151
|
Kinney CM, Chandrasekharan UM, Yang L, Shen J, Kinter M, McDermott MS, DiCorleto PE. Histone H3 as a novel substrate for MAP kinase phosphatase-1. Am J Physiol Cell Physiol 2008; 296:C242-9. [PMID: 19020052 DOI: 10.1152/ajpcell.00492.2008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mitogen-activated protein (MAP) kinase phosphatase-1 (MKP-1) is a nuclear, dual-specificity phosphatase that has been shown to dephosphorylate MAP kinases. We used a "substrate-trap" technique involving a mutation in MKP-1 of the catalytically critical cysteine to a serine residue ("CS" mutant) to capture novel MKP-1 substrates. We transfected the MKP-1 (CS) mutant and control (wild-type, WT) constructs into phorbol 12-myristate 13-acetate (PMA)-activated COS-1 cells. MKP-1-substrate complexes were immunoprecipitated, which yielded four bands of 17, 15, 14, and 10 kDa with the CS MKP-1 mutant but not the WT MKP-1. The bands were identified by mass spectrometry as histones H3, H2B, H2A, and H4, respectively. Histone H3 was phosphorylated, and purified MKP-1 dephosphorylated histone H3 (phospho-Ser-10) in vitro; whereas, histone H3 (phospho-Thr-3) was unaffected. We have previously shown that thrombin and vascular endothelial growth factor (VEGF) upregulated MKP-1 in human endothelial cells (EC). We now show that both thrombin and VEGF caused dephosphorylation of histone H3 (phospho-Ser-10) and histone H3 (phospho-Thr-3) in EC with kinetics consistent with MKP-1 induction. Furthermore, MKP-1-specific small interfering RNA (siRNA) prevented VEGF- and thrombin-induced H3 (phospho-Ser-10) dephosphorylation but had no effect on H3 (phospho-Thr-3 or Thr-11) dephosphorylation. In summary, histone H3 is a novel substrate of MKP-1, and VEGF- and thrombin-induced H3 (phospho-Ser-10) dephosphorylation requires MKP-1. We propose that MKP-1-mediated H3 (phospho-Ser-10) dephosphorylation is a key regulatory step in EC activation by VEGF and thrombin.
Collapse
Affiliation(s)
- Corttrell M Kinney
- Dept. of Cell Biology, Lerner Research Institute and Cleveland Clinic Lerner College of Medicine of Case Western Reserve Univ., Cleveland Clinic, NB-21, 9500 Euclid Ave., Cleveland, OH 44195, USA
| | | | | | | | | | | | | |
Collapse
|
152
|
Shearer J, Duggan G, Weljie A, Hittel DS, Wasserman DH, Vogel HJ. Metabolomic profiling of dietary-induced insulin resistance in the high fat-fed C57BL/6J mouse. Diabetes Obes Metab 2008; 10:950-8. [PMID: 18215169 PMCID: PMC6996141 DOI: 10.1111/j.1463-1326.2007.00837.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The predictive ability of metabolic profiling to detect obesity-induced perturbations in metabolism has not been clearly established. Complex aetiologies interacting with environmental factors highlight the need to understand how specific manipulations alter metabolite profiles in this state. The aim of this study was to determine if targeted metabolomic profiling could be employed as a reliable tool to detect dietary-induced insulin resistance in a small subset of experimental animals (n = 10/treatment). Following weaning, male C57BL/6J littermates were randomly divided into two dietary groups: chow and high fat. Following 12 weeks of dietary manipulation, mice were fasted for 5 h prior to serum collection. The resultant high fat-fed animals were obese and insulin resistant as shown by a euglycaemic-hyperinsulinaemic clamp. Sera were analysed by proton nuclear magnetic resonance spectroscopy, and 46 known compounds were identified and quantified. Multivariate analysis by orthogonal partial least squares discriminant analysis, a projection method for class separation, was then used to establish models of each treatment. Models were able to predict class separation between diets with 90% accuracy. Variable importance plots revealed the most important metabolites in this discrimination to include lysine, glycine, citrate, leucine, suberate and acetate. These metabolites are involved in energy metabolism and may be representative of the perturbations taking place with insulin resistance. Results show metabolomics to reliably describe the metabolic effects of insulin resistance in a small subset of samples and are an initial step in establishing metabolomics as a tool to understand the biochemical signature of insulin resistance.
Collapse
Affiliation(s)
- J Shearer
- Department of Biochemistry and Molecular Biology, Faculty of Medicine; and Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.
| | | | | | | | | | | |
Collapse
|
153
|
Boutros T, Chevet E, Metrakos P. Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death, and cancer. Pharmacol Rev 2008; 60:261-310. [PMID: 18922965 DOI: 10.1124/pr.107.00106] [Citation(s) in RCA: 450] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mitogen-activated protein kinase dual-specificity phosphatase-1 (also called MKP-1, DUSP1, ERP, CL100, HVH1, PTPN10, and 3CH134) is a member of the threonine-tyrosine dual-specificity phosphatases, one of more than 100 protein tyrosine phosphatases. It was first identified approximately 20 years ago, and since that time extensive investigations into both mkp-1 mRNA and protein regulation and function in different cells, tissues, and organs have been conducted. However, no general review on the topic of MKP-1 exists. As the subject matter pertaining to MKP-1 encompasses many branches of the biomedical field, we focus on the role of this protein in cancer development and progression, highlighting the potential role of the mitogen-activated protein kinase (MAPK) family. Section II of this article elucidates the MAPK family cross-talk. Section III reviews the structure of the mkp-1 encoding gene, and the known mechanisms regulating the expression and activity of the protein. Section IV is an overview of the MAPK-specific dual-specificity phosphatases and their role in cancer. In sections V and VI, mkp-1 mRNA and protein are examined in relation to cancer biology, therapeutics, and clinical studies, including a discussion of the potential role of the MAPK family. We conclude by proposing an integrated scheme for MKP-1 and MAPK in cancer.
Collapse
Affiliation(s)
- Tarek Boutros
- Department of Surgery, Royal Victoria Hospital, McGill University, 687 Pine Ave. W., Montreal, QC H3A1A1, Canada.
| | | | | |
Collapse
|
154
|
Chiloeches A, Sánchez-Pacheco A, Gil-Araujo B, Aranda A, Lasa M. Thyroid hormone-mediated activation of the ERK/dual specificity phosphatase 1 pathway augments the apoptosis of GH4C1 cells by down-regulating nuclear factor-kappaB activity. Mol Endocrinol 2008; 22:2466-80. [PMID: 18755855 DOI: 10.1210/me.2008-0107] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Thyroid hormone (T3) plays a crucial role in processes such as cell proliferation and differentiation, whereas its implication on cellular apoptosis has not been well documented. Here we examined the effect of T3 on the apoptosis of GH4C1 pituitary cells and the mechanisms underlying this effect. We show that T3 produced a significant increase in apoptosis in serum-depleted conditions. This effect was accompanied by a decrease in nuclear factor-kappaB (NF-kappaB)-dependent transcription, IkappaBalpha phosphorylation, translocation of p65/NF-kappaB to the nucleus, phosphorylation, and transactivation. Moreover, these effects were correlated with a T3-induced decrease in the expression of antiapoptotic gene products, such as members of the inhibitor of apoptosis protein and Bcl-2 families. On the other hand, ERK but not c-Jun N-terminal kinase or MAPK p38, was activated upon exposure to T3, and inhibition of ERK alone abrogated T3-mediated apoptosis. In addition, T3 increased the expression of the MAPK phosphatase, dual specificity phosphatase 1 (DUSP1), in an ERK-dependent manner. Interestingly, the suppression of DUSP1 expression abrogated T3-induced inhibition of NF-kappaB-dependent transcription and p65/NF-kappaB translocation to the nucleus, as well as T3-mediated apoptosis. Overall, our results indicate that T3 induces apoptosis in rat pituitary tumor cells by down-regulating NF-kappaB activity through a mechanism dependent on the ERK/DUSP1 pathway.
Collapse
Affiliation(s)
- Antonio Chiloeches
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Alcalá, Madrid, Spain
| | | | | | | | | |
Collapse
|
155
|
Ralph JA, Morand EF. MAPK phosphatases as novel targets for rheumatoid arthritis. Expert Opin Ther Targets 2008; 12:795-808. [PMID: 18554149 DOI: 10.1517/14728222.12.7.795] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Rheumatoid arthritis (RA) represents a challenge for therapeutic interventions due to complex inflammatory signalling pathways underlying its pathogenesis. The MAPK signalling network, a major effector limb of the inflammatory lesion, is an attractive therapeutic target. MAPK phosphatases (MKPs), endogenous negative regulators of MAPK signalling, have received increasing recognition as modulators of inflammatory and immune responses, and hence as a potential therapeutic avenue for RA. OBJECTIVE To present the rationale for therapeutically targeting MAPK signalling and explore the case for addressing MKP1 as a novel therapeutic strategy for RA. METHODS We summarise literature describing the importance of MAPK signalling in RA and review reports describing the roles of MKPs in modulating innate and adaptive immune responses. Finally we expand on the role of MKP1 in RA pathogenesis and explore data defining MKP1 as a mediator of glucocorticoid action. CONCLUSION MKP1 constitutes an exciting, novel potential therapeutic target for RA.
Collapse
Affiliation(s)
- Jennifer A Ralph
- Monash University, Department of Medicine, Centre for Inflammatory Diseases, Monash Medical Centre, 246 Clayton Road, Clayton, Melbourne 3168, Australia
| | | |
Collapse
|
156
|
Impact of visceral adipose tissue on liver metabolism and insulin resistance. Part II: Visceral adipose tissue production and liver metabolism. DIABETES & METABOLISM 2008; 34:439-45. [PMID: 18562233 DOI: 10.1016/j.diabet.2008.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 04/06/2008] [Indexed: 12/19/2022]
Abstract
Excess visceral adipose tissue is associated with anomalies of blood glucose homoeostasis, elevation of plasma triglycerides and low levels of high-density lipoprotein cholesterol that contribute to the development of type-2 diabetes and cardiovascular syndromes. Visceral adipose tissue releases a large amount of free fatty acids and hormones/cytokines in the portal vein that are delivered to the liver. The secreted products interact with hepatocytes and various immune cells in the liver. Altered liver metabolism and determinants of insulin resistance associated with visceral adipose tissue distribution are discussed, as well as, determinants of an insulin-resistant state promoted by the increased free fatty acids and cytokines delivered by visceral adipose tissue to the liver.
Collapse
|
157
|
Clark AR, Martins JRS, Tchen CR. Role of dual specificity phosphatases in biological responses to glucocorticoids. J Biol Chem 2008; 283:25765-9. [PMID: 18541529 DOI: 10.1074/jbc.r700053200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The powerful anti-inflammatory effects of glucocorticoids (GCs) have been known for more than sixty years, but their molecular mechanisms are still incompletely understood and hotly debated. The GC receptor (GR) was cloned in 1985 and shown to be a transcription factor. Initially, the anti-inflammatory actions of GCs were explained in terms of genes that were up-regulated by the receptor. However, none of these putative mediators seemed able to account for the spectrum of anti-inflammatory responses to GCs. The discovery of a negative regulatory function of GR then shifted the focus away from GC-induced genes as anti-inflammatory mediators. In recent years, attention has begun to move back toward the idea that the anti-inflammatory response to GCs is partially dependent on the positive regulation of gene expression by GR.
Collapse
Affiliation(s)
- Andrew R Clark
- Kennedy Institute of Rheumatology Division, Imperial College London, 1 Aspenlea Road, Hammersmith, London W6 8LH, United Kingdom.
| | | | | |
Collapse
|
158
|
Abstract
There are ten mitogen-activated protein kinase (MAPK) phosphatases (MKPs) that act as negative regulators of MAPK activity in mammalian cells and these can be subdivided into three groups. The first comprises DUSP1/MKP-1, DUSP2/PAC1, DUSP4/MKP-2 and DUSP5/hVH-3, which are inducible nuclear phosphatases. With the exception of DUSP5, these MKPs display a rather broad specificity for inactivation of the ERK, p38 and JNK MAP kinases. The second group contains three closely related ERK-specific and cytoplasmic MKPs encoded by DUSP6/MKP-3, DUSP7/MKP-X and DUSP9/MKP-4. The final group consists of three MKPs DUSP8/hVH-5, DUSP10/MKP-5 and DUSP16/MKP-7 all of which preferentially inactivate the stress-activated p38 and JNK MAP kinases. Abnormal MAPK signalling will have important consequences for processes critical to the development and progression of human cancer. In addition, MAPK signalling also plays a key role in determining the response of tumour cells to conventional cancer therapies. The emerging roles of the dual-specificity MKPs in the regulation of MAPK activities in normal tissues has highlighted the possible pathophysiological consequences of either loss (or gain) of function of these enzymes as part of the oncogenic process. This review summarises the current evidence implicating the dual-specificity MKPs in the initiation and development of cancer and also on the outcome of treatment.
Collapse
Affiliation(s)
- Stephen M Keyse
- Cancer Research UK Stress Response Laboratory, Biomedical Research Centre, Level 5, Ninewells Hospital and Medical School, Dundee, UK.
| |
Collapse
|
159
|
Shi H, Scheffler JM, Pleitner JM, Zeng C, Park S, Hannon KM, Grant AL, Gerrard DE. Modulation of skeletal muscle fiber type by mitogen‐activated protein kinase signaling. FASEB J 2008; 22:2990-3000. [DOI: 10.1096/fj.07-097600] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hao Shi
- Department of Animal SciencesPurdue UniversityWest LafayetteIndianaUSA
| | | | | | - Caiyun Zeng
- Department of Animal SciencesPurdue UniversityWest LafayetteIndianaUSA
| | - Sungkwon Park
- Department of Animal SciencesPurdue UniversityWest LafayetteIndianaUSA
| | - Kevin M. Hannon
- Department of Basic Medical SciencesPurdue UniversityWest LafayetteIndianaUSA
| | - Alan L. Grant
- Department of Animal SciencesPurdue UniversityWest LafayetteIndianaUSA
| | - David E. Gerrard
- Department of Animal SciencesPurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
160
|
Hou N, Torii S, Saito N, Hosaka M, Takeuchi T. Reactive oxygen species-mediated pancreatic beta-cell death is regulated by interactions between stress-activated protein kinases, p38 and c-Jun N-terminal kinase, and mitogen-activated protein kinase phosphatases. Endocrinology 2008; 149:1654-65. [PMID: 18187551 DOI: 10.1210/en.2007-0988] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pancreatic beta-cells are susceptible to reactive oxygen species (ROS), which are known to be generated by high or low glucose (LG), hypoxic, or cytokine-producing conditions. When we cultured mouse beta-cell-derived MIN6 cells in a LG condition, we detected a significant generation of ROS, including hydrogen peroxide, which was comparable to the ROS production in hypoxic or cytokine-treated conditions. ROS accumulation induced by the LG culture led to cell death, which was prevented by the ROS scavengers N-acetylcysteine and manganese(III)tetrakis(4-benzoic acid) porphyrin. We next investigated the mechanism of stress-activated protein kinases (SAPKs), c-jun N-terminal kinase (JNK) and p38, in ROS-induced MIN6 cell death. Activation of p38 occurred immediately after the LG culture, whereas JNK activation increased slowly 8 h later. Adenoviral p38 expression decreased MIN6 cell death, whereas the JNK expression increased it. Consistently, blocking p38 activation by inhibitors increased beta-cell death, whereas JNK inhibitors decreased it. We then examined the role of MAPK phosphatases (MKPs) specific for stress-activated protein kinases in beta-cell death. We found that MKP-1 presented an increase in its oxidized product after the LG culture. ROS scavengers prevented the appearance of this oxidized product and JNK activation. Thus, ROS-induced MKP inactivation causes sustained activation of JNK, which contributes to beta-cell death. Adenoviral overexpression of MKP-1 and MKP-7 prevented the phosphorylation of JNK at 36 h after the LG culture, and decreased MIN6 beta-cell death. We suggest that beta-cell death is regulated by interactions between JNK and its specific MKPs.
Collapse
Affiliation(s)
- Ni Hou
- Secretion Biology Lab, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Japan
| | | | | | | | | |
Collapse
|
161
|
Sun L, Yu MC, Kong L, Zhuang ZH, Hu JH, Ge BX. Molecular identification and functional characterization of a Drosophila dual-specificity phosphatase DMKP-4 which is involved in PGN-induced activation of the JNK pathway. Cell Signal 2008; 20:1329-37. [PMID: 18456458 DOI: 10.1016/j.cellsig.2008.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 03/03/2008] [Indexed: 11/29/2022]
Abstract
MAP (Mitogen-activated protein) kinases play an important role in regulating many critical cellular processes. The inactivation of MAP kinases is always accomplished by a family of dual-specificity phosphatases, termed MAPK phosphatases (MKPs). Here, we have identified a novel MKP-like protein, designated DMKP-4, from the Drosophila genome. DMKP-4 is a protein of 387 amino acids, with a dual-specificity phosphatase (DSP) catalytic domain. Recombinant protein DMKP-4 retains intrinsic phosphatase activity against chromogenic substrate pNPP. Overexpression of DMKP-4 inhibited the activation of ERK, JNK and p38 by H(2)O(2), sorbitol and heat shock in HEK293-T cells, and JNK activation in Drosophila S2 cells under PGN stimuli. "Knockdown" of DMKP-4 expression by RNAi significantly enhanced the PGN-stimulated activation of JNK, but not ERK nor p38. Further study revealed that DMKP-4 interacted specifically with JNK via its DSP domain. Mutation of Cys-126 to serine in the DSP domain of DMKP-4 not only eliminated its interaction with JNK, but also markedly reduced its phosphatase activity. Thus, DMKP-4 is a Drosophila homologue of mammalian MKPs, and may play important roles in the regulation of various developmental processes.
Collapse
Affiliation(s)
- Lei Sun
- Laboratory of Signal Transduction, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao-Tong University School of Medicine, 225 South Chongqing Road, Shanghai 200025, China
| | | | | | | | | | | |
Collapse
|
162
|
Pulido R, van Huijsduijnen RH. Protein tyrosine phosphatases: dual-specificity phosphatases in health and disease. FEBS J 2008; 275:848-66. [DOI: 10.1111/j.1742-4658.2008.06250.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
163
|
Beyer TA, Xu W, Teupser D, auf dem Keller U, Bugnon P, Hildt E, Thiery J, Kan YW, Werner S. Impaired liver regeneration in Nrf2 knockout mice: role of ROS-mediated insulin/IGF-1 resistance. EMBO J 2007; 27:212-23. [PMID: 18059474 DOI: 10.1038/sj.emboj.7601950] [Citation(s) in RCA: 223] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 11/14/2007] [Indexed: 02/06/2023] Open
Abstract
The liver is frequently challenged by surgery-induced metabolic overload, viruses or toxins, which induce the formation of reactive oxygen species. To determine the effect of oxidative stress on liver regeneration and to identify the underlying signaling pathways, we studied liver repair in mice lacking the Nrf2 transcription factor. In these animals, expression of several cytoprotective enzymes was reduced in hepatocytes, resulting in oxidative stress. After partial hepatectomy, liver regeneration was significantly delayed. Using in vitro and in vivo studies, we identified oxidative stress-mediated insulin/insulin-like growth factor resistance as an underlying mechanism. This deficiency impaired the activation of p38 mitogen-activated kinase, Akt kinase and downstream targets after hepatectomy, resulting in enhanced death and delayed proliferation of hepatocytes. Our results reveal novel roles of Nrf2 in the regulation of growth factor signaling and in tissue repair. In addition, they provide new insight into the mechanisms underlying oxidative stress-induced defects in liver regeneration. These findings may provide the basis for the development of new strategies to improve regeneration in patients with acute or chronic liver damage.
Collapse
Affiliation(s)
- Tobias A Beyer
- Department of Biology, Institute of Cell Biology, ETH Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Horsch K, de Wet H, Schuurmans MM, Allie-Reid F, Cato ACB, Cunningham J, Burrin JM, Hough FS, Hulley PA. Mitogen-activated protein kinase phosphatase 1/dual specificity phosphatase 1 mediates glucocorticoid inhibition of osteoblast proliferation. Mol Endocrinol 2007; 21:2929-40. [PMID: 17761948 PMCID: PMC2838148 DOI: 10.1210/me.2007-0153] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Steroid-induced osteoporosis is a common side effect of long-term treatment with glucocorticoid (GC) drugs. GCs have multiple systemic effects that may influence bone metabolism but also directly affect osteoblasts by decreasing proliferation. This may be beneficial at low concentrations, enhancing differentiation. However, high-dose treatment produces a severe deficit in the proliferative osteoblastic compartment. We provide causal evidence that this effect of GC is mediated by induction of the dual-specificity MAPK phosphatase, MKP-1/DUSP1. Excessive MKP-1 production is both necessary and sufficient to account for the impaired osteoblastic response to mitogens. Overexpression of MKP-1 after either GC treatment or transfection ablates the mitogenic response in osteoblasts. Knockdown of MKP-1 using either immunodepletion of MKP-1 before in vitro dephosphorylation assay or short interference RNA transfection prevents inactivation of ERK by GCs. Neither c-jun N-terminal kinase nor p38 MAPK is activated by the mitogenic cocktail in 20% fetal calf serum, but their activation by a DNA-damaging agent (UV irradiation) was inhibited by either GC treatment or overexpression of MKP-1, indicating regulation of all three MAPKs by MKP-1 in osteoblasts. However, an inhibitor of the MAPK/ERK kinase-ERK pathway inhibited osteoblast proliferation whereas inhibitors of c-jun N-terminal kinase or p38 MAPK had no effect, suggesting that ERK is the MAPK that controls osteoblast proliferation. Regulation of ERK by MKP-1 provides a novel mechanism for control of osteoblast proliferation by GCs.
Collapse
Affiliation(s)
- Kay Horsch
- Division of Endocrinology and Metabolism, Department of Medicine, University of Stellenbosch, Stellenbosch 7505, South Africa
| | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Vegiopoulos A, Herzig S. Glucocorticoids, metabolism and metabolic diseases. Mol Cell Endocrinol 2007; 275:43-61. [PMID: 17624658 DOI: 10.1016/j.mce.2007.05.015] [Citation(s) in RCA: 350] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 05/14/2007] [Accepted: 05/17/2007] [Indexed: 12/14/2022]
Abstract
Since the discovery of the beneficial effects of adrenocortical extracts for treating adrenal insufficiency more than 80 years ago, glucocorticoids (GC) and their cognate, intracellular receptor, the glucocorticoid receptor (GR) have been characterized as critical components of the delicate hormonal control system that determines energy homeostasis in mammals. Whereas physiological levels of GCs are required for proper metabolic control, excessive GC action has been tied to a variety of pandemic metabolic diseases, such as type II diabetes and obesity. Highlighted by its importance for human health, the investigation of molecular mechanisms of GC/GR action has become a major focus in biomedical research. In particular, the understanding of tissue-specific functions of the GC-GR pathway has been proven to be of substantial value for the identification of novel therapeutic options in the treatment of severe metabolic disorders. Therefore, this review focuses on the role of the GC-GR axis for metabolic homeostasis and dysregulation, emphasizing tissue-specific functions of GCs in the control of energy metabolism.
Collapse
|
166
|
Clark AR. Anti-inflammatory functions of glucocorticoid-induced genes. Mol Cell Endocrinol 2007; 275:79-97. [PMID: 17561338 DOI: 10.1016/j.mce.2007.04.013] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Accepted: 04/25/2007] [Indexed: 01/12/2023]
Abstract
There is a broad consensus that glucocorticoids (GCs) exert anti-inflammatory effects largely by inhibiting the function of nuclear factor kappaB (NFkappaB) and consequently the transcription of pro-inflammatory genes. In contrast, side effects are thought to be largely dependent on GC-induced gene expression. Biochemical and genetic evidence suggests that the positive and negative effects of GCs on transcription can be uncoupled from one another. Hence, novel GC-related drugs that mediate inhibition of NFkappaB but do not activate gene expression are predicted to retain therapeutic effects but cause fewer or less severe side effects. Here, we critically re-examine the evidence in favor of the consensus, binary model of GC action and discuss conflicting evidence, which suggests that anti-inflammatory actions of GCs depend on the induction of anti-inflammatory mediators. We propose an alternative model, in which GCs exert anti-inflammatory effects at both transcriptional and post-transcriptional levels, both by activating and inhibiting expression of target genes. The implications of such a model in the search for safer anti-inflammatory drugs are discussed.
Collapse
Affiliation(s)
- Andrew R Clark
- Kennedy Institute of Rheumatology Division, Imperial College London, 1 Aspenlea Road, Hammersmith, London W6 8LH, United Kingdom.
| |
Collapse
|
167
|
Ito A, Suganami T, Miyamoto Y, Yoshimasa Y, Takeya M, Kamei Y, Ogawa Y. Role of MAPK Phosphatase-1 in the Induction of Monocyte Chemoattractant Protein-1 during the Course of Adipocyte Hypertrophy. J Biol Chem 2007; 282:25445-52. [PMID: 17611196 DOI: 10.1074/jbc.m701549200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Monocyte chemoattractant protein-1 (MCP-1), an important chemokine whose expression is increased during the course of obesity, plays a role in macrophage infiltration into obese adipose tissue. This study was designed to elucidate the role of mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) in the induction of MCP-1 during the course of adipocyte hypertrophy. We examined the time course of MKP-1 and MCP-1 mRNA expression and extracellular signal-regulated kinase (ERK) phosphorylation in the adipose tissue from mice rendered mildly obese by a short term high fat diet. We also studied the role of MKP-1 in the induction of MCP-1 in 3T3-L1 adipocytes during the course of adipocyte hypertrophy. MCP-1 mRNA expression was increased, followed by ERK activation and down-regulation of MKP-1, an inducible dual specificity phosphatase to inactivate ERK, in the adipose tissue at the early stage of obesity induced by a short term high fat diet, when macrophages are not infiltrated. Down-regulation of MKP-1 preceded ERK activation and increased production of MCP-1 in 3T3-L1 adipocytes in vitro during the course of adipocyte hypertrophy. Adenovirus-mediated restoration of MKP-1 in hypertrophied 3T3-L1 adipocytes reduced the otherwise increased ERK phosphorylation, thereby leading to the significant reduction of MCP-1 mRNA expression. This study provides evidence that the down-regulation of MKP-1 is critical for increased production of MCP-1 during the course of adipocyte hypertrophy.
Collapse
Affiliation(s)
- Ayaka Ito
- Department of Molecular Medicine and Metabolism, Medical Research Institute, Tokyo Medical and Dental University, and Department of Medicine, National Cardiovascular Center Hospital, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
168
|
Amcheslavsky A, Bar-Shavit Z. Toll-like receptor 9 ligand blocks osteoclast differentiation through induction of phosphatase. J Bone Miner Res 2007; 22:1301-10. [PMID: 17488193 DOI: 10.1359/jbmr.070501] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED CpG-ODN, in addition to stimulation of osteoclastogenic signals in early osteoclast precursors, also induces phosphatase, shifting the pattern of ERK phosphorylation from sustained to transient. This shift results in the degradation of c-fos, an essential molecule for osteoclast differentiation. Therefore, CpG-ODN blocks osteoclast differentiation. INTRODUCTION Activation of either Toll-like receptor 9 (TLR9) or RANK induces similar responses in osteoclast precursors. Paradoxically, activation of TLR9 results in inhibition of RANKL-induced osteoclastogenesis. MATERIALS AND METHODS We used bone marrow-derived osteoclast precursors. Analyses of signaling molecules phosphorylation were performed using Western blotting. Different levels of gene expression analyses were performed using RT-PCR, Northern, and run-on analyses (for RNA), and EMSA, Western, and pulse-chase experiments (for protein). Phosphatase activity was measured spectrophotometrically. RESULTS We found that RANKL and TLR9 ligand, oligodeoxynucleotides containing unmethylated CpG dinucleotides (CpG-ODN), induce sustained and transient extracellular signal-regulated kinase (ERK) phosphorylation, respectively. Furthermore, together they induce a transient phosphorylation of ERK. The duration of ERK phosphorylation is a key factor in determining induction of c-fos, a protein critical for osteoclastogenesis. Indeed, we found that CpG-ODN does not induce c-fos and inhibits its induction by RANKL by enhancing c-fos mRNA and protein degradation. Our observation that CpG-ODN, but not RANKL, induces the expression of the phosphatase PP2A suggests that CpG-ODN exerts its inhibitory activity by induction of ERK dephosphorylation. Moreover, together with the phosphatase inhibitor okadaic acid, CpG-ODN induces sustained ERK phosphorylation and c-fos expression. CONCLUSIONS Our findings suggest that the increased rate of c-fos degradation by the TLR9 ligand mediates the inhibition of RANKL-induced osteoclast differentiation. The TLR9 ligand, through induction of dephosphorylation, prevents the sustained ERK phosphorylation needed for maintaining high c-fos levels that are essential for osteoclast differentiation.
Collapse
Affiliation(s)
- Alla Amcheslavsky
- The Hubert H. Humphrey Center for Experimental Medicine and Cancer Research, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | | |
Collapse
|
169
|
Kondoh K, Nishida E. Regulation of MAP kinases by MAP kinase phosphatases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1227-37. [PMID: 17208316 DOI: 10.1016/j.bbamcr.2006.12.002] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 12/05/2006] [Accepted: 12/06/2006] [Indexed: 11/24/2022]
Abstract
MAP kinase phosphatases (MKPs) catalyze dephosphorylation of activated MAP kinase (MAPK) molecules and deactivate them. Therefore, MKPs play an important role in determining the magnitude and duration of MAPK activities. MKPs constitute a structurally distinct family of dual-specificity phosphatases. The MKP family members share the sequence homology and the preference for MAPK molecules, but they are different in substrate specificity among MAPK molecules, tissue distribution, subcellular localization and inducibility by extracellular stimuli. Our understanding of their protein structure, substrate recognition mechanisms, and regulatory mechanisms of the enzymatic activity has greatly increased over the past few years. Furthermore, although there are a number of MKPs, that have similar substrate specificities, non-redundant roles of MKPs have begun to be identified. Here we focus on recent findings regarding regulation and function of the MKP family members as physiological regulators of MAPK signaling.
Collapse
Affiliation(s)
- Kunio Kondoh
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | |
Collapse
|
170
|
Liu P, Vikis H, Lu Y, Wang D, You M. Large-scale in silico mapping of complex quantitative traits in inbred mice. PLoS One 2007; 2:e651. [PMID: 17653278 PMCID: PMC1920557 DOI: 10.1371/journal.pone.0000651] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 06/21/2007] [Indexed: 12/02/2022] Open
Abstract
Understanding the genetic basis of common disease and disease-related quantitative traits will aid in the development of diagnostics and therapeutics. The processs of gene discovery can be sped up by rapid and effective integration of well-defined mouse genome and phenome data resources. We describe here an in silico gene-discovery strategy through genome-wide association (GWA) scans in inbred mice with a wide range of genetic variation. We identified 937 quantitative trait loci (QTLs) from a survey of 173 mouse phenotypes, which include models of human disease (atherosclerosis, cardiovascular disease, cancer and obesity) as well as behavioral, hematological, immunological, metabolic, and neurological traits. 67% of QTLs were refined into genomic regions <0.5 Mb with ∼40-fold increase in mapping precision as compared with classical linkage analysis. This makes for more efficient identification of the genes that underlie disease. We have identified two QTL genes, Adam12 and Cdh2, as causal genetic variants for atherogenic diet-induced obesity. Our findings demonstrate that GWA analysis in mice has the potential to resolve multiple tightly linked QTLs and achieve single-gene resolution. These high-resolution QTL data can serve as a primary resource for positional cloning and gene identification in the research community.
Collapse
Affiliation(s)
- Pengyuan Liu
- Department of Surgery and the Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Haris Vikis
- Department of Surgery and the Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Yan Lu
- Department of Surgery and the Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Daolong Wang
- Department of Surgery and the Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ming You
- Department of Surgery and the Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
171
|
Wang X, Liu Y. Regulation of innate immune response by MAP kinase phosphatase-1. Cell Signal 2007; 19:1372-82. [PMID: 17512700 PMCID: PMC2203964 DOI: 10.1016/j.cellsig.2007.03.013] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 03/29/2007] [Indexed: 12/17/2022]
Abstract
Mitogen-activated protein (MAP) kinase cascades are signal transduction pathways that play pivotal regulatory roles in the biosynthesis of pro-inflammatory cytokines. MAP kinase phosphatase (MKP)-1, an archetypal member of the MKP family, is essential for the dephosphorylation/deactivation of MAP kinases p38 and JNK. Earlier studies conducted using cultured immortalized macrophages provided compelling evidence indicating that MKP-1 deactivates p38 and JNK, thereby limiting pro-inflammatory cytokine biosynthesis in innate immune cells exposed to microbial components. Recent studies employing MKP-1 knockout mice have confirmed the central function of MKP-1 in the feedback control of p38 and JNK activity as well as the crucial physiological function of MKP-1 as a negative regulator of the synthesis of pro-inflammatory cytokines in vivo. MKP-1 was shown to be a major feedback regulator of the innate immune response and to play a critical role in preventing septic shock and multi-organ dysfunction during pathogenic infection. In this review, we will update the studies on the biochemical properties and the regulation of MKP-1, and summarize our understanding on the physiological function of this key phosphatase in the innate immune response.
Collapse
Affiliation(s)
- Xianxi Wang
- Center for Perinatal Research, Children's Research Institute, Columbus Children's Hospital, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | | |
Collapse
|
172
|
Abstract
Mitogen-activated protein kinases (MAPKs) regulate diverse cellular programs including embryogenesis, proliferation, differentiation and apoptosis based on cues derived from the cell surface and the metabolic state and environment of the cell. In mammals, there are more than a dozen MAPK genes. The best known are the extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Jun N-terminal kinase (JNK(1-3)) and p38(alpha, beta, gamma and delta) families. ERK3, ERK5 and ERK7 are other MAPKs that have distinct regulation and functions. MAPK cascades consist of a core of three protein kinases. Despite the apparently simple architecture of this pathway, these enzymes are capable of responding to a bewildering number of stimuli to produce exquisitely specific cellular outcomes. These responses depend on the kinetics of their activation and inactivation, the subcellular localization of the kinases, the complexes in which they act, and the availability of substrates. Fine-tuning of cascade activity can occur through modulatory inputs to cascade component from the primary kinases to the scaffolding accessory proteins. Here, we describe some of the properties of the three major MAPK pathways and discuss how these properties govern pathway regulation and activity.
Collapse
Affiliation(s)
- M Raman
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | |
Collapse
|
173
|
Owens DM, Keyse SM. Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Oncogene 2007; 26:3203-13. [PMID: 17496916 DOI: 10.1038/sj.onc.1210412] [Citation(s) in RCA: 638] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The regulated dephosphorylation of mitogen-activated protein kinases (MAPKs) plays a key role in determining the magnitude and duration of kinase activation and hence the physiological outcome of signalling. In mammalian cells, an important component of this control is mediated by the differential expression and activities of a family of 10 dual-specificity (Thr/Tyr) MAPK phosphatases (MKPs). These enzymes share a common structure in which MAPK substrate recognition is determined by sequences within an amino-terminal non-catalytic domain whereas MAPK binding often leads to a conformational change within the C-terminal catalytic domain resulting in increased enzyme activity. MKPs can either recognize and inactivate a single class of MAP kinase, as in the specific inactivation of extracellular signal regulated kinase (ERK) by the cytoplasmic phosphatase DUSP6/MKP-3 or can regulate more than one MAPK pathway as illustrated by the ability of DUSP1/MKP-1 to dephosphorylate ERK, c-Jun amino-terminal kinase and p38 in the cell nucleus. These properties, coupled with transcriptional regulation of MKP expression in response to stimuli that activate MAPK signalling, suggest a complex negative regulatory network in which individual MAPK activities can be subject to negative feedback control, but also raise the possibility that signalling through multiple MAPK pathways may be integrated at the level of regulation by MKPs.
Collapse
Affiliation(s)
- D M Owens
- Cancer Research UK Stress Response Laboratory, Biomedical Research Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, UK
| | | |
Collapse
|
174
|
Jeffrey KL, Camps M, Rommel C, Mackay CR. Targeting dual-specificity phosphatases: manipulating MAP kinase signalling and immune responses. Nat Rev Drug Discov 2007; 6:391-403. [PMID: 17473844 DOI: 10.1038/nrd2289] [Citation(s) in RCA: 402] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dual-specificity phosphatases (DUSPs) are a subset of protein tyrosine phosphatases, many of which dephosphorylate threonine and tyrosine residues on mitogen-activated protein kinases (MAPKs), and hence are also referred to as MAPK phosphatases (MKPs). The regulated expression and activity of DUSP family members in different cells and tissues controls MAPK intensity and duration to determine the type of physiological response. For immune cells, DUSPs regulate responses in both positive and negative ways, and DUSP-deficient mice have been used to identify individual DUSPs as key regulators of immune responses. From a drug discovery perspective, DUSP family members are promising drug targets for manipulating MAPK-dependent immune responses in a cell-type and disease-context-dependent manner, to either boost or subdue immune responses in cancers, infectious diseases or inflammatory disorders.
Collapse
Affiliation(s)
- Kate L Jeffrey
- Immunology and Inflammation Research Program, The Garvan Institute, Darlinghurst, Sydney, NSW 2010, Australia
| | | | | | | |
Collapse
|
175
|
Abstract
Mitogen-activated protein kinase (MAPK) phosphatases (MKPs) are protein phosphatases that dephosphorylate both the phosphothreonine and phosphotyrosine residues on activated MAPKs. Removal of the phosphates renders MAPKs inactive, effectively halting their cellular function. In recent years, evidence has emerged that, similar to MAPKs, MKPs are pivotal in the regulation of immune responses. By deactivating MAPKs, MKPs can modulate both innate and adaptive immunity. A number of immunomodulatory agents have been found to influence the expression of MKP1 in particular, highlighting the central role of this phosphatase in immune regulation. This Review discusses the properties, function and regulation of MKPs during immune responses.
Collapse
Affiliation(s)
- Yusen Liu
- Center for Perinatal Research, Columbus Children's Research Institute, Columbus Children's Hospital, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio 43205, USA.
| | | | | |
Collapse
|
176
|
Doi M, Cho S, Yujnovsky I, Hirayama J, Cermakian N, Cato ACB, Sassone-Corsi P. Light-inducible and clock-controlled expression of MAP kinase phosphatase 1 in mouse central pacemaker neurons. J Biol Rhythms 2007; 22:127-39. [PMID: 17440214 DOI: 10.1177/0748730406298332] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
MAP kinase phosphatase 1 (MKP1) is a negative regulator for the mitogen-activated protein kinase (MAPK)-mediated signal transduction, a key pathway that leads to the regulated expression of circadian clock genes. Here the authors analyzed mkp1 expression by in situ hybridization and found that mkp1 is a light-inducible and clock-controlled gene expressed in the central pacemaker neurons of the hypothalamic SCN. Interestingly, mkp1 presents a marked similarity to the clock core gene per1 in terms of the gene expression profiles as well as the gene promoter organization. Both mkp1 and per1 are subject to bimodal regulation in the SCN: the external light-dependent acute up-regulation and the functional clock-dependent circadian oscillation. Consistent with this, the authors show that mkp1 gene has a per1-like promoter that contains 2 functionally distinct elements: cAMP-responsive element (CRE) and E-box. CRE sites present in the mkp1 promoter constitute the functional binding sites for the CRE binding protein (CREB), which serves as an important regulator that mediates the light-induced signaling cascades in the SCN neurons. Furthermore, the authors show that the E-box present in the mkp1 promoter is necessary and sufficient for transcriptional control exerted by circadian clock core regulators that include a positive complex CLOCK/BMAL1 and a negative factor CRY1. The authors' studies on mkp1 have identified for the first time a gene encoding a phosphatase that functions in light-dependent and time-of-day-dependent manners in the mammalian central clock structure SCN.
Collapse
Affiliation(s)
- Masao Doi
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch-Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
177
|
Okamura T, Shimizu H, Nagao T, Ueda R, Ishii S. ATF-2 regulates fat metabolism in Drosophila. Mol Biol Cell 2007; 18:1519-29. [PMID: 17314398 PMCID: PMC1838969 DOI: 10.1091/mbc.e06-10-0909] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
ATF-2 is a member of the ATF/CREB family of transcription factors that is activated by stress-activated protein kinases such as p38. To analyze the physiological role of Drosophila ATF-2 (dATF-2), we generated dATF-2 knockdown flies using RNA interference. Reduced dATF-2 in the fat body, the fly equivalent of the mammalian liver and adipose tissue, decreased survival under starvation conditions. This was due to smaller triglyceride reserves of dATF-2 knockdown flies than control flies. Among multiple genes that control triglyceride levels, expression of the Drosophila PEPCK (dPEPCK) gene was strikingly reduced in dATF-2 knockdown flies. PEPCK is a key enzyme for both gluconeogenesis and glyceroneogenesis, which is a pathway required for triglyceride synthesis via glycerol-3-phosphate. Although the blood sugar level in dATF-2 knockdown flies was almost same as that in control flies, the activity of glyceroneogenesis was reduced in the fat bodies of dATF-2 knockdown flies. Thus, reduced glyceroneogenesis may at least partly contribute to decreased triglyceride stores in the dATF-2 knockdown flies. Furthermore we showed that dATF-2 positively regulated dPEPCK gene transcription via several CRE half-sites in the PEPCK promoter. Thus, dATF-2 is critical for regulation of fat metabolism.
Collapse
Affiliation(s)
- Tomoo Okamura
- *Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
- University of Tsukuba, Graduate School of Comprehensive Human Sciences, Tsukuba, Ibaraki 305-8577, Japan; and
| | - Hideyuki Shimizu
- *Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Tomoko Nagao
- *Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Ryu Ueda
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Shunsuke Ishii
- *Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
- University of Tsukuba, Graduate School of Comprehensive Human Sciences, Tsukuba, Ibaraki 305-8577, Japan; and
| |
Collapse
|
178
|
Weston CR, Davis RJ. The JNK signal transduction pathway. Curr Opin Cell Biol 2007; 19:142-9. [PMID: 17303404 DOI: 10.1016/j.ceb.2007.02.001] [Citation(s) in RCA: 832] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 02/05/2007] [Indexed: 11/18/2022]
Abstract
The c-Jun NH(2)-terminal kinases (JNKs) are an evolutionarily conserved sub-group of mitogen-activated protein (MAP) kinases. Recent studies have improved our understanding of the physiological function of the JNK pathway. Roles of novel molecules that participate in the JNK pathway have been defined and new insight into the role of JNK in survival signaling, cell death, cancer and diabetes has been achieved.
Collapse
Affiliation(s)
- Claire R Weston
- Howard Hughes Medical Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | |
Collapse
|
179
|
Dickinson RJ, Keyse SM. Diverse physiological functions for dual-specificity MAP kinase phosphatases. J Cell Sci 2006; 119:4607-15. [PMID: 17093265 DOI: 10.1242/jcs.03266] [Citation(s) in RCA: 275] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A structurally distinct subfamily of ten dual-specificity (Thr/Tyr) protein phosphatases is responsible for the regulated dephosphorylation and inactivation of mitogen-activated protein kinase (MAPK) family members in mammals. These MAPK phosphatases (MKPs) interact specifically with their substrates through a modular kinase-interaction motif (KIM) located within the N-terminal non-catalytic domain of the protein. In addition, MAPK binding is often accompanied by enzymatic activation of the C-terminal catalytic domain, thus ensuring specificity of action. Despite our knowledge of the biochemical and structural basis for the catalytic mechanism of the MKPs, we know much less about their regulation and physiological functions in mammalian cells and tissues. However, recent studies employing a range of model systems have begun to reveal essential non-redundant roles for the MKPs in determining the outcome of MAPK signalling in a variety of physiological contexts. These include development, immune system function, metabolic homeostasis and the regulation of cellular stress responses. Interestingly, these functions may reflect both restricted subcellular MKP activity and changes in the levels of signalling through multiple MAPK pathways.
Collapse
Affiliation(s)
- Robin J Dickinson
- Cancer Research UK Stress Response Laboratory, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | | |
Collapse
|