate ion precipitation on the HAP (100) and (001) faces. Without Glu, PO43- prefers binding to the HAP (100) surface, whereas with Glu, the (001) surface is preferred. This could partially explain why HAP changes from needle-like to plate-like with Glu addition in experiments. Our theoretical results indicate that Glu inhibits calcium and phosphate ion deposition on the crystal surfaces by occupying the calcium sites on the outermost layers. In addition, Glu has a strong concentration gradient effect on HAP deposition. At Glu concentrations of >80 mM, ion deposition was inhibited more on the (100) than on the (001) surface. Our results agree with experimental observations and afford insights into complicated HAP crystal growth mechanisms with foreign additives, which will aid in HAP synthesis with morphological control.
Collapse
Affiliation(s)
- Wentian Wang
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Zhiyu Xue
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Ruihan Wang
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Xin Wang
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Dingguo Xu
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, Sichuan 610064, P. R. China.,Research Center for Material Genome Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| |
Collapse
|
175
|
Tang G, Liu Z, Liu Y, Yu J, Wang X, Tan Z, Ye X. Recent Trends in the Development of Bone Regenerative Biomaterials. Front Cell Dev Biol 2021; 9:665813. [PMID: 34026758 PMCID: PMC8138062 DOI: 10.3389/fcell.2021.665813] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
The goal of a biomaterial is to support the bone tissue regeneration process at the defect site and eventually degrade in situ and get replaced with the newly generated bone tissue. Biomaterials that enhance bone regeneration have a wealth of potential clinical applications from the treatment of non-union fractures to spinal fusion. The use of bone regenerative biomaterials from bioceramics and polymeric components to support bone cell and tissue growth is a longstanding area of interest. Recently, various forms of bone repair materials such as hydrogel, nanofiber scaffolds, and 3D printing composite scaffolds are emerging. Current challenges include the engineering of biomaterials that can match both the mechanical and biological context of bone tissue matrix and support the vascularization of large tissue constructs. Biomaterials with new levels of biofunctionality that attempt to recreate nanoscale topographical, biofactor, and gene delivery cues from the extracellular environment are emerging as interesting candidate bone regenerative biomaterials. This review has been sculptured around a case-by-case basis of current research that is being undertaken in the field of bone regeneration engineering. We will highlight the current progress in the development of physicochemical properties and applications of bone defect repair materials and their perspectives in bone regeneration.
Collapse
Affiliation(s)
- Guoke Tang
- Department of Orthopedic Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medical CSU, Hunan, China
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zhiqin Liu
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medical CSU, Hunan, China
| | - Yi Liu
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jiangming Yu
- Department of Orthopedic Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhihong Tan
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medical CSU, Hunan, China
| | - Xiaojian Ye
- Department of Orthopedic Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
176
|
Shanmugapriya K, Kang HW. Synthesis of nanohydroxyapatite/collagen-loaded fucoidan-based composite hydrogel for drug delivery to gastrointestinal cancer cells. Colloids Surf B Biointerfaces 2021; 203:111769. [PMID: 33872826 DOI: 10.1016/j.colsurfb.2021.111769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/25/2021] [Accepted: 04/12/2021] [Indexed: 01/06/2023]
Abstract
The present study aims to evaluate the synthesis of nanohydroxyapatite/collagen-loaded fucoidan-based composite hydrogel and characterized its physico-chemical properties for targeted drug delivery to gastrointestinal cancer cells. The nanomaterial is fabricated and characterized as small spherical nanosheets with a high thermal stability by using Fourier transform infrared (FTIR) analysis, X-ray diffraction (XRD), Thermogravimetric analysis (TGA), UV-vis spectrophotometry (UV-vis), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). in vitro cytotoxicity, BrdU cell proliferation, and scratch assays demonstrate that the nanohydroxyapatite/collagen-loaded fucoidan-based nanomaterial exhibits non-toxicity and increases cell proliferation and migration. in vitro free radical scavenging assays confirm that the fabricated nanomaterial inhibits reactive oxygen species and generates singlet oxygen radicals in the gastrointestinal cancer cells by. The current findings suggest that the proposed nanomaterial can be a potential carrier for the targeted drug delivery to the gastrointestinal cancer cells.
Collapse
Affiliation(s)
- Karuppusamy Shanmugapriya
- Institute of Food Science, Pukyong National University, Busan, 48513, South Korea; Department of Biomedical Engineering, Pukyong National University, Busan, 48513, South Korea
| | - Hyun Wook Kang
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, South Korea; Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, South Korea.
| |
Collapse
|
177
|
Wu Y, Zhang Y, Zhang R, Chen S. Preparation and Properties of Antibacterial Polydopamine and Nano-Hydroxyapatite Modified Polyethylene Terephthalate Artificial Ligament. Front Bioeng Biotechnol 2021; 9:630745. [PMID: 33869151 PMCID: PMC8044552 DOI: 10.3389/fbioe.2021.630745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/24/2021] [Indexed: 11/13/2022] Open
Abstract
Due to its great biomechanical property, the polyethylene terephthalate (PET) artificial ligament has become one of the most promising allografts for anterior cruciate ligament (ACL) reconstruction. However, because of its chemical and biological inertness, PET is not a favored scaffold material for osteoblast growth, which promotes the ligament-bone healing. Meanwhile, in consideration of prevention of potential infection, the prophylactic injection of antibiotic was used as a post-operative standard procedure but also has the increasing risk of bacterial resistance. To face these two contradictions, in this article we coated a polydopamine (PDA) nano-layer on the PET ligament and used the coating as the adhesion interlayer to introduce nano-hydroxyapatite (nHA) and silver atoms to the surface of PET ligament. Because of the mild self-polymerization reaction of dopamine, the thermogravity analysis (TGA), Raman spectrum, and tensile test results show that the modification procedure have no negative effects on the chemical stability and mechanical properties of the PET. The results of NIH3T3 cell culture show that the PDA and nHA could effectively improve the biocompatibility of PET artificial ligament for fibroblast growth, and staphylococcus aureus antibacterial test results show that the Ag atom provided an antibacterial effect for PET ligament. As shown in this paper, the nano-PDA coating modification procedure could not only preserve the advantages of PET but also introduce new performance characteristics to PET, which opens the door for further functionalization of PET artificial ligament for its advanced development and application.
Collapse
Affiliation(s)
- Yang Wu
- Department oft of Orthopaedic Sports Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yuhan Zhang
- Department oft of Orthopaedic Sports Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Ren Zhang
- Center for Analysis and Measurement, Fudan University, Shanghai, China
| | - Shiyi Chen
- Department oft of Orthopaedic Sports Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
178
|
Three-Dimensional Printing of Hydroxyapatite Composites for Biomedical Application. CRYSTALS 2021. [DOI: 10.3390/cryst11040353] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hydroxyapatite (HA) and HA-based nanocomposites have been recognized as ideal biomaterials in hard tissue engineering because of their compositional similarity to bioapatite. However, the traditional HA-based nanocomposites fabrication techniques still limit the utilization of HA in bone, cartilage, dental, applications, and other fields. In recent years, three-dimensional (3D) printing has been shown to provide a fast, precise, controllable, and scalable fabrication approach for the synthesis of HA-based scaffolds. This review therefore explores available 3D printing technologies for the preparation of porous HA-based nanocomposites. In the present review, different 3D printed HA-based scaffolds composited with natural polymers and/or synthetic polymers are discussed. Furthermore, the desired properties of HA-based composites via 3D printing such as porosity, mechanical properties, biodegradability, and antibacterial properties are extensively explored. Lastly, the applications and the next generation of HA-based nanocomposites for tissue engineering are discussed.
Collapse
|
179
|
Modulated Monoclinic Hydroxyapatite: The Effect of pH in the Microwave Assisted Method. MINERALS 2021. [DOI: 10.3390/min11030314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hydroxyapatite (HAp) is a natural hard tissue constituent widely used for bone and tooth replacement engineering. In the present work, synthetic HAp was obtained from calcium nitrate tetrahydrate (Ca(NO3)2·4H2O) and ammonium phosphate dibasic (NH4)2HPO4 following an optimized microwave assisted hydrothermal method. The effect of pH was evaluated by the addition of ammonium hydroxide (NH4OH). Hence, different characterization techniques were used to determine its influence on the resulted HAp powders’ size, shape, and crystallinity. By Transmission Electron Microscopy (TEM), it was observed that the reaction pH environment modifies the morphology of HAp, and a shape evolution, from sub-hedral particles at pH = 7 to rod-like nanosized HAp at pH = 10, was confirmed. Using the X-ray Diffraction (XRD) technique, the characteristic diffraction peaks of the monoclinic phase were identified. Even if the performed Rietveld analysis indicated the presence of both phases (hexagonal and monoclinic), monoclinic HAp prevails in 95% with an average crystallite size of about 23 nm. The infrared spectra (FTIR) showed absorption bands at 3468 cm−1 and 630 cm−1 associated with OH− of hydroxyapatite, and bands at 584 cm−1, 960 cm−1, and 1090 cm−1 that correspond to the PO43− and CO32− characteristic groups. In summary, this work contributes to obtaining nanosized rod-like monoclinic HAp by a simple and soft method that has not been previously reported.
Collapse
|
180
|
Islam MT, Macri-Pellizzeri L, Sottile V, Ahmed I. Rapid conversion of highly porous borate glass microspheres into hydroxyapatite. Biomater Sci 2021; 9:1826-1844. [PMID: 33459732 DOI: 10.1039/d0bm01776k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper reports on the rapid development of porous hydroxyapatite (HA) microspheres with large external pores and fully interconnected porosity. These porous microspheres were produced by converting borates glasses (namely 45B5, B53P4 and 13-93B) into HA by immersing them in potassium phosphate media and simulated body fluid (SBF). Solid (SGMS) non-porous and highly porous (PGMS) microspheres were prepared from borate glasses via a novel flame spheroidisation process and their physicochemical properties including in vitro biological response were investigated. Morphological and physical characterisation of the PGMS showed interconnected porosity (up to 75 ± 5%) with average external pore sizes of 50 ± 5 μm. Mass loss, ion release, X-ray diffraction (XRD) and Scanning electron microscopy (SEM) analysis confirmed complete conversion to HA in 0.02 M K2HPO4 solution for the PGMS (with exception of 13-93B glass) and at significantly faster rates compared to their SGMS counterparts. However, 13-93B microspheres only converted to HA in Na2HPO4 solution. The in vitro SBF bioactivity studies for all the borate compositions showed HA formation and much earlier for PGMS compared to SGMS. Direct cell culture studies using hMSCs revealed that the converted porous HA microspheres showed enhanced pro-osteogenic properties compared to their unconverted counterparts and such are considered as highly promising candidate materials for bone repair (and orthobiological) applications.
Collapse
Affiliation(s)
- Md Towhidul Islam
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK. and Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | | | - Virginie Sottile
- School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK and Department of Molecular Medicine, The University of Pavia, 27100 Pavia, Italy
| | - Ifty Ahmed
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
181
|
Lytkina DN, Fedorishin DA, Kalachikova PM, Plyaskina AA, Babeshin AR, Kurzina IA. Cryo-Structured Materials Based on Polyvinyl Alcohol and Hydroxyapatite for Osteogenesis. J Funct Biomater 2021; 12:jfb12010018. [PMID: 33807513 PMCID: PMC8006254 DOI: 10.3390/jfb12010018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022] Open
Abstract
The application of various materials in biomedical procedures has recently experienced rapid growth. One of the areas is the treatment of many of different types of bone-related diseases and disorders by using biodegradable polymer-ceramic composites. We have developed a material based on cryogel polyvinyl alcohol, mineralized with calcium phosphate. Composites were obtained by cyclic freezing-thawing, the synthesis of calcium phosphates was carried out in situ under the influence of microwave radiation with heating and stirring. The components of the composites were determined using the methods of IR-spectroscopy and scanning electron microscopy and electron probe microanalyzer, as well as their morphology and surface properties. The biological compatibility of the material was investigated in vivo for a Wistar rat. The assessment of the quality of bone formation between the cryogel-based implant and the damaged bone was carried out by computed tomography. An improvement in the consolidation of the bone defect is observed in the bone with the composite in comparison with the control bone.
Collapse
Affiliation(s)
- Daria N. Lytkina
- Chemical Department, National Research Tomsk State University, Lenin 36, 634050 Tomsk, Russia; (D.N.L.); (D.A.F.); (P.M.K.); (A.A.P.)
| | - Dmitriy A. Fedorishin
- Chemical Department, National Research Tomsk State University, Lenin 36, 634050 Tomsk, Russia; (D.N.L.); (D.A.F.); (P.M.K.); (A.A.P.)
| | - Polina M. Kalachikova
- Chemical Department, National Research Tomsk State University, Lenin 36, 634050 Tomsk, Russia; (D.N.L.); (D.A.F.); (P.M.K.); (A.A.P.)
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia
| | - Anastasiya A. Plyaskina
- Chemical Department, National Research Tomsk State University, Lenin 36, 634050 Tomsk, Russia; (D.N.L.); (D.A.F.); (P.M.K.); (A.A.P.)
| | - Aleksandr R. Babeshin
- Department of Surgical Diseases with a Course in Traumatology and Orthopedics, Siberian State Medical University, Moskovsky trakt 2, 634055 Tomsk, Russia;
| | - Irina A. Kurzina
- Chemical Department, National Research Tomsk State University, Lenin 36, 634050 Tomsk, Russia; (D.N.L.); (D.A.F.); (P.M.K.); (A.A.P.)
- Correspondence: ; Tel.: +7-913-882-1028
| |
Collapse
|
182
|
Pai S, Kini MS, Selvaraj R. A review on adsorptive removal of dyes from wastewater by hydroxyapatite nanocomposites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11835-11849. [PMID: 31867692 DOI: 10.1007/s11356-019-07319-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
Dye removal from wastewater is of prominence due to its hostile effects on human health and the environment. The complex structure of the dye molecule is responsible for its difficulty in removal. Adsorption is found to be a promising technique to eliminate dye wastes due to its high removal capacity at low concentration. Among different adsorbents used, hydroxyapatite is a biocompatible adsorbent that is relatively efficient in both anionic and cationic dye removal. Recently, modification of hydroxyapatite by doping with other materials to increase its removal efficiency has gained much attention. This review summarizes compilation of recent literature on the removal of anionic and cationic dye by different hydroxyapatite nanocomposites, comparison of adsorption capacities of different hydroxyapatite nanocomposites, the possible adsorption mechanism of removal of dyes, the general isotherm, and kinetic and thermodynamic studies explaining the type of adsorption and the characteristics, advantages, and limitations of adsorbents.
Collapse
Affiliation(s)
- Shraddha Pai
- Department of Chemical engineering, Manipal institute of technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| | - M Srinivas Kini
- Department of Chemical engineering, Manipal institute of technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| | - Raja Selvaraj
- Department of Chemical engineering, Manipal institute of technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| |
Collapse
|
183
|
Gherasim O, Grumezescu AM, Grumezescu V, Negut I, Dumitrescu MF, Stan MS, Nica IC, Holban AM, Socol G, Andronescu E. Bioactive Coatings Based on Hydroxyapatite, Kanamycin, and Growth Factor for Biofilm Modulation. Antibiotics (Basel) 2021; 10:160. [PMID: 33562515 PMCID: PMC7914914 DOI: 10.3390/antibiotics10020160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
The occurrence of opportunistic local infections and improper integration of metallic implants results in severe health conditions. Protective and tunable coatings represent an attractive and challenging selection for improving the metallic devices' biofunctional performances to restore or replace bone tissue. Composite materials based on hydroxyapatite (HAp), Kanamycin (KAN), and fibroblast growth factor 2 (FGF2) are herein proposed as multifunctional coatings for hard tissue implants. The superior cytocompatibility of the obtained composite coatings was evidenced by performing proliferation and morphological assays on osteoblast cell cultures. The addition of FGF2 proved beneficial concerning the metabolic activity, adhesion, and spreading of cells. The KAN-embedded coatings exhibited significant inhibitory effects against bacterial biofilm development for at least two days, the results being superior in the case of Gram-positive pathogens. HAp-based coatings embedded with KAN and FGF2 protein are proposed as multifunctional materials with superior osseointegration potential and the ability to reduce device-associated infections.
Collapse
Affiliation(s)
- Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (M.F.D.); (M.S.S.); (E.A.)
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania; (I.N.); (G.S.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (M.F.D.); (M.S.S.); (E.A.)
- Research Institute of the University of Bucharest–ICUB, University of Bucharest, 050657 Bucharest, Romania; (I.C.N.); (A.M.H.)
| | - Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania; (I.N.); (G.S.)
| | - Irina Negut
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania; (I.N.); (G.S.)
| | - Marius Florin Dumitrescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (M.F.D.); (M.S.S.); (E.A.)
| | - Miruna Silvia Stan
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (M.F.D.); (M.S.S.); (E.A.)
- Research Institute of the University of Bucharest–ICUB, University of Bucharest, 050657 Bucharest, Romania; (I.C.N.); (A.M.H.)
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Ionela Cristina Nica
- Research Institute of the University of Bucharest–ICUB, University of Bucharest, 050657 Bucharest, Romania; (I.C.N.); (A.M.H.)
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Alina Maria Holban
- Research Institute of the University of Bucharest–ICUB, University of Bucharest, 050657 Bucharest, Romania; (I.C.N.); (A.M.H.)
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 077206 Bucharest, Romania
| | - Gabriel Socol
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania; (I.N.); (G.S.)
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (M.F.D.); (M.S.S.); (E.A.)
| |
Collapse
|
184
|
Mendiratta S, Ali AAA, Hejazi SH, Gates I. Dual Stimuli-Responsive Pickering Emulsions from Novel Magnetic Hydroxyapatite Nanoparticles and Their Characterization Using a Microfluidic Platform. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1353-1364. [PMID: 33482065 DOI: 10.1021/acs.langmuir.0c02408] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Stimuli-responsive emulsifiers have emerged as a class of smart agents that can permit regulated stabilization and destabilization of emulsions, which is essential for food, cosmetic, pharmaceutical, and petroleum industries. Here, we report the synthesis of novel "smart" hydroxyapatite (HaP) magnetic nanoparticles and their corresponding stimuli-responsive Pickering emulsions and explore their movement under confined spaces using a microfluidic platform. Pickering emulsions prepared with our magnetic stearic acid-functionalized Fe2O3@HaP nanoparticles exhibited pronounced pH-responsive behavior. We observed that the diameter of emulsion droplets decreases with an increase in pH. Swift demulsification was achieved by lowering the pH, whereas the reformation of emulsions was achieved by increasing the pH; this emulsification-demulsification cycling was successful for at least ten cycles. We used a microfluidic platform to test the stability of the emulsions under flowing conditions and their response to a magnetic field. We observed that the emulsion stability was diminished and droplet coalescence was enhanced by the application of the magnetic field. The smart nanoparticles we developed and their HaP-based emulsions present promising materials for pharmaceutical and petroleum industries, where responsive emulsions with controlled stabilities are required.
Collapse
Affiliation(s)
- Shruti Mendiratta
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary T2N 1N4, Canada
| | - Ahmed Atef Ahmed Ali
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary T2N 1N4, Canada
| | - Seyed Hossein Hejazi
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary T2N 1N4, Canada
| | - Ian Gates
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary T2N 1N4, Canada
| |
Collapse
|
185
|
Hydroxyapatite Based Materials for Bone Tissue Engineering: A Brief and Comprehensive Introduction. CRYSTALS 2021. [DOI: 10.3390/cryst11020149] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hydroxyapatite (HA) is widely used in bone tissue engineering for its bioactivity and biocompatibility, and a growing number of researchers are exploring ways to improve the physical properties and biological functions of hydroxyapatite. Up to now, HA has been used as inorganic building blocks for tissue engineering or as nanofillers to blend with polymers, furthermore, various methods such as ion doping or surface modification have been also reported to prepare functionalized HA. In this review, we try to give a brief and comprehensive introduction about HA-based materials, including ion-doped HA, HA/polymer composites and surface modified HA and their applications in bone tissue engineering. In addition, the prospective of HA is also discussed. This review may be helpful for researchers to get a general understanding about the development of hydroxyapatite based materials.
Collapse
|
186
|
In Vivo Assessment of Synthetic and Biological-Derived Calcium Phosphate-Based Coatings Fabricated by Pulsed Laser Deposition: A Review. COATINGS 2021. [DOI: 10.3390/coatings11010099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The aim of this review is to present the state-of-the art achievements reported in the last two decades in the field of pulsed laser deposition (PLD) of biocompatible calcium phosphate (CaP)-based coatings for medical implants, with an emphasis on their in vivo biological performances. There are studies in the dedicated literature on the in vivo testing of CaP-based coatings (especially hydroxyapatite, HA) synthesized by many physical vapor deposition methods, but only a few of them addressed the PLD technique. Therefore, a brief description of the PLD technique, along with some information on the currently used substrates for the synthesis of CaP-based structures, and a short presentation of the advantages of using various animal and human implant models will be provided. For an in-depth in vivo assessment of both synthetic and biological-derived CaP-based PLD coatings, a special attention will be dedicated to the results obtained by standardized and micro-radiographies, (micro) computed tomography and histomorphometry, tomodensitometry, histology, scanning and transmission electron microscopies, and mechanical testing. One main specific result of the in vivo analyzed studies is related to the demonstrated superior osseointegration characteristics of the metallic (generally Ti) implants functionalized with CaP-based coatings when compared to simple (control) Ti ones, which are considered as the “gold standard” for implantological applications. Thus, all such important in vivo outcomes were gathered, compiled and thoroughly discussed both to clearly understand the current status of this research domain, and to be able to advance perspectives of these synthetic and biological-derived CaP coatings for future clinical applications.
Collapse
|
187
|
Doyle SE, Henry L, McGennisken E, Onofrillo C, Bella CD, Duchi S, O’Connell CD, Pirogova E. Characterization of Polycaprolactone Nanohydroxyapatite Composites with Tunable Degradability Suitable for Indirect Printing. Polymers (Basel) 2021; 13:295. [PMID: 33477660 PMCID: PMC7831941 DOI: 10.3390/polym13020295] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/17/2022] Open
Abstract
Degradable bone implants are designed to foster the complete regeneration of natural tissue after large-scale loss trauma. Polycaprolactone (PCL) and hydroxyapatite (HA) composites are promising scaffold materials with superior mechanical and osteoinductive properties compared to the single materials. However, producing three-dimensional (3D) structures with high HA content as well as tuneable degradability remains a challenge. To address this issue and create homogeneously distributed PCL-nanoHA (nHA) scaffolds with tuneable degradation rates through both PCL molecular weight and nHA concentration, we conducted a detailed characterisation and comparison of a range of PCL-nHA composites across three molecular weight PCLs (14, 45, and 80 kDa) and with nHA content up to 30% w/w. In general, the addition of nHA results in an increase of viscosity for the PCL-nHA composites but has little effect on their compressive modulus. Importantly, we observe that the addition of nHA increases the rate of degradation compared to PCL alone. We show that the 45 and 80 kDa PCL-nHA groups can be fabricated via indirect 3D printing and have homogenously distributed nHA even after fabrication. Finally, the cytocompatibility of the composite materials is evaluated for the 45 and 80 kDa groups, with the results showing no significant change in cell number compared to the control. In conclusion, our analyses unveil several features that are crucial for processing the composite material into a tissue engineered implant.
Collapse
Affiliation(s)
- Stephanie E. Doyle
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; (S.E.D.); (L.H.); (E.M.)
- BioFab3D@ACMD, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (C.O.); (C.D.B.); (S.D.)
| | - Lauren Henry
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; (S.E.D.); (L.H.); (E.M.)
| | - Ellen McGennisken
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; (S.E.D.); (L.H.); (E.M.)
| | - Carmine Onofrillo
- BioFab3D@ACMD, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (C.O.); (C.D.B.); (S.D.)
- Department of Surgery, The University of Melbourne, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Claudia Di Bella
- BioFab3D@ACMD, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (C.O.); (C.D.B.); (S.D.)
- Department of Surgery, The University of Melbourne, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Department of Orthopaedics, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Serena Duchi
- BioFab3D@ACMD, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (C.O.); (C.D.B.); (S.D.)
- Department of Surgery, The University of Melbourne, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Cathal D. O’Connell
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; (S.E.D.); (L.H.); (E.M.)
- BioFab3D@ACMD, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (C.O.); (C.D.B.); (S.D.)
| | - Elena Pirogova
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; (S.E.D.); (L.H.); (E.M.)
| |
Collapse
|
188
|
Liu M, Shu M, Yan J, Liu X, Wang R, Hou Z, Lin J. Luminescent net-like inorganic scaffolds with europium-doped hydroxyapatite for enhanced bone reconstruction. NANOSCALE 2021; 13:1181-1194. [PMID: 33404034 DOI: 10.1039/d0nr05608a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bone reconstruction is an urgent problem during clinical treatment. In the past few decades, the construction of composite scaffolds has been a hot spot in the research field of bone tissue engineering (BTE). However, the disadvantages of composite materials raise our awareness to explore the potential application of hydroxyapatite (HAp) in bone substitutes due to the closest properties of HAp to natural bone tissue. In our study, we synthesized Eu3+-doped HAp (HAp:Eu3+) ultralong nanowires, which can be transformed to hydrophilic net-like scaffolds via a thiol-ene click reaction. The property of luminescence of HAp from Eu3+ is beneficial for identifying the relative position of materials and bone marrow mesenchymal stem cells (BMSCs). HAp:Eu3+ scaffolds with excellent cell biocompatibility could promote the expression of early bone formation markers (ALP and ARS) and enhance the expression of genes and proteins associated with osteogenesis (Runx 2, OCN, and OPN). In the end, the results of the in vivo osteogenesis experiment showed that pure HAp scaffolds presented different effects of bone tissue reconstruction compared with the composite scaffolds with HAp nanorods and polymer materials. The superior osteogenic effect could be observed in net-like pure HAp scaffold groups. Furthermore, the absorption of HAp:Eu3+ scaffolds could be monitored due to the luminescence property of Eu3+. This strategy based on ultralong HAp nanowires proved to be a new method for the construction of simple reticular scaffolds for potential osteogenic applications.
Collapse
Affiliation(s)
- Min Liu
- Department of Periodontology, Stomatological Hospital, Jilin University, Changchun 130021, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
189
|
Liu Y, Qiao Z, Gao J, Wu F, Sun B, Lian M, Qian J, Su Y, Zhu X, Zhu B. Hydroxyapatite-Bovine Serum Albumin-Paclitaxel Nanoparticles for Locoregional Treatment of Osteosarcoma. Adv Healthc Mater 2021; 10:e2000573. [PMID: 33166086 DOI: 10.1002/adhm.202000573] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/28/2020] [Indexed: 12/15/2022]
Abstract
Osteosarcoma is the most primary type of bone tumor occurring in the pediatric and adolescent age groups. In order to obtain the most appropriate prognosis, both tumor recurrence inhibition and bone repair promotion are required. In this study, a ternary nanoscale biomaterial/antitumor drug complex including hydroxyapatite (HA), bovine serum albumin (BSA) and paclitaxel (PTX) is prepared for post-surgical cancer treatment of osteosarcoma in situ. The HA-BSA-PTX nanoparticles, about 55 nm in diameter with drug loading efficiency (32.17 wt%), have sustained release properties of PTX and calcium ions (Ca2+ ) and low cytotoxicity to human fetal osteoblastic (hFOB 1.19) cells in vitro. However, for osteosarcoma (143B) cells, the proliferation, migration, and invasion ability are significantly inhibited. The in situ osteosarcoma model studies demonstrate that HA-BSA-PTX nanoparticles have significant anticancer effects and can effectively inhibit tumor metastasis. Meanwhile, the detection of alkaline phosphatase activity, calcium deposition, and reverse transcription-polymerase chain reaction proves that the HA-BSA-PTX nanoparticles can promote the osteogenic differentiation. Therefore, the HA-BSA-PTX nanodrug delivery system combined with sustained drug release, antitumor, and osteogenesis effects is a promising agent for osteosarcoma adjuvant therapy.
Collapse
Affiliation(s)
- Yongjia Liu
- Instrumental Analysis Center Shanghai Jiao Tong University Shanghai 200240 China
| | - Zhiguang Qiao
- Shanghai Key Laboratory of Orthopaedic Implants Department of Orthopaedics Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Life Science and Technology Shanghai 200011 China
- Department of Orthopaedic Surgery Renji Hospital South Campus Shanghai Jiao Tong University School of Medicine Shanghai 201112 China
| | - Jian Gao
- Shanghai Key Laboratory of Orthopaedic Implants Department of Orthopaedics Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Life Science and Technology Shanghai 200011 China
| | - Fengren Wu
- Instrumental Analysis Center Shanghai Jiao Tong University Shanghai 200240 China
| | - Binbin Sun
- Shanghai Key Laboratory of Orthopaedic Implants Department of Orthopaedics Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Life Science and Technology Shanghai 200011 China
| | - Meifei Lian
- Shanghai Key Laboratory of Orthopaedic Implants Department of Orthopaedics Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Life Science and Technology Shanghai 200011 China
| | - Jiwen Qian
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Yue Su
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Bangshang Zhu
- Instrumental Analysis Center Shanghai Jiao Tong University Shanghai 200240 China
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
190
|
Jiang S, Cao Y, Zong C, Pang Y, Sun Z. Appropriate regulation of magnesium on hydroxyapatite crystallization in simulated body fluids. CrystEngComm 2021. [DOI: 10.1039/d0ce01421d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The regulation effect of Mg2+ on HAP crystallization is closely related to the adding time of Mg2+. The introduction of Mg2+ in the ACP unstable stage is unable to inhibit HAP crystallization.
Collapse
Affiliation(s)
- Shuqin Jiang
- School of Public Health
- Department of Toxicology
- Capital Medical University
- Beijing 100069
- China
| | - Yuanyuan Cao
- School of Public Health
- Department of Toxicology
- Capital Medical University
- Beijing 100069
- China
| | - Chenxi Zong
- School of Basic Medicine
- Capital Medical University
- Beijing 100069
- China
| | - Yuanfeng Pang
- School of Public Health
- Department of Toxicology
- Capital Medical University
- Beijing 100069
- China
| | - Zhiwen Sun
- School of Public Health
- Department of Toxicology
- Capital Medical University
- Beijing 100069
- China
| |
Collapse
|
191
|
Kupikowska-Stobba B, Kasprzak M. Fabrication of nanoparticles for bone regeneration: new insight into applications of nanoemulsion technology. J Mater Chem B 2021; 9:5221-5244. [PMID: 34142690 DOI: 10.1039/d1tb00559f] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introducing synthetic bone substitutes into the clinic was a major breakthrough in the regenerative medicine of bone. Despite many advantages of currently available bone implant materials such as biocompatiblity and osteoconductivity, they still suffer from relatively poor bioactivity, osteoinductivity and osteointegration. These properties can be effectively enhanced by functionalization of implant materials with nanoparticles such as osteoinductive hydroxyapatite nanocrystals, resembling inorganic part of the bone, or bioactive polymer nanoparticles providing sustained delivery of pro-osteogenic agents directly at implantation site. One of the most widespread techniques for fabrication of nanoparticles for bone regeneration applications is nanoemulsification. It allows manufacturing of nanoscale particles (<100 nm) that are injectable, 3D-printable, offer high surface-area-to-volume-ratio and minimal mass transport limitations. Nanoparticles obtained by this technique are of particular interest for biomedical engineering due to fabrication procedures requiring low surfactant concentrations, which translates into reduced risk of surfactant-related in vivo adverse effects and improved biocompatibility of the product. This review discusses nanoemulsion technology and its current uses in manufacturing of nanoparticles for bone regeneration applications. In the first section, we introduce basic concepts of nanoemulsification including nanoemulsion formation, properties and preparation methods. In the next sections, we focus on applications of nanoemulsions in fabrication of nanoparticles used for delivery of drugs/biomolecules facilitating osteogenesis and functionalization of bone implants with special emphasis on biomimetic hydroxyapatite nanoparticles, synthetic polymer nanoparticles loaded with bioactive compounds and bone-targeting nanoparticles. We also highlight key challenges in formulation of nanoparticles via nanoemulsification and outline potential further improvements in this field.
Collapse
Affiliation(s)
- Barbara Kupikowska-Stobba
- ŁUKASIEWICZ Research Network - Institute of Ceramics and Building Materials, Ceramic and Concrete Division in Warsaw, Department of Biomaterials, Postępu 9, 02-677, Warsaw, Poland.
| | - Mirosław Kasprzak
- ŁUKASIEWICZ Research Network - Institute of Ceramics and Building Materials, Ceramic and Concrete Division in Warsaw, Department of Biomaterials, Postępu 9, 02-677, Warsaw, Poland.
| |
Collapse
|
192
|
Nhu Van H, Le Manh T, Do Thi Thuy D, Pham VH, Nguyen DH, Pham Thi Hong D, Van Hung H. On enhancement and control of green emission of rare earth co-doped hydroxyapatite nanoparticles: synthesis and upconversion luminescence properties. NEW J CHEM 2021. [DOI: 10.1039/d0nj04847j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this work, low-temperature hydrothermal synthesis of a series of xMo–1%Er–10%Yb (x:mol%) doped hydroxyapatite (HA) phosphors was studied.
Collapse
Affiliation(s)
- Hoang Nhu Van
- Faculty of Materials Science and Engineering
- Phenikaa University
- Hanoi 10000
- Vietnam
- Phenikaa Research and Technology Institute
| | - Tu Le Manh
- Faculty of Materials Science and Engineering
- Phenikaa University
- Hanoi 10000
- Vietnam
- Phenikaa Research and Technology Institute
| | - Dung Do Thi Thuy
- Faculty of Materials Science and Engineering
- Phenikaa University
- Hanoi 10000
- Vietnam
| | - Vuong-Hung Pham
- Advanced Institute for Science and Technology (AIST)
- Hanoi University of Science and Technology (HUST)
- Ha Noi
- Vietnam
| | - Duy-Hung Nguyen
- Advanced Institute for Science and Technology (AIST)
- Hanoi University of Science and Technology (HUST)
- Ha Noi
- Vietnam
| | | | - Hoang Van Hung
- Faculty of Chemistry
- Hanoi National University of Education
- Vietnam
| |
Collapse
|
193
|
Szewczyk A, Skwira A, Ginter M, Tajer D, Prokopowicz M. Microwave-Assisted Fabrication of Mesoporous Silica-Calcium Phosphate Composites for Dental Application. Polymers (Basel) 2020; 13:E53. [PMID: 33375650 PMCID: PMC7796352 DOI: 10.3390/polym13010053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Herein, the microwave-assisted wet precipitation method was used to obtain materials consisting of mesoporous silica (SBA-15) and calcium orthophosphates (CaP). Composites were prepared through immersion of mesoporous silica in different calcification coating solutions and then exposed to microwave radiation. The composites were characterized in terms of molecular structure, crystallinity, morphology, chemical composition, and mineralization potential by Fourier-transform infrared spectroscopy (FTIR), powder X-ray diffraction (XRD), and scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (SEM-EDX). The application of microwave irradiation resulted in the formation of different types of calcium orthophosphates such as calcium deficient hydroxyapatite (CDHA), octacalcium phosphate (OCP), and amorphous calcium phosphate (ACP) on the SBA-15 surface, depending on the type of coating solution. The composites for which the progressive formation of hydroxyapatite during incubation in simulated body fluid was observed were further used in the production of final pharmaceutical forms: membranes, granules, and pellets. All of the obtained pharmaceutical forms preserved mineralization properties.
Collapse
Affiliation(s)
- Adrian Szewczyk
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland; (A.S.); (A.S.); (M.G.); (D.T.)
| | - Adrianna Skwira
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland; (A.S.); (A.S.); (M.G.); (D.T.)
| | - Marta Ginter
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland; (A.S.); (A.S.); (M.G.); (D.T.)
- Scientific Circle of Students, Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Polland
| | - Donata Tajer
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland; (A.S.); (A.S.); (M.G.); (D.T.)
- Scientific Circle of Students, Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Polland
| | - Magdalena Prokopowicz
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland; (A.S.); (A.S.); (M.G.); (D.T.)
| |
Collapse
|
194
|
Aviles T, Hsu SM, Clark A, Ren F, Fares C, Carey PH, Esquivel-Upshaw JF. Hydroxyapatite Formation on Coated Titanium Implants Submerged in Simulated Body Fluid. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5593. [PMID: 33302431 PMCID: PMC7762543 DOI: 10.3390/ma13245593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 01/01/2023]
Abstract
Titanium implants are commonly used in the field of dentistry for prosthetics such as crowns, bridges, and dentures. For successful therapy, an implant must bind to the surrounding bone in a process known as osseointegration. The objective for this ongoing study is to determine the potential of different implant surface coatings in providing the formation of hydroxyapatite (HA). The coatings include titanium nitride (TiN), silicon dioxide (SiO2), and quaternized titanium nitride (QTiN). The controls were a sodium hydroxide treated group, which functioned as a positive control, and an uncoated titanium group. Each coated disc was submerged in simulated body fluid (SBF), replenished every 48 h, over a period of 28 days. Each coating successfully developed a layer of HA, which was calculated through mass comparisons and observed using scanning electron microscopy (SEM) and energy dispersive analysis x-rays (EDX). Among these coatings, the quaternized titanium nitride coating seemed to have a better yield of HA. Further studies to expand the data concerning this experiment are underway.
Collapse
Affiliation(s)
- Tatiana Aviles
- Department of Restorative Dental Sciences, Division of Prosthodontics, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (T.A.); (S.-M.H.); (A.C.)
| | - Shu-Min Hsu
- Department of Restorative Dental Sciences, Division of Prosthodontics, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (T.A.); (S.-M.H.); (A.C.)
| | - Arthur Clark
- Department of Restorative Dental Sciences, Division of Prosthodontics, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (T.A.); (S.-M.H.); (A.C.)
| | - Fan Ren
- Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA; (F.R.); (C.F.); (P.H.C.IV)
| | - Chaker Fares
- Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA; (F.R.); (C.F.); (P.H.C.IV)
| | - Patrick H. Carey
- Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA; (F.R.); (C.F.); (P.H.C.IV)
| | - Josephine F. Esquivel-Upshaw
- Department of Restorative Dental Sciences, Division of Prosthodontics, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (T.A.); (S.-M.H.); (A.C.)
| |
Collapse
|
195
|
Almulaiky YQ, Khalil NM, El-Shishtawy RM, Altalhi T, Algamal Y, Aldhahri M, Al-Harbi SA, Allehyani ES, Bilal M, Mohammed MM. Hydroxyapatite-decorated ZrO 2 for α-amylase immobilization: Toward the enhancement of enzyme stability and reusability. Int J Biol Macromol 2020; 167:299-308. [PMID: 33275970 DOI: 10.1016/j.ijbiomac.2020.11.150] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/09/2020] [Accepted: 11/22/2020] [Indexed: 12/11/2022]
Abstract
Herein, the immobilization of α-amylase onto hydroxyapatite (HA) and hydroxyapatite-decorated ZrO2 (10%wt) (HA-ZrO2) nanocomposite were investigated. The immobilization yield was 69.7% and 84% respectively. The structural differences were characterized using X-Ray diffraction, attenuated total reflectance-Fourier transform infrared spectra, Raman, and scanning electron microscope. After 10 repeated cycles, the residual activity of immobilized α-amylase onto HA and HA-ZrO2 nanocomposite was 46% and 70%, respectively. The storage stability was recorded to be 27%, 50% and 69% from its initial activity in the case of free and immobilized enzyme onto HA and HA-ZrO2 nanocomposite, respectively after 8 weeks. The pH-activity profile and temperature revealed pH 6.0 and temperature 50 °C as the optimal values of free α-amylase, while the optimum values for α-amylase on HA and HA-ZrO2 was shifted to pH 6.5 and 60 °C after immobilization. The immobilized α-amylase onto HA-ZrO2 showed comparatively higher catalytic activity than the free α-amylase. The Km value after the immobilization process onto HA was 2.1 folds highly than that of the free enzyme. In conclusion, it can be inferred that HA-ZrO2 is more sustainable and beneficial support for enzyme immobilization and it represents promising supports for different uses of α-amylase in the biomedical applications.
Collapse
Affiliation(s)
- Yaaser Q Almulaiky
- University of Jeddah, College of Sciences and Arts at Khulais, Department of Chemistry, Jeddah, Saudi Arabia; Chemistry Department, Faculty of Applied Science, Taiz University, Taiz, Yemen.
| | - N M Khalil
- University of Jeddah, College of Sciences and Arts at Khulais, Department of Chemistry, Jeddah, Saudi Arabia; Refractories, Ceramics and Building Materials Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Reda M El-Shishtawy
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, P. O. Box 80200, 21589, Saudi Arabia; Dyeing, Printing, and Textile Auxiliaries Department, Textile Research Division, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Tariq Altalhi
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Yousif Algamal
- University of Jeddah, College of Sciences and Arts at Khulais, Department of Chemistry, Jeddah, Saudi Arabia; Chemistry Department, Faculty of Science & Technology, Omdurman Islamic University. Sudan
| | - Musab Aldhahri
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, P. O. Box 80200, 21589, Saudi Arabia; Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami A Al-Harbi
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Esam S Allehyani
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Mustafa M Mohammed
- Department of Mathematics, College of Sciences & Arts - Khulais, University of Jeddah, Jeddah, Saudi Arabia; Department of statistics, Faculty of science, Sudan University of Science and Technology, Khartoum, Sudan
| |
Collapse
|
196
|
Mechanochemical Synthesis of Nanocrystalline Hydroxyapatite from Ca(H 2PO 4) 2.H 2O, CaO, Ca(OH) 2, and P 2O 5 Mixtures. NANOMATERIALS 2020; 10:nano10112232. [PMID: 33182728 PMCID: PMC7697201 DOI: 10.3390/nano10112232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/24/2020] [Accepted: 11/05/2020] [Indexed: 11/26/2022]
Abstract
This paper reports the progress of the mechanochemical synthesis of nanocrystalline hydroxyapatite (HA) starting from six different powder mixtures containing Ca(H2PO4)2.H2O, CaO, Ca(OH)2, and P2O5. The reaction kinetics of HA phase formation during high-energy ball milling was systematically investigated. The mechanochemical reaction rate of the Ca(H2PO4)2.H2O–Ca(OH)2 powder mixture found to be very fast as the HA phase started to form at around 2 min and finished after 30 min of ball milling. All six powder mixtures were transformed entirely into HA, with the crystallite size between 18.5 and 20.2 nm after 1 h and between 22.5 and 23.9 nm after 2 h of milling. Moreover, the lattice strain was found to be 0.8 ± 0.05% in the 1 h milled powder and 0.6 ± 0.05% in all six powders milled for 2 h. This observation, i.e., coarsening of the HA crystal and gradual decrease of the lattice strain with the increase of milling time, is opposite to the results reported by other researchers. The gradual increase in crystallite size and decrease in lattice strain result from dynamic recovery and recrystallization because of an increase in the local temperature of the powder particles trapped between the balls and ball and reactor wall during the high-energy collision.
Collapse
|
197
|
Snyder AD, Salehinia I. Study of nanoscale deformation mechanisms in bulk hexagonal hydroxyapatite under uniaxial loading using molecular dynamics. J Mech Behav Biomed Mater 2020; 110:103894. [PMID: 32957200 DOI: 10.1016/j.jmbbm.2020.103894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 12/19/2019] [Accepted: 05/29/2020] [Indexed: 01/05/2023]
Abstract
Hydroxyapatite (HAP) is a natural bioceramic which is currently used in scaffolds and coatings for the regrowth of osseous tissue but offers poor load-bearing capacity compared to other biomaterials. The deformation mechanisms responsible for the mechanical behavior of HAP are not well understood, although the advent of multiscale modeling offers the promise of improvements in many materials through computational materials science. This work utilizes molecular dynamics to study the nanoscale deformation mechanisms of HAP in uniaxial tension and compression. It was found that deformation mechanisms vary with loading direction in tension and compression leading to significant compression/tension asymmetry and crystal anisotropy. Bond orientation and geometry relative to the loading direction was found to be an indicator of whether a specific bond was involved in the deformation of HAP in each loading case. Tensile failure mechanisms were attributed to stretching and failure in loading case-specific ionic bond groups. The compressive failure mechanisms were attributed to coulombic repulsion in each case, although loading case-specific bond group rotation and displacement were found to affect specific failure modes. The elastic modulus was the highest for both tension and compression along the Z direction (i.e. normal to the basal plane), followed by Y and X.
Collapse
Affiliation(s)
- Alexander D Snyder
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Iman Salehinia
- Department of Mechanical Engineering, Northern Illinois University, DeKalb, IL, 60115, USA.
| |
Collapse
|
198
|
Severin AV, Rudin VN, Paul’ ME. Characteristic Features of Mg2+ Behavior and Mg2+ Effect on the Structure and Morphology of Nanohydroxyapatite in the Adsorption Method for the Fabrication of the HA-Mg Composite. RUSS J INORG CHEM+ 2020. [DOI: 10.1134/s003602362009017x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
199
|
Mallakpour S, Hatami M, Hussain CM. Recent innovations in functionalized layered double hydroxides: Fabrication, characterization, and industrial applications. Adv Colloid Interface Sci 2020; 283:102216. [PMID: 32763493 DOI: 10.1016/j.cis.2020.102216] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/25/2020] [Accepted: 07/26/2020] [Indexed: 12/21/2022]
Abstract
Layered Double Hydroxides (LDHs) are a group of hydrotalcite-like nano-sized materials with cationic layers and exchangeable interlayer anions. The wide range of divalent and trivalent cationic metals and anionic compounds are employed in the synthesis of LDH materials, which have improved their importance among the researchers. Because of their high anion exchange property, memory effect, tunable behavior, bio-friendly, simple preparation, and their affordability, these nano-materials are essentially interested today. Modification of LDHs improves their behaviours to make them appropriate in industrial fields, including biological, adsorbent, mechanical, optical, thermal, electrical fields, etc. This review has critically discussed the structural features, main properties, and also clarified the most important methods of modification and intercalation of LDH nano-materials. Moreover, some novel reported researches related to the successful modification of LDH materials have been characterized and briefly the advantages, disadvantages, and applications are presented in the industrial fields.
Collapse
|
200
|
Pieper CM, da Rosa WLO, Lund RG, da Silva AF, Piva E, Salas MMS, Maron GK, Bomio MRD, Motta FV, Carreño NLV. Biofilms of cellulose and hydroxyapatite composites: Alternative synthesis process. J BIOACT COMPAT POL 2020. [DOI: 10.1177/0883911520951838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A new biofilm of cellulose coated with hydroxyapatite particles have been prepared using a simple, fast and low temperature process based on a microwave-assisted hydrothermal synthesis. The cellulose used as matrix of the biocomposite was extracted from banana stems residues. The hydroxyapatite coating was performed using calcium nitrate tetrahydrate, phosphoric acid, and 1,2-ethylenediamine dispersed in a cellulose/water solution, with posterior microwave-assisted hydrothermal synthesis, for 5 min at 140°C. The chemical, structural, thermal, and morphological properties of the composites were investigated by X-ray diffraction, infrared spectroscopy, thermogravimetry and field emission scanning electron microscopy. Results showed that the methodology was effective to produce high quality composites, with good thermal stability. Cell viability tests indicated that the cellulose/Hap films were not cytotoxic.
Collapse
Affiliation(s)
- Cari M Pieper
- Department of Restorative Dentistry, Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Wellington LO da Rosa
- Department of Restorative Dentistry, Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Rafael G Lund
- Department of Restorative Dentistry, Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Adriana F da Silva
- Department of Restorative Dentistry, Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Evandro Piva
- Department of Restorative Dentistry, Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Mabel MS Salas
- Department of Restorative Dentistry, Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, RS, Brazil
- Graduate Program in Dentistry, Federal University of Juiz de Fora, Governador Valadares, MG, Brazil
| | - Guilherme K Maron
- Graduate Program in Materials Science and Engineering, Technology Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Mauricio RD Bomio
- LSQM, Laboratory of Chemical Synthesis of Materials, Department of Materials Engineering, Federal University of Rio Grande do Norte, UFRN, Natal, RN, Brazil
| | - Fabiana V Motta
- LSQM, Laboratory of Chemical Synthesis of Materials, Department of Materials Engineering, Federal University of Rio Grande do Norte, UFRN, Natal, RN, Brazil
| | - Neftali LV Carreño
- Graduate Program in Materials Science and Engineering, Technology Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| |
Collapse
|