Kim YJ, Žitňan D, Cho KH, Schooley DA, Mizoguchi A, Adams ME. Central peptidergic ensembles associated with organization of an innate behavior.
Proc Natl Acad Sci U S A 2006;
103:14211-6. [PMID:
16968777 PMCID:
PMC1599936 DOI:
10.1073/pnas.0603459103]
[Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
At the end of each developmental stage, insects perform the ecdysis sequence, an innate behavior necessary for shedding the old cuticle. Ecdysis triggering hormones (ETHs) initiate these behaviors through direct actions on the CNS. Here, we identify the ETH receptor (ETHR) gene in the moth Manduca sexta, which encodes two subtypes of GPCR (ETHR-A and ETHR-B). Expression of ETHRs in the CNS coincides precisely with acquisition of CNS sensitivity to ETHs and behavioral competence. ETHR-A occurs in diverse networks of neurons, producing both excitatory and inhibitory neuropeptides, which appear to be downstream signals for behavior regulation. These peptides include allatostatins, crustacean cardioactive peptide (CCAP), calcitonin-like diuretic hormone, CRF-like diuretic hormones (DHs) 41 and 30, eclosion hormone, kinins, myoinhibitory peptides (MIPs), neuropeptide F, and short neuropeptide F. In particular, cells L(3,4) in abdominal ganglia coexpress kinins, DH41, and DH30, which together elicit the fictive preecdysis rhythm. Neurons IN704 in abdominal ganglia coexpress CCAP and MIPs, whose joint actions initiate the ecdysis motor program. ETHR-A also is expressed in brain ventromedial cells, whose release of EH increases excitability in CCAP/MIP neurons. These findings provide insights into how innate, centrally patterned behaviors can be orchestrated via recruitment of peptide cotransmitter neurons.
Collapse