151
|
Lee SM, Bae JH, Kim MJ, Lee HS, Lee MK, Chung BS, Kim DW, Kang CD, Kim SH. Bcr-Abl-independent imatinib-resistant K562 cells show aberrant protein acetylation and increased sensitivity to histone deacetylase inhibitors. J Pharmacol Exp Ther 2007; 322:1084-92. [PMID: 17569822 DOI: 10.1124/jpet.107.124461] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Bcr-Abl-independent signaling pathways are known to be involved in imatinib resistance in some patients with chronic myelogenous leukemia (CML). In this study, to find new targets for imatinib-resistant CML displaying loss of Bcr-Abl kinase target dependence, we isolated imatinib-resistant variants, K562/R1, K562/R2, and K562/R3, which showed profound declines of Bcr-Abl levels and its tyrosine kinase activity, from K562 cells. Importantly, the imatinib resistance mechanism in these variants also included aberrant acetylation of nonhistone proteins such as p53, Ku70, and Hsp90 that was due to upregulation of histone deacetylases (HDACs) and down-regulation of histone acetyltransferase (HAT). In comparison with K562 cells, the imatinib-resistant variants showed up-regulation of HDAC1, -2, and -3 (class I HDACs) and class III SIRT1 and down-regulation of CBP/p300 and PCAF with HAT activity, and thereby p53 and cytoplasmic Ku70 were aberrantly acetylated. In addition, these were associated with down-regulation of Bax and up-regulation of Bcl-2. In contrast, the class II HDAC6 level was significantly decreased, and this was accompanied by an increase of Hsp90 acetylation in the imatinib-resistant variants, which was closely associated with loss of Bcr-Abl. These results indicate that alteration of the normal balance of HATs and HDACs leads to deregulated acetylation of Hsp90, p53, and Ku70 and thereby leads to imatinib resistance, suggesting the importance of the acetylation status of apoptosis-related nonhistone proteins in Bcr-Abl-independent imatinib resistance. We also revealed that imatinib-resistant K562 cells were more sensitive to suberoylanilide hydroxamic acid, an HDAC inhibitor, than K562 cells. These findings may have implications for HDAC as a molecular target in imatinib-resistant leukemia cells.
Collapse
Affiliation(s)
- Sang Min Lee
- Department of Biochemistry, Research Center for Ischemic Tissue Regeneration, College of Medicine, Pusan National University, Pusan 602-739, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Tallen UG, Truss M, Kunitz F, Wellmann S, Unryn B, Sinn B, Lass U, Krabbe S, Holtkamp N, Hagemeier C, Wurm R, Henze G, Riabowol KT, von Deimling A. Down-regulation of the inhibitor of growth 1 (ING1) tumor suppressor sensitizes p53-deficient glioblastoma cells to cisplatin-induced cell death. J Neurooncol 2007; 86:23-30. [PMID: 17763999 DOI: 10.1007/s11060-007-9436-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Accepted: 06/11/2007] [Indexed: 12/21/2022]
Abstract
Impaired tumor suppressor functions, such as deficient p53, are characteristic for glioblastoma multiforme (GBM) and can cause resistance to DNA-damaging agents like cisplatin. We have recently shown that the INhibitor of Growth 1 (ING1) tumor suppressor is down-regulated in malignant gliomas and that the decrease of ING1 expression correlates with histological grade of malignancy, suggesting a role for ING1 in the pathogenesis and progression of malignant gliomas. Based on this background, the purpose of our current study was to examine the potential impact of ING1 protein levels on DNA-damage response in GBM. Using LN229 GBM cells, which express ING1 proteins and harbor mutant TP53, we are the first to show that DNA damage by cisplatin or ionizing radiation differentially induced the two major ING1 splicing isoforms. The p47 ING1a isoform, that promotes deacetylation of histones, thus formation of heterochromatic regions of DNA, which are less susceptible to DNA damage, was preferentially induced by >50-fold. This might represent a response to protect DNA from damage. Also, ING1 knockdown by siRNA accelerated transit of cells through G1 phase, consistent with ING1 serving a tumor suppressor function, and caused cells to enter apoptosis more rapidly in response to cisplatin. Our results indicate that malignant gliomas may down-regulate ING1 to allow more efficient tumor growth and progression. Also, ING1 down-regulation may sensitize GBM cells with deficient p53 to treatment with cisplatin.
Collapse
Affiliation(s)
- Ute Gesche Tallen
- Department of Pediatric Oncology and Hematology, Children's Hospital, Charité, Universitätsmedizin-Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Sigalotti L, Fratta E, Coral S, Cortini E, Covre A, Nicolay HJM, Anzalone L, Pezzani L, Di Giacomo AM, Fonsatti E, Colizzi F, Altomonte M, Calabrò L, Maio M. Epigenetic drugs as pleiotropic agents in cancer treatment: biomolecular aspects and clinical applications. J Cell Physiol 2007; 212:330-44. [PMID: 17458893 DOI: 10.1002/jcp.21066] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In the last three decades huge efforts have been made to characterize genetic defects responsible for cancer development and progression, leading to the comprehensive identification of distinct cellular pathways affected by the alteration of specific genes. Despite the undoubtable role of genetic mechanisms in triggering neoplastic cell transformation, epigenetic modifications (i.e., heritable changes of gene expression that do not derive from alterations of the nucleotide sequence of DNA) are rapidly emerging as frequent alterations that often occur in the early phases of tumorigenesis and that play an important role in tumor development and progression. Epigenetic alterations, such as modifications in DNA methylation patterns and post-translational modifications of histone tails, behave extremely different from genetic modifications, being readily revertable by "epigenetic drugs" such as inhibitors of DNA methyl transferases and inhibitors of histone deacetylases. Since epigenetic alterations in cancer cells affect virtually all cellular pathways that have been associated to tumorigenesis, it is not surprising that epigenetic drugs display pleiotropic activities, being able to concomitantly restore the defective expression of genes involved in cell cycle control, apoptosis, cell signaling, tumor cell invasion and metastasis, angiogenesis and immune recognition. Prompted by this emerging clinical relevance of epigenetic drugs, this review will focus on the large amount of available data, deriving both from in vitro experimentations and in vivo pre-clinical and clinical studies, which clearly indicate epigenetic drugs as effective modifiers of cancer phenotype and as positive regulators of tumor cell biology with a relevant therapeutic potential in cancer patients.
Collapse
Affiliation(s)
- Luca Sigalotti
- Cancer Bioimmunotherapy Unit, Department of Medical Oncology, Centro di Riferimento Oncologico, Istituto di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Peng Y, Song J, Lu J, Chen X. The histone deacetylase inhibitor sodium butyrate inhibits baculovirus-mediated transgene expression in Sf9 cells. J Biotechnol 2007; 131:180-7. [PMID: 17655959 DOI: 10.1016/j.jbiotec.2007.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 05/26/2007] [Accepted: 06/14/2007] [Indexed: 10/23/2022]
Abstract
Recent studies have indicated that histone deacetylase inhibitors (HDACis) could enhance and prolong expression of exogenous genes delivered by various viral vehicles in mammalian cells, including baculovirus vectors. In this study, the effects of HDACis on expression of a baculovirus-mediated eGFP reporter gene under control of baculovirus late promoter p10 in Sf9 cells were evaluated. It was found that sodium butyrate (NaBu) decreased the expression level of the target gene driven by p10 promoter by four to fivefold. Moreover, addition of NaBu increased DNaseI-sensitivity of transgene p10 promoter region and did not influence viral DNA replication. FACS assay has shown that both NaBu and fluorodeoxyuridine (FdUrd) blocked Sf9 cells at G1 phase and inhibited the target gene expression. Another HDACi, trichostatin, had little effects on both cell cycle and Ac-p10-eGFP expression, strongly suggesting that cell cycle arrest accounts for the mechanisms by which NaBu inhibits Ac-p10-eGFP expression. The inhibiting effects of NaBu on baculovirus transgene expression in Sf9 cells are promoter specific since the enhancement of NaBu on transgene expression in insect and mammalian cells are mediated by baculovirus harboring a murine cytomegalovirus (mCMV) immediate early promoter. This study was aimed at improving the productivity of the recombinant proteins and providing a better understanding of the epigenetic regulation of baculovirus gene expression.
Collapse
Affiliation(s)
- Ying Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | | | | | | |
Collapse
|
155
|
Siliphaivanh P, Harrington P, Witter DJ, Otte K, Tempest P, Kattar S, Kral AM, Fleming JC, Deshmukh SV, Harsch A, Secrist PJ, Miller TA. Design of novel histone deacetylase inhibitors. Bioorg Med Chem Lett 2007; 17:4619-24. [PMID: 17555962 DOI: 10.1016/j.bmcl.2007.05.080] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 05/22/2007] [Accepted: 05/24/2007] [Indexed: 11/26/2022]
Abstract
Histone deacetylase (HDAC) inhibitors that target Class I and Class II HDACs are of synthetic and therapeutic interest and ongoing clinical studies indicate that they show great promise for the treatment of cancer. Moreover, Zolinza (vorinostat) was recently approved by the FDA for the treatment of the cutaneous manifestations of cutaneous T-cell lymphoma [Nat. Rev. Drug Disc. 2007, 6, 21]. As part of a broader effort to more fully explore the structure-activity relationships (SAR) of HDAC inhibitors, we sought to identify novel HDAC inhibitor structures through iterative design by utilizing low affinity ligands as synthetic starting points for SAR development. Novel and potent HDAC inhibitors have been identified using this approach and herein we report the optimization of the recognition elements of a novel series of malonyl-derived HDAC inhibitors.
Collapse
Affiliation(s)
- Phieng Siliphaivanh
- Department of Drug Design & Optimization, Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Cecconi D, Donadelli M, Rinalducci S, Zolla L, Scupoli MT, Scarpa A, Palmieri M, Righetti PG. Proteomic analysis of pancreatic endocrine tumor cell lines treated with the histone deacetylase inhibitor trichostatin A. Proteomics 2007; 7:1644-53. [PMID: 17443844 DOI: 10.1002/pmic.200600811] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Effects of the histone-deacetylases inhibitor trichostatin A (TSA) on the growth of three different human pancreatic endocrine carcinoma cell lines (CM, BON, and QGP-1) have been assessed via dosage-dependent growth inhibition curves. TSA determined strong inhibition of cell growth with similar IC(50) values for the different cell lines: 80.5 nM (CM), 61.6 nM (BON), and 86 nM (QGP-1), by arresting the cell cycle in G2/M phase and inducing apoptosis. 2DE and nano-RP-HPLC-ESI-MS/MS analysis revealed 34, 33, and 38 unique proteins differentially expressed after TSA treatment in the CM, BON, and QGP-1 cell lines, respectively. The most important groups of modulated proteins belong to cell proliferation, cell cycle, and apoptosis classes (such as peroxiredoxins 1 and 2, the diablo protein, and HSP27). Other proteins pertain to processes such as regulation of gene expression (nucleophosmin, oncoprotein dek), signal transduction (calcium-calmodulin), chromatin, and cytoskeleton organization (calgizzarin, dynein, and lamin), RNA splicing (nucleolin, HNRPC), and protein folding (HSP70). The present data are in agreement with previous proteomic analyses performed on pancreatic ductal carcinoma cell lines (Cecconi, D. et al.., Electrophoresis 2003; Cecconi, D. et al., J. Proteome Res. 2005) and place histone-deacetylases inhibitors among the potentially most powerful drugs for the treatment of pancreatic tumors.
Collapse
Affiliation(s)
- Daniela Cecconi
- Department of Science and Technologies, Section of Biochemical Methodologies, University of Verona, Verona, Italy
| | | | | | | | | | | | | | | |
Collapse
|
157
|
Platta CS, Greenblatt DY, Kunnimalaiyaan M, Chen H. The HDAC inhibitor trichostatin A inhibits growth of small cell lung cancer cells. J Surg Res 2007; 142:219-26. [PMID: 17612559 DOI: 10.1016/j.jss.2006.12.555] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 12/13/2006] [Accepted: 12/21/2006] [Indexed: 12/26/2022]
Abstract
BACKGROUND An estimated 162,460 people will die of lung cancer in the United States in 2006, making it the leading cause of cancer deaths. Small cell lung cancer (SCLC) accounts for 20% of all lung cancers and exhibits aggressive behavior with early metastases. Current treatments yield five-year survival rates of 5 to 10%, indicating a need for novel therapeutic approaches. Histone deacetylase inhibitors (HDACIs) represent a new class of anticancer agents. Trichostatin A (TSA), an HDACI, has been shown to inhibit growth in several cancers. We hypothesized that TSA may inhibit proliferation of SCLC cells. MATERIALS AND METHODS Human SCLC DMS53 cells were treated with TSA (0 to 400 nM). Light microscopy was used to assess changes in cell morphology. Western analysis was performed for acetylated histone 4 to confirm HDAC inhibition. The effect of TSA treatment on cellular growth was measured by the MTT assay. Finally, levels of BCL-2, cleaved poly(ADP-ribose) polymerase, p21, and p27 proteins were measured to look for induction of cell cycle arrest and/or apoptosis. RESULTS DMS53 cells treated with TSA underwent dramatic changes in cell appearance. Treated cells assumed round and spindle shapes with distinct cellular borders. Western analysis demonstrated increased levels of acetylated histone 4. TSA treatment resulted in a dose-dependent inhibition of growth. Lastly, elevated p21, p27, and cleaved poly(ADP-ribose) polymerase along with decreased BCL-2 protein levels were observed. CONCLUSIONS TSA causes morphological differentiation and dose-dependent inhibition of cell growth via cell cycle arrest and subsequent apoptosis. This suggests that TSA and other HDACIs may represent a new potential therapy for patients with SCLC.
Collapse
Affiliation(s)
- Christopher S Platta
- Endocrine Surgery Research Laboratories, Department of Surgery, University of Wisconsin, University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, Madison, Wisconsin, USA
| | | | | | | |
Collapse
|
158
|
Shabbeer S, Kortenhorst MSQ, Kachhap S, Galloway N, Rodriguez R, Carducci MA. Multiple Molecular pathways explain the anti-proliferative effect of valproic acid on prostate cancer cells in vitro and in vivo. Prostate 2007; 67:1099-110. [PMID: 17477369 DOI: 10.1002/pros.20587] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Valproic acid (VPA), is a drug approved by the FDA for epilepsy and bipolar disorders. It is a known Histone Deacetylase Inhibitor (HDACI). We tested VPA, for its anti-proliferative activity in prostate cancer (PCa) cell lines in vitro and in vivo. METHODS DU-145 and PC-3 PCa cell lines were cultured with different doses of VPA. Cells were examined for their viability, cell cycle status and expression of cell cycle arrest, and proliferation markers. Nude mice bearing xenografts of human PCa cell lines, DU-145, and PC-3, were administered VPA in their drinking water. RESULTS VPA displayed a dose- and time-dependent anti-proliferative effect on DU-145 and PC-3 PCa cell lines in vitro. A sustained effect of the drug was seen on cell cycle arrest even at 24 hr after removal of the drug, after which the effects returned to the basal state. Administration of 0.4% w/v VPA in drinking water (resulting in 0.4 mM VPA, in plasma) was effective in inducing growth arrest, cell death, and senescence in vivo and was also anti-angiogenic. The activation of all or some of these anti-proliferative pathways may be contingent on acetylation status of histones, confirmed by detection of increased acetyl-H3K9 in VPA-treated samples when compared with untreated controls. Pharmacodynamic studies showed an increase in expression of p21 and decrease in PCNA in xenografts of VPA-treated mice compared with protein expression in untreated controls. CONCLUSIONS VPA may be functioning as an HDACI to inhibit growth of PCa cells in vitro and in vivo by modulating multiple pathways including cell cycle arrest, apoptosis, angiogenesis, and senescence.
Collapse
Affiliation(s)
- Shabana Shabbeer
- Prostate Cancer Program, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, Maryland 21231, USA
| | | | | | | | | | | |
Collapse
|
159
|
Gu W, Cueto M, Jensen PR, Fenical W, Silverman RB. Microsporins A and B: new histone deacetylase inhibitors from the marine-derived fungus Microsporum cf. gypseum and the solid-phase synthesis of microsporin A. Tetrahedron 2007. [DOI: 10.1016/j.tet.2007.04.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
160
|
Abstract
Histone deacetylases (HDACs) and histone acetyltransferases are enzymes that regulate chromatin structure and function through the removal and addition, respectively, of the acetyl group from the lysine residues of core nucleosomal histones. This posttranslational modification of histones is an important process in the regulation of gene expression. Aberrant expression and recruitment and disrupted activities of HDACs and histone acetyltransferases have been found in malignant tissues, implicating their involvement in cancer. HDAC inhibitors (HDACIs) function through diverse mechanisms, including the promotion of cell cycle arrest and apoptosis and the inhibition of angiogenesis. Malignant cells appear more sensitive to the proapoptotic effects of HDACIs, underscoring the therapeutic potential of these agents. Multiple HDACIs are currently under investigation in clinical trials, including vorinostat (suberoylanilide hydroxamic acid), which was recently approved by the U.S. Food and Drug Administration for the treatment of cutaneous manifestations of cutaneous T-cell lymphoma in patients with progressive, persistent, or recurrent disease on or after 2 systemic therapies.
Collapse
Affiliation(s)
- Janice M Mehnert
- Department of Medical Oncology, Yale Cancer Center, New Haven, CT 06520-8032, USA
| | | |
Collapse
|
161
|
Daosukho C, Chen Y, Noel T, Sompol P, Nithipongvanitch R, Velez JM, Oberley TD, Clair DKS. Phenylbutyrate, a histone deacetylase inhibitor, protects against Adriamycin-induced cardiac injury. Free Radic Biol Med 2007; 42:1818-25. [PMID: 17512461 PMCID: PMC2151922 DOI: 10.1016/j.freeradbiomed.2007.03.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 03/04/2007] [Accepted: 03/06/2007] [Indexed: 11/28/2022]
Abstract
Cardiac injury is a major complication for oxidative-stress-generating anticancer agents exemplified by Adriamycin (ADR). Recently, several histone deacetylase inhibitors (HDACIs) including phenylbutyrate (PBA) have shown promise in the treatment of cancer with little known toxicity to normal tissues. PBA has been shown to protect against oxidative stress in normal tissues. Here, we examined whether PBA might protect heart against ADR toxicity in a mouse model. The mice were i.p. injected with ADR (20 mg/kg). PBA (400 mg/kg/day) was i.p. injected 1 day before and daily after the ADR injection for 2 days. We found that PBA significantly decreased the ADR-associated elevation of serum lactate dehydrogenase and creatine kinase activities and diminished ADR-induced ultrastructural damages of cardiac tissue by more than 70%. Importantly, PBA completely rescued ADR-caused reduction of cardiac functions exemplified by ejection fraction and fraction shortening, and increased cardiac manganese superoxide dismutase (MnSOD) protein and activity. Our results reveal a previously unrecognized role of HDACIs in protecting against ADR-induced cardiac injury and suggest that PBA may exert its cardioprotective effect, in part, by the increase of MnSOD. Thus, combining HDACIs with ADR could add a new mechanism to fight cancer while simultaneously decrease ADR-induced cardiotoxicity.
Collapse
Affiliation(s)
- Chotiros Daosukho
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40506, USA
- Faculty of Medical Technology, Mahidol University, Bangkok, Thailand 10700
| | - Yumin Chen
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40506, USA
| | - Teresa Noel
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40506, USA
| | - Pradoldej Sompol
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40506, USA
| | | | - Joyce M. Velez
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40506, USA
| | - Terry D. Oberley
- Department of Pathology, University of Wisconsin, Madison, WI 53705, USA
| | - Daret K. St. Clair
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
162
|
Witter DJ, Belvedere S, Chen L, Secrist JP, Mosley RT, Miller TA. Benzo[b]thiophene-based histone deacetylase inhibitors. Bioorg Med Chem Lett 2007; 17:4562-7. [PMID: 17576064 DOI: 10.1016/j.bmcl.2007.05.091] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 05/29/2007] [Accepted: 05/30/2007] [Indexed: 11/29/2022]
Abstract
Benzo[b]thienyl hydroxamic acids, a novel class of histone deacetylase (HDAC) inhibitors, were identified via a targeted screen of small molecule hydroxamic acids. Various substitutions were explored in the C5- and C6-positions of the benzo[b]thiophene core to characterize SAR and develop optimal inhibitors. It was determined that substitution at the C6-position of the benzo[b]thiophene core with a three-atom spacer yielded optimal HDAC1 inhibition and anti-proliferative activity in murine erythroleukemia (SC-9) cells.
Collapse
Affiliation(s)
- David J Witter
- Merck Research Laboratories, Department of Drug Design & Optimization, 33 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
163
|
Abstract
Most cancer deaths are due to the development of metastases, hence the most important improvements in morbidity and mortality will result from prevention (or elimination) of such disseminated disease. Some would argue that treatments directed against metastasis are too late because cells have already escaped from the primary tumour. Such an assertion runs contrary to the significant but (for many common adult cancers) fairly modest improvements in survival following the use of adjuvant radiation and chemotherapy designed to eliminate disseminated cells after surgical removal of the primary tumour. Nonetheless, the debate raises important issues concerning the accurate early identification of clonogenic, metastatic cells, the discovery of novel, tractable targets for therapy, and the monitoring of minimal residual disease. We focus on recent findings regarding intrinsic and extrinsic molecular mechanisms controlling metastasis that determine how, when, and where cancers metastasise, and their implications for patient management in the 21st century.
Collapse
Affiliation(s)
- Suzanne A Eccles
- Tumour Biology and Metastasis, Cancer Research UK Centre for Cancer Therapeutics, Institute of Cancer Research, Sutton, UK.
| | | |
Collapse
|
164
|
Li W, Zhang J, Liu X, Xu R, Zhang Y. Correlation of appearance of metastasis-associated protein1 (Mta1) with spermatogenesis in developing mouse testis. Cell Tissue Res 2007; 329:351-62. [PMID: 17401724 DOI: 10.1007/s00441-007-0412-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 03/05/2007] [Indexed: 12/20/2022]
Abstract
Mta1, a representative of the MTA gene family, is believed to be involved in the metastasis of malignant tumors. However, a systematic study of its physiological function has not been performed. It has been found in normal mouse organs at relatively low levels, except for in testis, suggesting a potential function in the male reproductive system. In order to explore the role of Mta1 protein during spermatogenesis, its expression in adult mouse testis was compared with that in developing mouse testis and in testis from adult mice treated with methoxyacetic acid, which selectively depletes primary spermatocytes. Quantitative analysis revealed that Mta1 protein gradually increased in the testis from 14 days postnatally. Immunolocalization analysis demonstrated strong signals in the seminiferous tubules, and Mta1 was predominantly present in the nucleus of primary spermatocytes and spermatogonia from 14 days postnatally. The most intensive staining was located in the nucleus of pachytene spermatocytes in mature testes. The expression pattern of Mta1 during spermatogenesis was also shown to be stage-specific by immunohistochemistry analysis. Finally, dramatic loss of Mta1 expression from pachytene spermatocytes was observed in the spermatogenic-arrested adult mouse testis. These results collectively demonstrate that Mta1 appears during postnatal testis development and suggest that this expression may be crucial for spermatogenesis.
Collapse
Affiliation(s)
- Wei Li
- Department of Histology and Embryology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | | | | | | | | |
Collapse
|
165
|
Carroll-Anzinger D, Kumar A, Adarichev V, Kashanchi F, Al-Harthi L. Human immunodeficiency virus-restricted replication in astrocytes and the ability of gamma interferon to modulate this restriction are regulated by a downstream effector of the Wnt signaling pathway. J Virol 2007; 81:5864-71. [PMID: 17392368 PMCID: PMC1900315 DOI: 10.1128/jvi.02234-06] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Astrocyte dysregulation correlates with the severity and the rate of human immunodeficiency virus (HIV)-associated dementia (HAD) progression, highlighting a pivotal role for astrocytes in HIV neuropathogenesis. Yet, astrocytes limit HIV, indicating that they possess an intrinsic molecular mechanism to restrict HIV replication. We previously established that this restriction can be partly overcome by priming astrocytes with gamma interferon (IFN-gamma), which is elevated in the cerebral spinal fluid of HAD patients. We evaluated the mechanism of restrictive HIV replication in astrocytes and how IFN-gamma priming modulates this restriction. We demonstrate that the downstream effector of Wnt signaling, T-cell factor 4 (TCF-4), is part of a transcriptional complex that is immunoprecipitated with HIV TAR-containing region in untreated astrocytes but not in IFN-gamma-treated cells. Blocking TCF-4 activity with a dominant-negative mutant enhanced HIV replication by threefold in both the astrocytoma cell line U87MG and primary fetal astrocytes. Using a TCF-4 reporter plasmid, we directly demonstrate that Wnt signaling is active in human astrocytes and is markedly reduced by IFN-gamma treatment. Collectively, these data implicate TCF-4 in repressing HIV replication and the ability of IFN-gamma to regulate this restriction by inhibiting TCF-4. Given that TCF-4 is the downstream effector of Wnt signaling, harnessing Wnt signaling as an intrinsic molecular mechanism to limit HIV replication may emerge as a powerful tool to regulate HIV replication within and outside of the brain.
Collapse
Affiliation(s)
- Deborah Carroll-Anzinger
- Department of Immunology/Microbiology, Rush University Medical Center, 1735 W. Harrison Street, 614 Cohn, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
166
|
Snykers S, Vinken M, Rogiers V, Vanhaecke T. Differential role of epigenetic modulators in malignant and normal stem cells: a novel tool in preclinical in vitro toxicology and clinical therapy. Arch Toxicol 2007; 81:533-44. [PMID: 17387455 DOI: 10.1007/s00204-007-0195-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Accepted: 02/22/2007] [Indexed: 02/06/2023]
Abstract
Adult stem cells are primitive cells that undergo asymmetric division, thereby giving rise to one clonogenic, self-renewing cell and one cell able to undergo multipotent differentiation. Disturbance of this controlled process by epigenetic alterations, including imbalance of histone acetylation/histone deacetylation and DNA methylation/demethylation, may result in uncontrolled growth, formation of self-renewing malignant stem cells and eventually cancer. In view of this notion, several epigenetic modulators, in particular those with histone deacetylase inhibiting activity, are currently being tested in phase I and II clinical trials for their promising chemotherapeutic properties in cancer therapy. As chromatin modulation is also involved in regulation of differentiation, normal development, embryonic and adult stem cell functions and maintenance of their plasticity during embryonic organogenesis, the question can be raised whether predestined cell fate can be modified through epigenetic interference. And if so, could this strategy enforce adult stem cells to differentiate into different types of functional cells? In particular, functional hepatocytes seem important for preclinical toxicity screening of candidate drugs. This paper reviews the potential use and relevance of epigenetic modifiers, including inhibitors of histone deacetylases and DNA methyltransferases (1) to change cell fate and 'trans'differentiate normal adult stem cells into hepatocyte-like cells and (2) to cure disorders, caused by uncontrolled growth of malignant stem cells.
Collapse
Affiliation(s)
- Sarah Snykers
- Department of Toxicology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | | | | | | |
Collapse
|
167
|
Riester D, Hildmann C, Schwienhorst A. Histone deacetylase inhibitors--turning epigenic mechanisms of gene regulation into tools of therapeutic intervention in malignant and other diseases. Appl Microbiol Biotechnol 2007; 75:499-514. [PMID: 17377788 DOI: 10.1007/s00253-007-0912-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 02/26/2007] [Accepted: 02/26/2007] [Indexed: 12/22/2022]
Abstract
Histone deacetylase inhibitors reside among the most promising targeted anticancer agents that are potent inducers of growth arrest, differentiation, and/or apoptotic cell death of transformed cells. In October 2006, the US Food and Drug Administration approved the first drug of this new class, vorinostat (1, Zolinza, Merck). Several histone deacetylase (HDAC) inhibitors more are in clinical trials. HDAC inhibitors have shown significant activity against a variety of hematological and solid tumors at doses that are well tolerated by patients, both in monotherapy as well as in combination therapy with other drugs. This paper reviews the most recent developments in HDAC inhibitor design, particularly in the context of anticancer therapy, and other possible pharmaceutical applications.
Collapse
Affiliation(s)
- Daniel Riester
- Department of Molecular Genetics and Preparative Molecular Biology, Institute for Microbiology und Genetics, Grisebachstr. 8, 37077, Göttingen, Germany
| | | | | |
Collapse
|
168
|
Huang L. Targeting histone deacetylases for the treatment of cancer and inflammatory diseases. J Cell Physiol 2007; 209:611-6. [PMID: 17001696 DOI: 10.1002/jcp.20781] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Histone deacetylases (HDACs) are involved in chromatin remodeling and modification of nonhistone transcription regulatory proteins, thus modulating the expression of genes important for complex biological events. Dysregulation of HDACs and aberrant chromatin acetylation and deacetylation may be implicated in the pathogenesis of various diseases, including cancer and inflammatory diseases. A significant number of HDAC inhibitors (HDIs) have been developed in the past decade. These inhibitors demonstrate strong anti-neoplastic effects in vitro and in vivo by inducing growth arrest, differentiation, and programmed cell death, inhibiting cell migration, invasion, and metastasis, and suppressing angiogenesis. More than a dozen HDIs are currently being evaluated in phase I-II clinical trials in patients with solid and hematological malignancies, and some have already shown promising activity with low toxicity. HDIs also exhibit strong anti-inflammatory effects in vitro and in animal models for various inflammatory diseases, thus representing a new class of promising agents for treating inflammatory diseases. This review provides an overview of HDACs in gene regulation, HDIs for cancer therapy and for potential treatment of inflammatory diseases, and future perspectives.
Collapse
Affiliation(s)
- Lili Huang
- Dyax Corporation, 300 Technology Square, Cambridge, MA 01886, USA.
| |
Collapse
|
169
|
Yin D, Ong JM, Hu J, Desmond JC, Kawamata N, Konda BM, Black KL, Koeffler HP. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor: effects on gene expression and growth of glioma cells in vitro and in vivo. Clin Cancer Res 2007; 13:1045-1052. [PMID: 17289901 DOI: 10.1158/1078-0432.ccr-06-1261] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Histone acetylation is one of the main mechanisms involved in regulation of gene expression. During carcinogenesis, tumor-suppressor genes can be silenced by aberrant histone deacetylation. This epigenetic modification has become an important target for tumor therapy. The histone deacetylation inhibitor, suberoylanilide hydroxamic acid (SAHA), can induce growth arrest in transformed cells. The aim of this study is to examine the effects of SAHA on gene expression and growth of glioblastoma multiforme (GBM) cells in vitro and in vivo. EXPERIMENTAL DESIGN The effect of SAHA on growth of GBM cell lines and explants was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. Changes of the cell cycle and relative gene expression were detected by fluorescence-activated cell sorting, real-time reverse transcription-PCR, and Western blotting. After glioma cells were implanted in the brains of mice, the ability of SAHA to decrease tumor growth was studied. RESULTS Proliferation of GBM cell lines and explants were inhibited in vitro by SAHA (ED50, 2x10(-6) to 2x10(-5) mol/L, 5 days). SAHA exposure of human U87 and T98G glioma cell lines, DA66 and JM94 GBM explants, as well as a murine GL26 GBM cell line resulted in an increased accumulation of cells in G2-M of the cell cycle. Many proapoptotic, antiproliferative genes increased in their expression (DR5, TNFalpha, p21WAF1, p27KIP1), and many antiapoptotic, progrowth genes decreased in their levels (CDK2, CDK4, cyclin D1, cyclin D2) as measured by real-time reverse transcription-PCR and/or Western blot after these GBM cells were cultured with SAHA (2.5x10(-6) mol/L, 1 day). Chromatin immunoprecipitation assay found that acetylation of histone 3 on the p21(WAF1) promoter was markedly increased by SAHA. In vivo murine experiments suggested that SAHA (10 mg/kg, i.v., or 100 mg/kg, i.p.) could cross the blood-brain barrier as shown by prominent increased levels of acetyl-H3 and acetyl-H4 in the brain tissue. Furthermore, the drug significantly (P<0.05) inhibited the proliferation of the GL26 glioma cells growing in the brains of mice and increased their survival. CONCLUSIONS Taken together, SAHA can slow the growth of GBM in vitro and intracranially in vivo. SAHA may be a welcome addition for the treatment of this devastating disease.
Collapse
Affiliation(s)
- Dong Yin
- Division of Hematology/Oncology and Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, University of California at Los Angeles School of Medicine, Los Angeles, California 90048, USA.
| | | | | | | | | | | | | | | |
Collapse
|
170
|
Deshmukh P, Schulz-Fademrecht C, Procopiou P, Vigushin D, Coombes RC, Barrett AG. Ring-Closing Metathesis in the Synthesis of Biologically Active Peptidomimetics of Apicidin A. Adv Synth Catal 2007. [DOI: 10.1002/adsc.200600421] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
171
|
Koh E, Bandle R, Clair T, Roberts DD, Stracke ML. Trichostatin A and 5-aza-2'-deoxycytidine switch S1P from an inhibitor to a stimulator of motility through epigenetic regulation of S1P receptors. Cancer Lett 2006; 250:53-62. [PMID: 17189669 DOI: 10.1016/j.canlet.2006.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 09/11/2006] [Accepted: 09/22/2006] [Indexed: 12/31/2022]
Abstract
The histone deacetylase inhibitor, trichostatin A (TSA), and the DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (Aza-dC), induced epigenetic regulation of sphingosine-1-phosphate (S1P) receptors in human melanoma cells, switching S1P from motility inhibitor to stimulator. Quantitative PCR revealed increased expression of S1P(1) and S1P(3), associated with S1P-induced chemotaxis, and decreased expression of S1P(2), associated with motility inhibition. Expression of lysophosphatidic acid (LPA) receptors was less affected. The TSA effect was reversible suggesting no mutational change, and Aza-dC treatment resulted in demethylation of a putative S1P(1) promoter. S1P receptors, therefore, appear to be susceptible to epigenetic regulation, accompanied by altered cellular functionality.
Collapse
Affiliation(s)
- Eunjin Koh
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1500, USA.
| | | | | | | | | |
Collapse
|
172
|
Chen CL, Sung J, Cohen M, Chowdhury WH, Sachs MD, Li Y, Lakshmanan Y, Yung BYM, Lupold SE, Rodriguez R. Valproic acid inhibits invasiveness in bladder cancer but not in prostate cancer cells. J Pharmacol Exp Ther 2006; 319:533-42. [PMID: 16868035 DOI: 10.1124/jpet.106.106658] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Histone deacetylase inhibitors (HDACIs) represent a promising new class of antineoplastic agents that affect proliferation, differentiation, and apoptosis in both solid and hematologic malignancies. In addition, HDACIs can alter the expression of at least one cellular adhesion molecule, the coxsackie and adenovirus receptor, in bladder cancer. Because HDACIs can increase expression of a known cellular adhesion molecule, we hypothesized that migration and/or invasion may also be affected. We evaluated this hypothesis using valproic acid (VPA), a commonly prescribed anticonvulsant recently shown to have potent HDACI activity, in the bladder cancer cell lines T24 TCC-SUP, HT1376, and RT4. Analyses of cell migration and invasion were both qualitative (fluorescent microscopy) and quantitative (static and dynamic migration/invasion assays). Our results show that acute VPA treatment (72 h) causes a dose-dependent decrease in invasion for all bladder cancer cell lines, except RT4, a noninvasive papilloma. Migration, in contrast, was not affected by VPA treatment. The inhibitory effect of VPA may be cancer type-specific, because there was no difference in invasion between treated and untreated prostate cancer cell lines LNCaP, PC3, and DU145. Furthermore, when administered chronically (34 days), VPA significantly inhibits growth of T24t tumor xenografts. Our data suggest that VPA exerts some of its antineoplastic effects by inhibiting invasion as well as tumor growth, and thus it may represent a novel adjuvant strategy for patients at high risk of recurrence and/or progression of muscle invasive bladder cancer.
Collapse
Affiliation(s)
- Chien-Lun Chen
- The Johns Hopkins Hospital, 600 North Wolfe St., Marburg 205, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Abstract
Ovarian cancer is a heterogeneous disease with extensive cytogenetic and molecular heterogeneity including aneuploidy, chromosomal alterations, mutations and overexpression as well as a natural propensity to disseminate and spread, making it difficult to diagnose at an early stage. Insights into the molecular mechanisms operative in cancer development, progression and metastasis have uncovered a wide array of targets for therapeutic intervention. In the absence of a common driving oncogene in ovarian cancer, single targeted therapy for this disease is unlikely to yield significant clinical benefit. Tailored approaches that combine molecular targeting agents with cytotoxic regimens hold great promise when used in primary treatment, during consolidation and maintenance therapy, and in the treatment of persistent or recurrent disease. The most promising treatment strategies are those that target the drivers of tumorigenesis and enhance the activity of cytotoxic agents. Receptor tyrosine kinases, non-receptor tyrosine kinases, serine/threonine kinases, transferases, proteases and deacetylases are among the relevant molecular markers and targets for ovarian cancer that are discussed. Collaboration, coordination, creativity and aggressive outreach to patients and their advocates are essential for success in running the concurrent trials with multiple clinical end points and embedded translational research that are needed to evaluate the array of promising targeted therapeutics and combinations. Validated biomarkers, surrogate specimens and end points, and additional clinically relevant in vitro and in vivo models for ovarian cancer are needed to facilitate the drug development and evaluation process, and ultimately to make meaningful improvements in the diagnosis, prevention and management of ovarian cancer.
Collapse
|
174
|
Abstract
Myc expression is deregulated in a wide range of human cancers and is often associated with aggressive, poorly differentiated tumors. The Myc protein is a transcription factor that regulates a variety of cellular processes including cell growth and proliferation, cell-cycle progression, transcription, differentiation, apoptosis, and cell motility. Potential strategies that either inhibit the growth promoting effect of Myc and/or activate its pro-apoptotic function are presently being explored. In this review, we give an overview of Myc activation in human tumors and discuss current strategies aimed at targeting Myc for cancer treatment. Such therapies could have potential in combination with mechanistically different cytotoxic drugs to combat and eradicate tumors cells.
Collapse
Affiliation(s)
- Marina Vita
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
175
|
Mukhopadhyay U, Tong WP, Gelovani JG, Alauddin MM. Radiosynthesis of 6-([18F]fluoroacetamido)-1-hexanoicanilide ([18F]FAHA) for PET imaging of histone deacetylase (HDAC). J Labelled Comp Radiopharm 2006. [DOI: 10.1002/jlcr.1122] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|